• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 // pack.h: packing blocks of the LHS and RHS into the data layout
16 // that is expected by compute.h and eventually by kernels.
17 // Because this data layout depends on the kernel format, code here
18 // is templated in KernelLhsFormat/KernelRhsFormat.
19 //
20 // Readers note: an important theme around here is that we try hard
21 // to handle both Lhs and Rhs with a single piece of code. We indifferently
22 // refer to the Lhs and Rhs as a 'Side'. Instead of addressing matrices
23 // by (row, column) indices, we address them by (width, depth), as explained
24 // in kernel.h. This allows us to handle both Lhs and Rhs on an equal footing,
25 // at once.
26 
27 #ifndef GEMMLOWP_INTERNAL_PACK_H_
28 #define GEMMLOWP_INTERNAL_PACK_H_
29 
30 #include <cstring>
31 
32 #include "allocator.h"
33 #include "block_params.h"
34 #include "common.h"
35 #include "kernel.h"
36 
37 namespace gemmlowp {
38 
39 // A PackedSideBlock instance is a packed block of either the LHS or RHS
40 // (whence the generic 'Side' name).
41 //
42 // 'Packed' means that it is laid out in the storage order that
43 // is expected by the specified kernel format. From a block of the input
44 // LHS or RHS matrix, one obtains a PackedSideBlock by calling PackLhs()
45 // or PackRhs().
46 template <typename tKernelSideFormat>
47 class PackedSideBlock {
48  public:
49   typedef tKernelSideFormat KernelSideFormat;
50 
PackedSideBlock(Side side,Allocator * allocator,const BlockParams & block_params)51   PackedSideBlock(Side side, Allocator* allocator,
52                   const BlockParams& block_params)
53       : allocator_(allocator), pos_(0) {
54     GetSideBlockParams(side, &params_, block_params);
55     data_handle_ =
56         allocator_->Reserve<std::uint8_t>(params_.l2_width * params_.l2_depth);
57     sums_of_each_slice_handle_ =
58         allocator_->Reserve<std::int32_t>(params_.l2_width);
59   }
60 
~PackedSideBlock()61   ~PackedSideBlock() {}
62 
seek_run(int start_width,int start_depth)63   void seek_run(int start_width, int start_depth) const {
64     int kernel_run_depth =
65         std::min<int>(params_.l1_depth, params_.l2_depth - start_depth);
66     pos_ = params_.l2_width * start_depth + start_width * kernel_run_depth;
67   }
68 
seek_next_cell()69   void seek_next_cell() const { pos_ += KernelSideFormat::Cell::kSize; }
70 
seek_forward_n_cells(int n)71   void seek_forward_n_cells(int n) const {
72     pos_ += n * KernelSideFormat::Cell::kSize;
73   }
74 
current_data()75   const std::uint8_t* current_data() const {
76     return allocator_->GetPointer<std::uint8_t>(data_handle_) + pos_;
77   }
78 
current_data()79   std::uint8_t* current_data() {
80     return allocator_->GetPointer<std::uint8_t>(data_handle_) + pos_;
81   }
82 
sums_of_each_slice()83   std::int32_t* sums_of_each_slice() {
84     return allocator_->GetPointer<std::int32_t>(sums_of_each_slice_handle_);
85   }
86 
sums_of_each_slice()87   const std::int32_t* sums_of_each_slice() const {
88     return allocator_->GetPointer<const std::int32_t>(
89         sums_of_each_slice_handle_);
90   }
91 
params()92   const SideBlockParams& params() const { return params_; }
93 
94  private:
95   // The block size parameters that this PackedSizeBlock follows.
96   // The L2 parameters determine its overall size, while the L1 parameters,
97   // together with the kernel format template parameter, determine
98   // the fine details of the storage/traversal order.
99   SideBlockParams params_;
100 
101   // Pointer to the allocator provided by the caller. Not owned.
102   // The Allocator is assumed to outlive the PackedSideBlock.
103   Allocator* const allocator_;
104 
105   // Handle on the buffer backing this packed block. Owned.
106   Allocator::Handle data_handle_;
107 
108   // Handle on the additional buffer backing the vector of sums of slices
109   // associated with this block. Owned.
110   Allocator::Handle sums_of_each_slice_handle_;
111 
112   // pos_ is the current position in the buffer, which we access
113   // sequentially, like a file.
114   // The idea is that we pack data in the same order as it is
115   // going to be traversed during the computation, which for
116   // cache-friendliness reasons is complicated to random-access,
117   // as the offsets calculations would be intricate. So we
118   // give up random-access addressing, and instead content ourselves
119   // with sequential access.
120   //
121   // pos_ is mutable because during the computation we will want to
122   // be able to iterate on the data in a const PackedSideBlock.
123   mutable int pos_;
124 };
125 
126 // WidthMajor and DepthMajor are custom phrases modelled after the
127 // standard terminology 'row-major' and 'column-major'. Their meaning
128 // should be transparent once one has read the explanation in kernel.h:
129 // for example, in the Lhs, the 'width' dimension is the rows dimension,
130 // so there WidthMajor means RowMajor, while in the Rhs it is the opposite.
131 // Another way to put it: WidthMajor means that contiguous storage is used
132 // for entries having the same 'width' index.
133 enum class SideMapOrder { WidthMajor, DepthMajor };
134 
135 // Similar to MatrixMap from map.h, but in terms of width/depth instead of
136 // rows/columns. Used to address blocks of the input LHS/RHS matrices when
137 // packing them.
138 template <typename tScalar, SideMapOrder tOrder>
139 class SideMap {
140  public:
141   typedef tScalar Scalar;
142   static const SideMapOrder kOrder = tOrder;
143 
SideMap(Scalar * data,int width,int depth,int stride)144   SideMap(Scalar* data, int width, int depth, int stride)
145       : data_(data), width_(width), depth_(depth), stride_(stride) {}
146 
SideMap(Scalar * data,int width,int depth)147   SideMap(Scalar* data, int width, int depth)
148       : data_(data), width_(width), depth_(depth) {
149     stride_ = kOrder == SideMapOrder::WidthMajor ? depth_ : width_;
150   }
151 
SideMap(const SideMap & other)152   SideMap(const SideMap& other)
153       : data_(other.data_),
154         width_(other.width_),
155         depth_(other.depth_),
156         stride_(other.stride_) {}
157 
width()158   int width() const { return width_; }
depth()159   int depth() const { return depth_; }
stride()160   int stride() const { return stride_; }
width_stride()161   int width_stride() const {
162     return kOrder == SideMapOrder::DepthMajor ? 1 : stride_;
163   }
depth_stride()164   int depth_stride() const {
165     return kOrder == SideMapOrder::WidthMajor ? 1 : stride_;
166   }
data()167   Scalar* data() const { return data_; }
data(int w,int d)168   Scalar* data(int w, int d) const {
169     return data_ + w * width_stride() + d * depth_stride();
170   }
operator()171   Scalar operator()(int w, int d) const { return *data(w, d); }
operator()172   Scalar& operator()(int w, int d) { return *data(w, d); }
173 
block(int start_width,int start_depth,int block_width,int block_depth)174   SideMap block(int start_width, int start_depth, int block_width,
175                 int block_depth) const {
176     assert(start_width >= 0);
177     assert(start_width + block_width <= width_);
178     assert(start_depth >= 0);
179     assert(start_depth + block_depth <= depth_);
180 
181     return SideMap(data(start_width, start_depth), block_width, block_depth,
182                    stride_);
183   }
184 
185  private:
186   Scalar* data_;  // not owned.
187   int width_, depth_, stride_;
188 };
189 
190 // A PackingRegisterBlock is a small fixed-size block of a matrix being
191 // packed. This class is the generic non-optimized implementation,
192 // it is inherited by the generic implementation of PackingRegisterBlock,
193 // which may be overriden by template specialization. Overriding it is how
194 // one may provide optimized packing code paths.
195 //
196 // The packing of a block proceeds in two steps:
197 //   1. Ensuring that we have a complete block of source data, i.e. a block of
198 //      the compile-time prescribed size. This is where we handle unaligned
199 //      boundaries: if we don't have a complete block of source data, then
200 //      we copy and zero-extend it into a local temporary (complete_src_),
201 //      see MakeCompleteSrc. In the generic case, we do have a complete block,
202 //      so we just use it in-place, see UseCompleteSrcInPlace.
203 //   2. Packing a complete block into the destination, see Pack. This is the
204 //      most critical part, so it's convenient that unaligned boundaries have
205 //      already been handled in step 1.
206 template <typename SrcMapType, typename PackedSideBlock>
207 class PackingRegisterBlockBase {
208  public:
209   typedef typename PackedSideBlock::KernelSideFormat KernelSideFormat;
210   typedef typename KernelSideFormat::Cell CellFormat;
211   typedef typename KernelSideFormat::Scalar KernelScalar;
212   static const int kCells = KernelSideFormat::kCells;
213   static const int kCellWidth = CellFormat::kWidth;
214   static const int kKernelWidth = CellFormat::kWidth * kCells;
215   static const int kCellDepth = CellFormat::kDepth;
216   static const int kCellSize = CellFormat::kSize;
217   static const SideMapOrder kSrcOrder = SrcMapType::kOrder;
218   static const int kZeroPointInputValue =
219       ZeroPointInputValue<KernelScalar>::kValue;
220 
PackingRegisterBlockBase()221   PackingRegisterBlockBase() : complete_src_(nullptr, 0, 0, 0) {}
222 
223  protected:
224   // The source data that's ready for packing. May point to
225   // in-place actual source data if it's already a complete block,
226   // (see UseCompleteSrcInPlace)
227   // or to the local buf_ below into which we copy incomplete blocks
228   // (see MakeCompleteSrc)
229   SrcMapType complete_src_;
230 
231   // Temporary buffer for loading incomplete blocks to,
232   // in the source storage order
233   std::uint8_t buf_[kKernelWidth * kRegisterSize];
234 
235  public:
236   // Selects a block if in-place source data that's already a complete block
UseCompleteSrcInPlace(const SrcMapType & src)237   void UseCompleteSrcInPlace(const SrcMapType& src) { complete_src_ = src; }
238   // Copies an incomplete block of source data into a local temporary
239   // complete block by zero-extending it.
MakeCompleteSrc(const SrcMapType & src)240   void MakeCompleteSrc(const SrcMapType& src) {
241     memset(buf_, kZeroPointInputValue, kKernelWidth * kRegisterSize);
242     if (kSrcOrder == SideMapOrder::WidthMajor) {
243       for (int w = 0; w < src.width(); w++) {
244         memcpy(buf_ + w * kRegisterSize, src.data(w, 0), src.depth());
245       }
246     } else {
247       assert(kSrcOrder == SideMapOrder::DepthMajor);
248       for (int d = 0; d < src.depth(); d++) {
249         memcpy(buf_ + d * kKernelWidth, src.data(0, d), src.width());
250       }
251     }
252     complete_src_ = SrcMapType(buf_, kKernelWidth, kRegisterSize);
253   }
254   // Packs a complete block into the destination. This is the most
255   // critical part and the part that we most typically want to
256   // override in architecture-specific optimized specializations.
Pack(PackedSideBlock * dst,int start_width)257   void Pack(PackedSideBlock* dst, int start_width) {
258     std::uint8_t* dst_ptr = dst->current_data();
259     for (int cell_start_depth = 0; cell_start_depth < kRegisterSize;
260          cell_start_depth += kCellDepth) {
261       for (int cell_start_width = 0; cell_start_width < kKernelWidth;
262            cell_start_width += kCellWidth) {
263         std::int32_t* cell_sums_of_each_slice_ptr =
264             dst->sums_of_each_slice() + start_width + cell_start_width;
265         const SideMap<const std::uint8_t, kSrcOrder> src_cell_map(
266             complete_src_.block(cell_start_width, cell_start_depth, kCellWidth,
267                                 kCellDepth));
268         for (int w = 0; w < kCellWidth; w++) {
269           std::int32_t sum = 0;
270           for (int d = 0; d < kCellDepth; d++) {
271             const std::uint8_t src_val = src_cell_map(w, d);
272             const std::int16_t kernel_val_unwrapped =
273                 src_val - kZeroPointInputValue;
274             const std::uint8_t kernel_val_uint8 = kernel_val_unwrapped;
275             dst_ptr[OffsetIntoCell<CellFormat>(w, d)] = kernel_val_uint8;
276             sum += kernel_val_unwrapped;
277           }
278           cell_sums_of_each_slice_ptr[w] += sum;
279         }
280         dst_ptr += kCellSize;
281       }
282     }
283     dst->seek_forward_n_cells(kCells * kRegisterSize / kCellDepth);
284   }
285 };
286 
287 template <typename SrcMapType, typename PackedSideBlock>
288 class PackingRegisterBlock
289     : public PackingRegisterBlockBase<SrcMapType, PackedSideBlock> {};
290 
291 // Large-scale implementation of packing.
292 template <typename SrcMapType, typename PackedSideBlock>
293 class PackSideBlockImpl {
294  public:
295   typedef typename PackedSideBlock::KernelSideFormat KernelSideFormat;
296   typedef typename KernelSideFormat::Cell CellFormat;
297   static const int kCells = KernelSideFormat::kCells;
298   static const int kCellWidth = CellFormat::kWidth;
299   static const int kKernelWidth = CellFormat::kWidth * kCells;
300   static const int kCellDepth = CellFormat::kDepth;
301 
302   typedef PackingRegisterBlock<SrcMapType, PackedSideBlock>
303       PackingRegisterBlockType;
304 
PackSideBlockImpl(PackedSideBlock * packed_side_block,const SrcMapType & src_map)305   PackSideBlockImpl(PackedSideBlock* packed_side_block,
306                     const SrcMapType& src_map)
307       : packed_side_block_(packed_side_block), src_map_(src_map) {}
308 
packed_side_block()309   PackedSideBlock* packed_side_block() const { return packed_side_block_; }
310 
src_map()311   const SrcMapType& src_map() const { return src_map_; }
312 
313   // The public entry point to pack a block.
PackL2()314   void PackL2() {
315     memset(packed_side_block_->sums_of_each_slice(), 0,
316            sizeof(std::int32_t) * packed_side_block_->params().l2_width);
317     for (int d = 0; d < src_map_.depth();
318          d += packed_side_block_->params().l1_depth) {
319       int ds = std::min<int>(packed_side_block_->params().l1_depth,
320                              src_map_.depth() - d);
321 
322       for (int w = 0; w < src_map_.width();
323            w += packed_side_block_->params().l1_width) {
324         int ws = std::min<int>(packed_side_block_->params().l1_width,
325                                src_map_.width() - w);
326 
327         PrefetchL1(w, ws, d, ds);
328         PackL1(w, ws, d, ds);
329       }
330     }
331   }
332 
333  protected:
334   // The intermediate-level loops, between PackL2 and PackRun.
PackL1(int start_width,int width,int start_depth,int depth)335   void PackL1(int start_width, int width, int start_depth, int depth) {
336     for (int w = 0; w < width; w += kKernelWidth) {
337       int ws = std::min(+kKernelWidth, width - w);
338       packed_side_block_->seek_run(start_width + w, start_depth);
339       PackRun(start_width + w, ws, start_depth, depth);
340     }
341   }
342 
343   // Prefetches the data that will be read by PackL1
PrefetchL1(int start_width,int width,int start_depth,int depth)344   void PrefetchL1(int start_width, int width, int start_depth, int depth) {
345     if (SrcMapType::kOrder == SideMapOrder::WidthMajor) {
346       for (int d = 0; d < depth; d += kDefaultCacheLineSize) {
347         for (int w = 0; w < width; w += 1) {
348           Prefetch(src_map_.data(start_width + w, start_depth + d));
349         }
350       }
351     } else {
352       for (int d = 0; d < depth; d++) {
353         for (int w = 0; w < width; w += kDefaultCacheLineSize) {
354           Prefetch(src_map_.data(start_width + w, start_depth + d));
355         }
356       }
357     }
358   }
359 
360   // PackRun packs only a run i.e. is the inner loop in the depth dimension.
PackRun(int start_width,int width,int start_depth,int depth)361   void PackRun(int start_width, int width, int start_depth, int depth) {
362     PackingRegisterBlockType b;
363     if (width == kKernelWidth) {
364       const int register_aligned_depth = RoundDown<kRegisterSize>(depth);
365       if (register_aligned_depth) {
366         for (int d = 0; d < register_aligned_depth; d += kRegisterSize) {
367           b.UseCompleteSrcInPlace(src_map_.block(start_width, start_depth + d,
368                                                  width, kRegisterSize));
369           b.Pack(packed_side_block_, start_width);
370         }
371       }
372       if (register_aligned_depth < depth) {
373         b.MakeCompleteSrc(
374             src_map_.block(start_width, start_depth + register_aligned_depth,
375                            width, depth - register_aligned_depth));
376         b.Pack(packed_side_block_, start_width);
377       }
378     } else {
379       assert(width < kKernelWidth);
380       for (int d = 0; d < depth; d += kRegisterSize) {
381         const int ds = std::min(+kRegisterSize, depth - d);
382         b.MakeCompleteSrc(
383             src_map_.block(start_width, start_depth + d, width, ds));
384         b.Pack(packed_side_block_, start_width);
385       }
386     }
387   }
388 
389   // The PackedSideBlock being packed, i.e. the 'destination'.
390   PackedSideBlock* const packed_side_block_;
391 
392   // A map on the block of the original matrix block being packed,
393   // i.e. the 'source'.
394   const SrcMapType& src_map_;
395 };
396 
397 // Packs a block of the input LHS matrix, into a PackedSideBlock
398 template <typename PackedSideBlock, typename MatrixMapType>
PackLhs(PackedSideBlock * dst,const MatrixMapType & src)399 void PackLhs(PackedSideBlock* dst, const MatrixMapType& src) {
400   ScopedProfilingLabel label("pack LHS");
401   static const SideMapOrder kSideMapOrder =
402       MatrixMapType::kOrder == MapOrder::RowMajor ? SideMapOrder::WidthMajor
403                                                   : SideMapOrder::DepthMajor;
404   typedef typename MatrixMapType::Scalar Scalar;
405   typedef SideMap<Scalar, kSideMapOrder> SideMapType;
406   SideMapType src_side_map(src.data(), src.rows(), src.cols(), src.stride());
407   typedef PackSideBlockImpl<SideMapType, PackedSideBlock> ImplType;
408   ImplType impl(dst, src_side_map);
409   impl.PackL2();
410 }
411 
412 // Packs a block of the input RHS matrix, into a PackedSideBlock
413 template <typename PackedSideBlock, typename MatrixMapType>
PackRhs(PackedSideBlock * dst,const MatrixMapType & src)414 void PackRhs(PackedSideBlock* dst, const MatrixMapType& src) {
415   ScopedProfilingLabel label("pack RHS");
416   static const SideMapOrder kSideMapOrder =
417       MatrixMapType::kOrder == MapOrder::ColMajor ? SideMapOrder::WidthMajor
418                                                   : SideMapOrder::DepthMajor;
419   typedef typename MatrixMapType::Scalar Scalar;
420   typedef SideMap<Scalar, kSideMapOrder> SideMapType;
421   SideMapType src_side_map(src.data(), src.cols(), src.rows(), src.stride());
422   typedef PackSideBlockImpl<SideMapType, PackedSideBlock> ImplType;
423   ImplType impl(dst, src_side_map);
424   impl.PackL2();
425 }
426 
427 }  // namespace gemmlowp
428 
429 #ifdef GEMMLOWP_NEON
430 #include "pack_neon.h"
431 #elif defined(GEMMLOWP_SSE4)
432 #include "pack_sse.h"
433 #elif defined(GEMMLOWP_MSA)
434 #include "pack_msa.h"
435 #endif
436 
437 #endif  // GEMMLOWP_INTERNAL_PACK_H_
438