1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expression parsing implementation for C++.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "clang/AST/ASTContext.h"
14 #include "RAIIObjectsForParser.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Parse/Parser.h"
20 #include "clang/Sema/DeclSpec.h"
21 #include "clang/Sema/ParsedTemplate.h"
22 #include "clang/Sema/Scope.h"
23 #include "llvm/Support/ErrorHandling.h"
24
25
26 using namespace clang;
27
SelectDigraphErrorMessage(tok::TokenKind Kind)28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
29 switch (Kind) {
30 // template name
31 case tok::unknown: return 0;
32 // casts
33 case tok::kw_const_cast: return 1;
34 case tok::kw_dynamic_cast: return 2;
35 case tok::kw_reinterpret_cast: return 3;
36 case tok::kw_static_cast: return 4;
37 default:
38 llvm_unreachable("Unknown type for digraph error message.");
39 }
40 }
41
42 // Are the two tokens adjacent in the same source file?
areTokensAdjacent(const Token & First,const Token & Second)43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
44 SourceManager &SM = PP.getSourceManager();
45 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
46 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
47 return FirstEnd == SM.getSpellingLoc(Second.getLocation());
48 }
49
50 // Suggest fixit for "<::" after a cast.
FixDigraph(Parser & P,Preprocessor & PP,Token & DigraphToken,Token & ColonToken,tok::TokenKind Kind,bool AtDigraph)51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
52 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
53 // Pull '<:' and ':' off token stream.
54 if (!AtDigraph)
55 PP.Lex(DigraphToken);
56 PP.Lex(ColonToken);
57
58 SourceRange Range;
59 Range.setBegin(DigraphToken.getLocation());
60 Range.setEnd(ColonToken.getLocation());
61 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
62 << SelectDigraphErrorMessage(Kind)
63 << FixItHint::CreateReplacement(Range, "< ::");
64
65 // Update token information to reflect their change in token type.
66 ColonToken.setKind(tok::coloncolon);
67 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
68 ColonToken.setLength(2);
69 DigraphToken.setKind(tok::less);
70 DigraphToken.setLength(1);
71
72 // Push new tokens back to token stream.
73 PP.EnterToken(ColonToken);
74 if (!AtDigraph)
75 PP.EnterToken(DigraphToken);
76 }
77
78 // Check for '<::' which should be '< ::' instead of '[:' when following
79 // a template name.
CheckForTemplateAndDigraph(Token & Next,ParsedType ObjectType,bool EnteringContext,IdentifierInfo & II,CXXScopeSpec & SS)80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
81 bool EnteringContext,
82 IdentifierInfo &II, CXXScopeSpec &SS) {
83 if (!Next.is(tok::l_square) || Next.getLength() != 2)
84 return;
85
86 Token SecondToken = GetLookAheadToken(2);
87 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
88 return;
89
90 TemplateTy Template;
91 UnqualifiedId TemplateName;
92 TemplateName.setIdentifier(&II, Tok.getLocation());
93 bool MemberOfUnknownSpecialization;
94 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
95 TemplateName, ObjectType, EnteringContext,
96 Template, MemberOfUnknownSpecialization))
97 return;
98
99 FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
100 /*AtDigraph*/false);
101 }
102
103 /// \brief Emits an error for a left parentheses after a double colon.
104 ///
105 /// When a '(' is found after a '::', emit an error. Attempt to fix the token
106 /// stream by removing the '(', and the matching ')' if found.
CheckForLParenAfterColonColon()107 void Parser::CheckForLParenAfterColonColon() {
108 if (!Tok.is(tok::l_paren))
109 return;
110
111 Token LParen = Tok;
112 Token NextTok = GetLookAheadToken(1);
113 Token StarTok = NextTok;
114 // Check for (identifier or (*identifier
115 Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok;
116 if (IdentifierTok.isNot(tok::identifier))
117 return;
118 // Eat the '('.
119 ConsumeParen();
120 Token RParen;
121 RParen.setLocation(SourceLocation());
122 // Do we have a ')' ?
123 NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1);
124 if (NextTok.is(tok::r_paren)) {
125 RParen = NextTok;
126 // Eat the '*' if it is present.
127 if (StarTok.is(tok::star))
128 ConsumeToken();
129 // Eat the identifier.
130 ConsumeToken();
131 // Add the identifier token back.
132 PP.EnterToken(IdentifierTok);
133 // Add the '*' back if it was present.
134 if (StarTok.is(tok::star))
135 PP.EnterToken(StarTok);
136 // Eat the ')'.
137 ConsumeParen();
138 }
139
140 Diag(LParen.getLocation(), diag::err_paren_after_colon_colon)
141 << FixItHint::CreateRemoval(LParen.getLocation())
142 << FixItHint::CreateRemoval(RParen.getLocation());
143 }
144
145 /// \brief Parse global scope or nested-name-specifier if present.
146 ///
147 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
148 /// may be preceded by '::'). Note that this routine will not parse ::new or
149 /// ::delete; it will just leave them in the token stream.
150 ///
151 /// '::'[opt] nested-name-specifier
152 /// '::'
153 ///
154 /// nested-name-specifier:
155 /// type-name '::'
156 /// namespace-name '::'
157 /// nested-name-specifier identifier '::'
158 /// nested-name-specifier 'template'[opt] simple-template-id '::'
159 ///
160 ///
161 /// \param SS the scope specifier that will be set to the parsed
162 /// nested-name-specifier (or empty)
163 ///
164 /// \param ObjectType if this nested-name-specifier is being parsed following
165 /// the "." or "->" of a member access expression, this parameter provides the
166 /// type of the object whose members are being accessed.
167 ///
168 /// \param EnteringContext whether we will be entering into the context of
169 /// the nested-name-specifier after parsing it.
170 ///
171 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
172 /// indicates whether this nested-name-specifier may be part of a
173 /// pseudo-destructor name. In this case, the flag will be set false
174 /// if we don't actually end up parsing a destructor name. Moreorover,
175 /// if we do end up determining that we are parsing a destructor name,
176 /// the last component of the nested-name-specifier is not parsed as
177 /// part of the scope specifier.
178 ///
179 /// \param IsTypename If \c true, this nested-name-specifier is known to be
180 /// part of a type name. This is used to improve error recovery.
181 ///
182 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
183 /// filled in with the leading identifier in the last component of the
184 /// nested-name-specifier, if any.
185 ///
186 /// \returns true if there was an error parsing a scope specifier
ParseOptionalCXXScopeSpecifier(CXXScopeSpec & SS,ParsedType ObjectType,bool EnteringContext,bool * MayBePseudoDestructor,bool IsTypename,IdentifierInfo ** LastII)187 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
188 ParsedType ObjectType,
189 bool EnteringContext,
190 bool *MayBePseudoDestructor,
191 bool IsTypename,
192 IdentifierInfo **LastII) {
193 assert(getLangOpts().CPlusPlus &&
194 "Call sites of this function should be guarded by checking for C++");
195
196 if (Tok.is(tok::annot_cxxscope)) {
197 assert(!LastII && "want last identifier but have already annotated scope");
198 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
199 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
200 Tok.getAnnotationRange(),
201 SS);
202 ConsumeToken();
203 return false;
204 }
205
206 if (Tok.is(tok::annot_template_id)) {
207 // If the current token is an annotated template id, it may already have
208 // a scope specifier. Restore it.
209 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
210 SS = TemplateId->SS;
211 }
212
213 // Has to happen before any "return false"s in this function.
214 bool CheckForDestructor = false;
215 if (MayBePseudoDestructor && *MayBePseudoDestructor) {
216 CheckForDestructor = true;
217 *MayBePseudoDestructor = false;
218 }
219
220 if (LastII)
221 *LastII = nullptr;
222
223 bool HasScopeSpecifier = false;
224
225 if (Tok.is(tok::coloncolon)) {
226 // ::new and ::delete aren't nested-name-specifiers.
227 tok::TokenKind NextKind = NextToken().getKind();
228 if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
229 return false;
230
231 if (NextKind == tok::l_brace) {
232 // It is invalid to have :: {, consume the scope qualifier and pretend
233 // like we never saw it.
234 Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
235 } else {
236 // '::' - Global scope qualifier.
237 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
238 return true;
239
240 CheckForLParenAfterColonColon();
241
242 HasScopeSpecifier = true;
243 }
244 }
245
246 if (Tok.is(tok::kw___super)) {
247 SourceLocation SuperLoc = ConsumeToken();
248 if (!Tok.is(tok::coloncolon)) {
249 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
250 return true;
251 }
252
253 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
254 }
255
256 if (!HasScopeSpecifier &&
257 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
258 DeclSpec DS(AttrFactory);
259 SourceLocation DeclLoc = Tok.getLocation();
260 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
261
262 SourceLocation CCLoc;
263 if (!TryConsumeToken(tok::coloncolon, CCLoc)) {
264 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
265 return false;
266 }
267
268 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
269 SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
270
271 HasScopeSpecifier = true;
272 }
273
274 while (true) {
275 if (HasScopeSpecifier) {
276 // C++ [basic.lookup.classref]p5:
277 // If the qualified-id has the form
278 //
279 // ::class-name-or-namespace-name::...
280 //
281 // the class-name-or-namespace-name is looked up in global scope as a
282 // class-name or namespace-name.
283 //
284 // To implement this, we clear out the object type as soon as we've
285 // seen a leading '::' or part of a nested-name-specifier.
286 ObjectType = nullptr;
287
288 if (Tok.is(tok::code_completion)) {
289 // Code completion for a nested-name-specifier, where the code
290 // code completion token follows the '::'.
291 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
292 // Include code completion token into the range of the scope otherwise
293 // when we try to annotate the scope tokens the dangling code completion
294 // token will cause assertion in
295 // Preprocessor::AnnotatePreviousCachedTokens.
296 SS.setEndLoc(Tok.getLocation());
297 cutOffParsing();
298 return true;
299 }
300 }
301
302 // nested-name-specifier:
303 // nested-name-specifier 'template'[opt] simple-template-id '::'
304
305 // Parse the optional 'template' keyword, then make sure we have
306 // 'identifier <' after it.
307 if (Tok.is(tok::kw_template)) {
308 // If we don't have a scope specifier or an object type, this isn't a
309 // nested-name-specifier, since they aren't allowed to start with
310 // 'template'.
311 if (!HasScopeSpecifier && !ObjectType)
312 break;
313
314 TentativeParsingAction TPA(*this);
315 SourceLocation TemplateKWLoc = ConsumeToken();
316
317 UnqualifiedId TemplateName;
318 if (Tok.is(tok::identifier)) {
319 // Consume the identifier.
320 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
321 ConsumeToken();
322 } else if (Tok.is(tok::kw_operator)) {
323 // We don't need to actually parse the unqualified-id in this case,
324 // because a simple-template-id cannot start with 'operator', but
325 // go ahead and parse it anyway for consistency with the case where
326 // we already annotated the template-id.
327 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
328 TemplateName)) {
329 TPA.Commit();
330 break;
331 }
332
333 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
334 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
335 Diag(TemplateName.getSourceRange().getBegin(),
336 diag::err_id_after_template_in_nested_name_spec)
337 << TemplateName.getSourceRange();
338 TPA.Commit();
339 break;
340 }
341 } else {
342 TPA.Revert();
343 break;
344 }
345
346 // If the next token is not '<', we have a qualified-id that refers
347 // to a template name, such as T::template apply, but is not a
348 // template-id.
349 if (Tok.isNot(tok::less)) {
350 TPA.Revert();
351 break;
352 }
353
354 // Commit to parsing the template-id.
355 TPA.Commit();
356 TemplateTy Template;
357 if (TemplateNameKind TNK
358 = Actions.ActOnDependentTemplateName(getCurScope(),
359 SS, TemplateKWLoc, TemplateName,
360 ObjectType, EnteringContext,
361 Template)) {
362 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
363 TemplateName, false))
364 return true;
365 } else
366 return true;
367
368 continue;
369 }
370
371 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
372 // We have
373 //
374 // template-id '::'
375 //
376 // So we need to check whether the template-id is a simple-template-id of
377 // the right kind (it should name a type or be dependent), and then
378 // convert it into a type within the nested-name-specifier.
379 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
380 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
381 *MayBePseudoDestructor = true;
382 return false;
383 }
384
385 if (LastII)
386 *LastII = TemplateId->Name;
387
388 // Consume the template-id token.
389 ConsumeToken();
390
391 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
392 SourceLocation CCLoc = ConsumeToken();
393
394 HasScopeSpecifier = true;
395
396 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
397 TemplateId->NumArgs);
398
399 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
400 SS,
401 TemplateId->TemplateKWLoc,
402 TemplateId->Template,
403 TemplateId->TemplateNameLoc,
404 TemplateId->LAngleLoc,
405 TemplateArgsPtr,
406 TemplateId->RAngleLoc,
407 CCLoc,
408 EnteringContext)) {
409 SourceLocation StartLoc
410 = SS.getBeginLoc().isValid()? SS.getBeginLoc()
411 : TemplateId->TemplateNameLoc;
412 SS.SetInvalid(SourceRange(StartLoc, CCLoc));
413 }
414
415 continue;
416 }
417
418 // The rest of the nested-name-specifier possibilities start with
419 // tok::identifier.
420 if (Tok.isNot(tok::identifier))
421 break;
422
423 IdentifierInfo &II = *Tok.getIdentifierInfo();
424
425 // nested-name-specifier:
426 // type-name '::'
427 // namespace-name '::'
428 // nested-name-specifier identifier '::'
429 Token Next = NextToken();
430
431 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover
432 // and emit a fixit hint for it.
433 if (Next.is(tok::colon) && !ColonIsSacred) {
434 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
435 Tok.getLocation(),
436 Next.getLocation(), ObjectType,
437 EnteringContext) &&
438 // If the token after the colon isn't an identifier, it's still an
439 // error, but they probably meant something else strange so don't
440 // recover like this.
441 PP.LookAhead(1).is(tok::identifier)) {
442 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
443 << FixItHint::CreateReplacement(Next.getLocation(), "::");
444 // Recover as if the user wrote '::'.
445 Next.setKind(tok::coloncolon);
446 }
447 }
448
449 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
450 // It is invalid to have :: {, consume the scope qualifier and pretend
451 // like we never saw it.
452 Token Identifier = Tok; // Stash away the identifier.
453 ConsumeToken(); // Eat the identifier, current token is now '::'.
454 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
455 << tok::identifier;
456 UnconsumeToken(Identifier); // Stick the identifier back.
457 Next = NextToken(); // Point Next at the '{' token.
458 }
459
460 if (Next.is(tok::coloncolon)) {
461 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
462 !Actions.isNonTypeNestedNameSpecifier(
463 getCurScope(), SS, Tok.getLocation(), II, ObjectType)) {
464 *MayBePseudoDestructor = true;
465 return false;
466 }
467
468 if (ColonIsSacred) {
469 const Token &Next2 = GetLookAheadToken(2);
470 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
471 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
472 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
473 << Next2.getName()
474 << FixItHint::CreateReplacement(Next.getLocation(), ":");
475 Token ColonColon;
476 PP.Lex(ColonColon);
477 ColonColon.setKind(tok::colon);
478 PP.EnterToken(ColonColon);
479 break;
480 }
481 }
482
483 if (LastII)
484 *LastII = &II;
485
486 // We have an identifier followed by a '::'. Lookup this name
487 // as the name in a nested-name-specifier.
488 Token Identifier = Tok;
489 SourceLocation IdLoc = ConsumeToken();
490 assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
491 "NextToken() not working properly!");
492 Token ColonColon = Tok;
493 SourceLocation CCLoc = ConsumeToken();
494
495 CheckForLParenAfterColonColon();
496
497 bool IsCorrectedToColon = false;
498 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
499 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
500 ObjectType, EnteringContext, SS,
501 false, CorrectionFlagPtr)) {
502 // Identifier is not recognized as a nested name, but we can have
503 // mistyped '::' instead of ':'.
504 if (CorrectionFlagPtr && IsCorrectedToColon) {
505 ColonColon.setKind(tok::colon);
506 PP.EnterToken(Tok);
507 PP.EnterToken(ColonColon);
508 Tok = Identifier;
509 break;
510 }
511 SS.SetInvalid(SourceRange(IdLoc, CCLoc));
512 }
513 HasScopeSpecifier = true;
514 continue;
515 }
516
517 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
518
519 // nested-name-specifier:
520 // type-name '<'
521 if (Next.is(tok::less)) {
522 TemplateTy Template;
523 UnqualifiedId TemplateName;
524 TemplateName.setIdentifier(&II, Tok.getLocation());
525 bool MemberOfUnknownSpecialization;
526 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
527 /*hasTemplateKeyword=*/false,
528 TemplateName,
529 ObjectType,
530 EnteringContext,
531 Template,
532 MemberOfUnknownSpecialization)) {
533 // We have found a template name, so annotate this token
534 // with a template-id annotation. We do not permit the
535 // template-id to be translated into a type annotation,
536 // because some clients (e.g., the parsing of class template
537 // specializations) still want to see the original template-id
538 // token.
539 ConsumeToken();
540 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
541 TemplateName, false))
542 return true;
543 continue;
544 }
545
546 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
547 (IsTypename || IsTemplateArgumentList(1))) {
548 // We have something like t::getAs<T>, where getAs is a
549 // member of an unknown specialization. However, this will only
550 // parse correctly as a template, so suggest the keyword 'template'
551 // before 'getAs' and treat this as a dependent template name.
552 unsigned DiagID = diag::err_missing_dependent_template_keyword;
553 if (getLangOpts().MicrosoftExt)
554 DiagID = diag::warn_missing_dependent_template_keyword;
555
556 Diag(Tok.getLocation(), DiagID)
557 << II.getName()
558 << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
559
560 if (TemplateNameKind TNK
561 = Actions.ActOnDependentTemplateName(getCurScope(),
562 SS, SourceLocation(),
563 TemplateName, ObjectType,
564 EnteringContext, Template)) {
565 // Consume the identifier.
566 ConsumeToken();
567 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
568 TemplateName, false))
569 return true;
570 }
571 else
572 return true;
573
574 continue;
575 }
576 }
577
578 // We don't have any tokens that form the beginning of a
579 // nested-name-specifier, so we're done.
580 break;
581 }
582
583 // Even if we didn't see any pieces of a nested-name-specifier, we
584 // still check whether there is a tilde in this position, which
585 // indicates a potential pseudo-destructor.
586 if (CheckForDestructor && Tok.is(tok::tilde))
587 *MayBePseudoDestructor = true;
588
589 return false;
590 }
591
tryParseCXXIdExpression(CXXScopeSpec & SS,bool isAddressOfOperand,Token & Replacement)592 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand,
593 Token &Replacement) {
594 SourceLocation TemplateKWLoc;
595 UnqualifiedId Name;
596 if (ParseUnqualifiedId(SS,
597 /*EnteringContext=*/false,
598 /*AllowDestructorName=*/false,
599 /*AllowConstructorName=*/false,
600 /*ObjectType=*/nullptr, TemplateKWLoc, Name))
601 return ExprError();
602
603 // This is only the direct operand of an & operator if it is not
604 // followed by a postfix-expression suffix.
605 if (isAddressOfOperand && isPostfixExpressionSuffixStart())
606 isAddressOfOperand = false;
607
608 return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
609 Tok.is(tok::l_paren), isAddressOfOperand,
610 nullptr, /*IsInlineAsmIdentifier=*/false,
611 &Replacement);
612 }
613
614 /// ParseCXXIdExpression - Handle id-expression.
615 ///
616 /// id-expression:
617 /// unqualified-id
618 /// qualified-id
619 ///
620 /// qualified-id:
621 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
622 /// '::' identifier
623 /// '::' operator-function-id
624 /// '::' template-id
625 ///
626 /// NOTE: The standard specifies that, for qualified-id, the parser does not
627 /// expect:
628 ///
629 /// '::' conversion-function-id
630 /// '::' '~' class-name
631 ///
632 /// This may cause a slight inconsistency on diagnostics:
633 ///
634 /// class C {};
635 /// namespace A {}
636 /// void f() {
637 /// :: A :: ~ C(); // Some Sema error about using destructor with a
638 /// // namespace.
639 /// :: ~ C(); // Some Parser error like 'unexpected ~'.
640 /// }
641 ///
642 /// We simplify the parser a bit and make it work like:
643 ///
644 /// qualified-id:
645 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
646 /// '::' unqualified-id
647 ///
648 /// That way Sema can handle and report similar errors for namespaces and the
649 /// global scope.
650 ///
651 /// The isAddressOfOperand parameter indicates that this id-expression is a
652 /// direct operand of the address-of operator. This is, besides member contexts,
653 /// the only place where a qualified-id naming a non-static class member may
654 /// appear.
655 ///
ParseCXXIdExpression(bool isAddressOfOperand)656 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
657 // qualified-id:
658 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
659 // '::' unqualified-id
660 //
661 CXXScopeSpec SS;
662 ParseOptionalCXXScopeSpecifier(SS, nullptr, /*EnteringContext=*/false);
663
664 Token Replacement;
665 ExprResult Result =
666 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
667 if (Result.isUnset()) {
668 // If the ExprResult is valid but null, then typo correction suggested a
669 // keyword replacement that needs to be reparsed.
670 UnconsumeToken(Replacement);
671 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
672 }
673 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
674 "for a previous keyword suggestion");
675 return Result;
676 }
677
678 /// ParseLambdaExpression - Parse a C++11 lambda expression.
679 ///
680 /// lambda-expression:
681 /// lambda-introducer lambda-declarator[opt] compound-statement
682 ///
683 /// lambda-introducer:
684 /// '[' lambda-capture[opt] ']'
685 ///
686 /// lambda-capture:
687 /// capture-default
688 /// capture-list
689 /// capture-default ',' capture-list
690 ///
691 /// capture-default:
692 /// '&'
693 /// '='
694 ///
695 /// capture-list:
696 /// capture
697 /// capture-list ',' capture
698 ///
699 /// capture:
700 /// simple-capture
701 /// init-capture [C++1y]
702 ///
703 /// simple-capture:
704 /// identifier
705 /// '&' identifier
706 /// 'this'
707 ///
708 /// init-capture: [C++1y]
709 /// identifier initializer
710 /// '&' identifier initializer
711 ///
712 /// lambda-declarator:
713 /// '(' parameter-declaration-clause ')' attribute-specifier[opt]
714 /// 'mutable'[opt] exception-specification[opt]
715 /// trailing-return-type[opt]
716 ///
ParseLambdaExpression()717 ExprResult Parser::ParseLambdaExpression() {
718 // Parse lambda-introducer.
719 LambdaIntroducer Intro;
720 Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro);
721 if (DiagID) {
722 Diag(Tok, DiagID.getValue());
723 SkipUntil(tok::r_square, StopAtSemi);
724 SkipUntil(tok::l_brace, StopAtSemi);
725 SkipUntil(tok::r_brace, StopAtSemi);
726 return ExprError();
727 }
728
729 return ParseLambdaExpressionAfterIntroducer(Intro);
730 }
731
732 /// TryParseLambdaExpression - Use lookahead and potentially tentative
733 /// parsing to determine if we are looking at a C++0x lambda expression, and parse
734 /// it if we are.
735 ///
736 /// If we are not looking at a lambda expression, returns ExprError().
TryParseLambdaExpression()737 ExprResult Parser::TryParseLambdaExpression() {
738 assert(getLangOpts().CPlusPlus11
739 && Tok.is(tok::l_square)
740 && "Not at the start of a possible lambda expression.");
741
742 const Token Next = NextToken();
743 if (Next.is(tok::eof)) // Nothing else to lookup here...
744 return ExprEmpty();
745
746 const Token After = GetLookAheadToken(2);
747 // If lookahead indicates this is a lambda...
748 if (Next.is(tok::r_square) || // []
749 Next.is(tok::equal) || // [=
750 (Next.is(tok::amp) && // [&] or [&,
751 (After.is(tok::r_square) ||
752 After.is(tok::comma))) ||
753 (Next.is(tok::identifier) && // [identifier]
754 After.is(tok::r_square))) {
755 return ParseLambdaExpression();
756 }
757
758 // If lookahead indicates an ObjC message send...
759 // [identifier identifier
760 if (Next.is(tok::identifier) && After.is(tok::identifier)) {
761 return ExprEmpty();
762 }
763
764 // Here, we're stuck: lambda introducers and Objective-C message sends are
765 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a
766 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of
767 // writing two routines to parse a lambda introducer, just try to parse
768 // a lambda introducer first, and fall back if that fails.
769 // (TryParseLambdaIntroducer never produces any diagnostic output.)
770 LambdaIntroducer Intro;
771 if (TryParseLambdaIntroducer(Intro))
772 return ExprEmpty();
773
774 return ParseLambdaExpressionAfterIntroducer(Intro);
775 }
776
777 /// \brief Parse a lambda introducer.
778 /// \param Intro A LambdaIntroducer filled in with information about the
779 /// contents of the lambda-introducer.
780 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C
781 /// message send and a lambda expression. In this mode, we will
782 /// sometimes skip the initializers for init-captures and not fully
783 /// populate \p Intro. This flag will be set to \c true if we do so.
784 /// \return A DiagnosticID if it hit something unexpected. The location for
785 /// for the diagnostic is that of the current token.
ParseLambdaIntroducer(LambdaIntroducer & Intro,bool * SkippedInits)786 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
787 bool *SkippedInits) {
788 typedef Optional<unsigned> DiagResult;
789
790 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
791 BalancedDelimiterTracker T(*this, tok::l_square);
792 T.consumeOpen();
793
794 Intro.Range.setBegin(T.getOpenLocation());
795
796 bool first = true;
797
798 // Parse capture-default.
799 if (Tok.is(tok::amp) &&
800 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
801 Intro.Default = LCD_ByRef;
802 Intro.DefaultLoc = ConsumeToken();
803 first = false;
804 } else if (Tok.is(tok::equal)) {
805 Intro.Default = LCD_ByCopy;
806 Intro.DefaultLoc = ConsumeToken();
807 first = false;
808 }
809
810 while (Tok.isNot(tok::r_square)) {
811 if (!first) {
812 if (Tok.isNot(tok::comma)) {
813 // Provide a completion for a lambda introducer here. Except
814 // in Objective-C, where this is Almost Surely meant to be a message
815 // send. In that case, fail here and let the ObjC message
816 // expression parser perform the completion.
817 if (Tok.is(tok::code_completion) &&
818 !(getLangOpts().ObjC1 && Intro.Default == LCD_None &&
819 !Intro.Captures.empty())) {
820 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
821 /*AfterAmpersand=*/false);
822 cutOffParsing();
823 break;
824 }
825
826 return DiagResult(diag::err_expected_comma_or_rsquare);
827 }
828 ConsumeToken();
829 }
830
831 if (Tok.is(tok::code_completion)) {
832 // If we're in Objective-C++ and we have a bare '[', then this is more
833 // likely to be a message receiver.
834 if (getLangOpts().ObjC1 && first)
835 Actions.CodeCompleteObjCMessageReceiver(getCurScope());
836 else
837 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
838 /*AfterAmpersand=*/false);
839 cutOffParsing();
840 break;
841 }
842
843 first = false;
844
845 // Parse capture.
846 LambdaCaptureKind Kind = LCK_ByCopy;
847 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
848 SourceLocation Loc;
849 IdentifierInfo *Id = nullptr;
850 SourceLocation EllipsisLoc;
851 ExprResult Init;
852
853 if (Tok.is(tok::star)) {
854 Loc = ConsumeToken();
855 if (Tok.is(tok::kw_this)) {
856 ConsumeToken();
857 Kind = LCK_StarThis;
858 } else {
859 return DiagResult(diag::err_expected_star_this_capture);
860 }
861 } else if (Tok.is(tok::kw_this)) {
862 Kind = LCK_This;
863 Loc = ConsumeToken();
864 } else {
865 if (Tok.is(tok::amp)) {
866 Kind = LCK_ByRef;
867 ConsumeToken();
868
869 if (Tok.is(tok::code_completion)) {
870 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
871 /*AfterAmpersand=*/true);
872 cutOffParsing();
873 break;
874 }
875 }
876
877 if (Tok.is(tok::identifier)) {
878 Id = Tok.getIdentifierInfo();
879 Loc = ConsumeToken();
880 } else if (Tok.is(tok::kw_this)) {
881 // FIXME: If we want to suggest a fixit here, will need to return more
882 // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
883 // Clear()ed to prevent emission in case of tentative parsing?
884 return DiagResult(diag::err_this_captured_by_reference);
885 } else {
886 return DiagResult(diag::err_expected_capture);
887 }
888
889 if (Tok.is(tok::l_paren)) {
890 BalancedDelimiterTracker Parens(*this, tok::l_paren);
891 Parens.consumeOpen();
892
893 InitKind = LambdaCaptureInitKind::DirectInit;
894
895 ExprVector Exprs;
896 CommaLocsTy Commas;
897 if (SkippedInits) {
898 Parens.skipToEnd();
899 *SkippedInits = true;
900 } else if (ParseExpressionList(Exprs, Commas)) {
901 Parens.skipToEnd();
902 Init = ExprError();
903 } else {
904 Parens.consumeClose();
905 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
906 Parens.getCloseLocation(),
907 Exprs);
908 }
909 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
910 // Each lambda init-capture forms its own full expression, which clears
911 // Actions.MaybeODRUseExprs. So create an expression evaluation context
912 // to save the necessary state, and restore it later.
913 EnterExpressionEvaluationContext EC(Actions,
914 Sema::PotentiallyEvaluated);
915
916 if (TryConsumeToken(tok::equal))
917 InitKind = LambdaCaptureInitKind::CopyInit;
918 else
919 InitKind = LambdaCaptureInitKind::ListInit;
920
921 if (!SkippedInits) {
922 Init = ParseInitializer();
923 } else if (Tok.is(tok::l_brace)) {
924 BalancedDelimiterTracker Braces(*this, tok::l_brace);
925 Braces.consumeOpen();
926 Braces.skipToEnd();
927 *SkippedInits = true;
928 } else {
929 // We're disambiguating this:
930 //
931 // [..., x = expr
932 //
933 // We need to find the end of the following expression in order to
934 // determine whether this is an Obj-C message send's receiver, a
935 // C99 designator, or a lambda init-capture.
936 //
937 // Parse the expression to find where it ends, and annotate it back
938 // onto the tokens. We would have parsed this expression the same way
939 // in either case: both the RHS of an init-capture and the RHS of an
940 // assignment expression are parsed as an initializer-clause, and in
941 // neither case can anything be added to the scope between the '[' and
942 // here.
943 //
944 // FIXME: This is horrible. Adding a mechanism to skip an expression
945 // would be much cleaner.
946 // FIXME: If there is a ',' before the next ']' or ':', we can skip to
947 // that instead. (And if we see a ':' with no matching '?', we can
948 // classify this as an Obj-C message send.)
949 SourceLocation StartLoc = Tok.getLocation();
950 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
951 Init = ParseInitializer();
952
953 if (Tok.getLocation() != StartLoc) {
954 // Back out the lexing of the token after the initializer.
955 PP.RevertCachedTokens(1);
956
957 // Replace the consumed tokens with an appropriate annotation.
958 Tok.setLocation(StartLoc);
959 Tok.setKind(tok::annot_primary_expr);
960 setExprAnnotation(Tok, Init);
961 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
962 PP.AnnotateCachedTokens(Tok);
963
964 // Consume the annotated initializer.
965 ConsumeToken();
966 }
967 }
968 } else
969 TryConsumeToken(tok::ellipsis, EllipsisLoc);
970 }
971 // If this is an init capture, process the initialization expression
972 // right away. For lambda init-captures such as the following:
973 // const int x = 10;
974 // auto L = [i = x+1](int a) {
975 // return [j = x+2,
976 // &k = x](char b) { };
977 // };
978 // keep in mind that each lambda init-capture has to have:
979 // - its initialization expression executed in the context
980 // of the enclosing/parent decl-context.
981 // - but the variable itself has to be 'injected' into the
982 // decl-context of its lambda's call-operator (which has
983 // not yet been created).
984 // Each init-expression is a full-expression that has to get
985 // Sema-analyzed (for capturing etc.) before its lambda's
986 // call-operator's decl-context, scope & scopeinfo are pushed on their
987 // respective stacks. Thus if any variable is odr-used in the init-capture
988 // it will correctly get captured in the enclosing lambda, if one exists.
989 // The init-variables above are created later once the lambdascope and
990 // call-operators decl-context is pushed onto its respective stack.
991
992 // Since the lambda init-capture's initializer expression occurs in the
993 // context of the enclosing function or lambda, therefore we can not wait
994 // till a lambda scope has been pushed on before deciding whether the
995 // variable needs to be captured. We also need to process all
996 // lvalue-to-rvalue conversions and discarded-value conversions,
997 // so that we can avoid capturing certain constant variables.
998 // For e.g.,
999 // void test() {
1000 // const int x = 10;
1001 // auto L = [&z = x](char a) { <-- don't capture by the current lambda
1002 // return [y = x](int i) { <-- don't capture by enclosing lambda
1003 // return y;
1004 // }
1005 // };
1006 // If x was not const, the second use would require 'L' to capture, and
1007 // that would be an error.
1008
1009 ParsedType InitCaptureType;
1010 if (Init.isUsable()) {
1011 // Get the pointer and store it in an lvalue, so we can use it as an
1012 // out argument.
1013 Expr *InitExpr = Init.get();
1014 // This performs any lvalue-to-rvalue conversions if necessary, which
1015 // can affect what gets captured in the containing decl-context.
1016 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1017 Loc, Kind == LCK_ByRef, Id, InitKind, InitExpr);
1018 Init = InitExpr;
1019 }
1020 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1021 InitCaptureType);
1022 }
1023
1024 T.consumeClose();
1025 Intro.Range.setEnd(T.getCloseLocation());
1026 return DiagResult();
1027 }
1028
1029 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
1030 ///
1031 /// Returns true if it hit something unexpected.
TryParseLambdaIntroducer(LambdaIntroducer & Intro)1032 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
1033 TentativeParsingAction PA(*this);
1034
1035 bool SkippedInits = false;
1036 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits));
1037
1038 if (DiagID) {
1039 PA.Revert();
1040 return true;
1041 }
1042
1043 if (SkippedInits) {
1044 // Parse it again, but this time parse the init-captures too.
1045 PA.Revert();
1046 Intro = LambdaIntroducer();
1047 DiagID = ParseLambdaIntroducer(Intro);
1048 assert(!DiagID && "parsing lambda-introducer failed on reparse");
1049 return false;
1050 }
1051
1052 PA.Commit();
1053 return false;
1054 }
1055
1056 static void
tryConsumeMutableOrConstexprToken(Parser & P,SourceLocation & MutableLoc,SourceLocation & ConstexprLoc,SourceLocation & DeclEndLoc)1057 tryConsumeMutableOrConstexprToken(Parser &P, SourceLocation &MutableLoc,
1058 SourceLocation &ConstexprLoc,
1059 SourceLocation &DeclEndLoc) {
1060 assert(MutableLoc.isInvalid());
1061 assert(ConstexprLoc.isInvalid());
1062 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1063 // to the final of those locations. Emit an error if we have multiple
1064 // copies of those keywords and recover.
1065
1066 while (true) {
1067 switch (P.getCurToken().getKind()) {
1068 case tok::kw_mutable: {
1069 if (MutableLoc.isValid()) {
1070 P.Diag(P.getCurToken().getLocation(),
1071 diag::err_lambda_decl_specifier_repeated)
1072 << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1073 }
1074 MutableLoc = P.ConsumeToken();
1075 DeclEndLoc = MutableLoc;
1076 break /*switch*/;
1077 }
1078 case tok::kw_constexpr:
1079 if (ConstexprLoc.isValid()) {
1080 P.Diag(P.getCurToken().getLocation(),
1081 diag::err_lambda_decl_specifier_repeated)
1082 << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1083 }
1084 ConstexprLoc = P.ConsumeToken();
1085 DeclEndLoc = ConstexprLoc;
1086 break /*switch*/;
1087 default:
1088 return;
1089 }
1090 }
1091 }
1092
1093 static void
addConstexprToLambdaDeclSpecifier(Parser & P,SourceLocation ConstexprLoc,DeclSpec & DS)1094 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1095 DeclSpec &DS) {
1096 if (ConstexprLoc.isValid()) {
1097 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus1z
1098 ? diag::ext_constexpr_on_lambda_cxx1z
1099 : diag::warn_cxx14_compat_constexpr_on_lambda);
1100 const char *PrevSpec = nullptr;
1101 unsigned DiagID = 0;
1102 DS.SetConstexprSpec(ConstexprLoc, PrevSpec, DiagID);
1103 assert(PrevSpec == nullptr && DiagID == 0 &&
1104 "Constexpr cannot have been set previously!");
1105 }
1106 }
1107
1108 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1109 /// expression.
ParseLambdaExpressionAfterIntroducer(LambdaIntroducer & Intro)1110 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1111 LambdaIntroducer &Intro) {
1112 SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1113 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1114
1115 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1116 "lambda expression parsing");
1117
1118
1119
1120 // FIXME: Call into Actions to add any init-capture declarations to the
1121 // scope while parsing the lambda-declarator and compound-statement.
1122
1123 // Parse lambda-declarator[opt].
1124 DeclSpec DS(AttrFactory);
1125 Declarator D(DS, Declarator::LambdaExprContext);
1126 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1127 Actions.PushLambdaScope();
1128
1129 TypeResult TrailingReturnType;
1130 if (Tok.is(tok::l_paren)) {
1131 ParseScope PrototypeScope(this,
1132 Scope::FunctionPrototypeScope |
1133 Scope::FunctionDeclarationScope |
1134 Scope::DeclScope);
1135
1136 SourceLocation DeclEndLoc;
1137 BalancedDelimiterTracker T(*this, tok::l_paren);
1138 T.consumeOpen();
1139 SourceLocation LParenLoc = T.getOpenLocation();
1140
1141 // Parse parameter-declaration-clause.
1142 ParsedAttributes Attr(AttrFactory);
1143 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1144 SourceLocation EllipsisLoc;
1145
1146 if (Tok.isNot(tok::r_paren)) {
1147 Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth);
1148 ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
1149 // For a generic lambda, each 'auto' within the parameter declaration
1150 // clause creates a template type parameter, so increment the depth.
1151 if (Actions.getCurGenericLambda())
1152 ++CurTemplateDepthTracker;
1153 }
1154 T.consumeClose();
1155 SourceLocation RParenLoc = T.getCloseLocation();
1156 DeclEndLoc = RParenLoc;
1157
1158 // GNU-style attributes must be parsed before the mutable specifier to be
1159 // compatible with GCC.
1160 MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1161
1162 // MSVC-style attributes must be parsed before the mutable specifier to be
1163 // compatible with MSVC.
1164 MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc);
1165
1166 // Parse mutable-opt and/or constexpr-opt, and update the DeclEndLoc.
1167 SourceLocation MutableLoc;
1168 SourceLocation ConstexprLoc;
1169 tryConsumeMutableOrConstexprToken(*this, MutableLoc, ConstexprLoc,
1170 DeclEndLoc);
1171
1172 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1173
1174 // Parse exception-specification[opt].
1175 ExceptionSpecificationType ESpecType = EST_None;
1176 SourceRange ESpecRange;
1177 SmallVector<ParsedType, 2> DynamicExceptions;
1178 SmallVector<SourceRange, 2> DynamicExceptionRanges;
1179 ExprResult NoexceptExpr;
1180 CachedTokens *ExceptionSpecTokens;
1181 ESpecType = tryParseExceptionSpecification(/*Delayed=*/false,
1182 ESpecRange,
1183 DynamicExceptions,
1184 DynamicExceptionRanges,
1185 NoexceptExpr,
1186 ExceptionSpecTokens);
1187
1188 if (ESpecType != EST_None)
1189 DeclEndLoc = ESpecRange.getEnd();
1190
1191 // Parse attribute-specifier[opt].
1192 MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1193
1194 SourceLocation FunLocalRangeEnd = DeclEndLoc;
1195
1196 // Parse trailing-return-type[opt].
1197 if (Tok.is(tok::arrow)) {
1198 FunLocalRangeEnd = Tok.getLocation();
1199 SourceRange Range;
1200 TrailingReturnType = ParseTrailingReturnType(Range);
1201 if (Range.getEnd().isValid())
1202 DeclEndLoc = Range.getEnd();
1203 }
1204
1205 PrototypeScope.Exit();
1206
1207 SourceLocation NoLoc;
1208 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1209 /*isAmbiguous=*/false,
1210 LParenLoc,
1211 ParamInfo.data(), ParamInfo.size(),
1212 EllipsisLoc, RParenLoc,
1213 DS.getTypeQualifiers(),
1214 /*RefQualifierIsLValueRef=*/true,
1215 /*RefQualifierLoc=*/NoLoc,
1216 /*ConstQualifierLoc=*/NoLoc,
1217 /*VolatileQualifierLoc=*/NoLoc,
1218 /*RestrictQualifierLoc=*/NoLoc,
1219 MutableLoc,
1220 ESpecType, ESpecRange,
1221 DynamicExceptions.data(),
1222 DynamicExceptionRanges.data(),
1223 DynamicExceptions.size(),
1224 NoexceptExpr.isUsable() ?
1225 NoexceptExpr.get() : nullptr,
1226 /*ExceptionSpecTokens*/nullptr,
1227 LParenLoc, FunLocalRangeEnd, D,
1228 TrailingReturnType),
1229 Attr, DeclEndLoc);
1230 } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1231 tok::kw_constexpr) ||
1232 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1233 // It's common to forget that one needs '()' before 'mutable', an attribute
1234 // specifier, or the result type. Deal with this.
1235 unsigned TokKind = 0;
1236 switch (Tok.getKind()) {
1237 case tok::kw_mutable: TokKind = 0; break;
1238 case tok::arrow: TokKind = 1; break;
1239 case tok::kw___attribute:
1240 case tok::l_square: TokKind = 2; break;
1241 case tok::kw_constexpr: TokKind = 3; break;
1242 default: llvm_unreachable("Unknown token kind");
1243 }
1244
1245 Diag(Tok, diag::err_lambda_missing_parens)
1246 << TokKind
1247 << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1248 SourceLocation DeclLoc = Tok.getLocation();
1249 SourceLocation DeclEndLoc = DeclLoc;
1250
1251 // GNU-style attributes must be parsed before the mutable specifier to be
1252 // compatible with GCC.
1253 ParsedAttributes Attr(AttrFactory);
1254 MaybeParseGNUAttributes(Attr, &DeclEndLoc);
1255
1256 // Parse 'mutable', if it's there.
1257 SourceLocation MutableLoc;
1258 if (Tok.is(tok::kw_mutable)) {
1259 MutableLoc = ConsumeToken();
1260 DeclEndLoc = MutableLoc;
1261 }
1262
1263 // Parse attribute-specifier[opt].
1264 MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1265
1266 // Parse the return type, if there is one.
1267 if (Tok.is(tok::arrow)) {
1268 SourceRange Range;
1269 TrailingReturnType = ParseTrailingReturnType(Range);
1270 if (Range.getEnd().isValid())
1271 DeclEndLoc = Range.getEnd();
1272 }
1273
1274 SourceLocation NoLoc;
1275 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
1276 /*isAmbiguous=*/false,
1277 /*LParenLoc=*/NoLoc,
1278 /*Params=*/nullptr,
1279 /*NumParams=*/0,
1280 /*EllipsisLoc=*/NoLoc,
1281 /*RParenLoc=*/NoLoc,
1282 /*TypeQuals=*/0,
1283 /*RefQualifierIsLValueRef=*/true,
1284 /*RefQualifierLoc=*/NoLoc,
1285 /*ConstQualifierLoc=*/NoLoc,
1286 /*VolatileQualifierLoc=*/NoLoc,
1287 /*RestrictQualifierLoc=*/NoLoc,
1288 MutableLoc,
1289 EST_None,
1290 /*ESpecRange=*/SourceRange(),
1291 /*Exceptions=*/nullptr,
1292 /*ExceptionRanges=*/nullptr,
1293 /*NumExceptions=*/0,
1294 /*NoexceptExpr=*/nullptr,
1295 /*ExceptionSpecTokens=*/nullptr,
1296 DeclLoc, DeclEndLoc, D,
1297 TrailingReturnType),
1298 Attr, DeclEndLoc);
1299 }
1300
1301
1302 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1303 // it.
1304 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
1305 ParseScope BodyScope(this, ScopeFlags);
1306
1307 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1308
1309 // Parse compound-statement.
1310 if (!Tok.is(tok::l_brace)) {
1311 Diag(Tok, diag::err_expected_lambda_body);
1312 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1313 return ExprError();
1314 }
1315
1316 StmtResult Stmt(ParseCompoundStatementBody());
1317 BodyScope.Exit();
1318
1319 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1320 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1321
1322 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1323 return ExprError();
1324 }
1325
1326 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1327 /// type.
1328 ///
1329 /// postfix-expression: [C++ 5.2p1]
1330 /// 'dynamic_cast' '<' type-name '>' '(' expression ')'
1331 /// 'static_cast' '<' type-name '>' '(' expression ')'
1332 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')'
1333 /// 'const_cast' '<' type-name '>' '(' expression ')'
1334 ///
ParseCXXCasts()1335 ExprResult Parser::ParseCXXCasts() {
1336 tok::TokenKind Kind = Tok.getKind();
1337 const char *CastName = nullptr; // For error messages
1338
1339 switch (Kind) {
1340 default: llvm_unreachable("Unknown C++ cast!");
1341 case tok::kw_const_cast: CastName = "const_cast"; break;
1342 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break;
1343 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1344 case tok::kw_static_cast: CastName = "static_cast"; break;
1345 }
1346
1347 SourceLocation OpLoc = ConsumeToken();
1348 SourceLocation LAngleBracketLoc = Tok.getLocation();
1349
1350 // Check for "<::" which is parsed as "[:". If found, fix token stream,
1351 // diagnose error, suggest fix, and recover parsing.
1352 if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1353 Token Next = NextToken();
1354 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1355 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1356 }
1357
1358 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1359 return ExprError();
1360
1361 // Parse the common declaration-specifiers piece.
1362 DeclSpec DS(AttrFactory);
1363 ParseSpecifierQualifierList(DS);
1364
1365 // Parse the abstract-declarator, if present.
1366 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1367 ParseDeclarator(DeclaratorInfo);
1368
1369 SourceLocation RAngleBracketLoc = Tok.getLocation();
1370
1371 if (ExpectAndConsume(tok::greater))
1372 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1373
1374 SourceLocation LParenLoc, RParenLoc;
1375 BalancedDelimiterTracker T(*this, tok::l_paren);
1376
1377 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1378 return ExprError();
1379
1380 ExprResult Result = ParseExpression();
1381
1382 // Match the ')'.
1383 T.consumeClose();
1384
1385 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1386 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1387 LAngleBracketLoc, DeclaratorInfo,
1388 RAngleBracketLoc,
1389 T.getOpenLocation(), Result.get(),
1390 T.getCloseLocation());
1391
1392 return Result;
1393 }
1394
1395 /// ParseCXXTypeid - This handles the C++ typeid expression.
1396 ///
1397 /// postfix-expression: [C++ 5.2p1]
1398 /// 'typeid' '(' expression ')'
1399 /// 'typeid' '(' type-id ')'
1400 ///
ParseCXXTypeid()1401 ExprResult Parser::ParseCXXTypeid() {
1402 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1403
1404 SourceLocation OpLoc = ConsumeToken();
1405 SourceLocation LParenLoc, RParenLoc;
1406 BalancedDelimiterTracker T(*this, tok::l_paren);
1407
1408 // typeid expressions are always parenthesized.
1409 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1410 return ExprError();
1411 LParenLoc = T.getOpenLocation();
1412
1413 ExprResult Result;
1414
1415 // C++0x [expr.typeid]p3:
1416 // When typeid is applied to an expression other than an lvalue of a
1417 // polymorphic class type [...] The expression is an unevaluated
1418 // operand (Clause 5).
1419 //
1420 // Note that we can't tell whether the expression is an lvalue of a
1421 // polymorphic class type until after we've parsed the expression; we
1422 // speculatively assume the subexpression is unevaluated, and fix it up
1423 // later.
1424 //
1425 // We enter the unevaluated context before trying to determine whether we
1426 // have a type-id, because the tentative parse logic will try to resolve
1427 // names, and must treat them as unevaluated.
1428 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated,
1429 Sema::ReuseLambdaContextDecl);
1430
1431 if (isTypeIdInParens()) {
1432 TypeResult Ty = ParseTypeName();
1433
1434 // Match the ')'.
1435 T.consumeClose();
1436 RParenLoc = T.getCloseLocation();
1437 if (Ty.isInvalid() || RParenLoc.isInvalid())
1438 return ExprError();
1439
1440 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1441 Ty.get().getAsOpaquePtr(), RParenLoc);
1442 } else {
1443 Result = ParseExpression();
1444
1445 // Match the ')'.
1446 if (Result.isInvalid())
1447 SkipUntil(tok::r_paren, StopAtSemi);
1448 else {
1449 T.consumeClose();
1450 RParenLoc = T.getCloseLocation();
1451 if (RParenLoc.isInvalid())
1452 return ExprError();
1453
1454 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1455 Result.get(), RParenLoc);
1456 }
1457 }
1458
1459 return Result;
1460 }
1461
1462 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1463 ///
1464 /// '__uuidof' '(' expression ')'
1465 /// '__uuidof' '(' type-id ')'
1466 ///
ParseCXXUuidof()1467 ExprResult Parser::ParseCXXUuidof() {
1468 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1469
1470 SourceLocation OpLoc = ConsumeToken();
1471 BalancedDelimiterTracker T(*this, tok::l_paren);
1472
1473 // __uuidof expressions are always parenthesized.
1474 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1475 return ExprError();
1476
1477 ExprResult Result;
1478
1479 if (isTypeIdInParens()) {
1480 TypeResult Ty = ParseTypeName();
1481
1482 // Match the ')'.
1483 T.consumeClose();
1484
1485 if (Ty.isInvalid())
1486 return ExprError();
1487
1488 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1489 Ty.get().getAsOpaquePtr(),
1490 T.getCloseLocation());
1491 } else {
1492 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1493 Result = ParseExpression();
1494
1495 // Match the ')'.
1496 if (Result.isInvalid())
1497 SkipUntil(tok::r_paren, StopAtSemi);
1498 else {
1499 T.consumeClose();
1500
1501 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1502 /*isType=*/false,
1503 Result.get(), T.getCloseLocation());
1504 }
1505 }
1506
1507 return Result;
1508 }
1509
1510 /// \brief Parse a C++ pseudo-destructor expression after the base,
1511 /// . or -> operator, and nested-name-specifier have already been
1512 /// parsed.
1513 ///
1514 /// postfix-expression: [C++ 5.2]
1515 /// postfix-expression . pseudo-destructor-name
1516 /// postfix-expression -> pseudo-destructor-name
1517 ///
1518 /// pseudo-destructor-name:
1519 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1520 /// ::[opt] nested-name-specifier template simple-template-id ::
1521 /// ~type-name
1522 /// ::[opt] nested-name-specifier[opt] ~type-name
1523 ///
1524 ExprResult
ParseCXXPseudoDestructor(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,ParsedType ObjectType)1525 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1526 tok::TokenKind OpKind,
1527 CXXScopeSpec &SS,
1528 ParsedType ObjectType) {
1529 // We're parsing either a pseudo-destructor-name or a dependent
1530 // member access that has the same form as a
1531 // pseudo-destructor-name. We parse both in the same way and let
1532 // the action model sort them out.
1533 //
1534 // Note that the ::[opt] nested-name-specifier[opt] has already
1535 // been parsed, and if there was a simple-template-id, it has
1536 // been coalesced into a template-id annotation token.
1537 UnqualifiedId FirstTypeName;
1538 SourceLocation CCLoc;
1539 if (Tok.is(tok::identifier)) {
1540 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1541 ConsumeToken();
1542 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1543 CCLoc = ConsumeToken();
1544 } else if (Tok.is(tok::annot_template_id)) {
1545 // FIXME: retrieve TemplateKWLoc from template-id annotation and
1546 // store it in the pseudo-dtor node (to be used when instantiating it).
1547 FirstTypeName.setTemplateId(
1548 (TemplateIdAnnotation *)Tok.getAnnotationValue());
1549 ConsumeToken();
1550 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1551 CCLoc = ConsumeToken();
1552 } else {
1553 FirstTypeName.setIdentifier(nullptr, SourceLocation());
1554 }
1555
1556 // Parse the tilde.
1557 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1558 SourceLocation TildeLoc = ConsumeToken();
1559
1560 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1561 DeclSpec DS(AttrFactory);
1562 ParseDecltypeSpecifier(DS);
1563 if (DS.getTypeSpecType() == TST_error)
1564 return ExprError();
1565 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1566 TildeLoc, DS);
1567 }
1568
1569 if (!Tok.is(tok::identifier)) {
1570 Diag(Tok, diag::err_destructor_tilde_identifier);
1571 return ExprError();
1572 }
1573
1574 // Parse the second type.
1575 UnqualifiedId SecondTypeName;
1576 IdentifierInfo *Name = Tok.getIdentifierInfo();
1577 SourceLocation NameLoc = ConsumeToken();
1578 SecondTypeName.setIdentifier(Name, NameLoc);
1579
1580 // If there is a '<', the second type name is a template-id. Parse
1581 // it as such.
1582 if (Tok.is(tok::less) &&
1583 ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1584 Name, NameLoc,
1585 false, ObjectType, SecondTypeName,
1586 /*AssumeTemplateName=*/true))
1587 return ExprError();
1588
1589 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1590 SS, FirstTypeName, CCLoc, TildeLoc,
1591 SecondTypeName);
1592 }
1593
1594 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1595 ///
1596 /// boolean-literal: [C++ 2.13.5]
1597 /// 'true'
1598 /// 'false'
ParseCXXBoolLiteral()1599 ExprResult Parser::ParseCXXBoolLiteral() {
1600 tok::TokenKind Kind = Tok.getKind();
1601 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1602 }
1603
1604 /// ParseThrowExpression - This handles the C++ throw expression.
1605 ///
1606 /// throw-expression: [C++ 15]
1607 /// 'throw' assignment-expression[opt]
ParseThrowExpression()1608 ExprResult Parser::ParseThrowExpression() {
1609 assert(Tok.is(tok::kw_throw) && "Not throw!");
1610 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token.
1611
1612 // If the current token isn't the start of an assignment-expression,
1613 // then the expression is not present. This handles things like:
1614 // "C ? throw : (void)42", which is crazy but legal.
1615 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common.
1616 case tok::semi:
1617 case tok::r_paren:
1618 case tok::r_square:
1619 case tok::r_brace:
1620 case tok::colon:
1621 case tok::comma:
1622 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1623
1624 default:
1625 ExprResult Expr(ParseAssignmentExpression());
1626 if (Expr.isInvalid()) return Expr;
1627 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1628 }
1629 }
1630
1631 /// \brief Parse the C++ Coroutines co_yield expression.
1632 ///
1633 /// co_yield-expression:
1634 /// 'co_yield' assignment-expression[opt]
ParseCoyieldExpression()1635 ExprResult Parser::ParseCoyieldExpression() {
1636 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1637
1638 SourceLocation Loc = ConsumeToken();
1639 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1640 : ParseAssignmentExpression();
1641 if (!Expr.isInvalid())
1642 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1643 return Expr;
1644 }
1645
1646 /// ParseCXXThis - This handles the C++ 'this' pointer.
1647 ///
1648 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1649 /// a non-lvalue expression whose value is the address of the object for which
1650 /// the function is called.
ParseCXXThis()1651 ExprResult Parser::ParseCXXThis() {
1652 assert(Tok.is(tok::kw_this) && "Not 'this'!");
1653 SourceLocation ThisLoc = ConsumeToken();
1654 return Actions.ActOnCXXThis(ThisLoc);
1655 }
1656
1657 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1658 /// Can be interpreted either as function-style casting ("int(x)")
1659 /// or class type construction ("ClassType(x,y,z)")
1660 /// or creation of a value-initialized type ("int()").
1661 /// See [C++ 5.2.3].
1662 ///
1663 /// postfix-expression: [C++ 5.2p1]
1664 /// simple-type-specifier '(' expression-list[opt] ')'
1665 /// [C++0x] simple-type-specifier braced-init-list
1666 /// typename-specifier '(' expression-list[opt] ')'
1667 /// [C++0x] typename-specifier braced-init-list
1668 ///
1669 ExprResult
ParseCXXTypeConstructExpression(const DeclSpec & DS)1670 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1671 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1672 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1673
1674 assert((Tok.is(tok::l_paren) ||
1675 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1676 && "Expected '(' or '{'!");
1677
1678 if (Tok.is(tok::l_brace)) {
1679 ExprResult Init = ParseBraceInitializer();
1680 if (Init.isInvalid())
1681 return Init;
1682 Expr *InitList = Init.get();
1683 return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1684 MultiExprArg(&InitList, 1),
1685 SourceLocation());
1686 } else {
1687 BalancedDelimiterTracker T(*this, tok::l_paren);
1688 T.consumeOpen();
1689
1690 ExprVector Exprs;
1691 CommaLocsTy CommaLocs;
1692
1693 if (Tok.isNot(tok::r_paren)) {
1694 if (ParseExpressionList(Exprs, CommaLocs, [&] {
1695 Actions.CodeCompleteConstructor(getCurScope(),
1696 TypeRep.get()->getCanonicalTypeInternal(),
1697 DS.getLocEnd(), Exprs);
1698 })) {
1699 SkipUntil(tok::r_paren, StopAtSemi);
1700 return ExprError();
1701 }
1702 }
1703
1704 // Match the ')'.
1705 T.consumeClose();
1706
1707 // TypeRep could be null, if it references an invalid typedef.
1708 if (!TypeRep)
1709 return ExprError();
1710
1711 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1712 "Unexpected number of commas!");
1713 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1714 Exprs,
1715 T.getCloseLocation());
1716 }
1717 }
1718
1719 /// ParseCXXCondition - if/switch/while condition expression.
1720 ///
1721 /// condition:
1722 /// expression
1723 /// type-specifier-seq declarator '=' assignment-expression
1724 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1725 /// [C++11] type-specifier-seq declarator braced-init-list
1726 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1727 /// '=' assignment-expression
1728 ///
1729 /// In C++1z, a condition may in some contexts be preceded by an
1730 /// optional init-statement. This function will parse that too.
1731 ///
1732 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1733 /// will be parsed and stored here.
1734 ///
1735 /// \param Loc The location of the start of the statement that requires this
1736 /// condition, e.g., the "for" in a for loop.
1737 ///
1738 /// \returns The parsed condition.
ParseCXXCondition(StmtResult * InitStmt,SourceLocation Loc,Sema::ConditionKind CK)1739 Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
1740 SourceLocation Loc,
1741 Sema::ConditionKind CK) {
1742 if (Tok.is(tok::code_completion)) {
1743 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1744 cutOffParsing();
1745 return Sema::ConditionError();
1746 }
1747
1748 ParsedAttributesWithRange attrs(AttrFactory);
1749 MaybeParseCXX11Attributes(attrs);
1750
1751 // Determine what kind of thing we have.
1752 switch (isCXXConditionDeclarationOrInitStatement(InitStmt)) {
1753 case ConditionOrInitStatement::Expression: {
1754 ProhibitAttributes(attrs);
1755
1756 // Parse the expression.
1757 ExprResult Expr = ParseExpression(); // expression
1758 if (Expr.isInvalid())
1759 return Sema::ConditionError();
1760
1761 if (InitStmt && Tok.is(tok::semi)) {
1762 *InitStmt = Actions.ActOnExprStmt(Expr.get());
1763 ConsumeToken();
1764 return ParseCXXCondition(nullptr, Loc, CK);
1765 }
1766
1767 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
1768 }
1769
1770 case ConditionOrInitStatement::InitStmtDecl: {
1771 SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
1772 DeclGroupPtrTy DG = ParseSimpleDeclaration(
1773 Declarator::InitStmtContext, DeclEnd, attrs, /*RequireSemi=*/true);
1774 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
1775 return ParseCXXCondition(nullptr, Loc, CK);
1776 }
1777
1778 case ConditionOrInitStatement::ConditionDecl:
1779 case ConditionOrInitStatement::Error:
1780 break;
1781 }
1782
1783 // type-specifier-seq
1784 DeclSpec DS(AttrFactory);
1785 DS.takeAttributesFrom(attrs);
1786 ParseSpecifierQualifierList(DS, AS_none, DSC_condition);
1787
1788 // declarator
1789 Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1790 ParseDeclarator(DeclaratorInfo);
1791
1792 // simple-asm-expr[opt]
1793 if (Tok.is(tok::kw_asm)) {
1794 SourceLocation Loc;
1795 ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1796 if (AsmLabel.isInvalid()) {
1797 SkipUntil(tok::semi, StopAtSemi);
1798 return Sema::ConditionError();
1799 }
1800 DeclaratorInfo.setAsmLabel(AsmLabel.get());
1801 DeclaratorInfo.SetRangeEnd(Loc);
1802 }
1803
1804 // If attributes are present, parse them.
1805 MaybeParseGNUAttributes(DeclaratorInfo);
1806
1807 // Type-check the declaration itself.
1808 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1809 DeclaratorInfo);
1810 if (Dcl.isInvalid())
1811 return Sema::ConditionError();
1812 Decl *DeclOut = Dcl.get();
1813
1814 // '=' assignment-expression
1815 // If a '==' or '+=' is found, suggest a fixit to '='.
1816 bool CopyInitialization = isTokenEqualOrEqualTypo();
1817 if (CopyInitialization)
1818 ConsumeToken();
1819
1820 ExprResult InitExpr = ExprError();
1821 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1822 Diag(Tok.getLocation(),
1823 diag::warn_cxx98_compat_generalized_initializer_lists);
1824 InitExpr = ParseBraceInitializer();
1825 } else if (CopyInitialization) {
1826 InitExpr = ParseAssignmentExpression();
1827 } else if (Tok.is(tok::l_paren)) {
1828 // This was probably an attempt to initialize the variable.
1829 SourceLocation LParen = ConsumeParen(), RParen = LParen;
1830 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
1831 RParen = ConsumeParen();
1832 Diag(DeclOut->getLocation(),
1833 diag::err_expected_init_in_condition_lparen)
1834 << SourceRange(LParen, RParen);
1835 } else {
1836 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
1837 }
1838
1839 if (!InitExpr.isInvalid())
1840 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization,
1841 DS.containsPlaceholderType());
1842 else
1843 Actions.ActOnInitializerError(DeclOut);
1844
1845 Actions.FinalizeDeclaration(DeclOut);
1846 return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
1847 }
1848
1849 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1850 /// This should only be called when the current token is known to be part of
1851 /// simple-type-specifier.
1852 ///
1853 /// simple-type-specifier:
1854 /// '::'[opt] nested-name-specifier[opt] type-name
1855 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1856 /// char
1857 /// wchar_t
1858 /// bool
1859 /// short
1860 /// int
1861 /// long
1862 /// signed
1863 /// unsigned
1864 /// float
1865 /// double
1866 /// void
1867 /// [GNU] typeof-specifier
1868 /// [C++0x] auto [TODO]
1869 ///
1870 /// type-name:
1871 /// class-name
1872 /// enum-name
1873 /// typedef-name
1874 ///
ParseCXXSimpleTypeSpecifier(DeclSpec & DS)1875 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1876 DS.SetRangeStart(Tok.getLocation());
1877 const char *PrevSpec;
1878 unsigned DiagID;
1879 SourceLocation Loc = Tok.getLocation();
1880 const clang::PrintingPolicy &Policy =
1881 Actions.getASTContext().getPrintingPolicy();
1882
1883 switch (Tok.getKind()) {
1884 case tok::identifier: // foo::bar
1885 case tok::coloncolon: // ::foo::bar
1886 llvm_unreachable("Annotation token should already be formed!");
1887 default:
1888 llvm_unreachable("Not a simple-type-specifier token!");
1889
1890 // type-name
1891 case tok::annot_typename: {
1892 if (getTypeAnnotation(Tok))
1893 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1894 getTypeAnnotation(Tok), Policy);
1895 else
1896 DS.SetTypeSpecError();
1897
1898 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1899 ConsumeToken();
1900
1901 DS.Finish(Actions, Policy);
1902 return;
1903 }
1904
1905 // builtin types
1906 case tok::kw_short:
1907 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy);
1908 break;
1909 case tok::kw_long:
1910 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy);
1911 break;
1912 case tok::kw___int64:
1913 DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy);
1914 break;
1915 case tok::kw_signed:
1916 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1917 break;
1918 case tok::kw_unsigned:
1919 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1920 break;
1921 case tok::kw_void:
1922 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
1923 break;
1924 case tok::kw_char:
1925 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
1926 break;
1927 case tok::kw_int:
1928 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
1929 break;
1930 case tok::kw___int128:
1931 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
1932 break;
1933 case tok::kw_half:
1934 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
1935 break;
1936 case tok::kw_float:
1937 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
1938 break;
1939 case tok::kw_double:
1940 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
1941 break;
1942 case tok::kw___float128:
1943 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
1944 break;
1945 case tok::kw_wchar_t:
1946 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
1947 break;
1948 case tok::kw_char16_t:
1949 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
1950 break;
1951 case tok::kw_char32_t:
1952 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
1953 break;
1954 case tok::kw_bool:
1955 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
1956 break;
1957 case tok::annot_decltype:
1958 case tok::kw_decltype:
1959 DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1960 return DS.Finish(Actions, Policy);
1961
1962 // GNU typeof support.
1963 case tok::kw_typeof:
1964 ParseTypeofSpecifier(DS);
1965 DS.Finish(Actions, Policy);
1966 return;
1967 }
1968 if (Tok.is(tok::annot_typename))
1969 DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1970 else
1971 DS.SetRangeEnd(Tok.getLocation());
1972 ConsumeToken();
1973 DS.Finish(Actions, Policy);
1974 }
1975
1976 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1977 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
1978 /// e.g., "const short int". Note that the DeclSpec is *not* finished
1979 /// by parsing the type-specifier-seq, because these sequences are
1980 /// typically followed by some form of declarator. Returns true and
1981 /// emits diagnostics if this is not a type-specifier-seq, false
1982 /// otherwise.
1983 ///
1984 /// type-specifier-seq: [C++ 8.1]
1985 /// type-specifier type-specifier-seq[opt]
1986 ///
ParseCXXTypeSpecifierSeq(DeclSpec & DS)1987 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1988 ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1989 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
1990 return false;
1991 }
1992
1993 /// \brief Finish parsing a C++ unqualified-id that is a template-id of
1994 /// some form.
1995 ///
1996 /// This routine is invoked when a '<' is encountered after an identifier or
1997 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1998 /// whether the unqualified-id is actually a template-id. This routine will
1999 /// then parse the template arguments and form the appropriate template-id to
2000 /// return to the caller.
2001 ///
2002 /// \param SS the nested-name-specifier that precedes this template-id, if
2003 /// we're actually parsing a qualified-id.
2004 ///
2005 /// \param Name for constructor and destructor names, this is the actual
2006 /// identifier that may be a template-name.
2007 ///
2008 /// \param NameLoc the location of the class-name in a constructor or
2009 /// destructor.
2010 ///
2011 /// \param EnteringContext whether we're entering the scope of the
2012 /// nested-name-specifier.
2013 ///
2014 /// \param ObjectType if this unqualified-id occurs within a member access
2015 /// expression, the type of the base object whose member is being accessed.
2016 ///
2017 /// \param Id as input, describes the template-name or operator-function-id
2018 /// that precedes the '<'. If template arguments were parsed successfully,
2019 /// will be updated with the template-id.
2020 ///
2021 /// \param AssumeTemplateId When true, this routine will assume that the name
2022 /// refers to a template without performing name lookup to verify.
2023 ///
2024 /// \returns true if a parse error occurred, false otherwise.
ParseUnqualifiedIdTemplateId(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,IdentifierInfo * Name,SourceLocation NameLoc,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Id,bool AssumeTemplateId)2025 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
2026 SourceLocation TemplateKWLoc,
2027 IdentifierInfo *Name,
2028 SourceLocation NameLoc,
2029 bool EnteringContext,
2030 ParsedType ObjectType,
2031 UnqualifiedId &Id,
2032 bool AssumeTemplateId) {
2033 assert((AssumeTemplateId || Tok.is(tok::less)) &&
2034 "Expected '<' to finish parsing a template-id");
2035
2036 TemplateTy Template;
2037 TemplateNameKind TNK = TNK_Non_template;
2038 switch (Id.getKind()) {
2039 case UnqualifiedId::IK_Identifier:
2040 case UnqualifiedId::IK_OperatorFunctionId:
2041 case UnqualifiedId::IK_LiteralOperatorId:
2042 if (AssumeTemplateId) {
2043 TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
2044 Id, ObjectType, EnteringContext,
2045 Template);
2046 if (TNK == TNK_Non_template)
2047 return true;
2048 } else {
2049 bool MemberOfUnknownSpecialization;
2050 TNK = Actions.isTemplateName(getCurScope(), SS,
2051 TemplateKWLoc.isValid(), Id,
2052 ObjectType, EnteringContext, Template,
2053 MemberOfUnknownSpecialization);
2054
2055 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2056 ObjectType && IsTemplateArgumentList()) {
2057 // We have something like t->getAs<T>(), where getAs is a
2058 // member of an unknown specialization. However, this will only
2059 // parse correctly as a template, so suggest the keyword 'template'
2060 // before 'getAs' and treat this as a dependent template name.
2061 std::string Name;
2062 if (Id.getKind() == UnqualifiedId::IK_Identifier)
2063 Name = Id.Identifier->getName();
2064 else {
2065 Name = "operator ";
2066 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
2067 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2068 else
2069 Name += Id.Identifier->getName();
2070 }
2071 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2072 << Name
2073 << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2074 TNK = Actions.ActOnDependentTemplateName(getCurScope(),
2075 SS, TemplateKWLoc, Id,
2076 ObjectType, EnteringContext,
2077 Template);
2078 if (TNK == TNK_Non_template)
2079 return true;
2080 }
2081 }
2082 break;
2083
2084 case UnqualifiedId::IK_ConstructorName: {
2085 UnqualifiedId TemplateName;
2086 bool MemberOfUnknownSpecialization;
2087 TemplateName.setIdentifier(Name, NameLoc);
2088 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2089 TemplateName, ObjectType,
2090 EnteringContext, Template,
2091 MemberOfUnknownSpecialization);
2092 break;
2093 }
2094
2095 case UnqualifiedId::IK_DestructorName: {
2096 UnqualifiedId TemplateName;
2097 bool MemberOfUnknownSpecialization;
2098 TemplateName.setIdentifier(Name, NameLoc);
2099 if (ObjectType) {
2100 TNK = Actions.ActOnDependentTemplateName(getCurScope(),
2101 SS, TemplateKWLoc, TemplateName,
2102 ObjectType, EnteringContext,
2103 Template);
2104 if (TNK == TNK_Non_template)
2105 return true;
2106 } else {
2107 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2108 TemplateName, ObjectType,
2109 EnteringContext, Template,
2110 MemberOfUnknownSpecialization);
2111
2112 if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2113 Diag(NameLoc, diag::err_destructor_template_id)
2114 << Name << SS.getRange();
2115 return true;
2116 }
2117 }
2118 break;
2119 }
2120
2121 default:
2122 return false;
2123 }
2124
2125 if (TNK == TNK_Non_template)
2126 return false;
2127
2128 // Parse the enclosed template argument list.
2129 SourceLocation LAngleLoc, RAngleLoc;
2130 TemplateArgList TemplateArgs;
2131 if (Tok.is(tok::less) &&
2132 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
2133 SS, true, LAngleLoc,
2134 TemplateArgs,
2135 RAngleLoc))
2136 return true;
2137
2138 if (Id.getKind() == UnqualifiedId::IK_Identifier ||
2139 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2140 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
2141 // Form a parsed representation of the template-id to be stored in the
2142 // UnqualifiedId.
2143 TemplateIdAnnotation *TemplateId
2144 = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
2145
2146 // FIXME: Store name for literal operator too.
2147 if (Id.getKind() == UnqualifiedId::IK_Identifier) {
2148 TemplateId->Name = Id.Identifier;
2149 TemplateId->Operator = OO_None;
2150 TemplateId->TemplateNameLoc = Id.StartLocation;
2151 } else {
2152 TemplateId->Name = nullptr;
2153 TemplateId->Operator = Id.OperatorFunctionId.Operator;
2154 TemplateId->TemplateNameLoc = Id.StartLocation;
2155 }
2156
2157 TemplateId->SS = SS;
2158 TemplateId->TemplateKWLoc = TemplateKWLoc;
2159 TemplateId->Template = Template;
2160 TemplateId->Kind = TNK;
2161 TemplateId->LAngleLoc = LAngleLoc;
2162 TemplateId->RAngleLoc = RAngleLoc;
2163 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
2164 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
2165 Arg != ArgEnd; ++Arg)
2166 Args[Arg] = TemplateArgs[Arg];
2167
2168 Id.setTemplateId(TemplateId);
2169 return false;
2170 }
2171
2172 // Bundle the template arguments together.
2173 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2174
2175 // Constructor and destructor names.
2176 TypeResult Type
2177 = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
2178 Template, NameLoc,
2179 LAngleLoc, TemplateArgsPtr, RAngleLoc,
2180 /*IsCtorOrDtorName=*/true);
2181 if (Type.isInvalid())
2182 return true;
2183
2184 if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
2185 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2186 else
2187 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2188
2189 return false;
2190 }
2191
2192 /// \brief Parse an operator-function-id or conversion-function-id as part
2193 /// of a C++ unqualified-id.
2194 ///
2195 /// This routine is responsible only for parsing the operator-function-id or
2196 /// conversion-function-id; it does not handle template arguments in any way.
2197 ///
2198 /// \code
2199 /// operator-function-id: [C++ 13.5]
2200 /// 'operator' operator
2201 ///
2202 /// operator: one of
2203 /// new delete new[] delete[]
2204 /// + - * / % ^ & | ~
2205 /// ! = < > += -= *= /= %=
2206 /// ^= &= |= << >> >>= <<= == !=
2207 /// <= >= && || ++ -- , ->* ->
2208 /// () []
2209 ///
2210 /// conversion-function-id: [C++ 12.3.2]
2211 /// operator conversion-type-id
2212 ///
2213 /// conversion-type-id:
2214 /// type-specifier-seq conversion-declarator[opt]
2215 ///
2216 /// conversion-declarator:
2217 /// ptr-operator conversion-declarator[opt]
2218 /// \endcode
2219 ///
2220 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2221 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2222 ///
2223 /// \param EnteringContext whether we are entering the scope of the
2224 /// nested-name-specifier.
2225 ///
2226 /// \param ObjectType if this unqualified-id occurs within a member access
2227 /// expression, the type of the base object whose member is being accessed.
2228 ///
2229 /// \param Result on a successful parse, contains the parsed unqualified-id.
2230 ///
2231 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedIdOperator(CXXScopeSpec & SS,bool EnteringContext,ParsedType ObjectType,UnqualifiedId & Result)2232 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2233 ParsedType ObjectType,
2234 UnqualifiedId &Result) {
2235 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2236
2237 // Consume the 'operator' keyword.
2238 SourceLocation KeywordLoc = ConsumeToken();
2239
2240 // Determine what kind of operator name we have.
2241 unsigned SymbolIdx = 0;
2242 SourceLocation SymbolLocations[3];
2243 OverloadedOperatorKind Op = OO_None;
2244 switch (Tok.getKind()) {
2245 case tok::kw_new:
2246 case tok::kw_delete: {
2247 bool isNew = Tok.getKind() == tok::kw_new;
2248 // Consume the 'new' or 'delete'.
2249 SymbolLocations[SymbolIdx++] = ConsumeToken();
2250 // Check for array new/delete.
2251 if (Tok.is(tok::l_square) &&
2252 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2253 // Consume the '[' and ']'.
2254 BalancedDelimiterTracker T(*this, tok::l_square);
2255 T.consumeOpen();
2256 T.consumeClose();
2257 if (T.getCloseLocation().isInvalid())
2258 return true;
2259
2260 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2261 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2262 Op = isNew? OO_Array_New : OO_Array_Delete;
2263 } else {
2264 Op = isNew? OO_New : OO_Delete;
2265 }
2266 break;
2267 }
2268
2269 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2270 case tok::Token: \
2271 SymbolLocations[SymbolIdx++] = ConsumeToken(); \
2272 Op = OO_##Name; \
2273 break;
2274 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2275 #include "clang/Basic/OperatorKinds.def"
2276
2277 case tok::l_paren: {
2278 // Consume the '(' and ')'.
2279 BalancedDelimiterTracker T(*this, tok::l_paren);
2280 T.consumeOpen();
2281 T.consumeClose();
2282 if (T.getCloseLocation().isInvalid())
2283 return true;
2284
2285 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2286 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2287 Op = OO_Call;
2288 break;
2289 }
2290
2291 case tok::l_square: {
2292 // Consume the '[' and ']'.
2293 BalancedDelimiterTracker T(*this, tok::l_square);
2294 T.consumeOpen();
2295 T.consumeClose();
2296 if (T.getCloseLocation().isInvalid())
2297 return true;
2298
2299 SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2300 SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2301 Op = OO_Subscript;
2302 break;
2303 }
2304
2305 case tok::code_completion: {
2306 // Code completion for the operator name.
2307 Actions.CodeCompleteOperatorName(getCurScope());
2308 cutOffParsing();
2309 // Don't try to parse any further.
2310 return true;
2311 }
2312
2313 default:
2314 break;
2315 }
2316
2317 if (Op != OO_None) {
2318 // We have parsed an operator-function-id.
2319 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2320 return false;
2321 }
2322
2323 // Parse a literal-operator-id.
2324 //
2325 // literal-operator-id: C++11 [over.literal]
2326 // operator string-literal identifier
2327 // operator user-defined-string-literal
2328
2329 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2330 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2331
2332 SourceLocation DiagLoc;
2333 unsigned DiagId = 0;
2334
2335 // We're past translation phase 6, so perform string literal concatenation
2336 // before checking for "".
2337 SmallVector<Token, 4> Toks;
2338 SmallVector<SourceLocation, 4> TokLocs;
2339 while (isTokenStringLiteral()) {
2340 if (!Tok.is(tok::string_literal) && !DiagId) {
2341 // C++11 [over.literal]p1:
2342 // The string-literal or user-defined-string-literal in a
2343 // literal-operator-id shall have no encoding-prefix [...].
2344 DiagLoc = Tok.getLocation();
2345 DiagId = diag::err_literal_operator_string_prefix;
2346 }
2347 Toks.push_back(Tok);
2348 TokLocs.push_back(ConsumeStringToken());
2349 }
2350
2351 StringLiteralParser Literal(Toks, PP);
2352 if (Literal.hadError)
2353 return true;
2354
2355 // Grab the literal operator's suffix, which will be either the next token
2356 // or a ud-suffix from the string literal.
2357 IdentifierInfo *II = nullptr;
2358 SourceLocation SuffixLoc;
2359 if (!Literal.getUDSuffix().empty()) {
2360 II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2361 SuffixLoc =
2362 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2363 Literal.getUDSuffixOffset(),
2364 PP.getSourceManager(), getLangOpts());
2365 } else if (Tok.is(tok::identifier)) {
2366 II = Tok.getIdentifierInfo();
2367 SuffixLoc = ConsumeToken();
2368 TokLocs.push_back(SuffixLoc);
2369 } else {
2370 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2371 return true;
2372 }
2373
2374 // The string literal must be empty.
2375 if (!Literal.GetString().empty() || Literal.Pascal) {
2376 // C++11 [over.literal]p1:
2377 // The string-literal or user-defined-string-literal in a
2378 // literal-operator-id shall [...] contain no characters
2379 // other than the implicit terminating '\0'.
2380 DiagLoc = TokLocs.front();
2381 DiagId = diag::err_literal_operator_string_not_empty;
2382 }
2383
2384 if (DiagId) {
2385 // This isn't a valid literal-operator-id, but we think we know
2386 // what the user meant. Tell them what they should have written.
2387 SmallString<32> Str;
2388 Str += "\"\"";
2389 Str += II->getName();
2390 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2391 SourceRange(TokLocs.front(), TokLocs.back()), Str);
2392 }
2393
2394 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2395
2396 return Actions.checkLiteralOperatorId(SS, Result);
2397 }
2398
2399 // Parse a conversion-function-id.
2400 //
2401 // conversion-function-id: [C++ 12.3.2]
2402 // operator conversion-type-id
2403 //
2404 // conversion-type-id:
2405 // type-specifier-seq conversion-declarator[opt]
2406 //
2407 // conversion-declarator:
2408 // ptr-operator conversion-declarator[opt]
2409
2410 // Parse the type-specifier-seq.
2411 DeclSpec DS(AttrFactory);
2412 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2413 return true;
2414
2415 // Parse the conversion-declarator, which is merely a sequence of
2416 // ptr-operators.
2417 Declarator D(DS, Declarator::ConversionIdContext);
2418 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2419
2420 // Finish up the type.
2421 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2422 if (Ty.isInvalid())
2423 return true;
2424
2425 // Note that this is a conversion-function-id.
2426 Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2427 D.getSourceRange().getEnd());
2428 return false;
2429 }
2430
2431 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
2432 /// name of an entity.
2433 ///
2434 /// \code
2435 /// unqualified-id: [C++ expr.prim.general]
2436 /// identifier
2437 /// operator-function-id
2438 /// conversion-function-id
2439 /// [C++0x] literal-operator-id [TODO]
2440 /// ~ class-name
2441 /// template-id
2442 ///
2443 /// \endcode
2444 ///
2445 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2446 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2447 ///
2448 /// \param EnteringContext whether we are entering the scope of the
2449 /// nested-name-specifier.
2450 ///
2451 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2452 ///
2453 /// \param AllowConstructorName whether we allow parsing a constructor name.
2454 ///
2455 /// \param ObjectType if this unqualified-id occurs within a member access
2456 /// expression, the type of the base object whose member is being accessed.
2457 ///
2458 /// \param Result on a successful parse, contains the parsed unqualified-id.
2459 ///
2460 /// \returns true if parsing fails, false otherwise.
ParseUnqualifiedId(CXXScopeSpec & SS,bool EnteringContext,bool AllowDestructorName,bool AllowConstructorName,ParsedType ObjectType,SourceLocation & TemplateKWLoc,UnqualifiedId & Result)2461 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
2462 bool AllowDestructorName,
2463 bool AllowConstructorName,
2464 ParsedType ObjectType,
2465 SourceLocation& TemplateKWLoc,
2466 UnqualifiedId &Result) {
2467
2468 // Handle 'A::template B'. This is for template-ids which have not
2469 // already been annotated by ParseOptionalCXXScopeSpecifier().
2470 bool TemplateSpecified = false;
2471 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2472 (ObjectType || SS.isSet())) {
2473 TemplateSpecified = true;
2474 TemplateKWLoc = ConsumeToken();
2475 }
2476
2477 // unqualified-id:
2478 // identifier
2479 // template-id (when it hasn't already been annotated)
2480 if (Tok.is(tok::identifier)) {
2481 // Consume the identifier.
2482 IdentifierInfo *Id = Tok.getIdentifierInfo();
2483 SourceLocation IdLoc = ConsumeToken();
2484
2485 if (!getLangOpts().CPlusPlus) {
2486 // If we're not in C++, only identifiers matter. Record the
2487 // identifier and return.
2488 Result.setIdentifier(Id, IdLoc);
2489 return false;
2490 }
2491
2492 if (AllowConstructorName &&
2493 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2494 // We have parsed a constructor name.
2495 ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, false,
2496 false, nullptr,
2497 /*IsCtorOrDtorName=*/true,
2498 /*NonTrivialTypeSourceInfo=*/true);
2499 Result.setConstructorName(Ty, IdLoc, IdLoc);
2500 } else {
2501 // We have parsed an identifier.
2502 Result.setIdentifier(Id, IdLoc);
2503 }
2504
2505 // If the next token is a '<', we may have a template.
2506 if (TemplateSpecified || Tok.is(tok::less))
2507 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2508 EnteringContext, ObjectType,
2509 Result, TemplateSpecified);
2510
2511 return false;
2512 }
2513
2514 // unqualified-id:
2515 // template-id (already parsed and annotated)
2516 if (Tok.is(tok::annot_template_id)) {
2517 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2518
2519 // If the template-name names the current class, then this is a constructor
2520 if (AllowConstructorName && TemplateId->Name &&
2521 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2522 if (SS.isSet()) {
2523 // C++ [class.qual]p2 specifies that a qualified template-name
2524 // is taken as the constructor name where a constructor can be
2525 // declared. Thus, the template arguments are extraneous, so
2526 // complain about them and remove them entirely.
2527 Diag(TemplateId->TemplateNameLoc,
2528 diag::err_out_of_line_constructor_template_id)
2529 << TemplateId->Name
2530 << FixItHint::CreateRemoval(
2531 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2532 ParsedType Ty =
2533 Actions.getTypeName(*TemplateId->Name, TemplateId->TemplateNameLoc,
2534 getCurScope(), &SS, false, false, nullptr,
2535 /*IsCtorOrDtorName=*/true,
2536 /*NontrivialTypeSourceInfo=*/true);
2537 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2538 TemplateId->RAngleLoc);
2539 ConsumeToken();
2540 return false;
2541 }
2542
2543 Result.setConstructorTemplateId(TemplateId);
2544 ConsumeToken();
2545 return false;
2546 }
2547
2548 // We have already parsed a template-id; consume the annotation token as
2549 // our unqualified-id.
2550 Result.setTemplateId(TemplateId);
2551 TemplateKWLoc = TemplateId->TemplateKWLoc;
2552 ConsumeToken();
2553 return false;
2554 }
2555
2556 // unqualified-id:
2557 // operator-function-id
2558 // conversion-function-id
2559 if (Tok.is(tok::kw_operator)) {
2560 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2561 return true;
2562
2563 // If we have an operator-function-id or a literal-operator-id and the next
2564 // token is a '<', we may have a
2565 //
2566 // template-id:
2567 // operator-function-id < template-argument-list[opt] >
2568 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2569 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2570 (TemplateSpecified || Tok.is(tok::less)))
2571 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2572 nullptr, SourceLocation(),
2573 EnteringContext, ObjectType,
2574 Result, TemplateSpecified);
2575
2576 return false;
2577 }
2578
2579 if (getLangOpts().CPlusPlus &&
2580 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2581 // C++ [expr.unary.op]p10:
2582 // There is an ambiguity in the unary-expression ~X(), where X is a
2583 // class-name. The ambiguity is resolved in favor of treating ~ as a
2584 // unary complement rather than treating ~X as referring to a destructor.
2585
2586 // Parse the '~'.
2587 SourceLocation TildeLoc = ConsumeToken();
2588
2589 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2590 DeclSpec DS(AttrFactory);
2591 SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2592 if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2593 Result.setDestructorName(TildeLoc, Type, EndLoc);
2594 return false;
2595 }
2596 return true;
2597 }
2598
2599 // Parse the class-name.
2600 if (Tok.isNot(tok::identifier)) {
2601 Diag(Tok, diag::err_destructor_tilde_identifier);
2602 return true;
2603 }
2604
2605 // If the user wrote ~T::T, correct it to T::~T.
2606 DeclaratorScopeObj DeclScopeObj(*this, SS);
2607 if (!TemplateSpecified && NextToken().is(tok::coloncolon)) {
2608 // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2609 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2610 // it will confuse this recovery logic.
2611 ColonProtectionRAIIObject ColonRAII(*this, false);
2612
2613 if (SS.isSet()) {
2614 AnnotateScopeToken(SS, /*NewAnnotation*/true);
2615 SS.clear();
2616 }
2617 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext))
2618 return true;
2619 if (SS.isNotEmpty())
2620 ObjectType = nullptr;
2621 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
2622 !SS.isSet()) {
2623 Diag(TildeLoc, diag::err_destructor_tilde_scope);
2624 return true;
2625 }
2626
2627 // Recover as if the tilde had been written before the identifier.
2628 Diag(TildeLoc, diag::err_destructor_tilde_scope)
2629 << FixItHint::CreateRemoval(TildeLoc)
2630 << FixItHint::CreateInsertion(Tok.getLocation(), "~");
2631
2632 // Temporarily enter the scope for the rest of this function.
2633 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2634 DeclScopeObj.EnterDeclaratorScope();
2635 }
2636
2637 // Parse the class-name (or template-name in a simple-template-id).
2638 IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2639 SourceLocation ClassNameLoc = ConsumeToken();
2640
2641 if (TemplateSpecified || Tok.is(tok::less)) {
2642 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
2643 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2644 ClassName, ClassNameLoc,
2645 EnteringContext, ObjectType,
2646 Result, TemplateSpecified);
2647 }
2648
2649 // Note that this is a destructor name.
2650 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2651 ClassNameLoc, getCurScope(),
2652 SS, ObjectType,
2653 EnteringContext);
2654 if (!Ty)
2655 return true;
2656
2657 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2658 return false;
2659 }
2660
2661 Diag(Tok, diag::err_expected_unqualified_id)
2662 << getLangOpts().CPlusPlus;
2663 return true;
2664 }
2665
2666 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2667 /// memory in a typesafe manner and call constructors.
2668 ///
2669 /// This method is called to parse the new expression after the optional :: has
2670 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start"
2671 /// is its location. Otherwise, "Start" is the location of the 'new' token.
2672 ///
2673 /// new-expression:
2674 /// '::'[opt] 'new' new-placement[opt] new-type-id
2675 /// new-initializer[opt]
2676 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2677 /// new-initializer[opt]
2678 ///
2679 /// new-placement:
2680 /// '(' expression-list ')'
2681 ///
2682 /// new-type-id:
2683 /// type-specifier-seq new-declarator[opt]
2684 /// [GNU] attributes type-specifier-seq new-declarator[opt]
2685 ///
2686 /// new-declarator:
2687 /// ptr-operator new-declarator[opt]
2688 /// direct-new-declarator
2689 ///
2690 /// new-initializer:
2691 /// '(' expression-list[opt] ')'
2692 /// [C++0x] braced-init-list
2693 ///
2694 ExprResult
ParseCXXNewExpression(bool UseGlobal,SourceLocation Start)2695 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2696 assert(Tok.is(tok::kw_new) && "expected 'new' token");
2697 ConsumeToken(); // Consume 'new'
2698
2699 // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2700 // second form of new-expression. It can't be a new-type-id.
2701
2702 ExprVector PlacementArgs;
2703 SourceLocation PlacementLParen, PlacementRParen;
2704
2705 SourceRange TypeIdParens;
2706 DeclSpec DS(AttrFactory);
2707 Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2708 if (Tok.is(tok::l_paren)) {
2709 // If it turns out to be a placement, we change the type location.
2710 BalancedDelimiterTracker T(*this, tok::l_paren);
2711 T.consumeOpen();
2712 PlacementLParen = T.getOpenLocation();
2713 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2714 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2715 return ExprError();
2716 }
2717
2718 T.consumeClose();
2719 PlacementRParen = T.getCloseLocation();
2720 if (PlacementRParen.isInvalid()) {
2721 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2722 return ExprError();
2723 }
2724
2725 if (PlacementArgs.empty()) {
2726 // Reset the placement locations. There was no placement.
2727 TypeIdParens = T.getRange();
2728 PlacementLParen = PlacementRParen = SourceLocation();
2729 } else {
2730 // We still need the type.
2731 if (Tok.is(tok::l_paren)) {
2732 BalancedDelimiterTracker T(*this, tok::l_paren);
2733 T.consumeOpen();
2734 MaybeParseGNUAttributes(DeclaratorInfo);
2735 ParseSpecifierQualifierList(DS);
2736 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2737 ParseDeclarator(DeclaratorInfo);
2738 T.consumeClose();
2739 TypeIdParens = T.getRange();
2740 } else {
2741 MaybeParseGNUAttributes(DeclaratorInfo);
2742 if (ParseCXXTypeSpecifierSeq(DS))
2743 DeclaratorInfo.setInvalidType(true);
2744 else {
2745 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2746 ParseDeclaratorInternal(DeclaratorInfo,
2747 &Parser::ParseDirectNewDeclarator);
2748 }
2749 }
2750 }
2751 } else {
2752 // A new-type-id is a simplified type-id, where essentially the
2753 // direct-declarator is replaced by a direct-new-declarator.
2754 MaybeParseGNUAttributes(DeclaratorInfo);
2755 if (ParseCXXTypeSpecifierSeq(DS))
2756 DeclaratorInfo.setInvalidType(true);
2757 else {
2758 DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2759 ParseDeclaratorInternal(DeclaratorInfo,
2760 &Parser::ParseDirectNewDeclarator);
2761 }
2762 }
2763 if (DeclaratorInfo.isInvalidType()) {
2764 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2765 return ExprError();
2766 }
2767
2768 ExprResult Initializer;
2769
2770 if (Tok.is(tok::l_paren)) {
2771 SourceLocation ConstructorLParen, ConstructorRParen;
2772 ExprVector ConstructorArgs;
2773 BalancedDelimiterTracker T(*this, tok::l_paren);
2774 T.consumeOpen();
2775 ConstructorLParen = T.getOpenLocation();
2776 if (Tok.isNot(tok::r_paren)) {
2777 CommaLocsTy CommaLocs;
2778 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
2779 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(),
2780 DeclaratorInfo).get();
2781 Actions.CodeCompleteConstructor(getCurScope(),
2782 TypeRep.get()->getCanonicalTypeInternal(),
2783 DeclaratorInfo.getLocEnd(),
2784 ConstructorArgs);
2785 })) {
2786 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2787 return ExprError();
2788 }
2789 }
2790 T.consumeClose();
2791 ConstructorRParen = T.getCloseLocation();
2792 if (ConstructorRParen.isInvalid()) {
2793 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
2794 return ExprError();
2795 }
2796 Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2797 ConstructorRParen,
2798 ConstructorArgs);
2799 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
2800 Diag(Tok.getLocation(),
2801 diag::warn_cxx98_compat_generalized_initializer_lists);
2802 Initializer = ParseBraceInitializer();
2803 }
2804 if (Initializer.isInvalid())
2805 return Initializer;
2806
2807 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2808 PlacementArgs, PlacementRParen,
2809 TypeIdParens, DeclaratorInfo, Initializer.get());
2810 }
2811
2812 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2813 /// passed to ParseDeclaratorInternal.
2814 ///
2815 /// direct-new-declarator:
2816 /// '[' expression ']'
2817 /// direct-new-declarator '[' constant-expression ']'
2818 ///
ParseDirectNewDeclarator(Declarator & D)2819 void Parser::ParseDirectNewDeclarator(Declarator &D) {
2820 // Parse the array dimensions.
2821 bool first = true;
2822 while (Tok.is(tok::l_square)) {
2823 // An array-size expression can't start with a lambda.
2824 if (CheckProhibitedCXX11Attribute())
2825 continue;
2826
2827 BalancedDelimiterTracker T(*this, tok::l_square);
2828 T.consumeOpen();
2829
2830 ExprResult Size(first ? ParseExpression()
2831 : ParseConstantExpression());
2832 if (Size.isInvalid()) {
2833 // Recover
2834 SkipUntil(tok::r_square, StopAtSemi);
2835 return;
2836 }
2837 first = false;
2838
2839 T.consumeClose();
2840
2841 // Attributes here appertain to the array type. C++11 [expr.new]p5.
2842 ParsedAttributes Attrs(AttrFactory);
2843 MaybeParseCXX11Attributes(Attrs);
2844
2845 D.AddTypeInfo(DeclaratorChunk::getArray(0,
2846 /*static=*/false, /*star=*/false,
2847 Size.get(),
2848 T.getOpenLocation(),
2849 T.getCloseLocation()),
2850 Attrs, T.getCloseLocation());
2851
2852 if (T.getCloseLocation().isInvalid())
2853 return;
2854 }
2855 }
2856
2857 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2858 /// This ambiguity appears in the syntax of the C++ new operator.
2859 ///
2860 /// new-expression:
2861 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2862 /// new-initializer[opt]
2863 ///
2864 /// new-placement:
2865 /// '(' expression-list ')'
2866 ///
ParseExpressionListOrTypeId(SmallVectorImpl<Expr * > & PlacementArgs,Declarator & D)2867 bool Parser::ParseExpressionListOrTypeId(
2868 SmallVectorImpl<Expr*> &PlacementArgs,
2869 Declarator &D) {
2870 // The '(' was already consumed.
2871 if (isTypeIdInParens()) {
2872 ParseSpecifierQualifierList(D.getMutableDeclSpec());
2873 D.SetSourceRange(D.getDeclSpec().getSourceRange());
2874 ParseDeclarator(D);
2875 return D.isInvalidType();
2876 }
2877
2878 // It's not a type, it has to be an expression list.
2879 // Discard the comma locations - ActOnCXXNew has enough parameters.
2880 CommaLocsTy CommaLocs;
2881 return ParseExpressionList(PlacementArgs, CommaLocs);
2882 }
2883
2884 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2885 /// to free memory allocated by new.
2886 ///
2887 /// This method is called to parse the 'delete' expression after the optional
2888 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true
2889 /// and "Start" is its location. Otherwise, "Start" is the location of the
2890 /// 'delete' token.
2891 ///
2892 /// delete-expression:
2893 /// '::'[opt] 'delete' cast-expression
2894 /// '::'[opt] 'delete' '[' ']' cast-expression
2895 ExprResult
ParseCXXDeleteExpression(bool UseGlobal,SourceLocation Start)2896 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2897 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2898 ConsumeToken(); // Consume 'delete'
2899
2900 // Array delete?
2901 bool ArrayDelete = false;
2902 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2903 // C++11 [expr.delete]p1:
2904 // Whenever the delete keyword is followed by empty square brackets, it
2905 // shall be interpreted as [array delete].
2906 // [Footnote: A lambda expression with a lambda-introducer that consists
2907 // of empty square brackets can follow the delete keyword if
2908 // the lambda expression is enclosed in parentheses.]
2909 // FIXME: Produce a better diagnostic if the '[]' is unambiguously a
2910 // lambda-introducer.
2911 ArrayDelete = true;
2912 BalancedDelimiterTracker T(*this, tok::l_square);
2913
2914 T.consumeOpen();
2915 T.consumeClose();
2916 if (T.getCloseLocation().isInvalid())
2917 return ExprError();
2918 }
2919
2920 ExprResult Operand(ParseCastExpression(false));
2921 if (Operand.isInvalid())
2922 return Operand;
2923
2924 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
2925 }
2926
TypeTraitFromTokKind(tok::TokenKind kind)2927 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2928 switch (kind) {
2929 default: llvm_unreachable("Not a known type trait");
2930 #define TYPE_TRAIT_1(Spelling, Name, Key) \
2931 case tok::kw_ ## Spelling: return UTT_ ## Name;
2932 #define TYPE_TRAIT_2(Spelling, Name, Key) \
2933 case tok::kw_ ## Spelling: return BTT_ ## Name;
2934 #include "clang/Basic/TokenKinds.def"
2935 #define TYPE_TRAIT_N(Spelling, Name, Key) \
2936 case tok::kw_ ## Spelling: return TT_ ## Name;
2937 #include "clang/Basic/TokenKinds.def"
2938 }
2939 }
2940
ArrayTypeTraitFromTokKind(tok::TokenKind kind)2941 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2942 switch(kind) {
2943 default: llvm_unreachable("Not a known binary type trait");
2944 case tok::kw___array_rank: return ATT_ArrayRank;
2945 case tok::kw___array_extent: return ATT_ArrayExtent;
2946 }
2947 }
2948
ExpressionTraitFromTokKind(tok::TokenKind kind)2949 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2950 switch(kind) {
2951 default: llvm_unreachable("Not a known unary expression trait.");
2952 case tok::kw___is_lvalue_expr: return ET_IsLValueExpr;
2953 case tok::kw___is_rvalue_expr: return ET_IsRValueExpr;
2954 }
2955 }
2956
TypeTraitArity(tok::TokenKind kind)2957 static unsigned TypeTraitArity(tok::TokenKind kind) {
2958 switch (kind) {
2959 default: llvm_unreachable("Not a known type trait");
2960 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
2961 #include "clang/Basic/TokenKinds.def"
2962 }
2963 }
2964
2965 /// \brief Parse the built-in type-trait pseudo-functions that allow
2966 /// implementation of the TR1/C++11 type traits templates.
2967 ///
2968 /// primary-expression:
2969 /// unary-type-trait '(' type-id ')'
2970 /// binary-type-trait '(' type-id ',' type-id ')'
2971 /// type-trait '(' type-id-seq ')'
2972 ///
2973 /// type-id-seq:
2974 /// type-id ...[opt] type-id-seq[opt]
2975 ///
ParseTypeTrait()2976 ExprResult Parser::ParseTypeTrait() {
2977 tok::TokenKind Kind = Tok.getKind();
2978 unsigned Arity = TypeTraitArity(Kind);
2979
2980 SourceLocation Loc = ConsumeToken();
2981
2982 BalancedDelimiterTracker Parens(*this, tok::l_paren);
2983 if (Parens.expectAndConsume())
2984 return ExprError();
2985
2986 SmallVector<ParsedType, 2> Args;
2987 do {
2988 // Parse the next type.
2989 TypeResult Ty = ParseTypeName();
2990 if (Ty.isInvalid()) {
2991 Parens.skipToEnd();
2992 return ExprError();
2993 }
2994
2995 // Parse the ellipsis, if present.
2996 if (Tok.is(tok::ellipsis)) {
2997 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2998 if (Ty.isInvalid()) {
2999 Parens.skipToEnd();
3000 return ExprError();
3001 }
3002 }
3003
3004 // Add this type to the list of arguments.
3005 Args.push_back(Ty.get());
3006 } while (TryConsumeToken(tok::comma));
3007
3008 if (Parens.consumeClose())
3009 return ExprError();
3010
3011 SourceLocation EndLoc = Parens.getCloseLocation();
3012
3013 if (Arity && Args.size() != Arity) {
3014 Diag(EndLoc, diag::err_type_trait_arity)
3015 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3016 return ExprError();
3017 }
3018
3019 if (!Arity && Args.empty()) {
3020 Diag(EndLoc, diag::err_type_trait_arity)
3021 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3022 return ExprError();
3023 }
3024
3025 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3026 }
3027
3028 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3029 /// pseudo-functions.
3030 ///
3031 /// primary-expression:
3032 /// [Embarcadero] '__array_rank' '(' type-id ')'
3033 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')'
3034 ///
ParseArrayTypeTrait()3035 ExprResult Parser::ParseArrayTypeTrait() {
3036 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3037 SourceLocation Loc = ConsumeToken();
3038
3039 BalancedDelimiterTracker T(*this, tok::l_paren);
3040 if (T.expectAndConsume())
3041 return ExprError();
3042
3043 TypeResult Ty = ParseTypeName();
3044 if (Ty.isInvalid()) {
3045 SkipUntil(tok::comma, StopAtSemi);
3046 SkipUntil(tok::r_paren, StopAtSemi);
3047 return ExprError();
3048 }
3049
3050 switch (ATT) {
3051 case ATT_ArrayRank: {
3052 T.consumeClose();
3053 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3054 T.getCloseLocation());
3055 }
3056 case ATT_ArrayExtent: {
3057 if (ExpectAndConsume(tok::comma)) {
3058 SkipUntil(tok::r_paren, StopAtSemi);
3059 return ExprError();
3060 }
3061
3062 ExprResult DimExpr = ParseExpression();
3063 T.consumeClose();
3064
3065 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3066 T.getCloseLocation());
3067 }
3068 }
3069 llvm_unreachable("Invalid ArrayTypeTrait!");
3070 }
3071
3072 /// ParseExpressionTrait - Parse built-in expression-trait
3073 /// pseudo-functions like __is_lvalue_expr( xxx ).
3074 ///
3075 /// primary-expression:
3076 /// [Embarcadero] expression-trait '(' expression ')'
3077 ///
ParseExpressionTrait()3078 ExprResult Parser::ParseExpressionTrait() {
3079 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3080 SourceLocation Loc = ConsumeToken();
3081
3082 BalancedDelimiterTracker T(*this, tok::l_paren);
3083 if (T.expectAndConsume())
3084 return ExprError();
3085
3086 ExprResult Expr = ParseExpression();
3087
3088 T.consumeClose();
3089
3090 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3091 T.getCloseLocation());
3092 }
3093
3094
3095 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3096 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3097 /// based on the context past the parens.
3098 ExprResult
ParseCXXAmbiguousParenExpression(ParenParseOption & ExprType,ParsedType & CastTy,BalancedDelimiterTracker & Tracker,ColonProtectionRAIIObject & ColonProt)3099 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3100 ParsedType &CastTy,
3101 BalancedDelimiterTracker &Tracker,
3102 ColonProtectionRAIIObject &ColonProt) {
3103 assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3104 assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3105 assert(isTypeIdInParens() && "Not a type-id!");
3106
3107 ExprResult Result(true);
3108 CastTy = nullptr;
3109
3110 // We need to disambiguate a very ugly part of the C++ syntax:
3111 //
3112 // (T())x; - type-id
3113 // (T())*x; - type-id
3114 // (T())/x; - expression
3115 // (T()); - expression
3116 //
3117 // The bad news is that we cannot use the specialized tentative parser, since
3118 // it can only verify that the thing inside the parens can be parsed as
3119 // type-id, it is not useful for determining the context past the parens.
3120 //
3121 // The good news is that the parser can disambiguate this part without
3122 // making any unnecessary Action calls.
3123 //
3124 // It uses a scheme similar to parsing inline methods. The parenthesized
3125 // tokens are cached, the context that follows is determined (possibly by
3126 // parsing a cast-expression), and then we re-introduce the cached tokens
3127 // into the token stream and parse them appropriately.
3128
3129 ParenParseOption ParseAs;
3130 CachedTokens Toks;
3131
3132 // Store the tokens of the parentheses. We will parse them after we determine
3133 // the context that follows them.
3134 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3135 // We didn't find the ')' we expected.
3136 Tracker.consumeClose();
3137 return ExprError();
3138 }
3139
3140 if (Tok.is(tok::l_brace)) {
3141 ParseAs = CompoundLiteral;
3142 } else {
3143 bool NotCastExpr;
3144 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3145 NotCastExpr = true;
3146 } else {
3147 // Try parsing the cast-expression that may follow.
3148 // If it is not a cast-expression, NotCastExpr will be true and no token
3149 // will be consumed.
3150 ColonProt.restore();
3151 Result = ParseCastExpression(false/*isUnaryExpression*/,
3152 false/*isAddressofOperand*/,
3153 NotCastExpr,
3154 // type-id has priority.
3155 IsTypeCast);
3156 }
3157
3158 // If we parsed a cast-expression, it's really a type-id, otherwise it's
3159 // an expression.
3160 ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3161 }
3162
3163 // Create a fake EOF to mark end of Toks buffer.
3164 Token AttrEnd;
3165 AttrEnd.startToken();
3166 AttrEnd.setKind(tok::eof);
3167 AttrEnd.setLocation(Tok.getLocation());
3168 AttrEnd.setEofData(Toks.data());
3169 Toks.push_back(AttrEnd);
3170
3171 // The current token should go after the cached tokens.
3172 Toks.push_back(Tok);
3173 // Re-enter the stored parenthesized tokens into the token stream, so we may
3174 // parse them now.
3175 PP.EnterTokenStream(Toks, true /*DisableMacroExpansion*/);
3176 // Drop the current token and bring the first cached one. It's the same token
3177 // as when we entered this function.
3178 ConsumeAnyToken();
3179
3180 if (ParseAs >= CompoundLiteral) {
3181 // Parse the type declarator.
3182 DeclSpec DS(AttrFactory);
3183 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
3184 {
3185 ColonProtectionRAIIObject InnerColonProtection(*this);
3186 ParseSpecifierQualifierList(DS);
3187 ParseDeclarator(DeclaratorInfo);
3188 }
3189
3190 // Match the ')'.
3191 Tracker.consumeClose();
3192 ColonProt.restore();
3193
3194 // Consume EOF marker for Toks buffer.
3195 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3196 ConsumeAnyToken();
3197
3198 if (ParseAs == CompoundLiteral) {
3199 ExprType = CompoundLiteral;
3200 if (DeclaratorInfo.isInvalidType())
3201 return ExprError();
3202
3203 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3204 return ParseCompoundLiteralExpression(Ty.get(),
3205 Tracker.getOpenLocation(),
3206 Tracker.getCloseLocation());
3207 }
3208
3209 // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3210 assert(ParseAs == CastExpr);
3211
3212 if (DeclaratorInfo.isInvalidType())
3213 return ExprError();
3214
3215 // Result is what ParseCastExpression returned earlier.
3216 if (!Result.isInvalid())
3217 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3218 DeclaratorInfo, CastTy,
3219 Tracker.getCloseLocation(), Result.get());
3220 return Result;
3221 }
3222
3223 // Not a compound literal, and not followed by a cast-expression.
3224 assert(ParseAs == SimpleExpr);
3225
3226 ExprType = SimpleExpr;
3227 Result = ParseExpression();
3228 if (!Result.isInvalid() && Tok.is(tok::r_paren))
3229 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3230 Tok.getLocation(), Result.get());
3231
3232 // Match the ')'.
3233 if (Result.isInvalid()) {
3234 while (Tok.isNot(tok::eof))
3235 ConsumeAnyToken();
3236 assert(Tok.getEofData() == AttrEnd.getEofData());
3237 ConsumeAnyToken();
3238 return ExprError();
3239 }
3240
3241 Tracker.consumeClose();
3242 // Consume EOF marker for Toks buffer.
3243 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3244 ConsumeAnyToken();
3245 return Result;
3246 }
3247