1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #include "tensorflow/lite/graph_info.h"
16 #include <algorithm>
17 #include "tensorflow/lite/c/c_api_internal.h"
18
19 namespace tflite {
20
21 namespace {
22
23 // Provide a range iterable wrapper for TfLiteIntArray* (C lists that TfLite
24 // C api uses. Can't use the google array_view, since we can't depend on even
25 // absl for embedded device reasons.
26 // TODO(aselle): Move this into central utilities.
27 class TfLiteIntArrayView {
28 public:
29 // Construct a view of a TfLiteIntArray*. Note, `int_array` should be non-null
30 // and this view does not take ownership of it.
TfLiteIntArrayView(const TfLiteIntArray * int_array)31 explicit TfLiteIntArrayView(const TfLiteIntArray* int_array)
32 : int_array_(int_array) {}
33
34 typedef const int* const_iterator;
begin() const35 const_iterator begin() const { return int_array_->data; }
end() const36 const_iterator end() const { return &int_array_->data[int_array_->size]; }
37
38 TfLiteIntArrayView(const TfLiteIntArrayView&) = default;
39 TfLiteIntArrayView& operator=(const TfLiteIntArrayView& rhs) = default;
40
41 private:
42 const TfLiteIntArray* int_array_;
43 };
44
45 // Helper class that actually performs partitioning by node sub set.
46 // Outputs to a provided `NodeSubset` structure.
47 //
48 // Example usage:
49 // PartitionGraphIntoIndependentNodeSubsetsImpl partitioner(
50 // info, nodes_to_part, node_subsets);
51 // partitioner.Partition();
52 class PartitionGraphIntoIndependentNodeSubsetsImpl {
53 public:
PartitionGraphIntoIndependentNodeSubsetsImpl(const GraphInfo * info,const TfLiteIntArray * nodes_to_partition,std::vector<NodeSubset> * node_subsets)54 PartitionGraphIntoIndependentNodeSubsetsImpl(
55 const GraphInfo* info, const TfLiteIntArray* nodes_to_partition,
56 std::vector<NodeSubset>* node_subsets)
57 : info_(info),
58 node_subsets_(node_subsets),
59 node_type_(info->num_nodes(), NodeSubset::kTfNonPartition) {
60 // Populate the node_type_ map.
61 for (auto node_index : TfLiteIntArrayView(nodes_to_partition)) {
62 node_type_[node_index] = NodeSubset::kTfPartition;
63 }
64 }
65
66 // Actually partition the graph.
Partition()67 void Partition() {
68 // Initialize here to make Partition() re-entrant.
69 node_subsets_->clear();
70 tensor_epochs_.clear();
71 tensor_epochs_.resize(info_->num_tensors(), kEpochAlwaysReady);
72 node_epochs_.clear();
73 node_epochs_.resize(info_->num_nodes(), kEpochNotReady);
74 // Set computed tensors to be kEpochNotReady (initializer set everything to
75 // AlwaysReady).
76 for (int node_index = 0; node_index < info_->num_nodes(); node_index++) {
77 const TfLiteNode& node = info_->node(node_index);
78 for (int output_tensor_index : TfLiteIntArrayView(node.outputs)) {
79 tensor_epochs_[output_tensor_index] = kEpochNotReady;
80 }
81 }
82
83 // Do a graph traversal where each iteration in the loop is an epoch
84 // that corresponds to a node sub set that only contains nodes that are of
85 // the same node_type_.
86 while (true) {
87 BuildNodeSubset();
88 if (node_subsets_->back().nodes.empty()) {
89 node_subsets_->pop_back();
90 break;
91 }
92 }
93
94 // Mark model outputs as node sub set outputs. All the rest have already
95 // been identified.
96 for (int output_index : info_->outputs()) {
97 int output_epoch = tensor_epochs_[output_index];
98 if (output_epoch == kEpochAlwaysReady) {
99 // This happens when an input of subgraph is also an output of subgraph.
100 continue;
101 }
102 NodeSubset& output_subset = (*node_subsets_)[output_epoch];
103 output_subset.output_tensors.push_back(output_index);
104 }
105 // Make sure every node sub set's inputs and outputs are unique. Since the
106 // list of inputs and outputs is generated in a way that produces
107 // duplicates.
108 for (NodeSubset& node_subset : *node_subsets_) {
109 // Sort and uniquefy using standard library algorithms.
110 auto uniquefy = [](std::vector<int>* items) {
111 std::sort(items->begin(), items->end());
112 auto last = std::unique(items->begin(), items->end());
113 items->erase(last, items->end());
114 };
115 uniquefy(&node_subset.input_tensors);
116 uniquefy(&node_subset.output_tensors);
117 }
118 }
119
120 private:
121 // Special integer values needed for tensor_epochs_ and node_epochs_.
122 enum {
123 // The node or tensor is not ready to be assigned an epoch. e.g. a node's
124 // inputs have not all been assigned epochs.
125 kEpochNotReady = -1,
126 // Used for tensor_epochs_. This means that the tensor is always ready.
127 // e.g. an input to the whole model or a constant that has no dependencies.
128 kEpochAlwaysReady = -2
129 };
130
131 // Updates the node `node_index` and returns true if it is assigned to an
132 // epoch. False is returned if the node is already set to an epoch, its inputs
133 // are not all assigned to epochs, or if it cannot be assigned to the current
134 // epoch since the epoch's node_type doesn't match.
UpdateNode(int node_index)135 bool UpdateNode(int node_index) {
136 const TfLiteNode& node = info_->node(node_index);
137 NodeSubset& current_subset = node_subsets_->back();
138 int current_epoch = node_subsets_->size() - 1;
139 // Check if node is already done.
140 if (node_epochs_[node_index] != kEpochNotReady) {
141 return false;
142 }
143 // See if all dependencies of this node are already assigned to a
144 // node sub set.
145 for (int input_tensor_index : TfLiteIntArrayView(node.inputs)) {
146 if (input_tensor_index != kOptionalTensor &&
147 tensor_epochs_[input_tensor_index] == kEpochNotReady) {
148 return false;
149 }
150 }
151 // When we are starting a new epoch, the first ready node defines
152 // the type of that epoch.
153 if (current_subset.type == NodeSubset::kTfUnexplored) {
154 current_subset.type = node_type_[node_index];
155 }
156 // The node gets assigned to this epoch if it is the same type as
157 // the epoch's assigned type. Note, if this is the current ready
158 // node encountered during this epoch, this condition will be
159 // automatically true.
160 if (current_subset.type == node_type_[node_index]) {
161 node_epochs_[node_index] = current_epoch;
162 current_subset.nodes.push_back(node_index);
163 // All outputs of this node now are assigned to this epoch as
164 // well.
165 for (int output_tensor_index : TfLiteIntArrayView(node.outputs)) {
166 tensor_epochs_[output_tensor_index] = current_epoch;
167 }
168 // Look at our inputs one more time to update that tensor's
169 // epochs' outputs
170 for (int input_tensor_index : TfLiteIntArrayView(node.inputs)) {
171 if (input_tensor_index == kOptionalTensor) {
172 continue;
173 }
174 int input_epoch = tensor_epochs_[input_tensor_index];
175 int node_epoch = current_epoch;
176 if (input_epoch != node_epoch) {
177 current_subset.input_tensors.push_back(input_tensor_index);
178 // Set inputs to be outputs of the node sub set where they reside.
179 // the if condition makes sure inputs to the whole computation
180 // are not included (i.e. those initialized to -2 above).
181 if (input_epoch >= 0) {
182 NodeSubset& input_subset = (*node_subsets_)[input_epoch];
183 input_subset.output_tensors.push_back(input_tensor_index);
184 }
185 }
186 }
187 return true;
188 } else {
189 return false;
190 }
191 }
192
193 // Completely populates the current node_subset by doing graph traversal
BuildNodeSubset()194 void BuildNodeSubset() {
195 node_subsets_->emplace_back(NodeSubset());
196 // loop until no more nodes can be updated.
197 while (true) {
198 bool did_something = false;
199 for (int node_index = 0; node_index < info_->num_nodes(); node_index++) {
200 if (UpdateNode(node_index)) {
201 did_something = true;
202 }
203 }
204 if (!did_something) return;
205 }
206 }
207
208 // Temporary data needed for partitioning.
209 const GraphInfo* info_;
210 // List of node_subsets to populate
211 std::vector<NodeSubset>* node_subsets_;
212 std::vector<NodeSubset::Type> node_type_;
213 // Maps from tensor index to the epoch in which it is assigned. Also special
214 // negative values of kEpochNotAssigned if not assigned, kEpochNotReady if it
215 // is an input or constant.
216 std::vector<int> tensor_epochs_;
217 // Maps from tensor index to the epoch in which it is assigned. Also special
218 // negative values of kEpochNotAssigned if not assigned.
219 std::vector<int> node_epochs_;
220 };
221
222 } // namespace
223
PartitionGraphIntoIndependentNodeSubsets(const GraphInfo * info,const TfLiteIntArray * nodes_to_partition,std::vector<NodeSubset> * node_subsets)224 TfLiteStatus PartitionGraphIntoIndependentNodeSubsets(
225 const GraphInfo* info, const TfLiteIntArray* nodes_to_partition,
226 std::vector<NodeSubset>* node_subsets) {
227 PartitionGraphIntoIndependentNodeSubsetsImpl(info, nodes_to_partition,
228 node_subsets)
229 .Partition();
230 return kTfLiteOk;
231 }
232
233 } // namespace tflite
234