• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/modules/audio_coding/neteq/neteq_impl.h"
12 
13 #include <assert.h>
14 #include <memory.h>  // memset
15 
16 #include <algorithm>
17 
18 #include "webrtc/base/checks.h"
19 #include "webrtc/base/logging.h"
20 #include "webrtc/base/safe_conversions.h"
21 #include "webrtc/base/trace_event.h"
22 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
23 #include "webrtc/modules/audio_coding/codecs/audio_decoder.h"
24 #include "webrtc/modules/audio_coding/neteq/accelerate.h"
25 #include "webrtc/modules/audio_coding/neteq/background_noise.h"
26 #include "webrtc/modules/audio_coding/neteq/buffer_level_filter.h"
27 #include "webrtc/modules/audio_coding/neteq/comfort_noise.h"
28 #include "webrtc/modules/audio_coding/neteq/decision_logic.h"
29 #include "webrtc/modules/audio_coding/neteq/decoder_database.h"
30 #include "webrtc/modules/audio_coding/neteq/defines.h"
31 #include "webrtc/modules/audio_coding/neteq/delay_manager.h"
32 #include "webrtc/modules/audio_coding/neteq/delay_peak_detector.h"
33 #include "webrtc/modules/audio_coding/neteq/dtmf_buffer.h"
34 #include "webrtc/modules/audio_coding/neteq/dtmf_tone_generator.h"
35 #include "webrtc/modules/audio_coding/neteq/expand.h"
36 #include "webrtc/modules/audio_coding/neteq/merge.h"
37 #include "webrtc/modules/audio_coding/neteq/nack.h"
38 #include "webrtc/modules/audio_coding/neteq/normal.h"
39 #include "webrtc/modules/audio_coding/neteq/packet_buffer.h"
40 #include "webrtc/modules/audio_coding/neteq/packet.h"
41 #include "webrtc/modules/audio_coding/neteq/payload_splitter.h"
42 #include "webrtc/modules/audio_coding/neteq/post_decode_vad.h"
43 #include "webrtc/modules/audio_coding/neteq/preemptive_expand.h"
44 #include "webrtc/modules/audio_coding/neteq/sync_buffer.h"
45 #include "webrtc/modules/audio_coding/neteq/timestamp_scaler.h"
46 #include "webrtc/modules/include/module_common_types.h"
47 #include "webrtc/system_wrappers/include/critical_section_wrapper.h"
48 
49 // Modify the code to obtain backwards bit-exactness. Once bit-exactness is no
50 // longer required, this #define should be removed (and the code that it
51 // enables).
52 #define LEGACY_BITEXACT
53 
54 namespace webrtc {
55 
NetEqImpl(const NetEq::Config & config,BufferLevelFilter * buffer_level_filter,DecoderDatabase * decoder_database,DelayManager * delay_manager,DelayPeakDetector * delay_peak_detector,DtmfBuffer * dtmf_buffer,DtmfToneGenerator * dtmf_tone_generator,PacketBuffer * packet_buffer,PayloadSplitter * payload_splitter,TimestampScaler * timestamp_scaler,AccelerateFactory * accelerate_factory,ExpandFactory * expand_factory,PreemptiveExpandFactory * preemptive_expand_factory,bool create_components)56 NetEqImpl::NetEqImpl(const NetEq::Config& config,
57                      BufferLevelFilter* buffer_level_filter,
58                      DecoderDatabase* decoder_database,
59                      DelayManager* delay_manager,
60                      DelayPeakDetector* delay_peak_detector,
61                      DtmfBuffer* dtmf_buffer,
62                      DtmfToneGenerator* dtmf_tone_generator,
63                      PacketBuffer* packet_buffer,
64                      PayloadSplitter* payload_splitter,
65                      TimestampScaler* timestamp_scaler,
66                      AccelerateFactory* accelerate_factory,
67                      ExpandFactory* expand_factory,
68                      PreemptiveExpandFactory* preemptive_expand_factory,
69                      bool create_components)
70     : crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
71       buffer_level_filter_(buffer_level_filter),
72       decoder_database_(decoder_database),
73       delay_manager_(delay_manager),
74       delay_peak_detector_(delay_peak_detector),
75       dtmf_buffer_(dtmf_buffer),
76       dtmf_tone_generator_(dtmf_tone_generator),
77       packet_buffer_(packet_buffer),
78       payload_splitter_(payload_splitter),
79       timestamp_scaler_(timestamp_scaler),
80       vad_(new PostDecodeVad()),
81       expand_factory_(expand_factory),
82       accelerate_factory_(accelerate_factory),
83       preemptive_expand_factory_(preemptive_expand_factory),
84       last_mode_(kModeNormal),
85       decoded_buffer_length_(kMaxFrameSize),
86       decoded_buffer_(new int16_t[decoded_buffer_length_]),
87       playout_timestamp_(0),
88       new_codec_(false),
89       timestamp_(0),
90       reset_decoder_(false),
91       current_rtp_payload_type_(0xFF),      // Invalid RTP payload type.
92       current_cng_rtp_payload_type_(0xFF),  // Invalid RTP payload type.
93       ssrc_(0),
94       first_packet_(true),
95       error_code_(0),
96       decoder_error_code_(0),
97       background_noise_mode_(config.background_noise_mode),
98       playout_mode_(config.playout_mode),
99       enable_fast_accelerate_(config.enable_fast_accelerate),
100       nack_enabled_(false) {
101   LOG(LS_INFO) << "NetEq config: " << config.ToString();
102   int fs = config.sample_rate_hz;
103   if (fs != 8000 && fs != 16000 && fs != 32000 && fs != 48000) {
104     LOG(LS_ERROR) << "Sample rate " << fs << " Hz not supported. " <<
105         "Changing to 8000 Hz.";
106     fs = 8000;
107   }
108   fs_hz_ = fs;
109   fs_mult_ = fs / 8000;
110   last_output_sample_rate_hz_ = fs;
111   output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
112   decoder_frame_length_ = 3 * output_size_samples_;
113   WebRtcSpl_Init();
114   if (create_components) {
115     SetSampleRateAndChannels(fs, 1);  // Default is 1 channel.
116   }
117   RTC_DCHECK(!vad_->enabled());
118   if (config.enable_post_decode_vad) {
119     vad_->Enable();
120   }
121 }
122 
123 NetEqImpl::~NetEqImpl() = default;
124 
InsertPacket(const WebRtcRTPHeader & rtp_header,rtc::ArrayView<const uint8_t> payload,uint32_t receive_timestamp)125 int NetEqImpl::InsertPacket(const WebRtcRTPHeader& rtp_header,
126                             rtc::ArrayView<const uint8_t> payload,
127                             uint32_t receive_timestamp) {
128   TRACE_EVENT0("webrtc", "NetEqImpl::InsertPacket");
129   CriticalSectionScoped lock(crit_sect_.get());
130   int error =
131       InsertPacketInternal(rtp_header, payload, receive_timestamp, false);
132   if (error != 0) {
133     error_code_ = error;
134     return kFail;
135   }
136   return kOK;
137 }
138 
InsertSyncPacket(const WebRtcRTPHeader & rtp_header,uint32_t receive_timestamp)139 int NetEqImpl::InsertSyncPacket(const WebRtcRTPHeader& rtp_header,
140                                 uint32_t receive_timestamp) {
141   CriticalSectionScoped lock(crit_sect_.get());
142   const uint8_t kSyncPayload[] = { 's', 'y', 'n', 'c' };
143   int error =
144       InsertPacketInternal(rtp_header, kSyncPayload, receive_timestamp, true);
145 
146   if (error != 0) {
147     error_code_ = error;
148     return kFail;
149   }
150   return kOK;
151 }
152 
GetAudio(size_t max_length,int16_t * output_audio,size_t * samples_per_channel,size_t * num_channels,NetEqOutputType * type)153 int NetEqImpl::GetAudio(size_t max_length, int16_t* output_audio,
154                         size_t* samples_per_channel, size_t* num_channels,
155                         NetEqOutputType* type) {
156   TRACE_EVENT0("webrtc", "NetEqImpl::GetAudio");
157   CriticalSectionScoped lock(crit_sect_.get());
158   int error = GetAudioInternal(max_length, output_audio, samples_per_channel,
159                                num_channels);
160   if (error != 0) {
161     error_code_ = error;
162     return kFail;
163   }
164   if (type) {
165     *type = LastOutputType();
166   }
167   last_output_sample_rate_hz_ =
168       rtc::checked_cast<int>(*samples_per_channel * 100);
169   RTC_DCHECK(last_output_sample_rate_hz_ == 8000 ||
170              last_output_sample_rate_hz_ == 16000 ||
171              last_output_sample_rate_hz_ == 32000 ||
172              last_output_sample_rate_hz_ == 48000)
173       << "Unexpected sample rate " << last_output_sample_rate_hz_;
174   return kOK;
175 }
176 
RegisterPayloadType(NetEqDecoder codec,const std::string & name,uint8_t rtp_payload_type)177 int NetEqImpl::RegisterPayloadType(NetEqDecoder codec,
178                                    const std::string& name,
179                                    uint8_t rtp_payload_type) {
180   CriticalSectionScoped lock(crit_sect_.get());
181   LOG(LS_VERBOSE) << "RegisterPayloadType "
182                   << static_cast<int>(rtp_payload_type) << " "
183                   << static_cast<int>(codec);
184   int ret = decoder_database_->RegisterPayload(rtp_payload_type, codec, name);
185   if (ret != DecoderDatabase::kOK) {
186     switch (ret) {
187       case DecoderDatabase::kInvalidRtpPayloadType:
188         error_code_ = kInvalidRtpPayloadType;
189         break;
190       case DecoderDatabase::kCodecNotSupported:
191         error_code_ = kCodecNotSupported;
192         break;
193       case DecoderDatabase::kDecoderExists:
194         error_code_ = kDecoderExists;
195         break;
196       default:
197         error_code_ = kOtherError;
198     }
199     return kFail;
200   }
201   return kOK;
202 }
203 
RegisterExternalDecoder(AudioDecoder * decoder,NetEqDecoder codec,const std::string & codec_name,uint8_t rtp_payload_type,int sample_rate_hz)204 int NetEqImpl::RegisterExternalDecoder(AudioDecoder* decoder,
205                                        NetEqDecoder codec,
206                                        const std::string& codec_name,
207                                        uint8_t rtp_payload_type,
208                                        int sample_rate_hz) {
209   CriticalSectionScoped lock(crit_sect_.get());
210   LOG(LS_VERBOSE) << "RegisterExternalDecoder "
211                   << static_cast<int>(rtp_payload_type) << " "
212                   << static_cast<int>(codec);
213   if (!decoder) {
214     LOG(LS_ERROR) << "Cannot register external decoder with NULL pointer";
215     assert(false);
216     return kFail;
217   }
218   int ret = decoder_database_->InsertExternal(
219       rtp_payload_type, codec, codec_name, sample_rate_hz, decoder);
220   if (ret != DecoderDatabase::kOK) {
221     switch (ret) {
222       case DecoderDatabase::kInvalidRtpPayloadType:
223         error_code_ = kInvalidRtpPayloadType;
224         break;
225       case DecoderDatabase::kCodecNotSupported:
226         error_code_ = kCodecNotSupported;
227         break;
228       case DecoderDatabase::kDecoderExists:
229         error_code_ = kDecoderExists;
230         break;
231       case DecoderDatabase::kInvalidSampleRate:
232         error_code_ = kInvalidSampleRate;
233         break;
234       case DecoderDatabase::kInvalidPointer:
235         error_code_ = kInvalidPointer;
236         break;
237       default:
238         error_code_ = kOtherError;
239     }
240     return kFail;
241   }
242   return kOK;
243 }
244 
RemovePayloadType(uint8_t rtp_payload_type)245 int NetEqImpl::RemovePayloadType(uint8_t rtp_payload_type) {
246   CriticalSectionScoped lock(crit_sect_.get());
247   int ret = decoder_database_->Remove(rtp_payload_type);
248   if (ret == DecoderDatabase::kOK) {
249     return kOK;
250   } else if (ret == DecoderDatabase::kDecoderNotFound) {
251     error_code_ = kDecoderNotFound;
252   } else {
253     error_code_ = kOtherError;
254   }
255   return kFail;
256 }
257 
SetMinimumDelay(int delay_ms)258 bool NetEqImpl::SetMinimumDelay(int delay_ms) {
259   CriticalSectionScoped lock(crit_sect_.get());
260   if (delay_ms >= 0 && delay_ms < 10000) {
261     assert(delay_manager_.get());
262     return delay_manager_->SetMinimumDelay(delay_ms);
263   }
264   return false;
265 }
266 
SetMaximumDelay(int delay_ms)267 bool NetEqImpl::SetMaximumDelay(int delay_ms) {
268   CriticalSectionScoped lock(crit_sect_.get());
269   if (delay_ms >= 0 && delay_ms < 10000) {
270     assert(delay_manager_.get());
271     return delay_manager_->SetMaximumDelay(delay_ms);
272   }
273   return false;
274 }
275 
LeastRequiredDelayMs() const276 int NetEqImpl::LeastRequiredDelayMs() const {
277   CriticalSectionScoped lock(crit_sect_.get());
278   assert(delay_manager_.get());
279   return delay_manager_->least_required_delay_ms();
280 }
281 
SetTargetDelay()282 int NetEqImpl::SetTargetDelay() {
283   return kNotImplemented;
284 }
285 
TargetDelay()286 int NetEqImpl::TargetDelay() {
287   return kNotImplemented;
288 }
289 
CurrentDelayMs() const290 int NetEqImpl::CurrentDelayMs() const {
291   CriticalSectionScoped lock(crit_sect_.get());
292   if (fs_hz_ == 0)
293     return 0;
294   // Sum up the samples in the packet buffer with the future length of the sync
295   // buffer, and divide the sum by the sample rate.
296   const size_t delay_samples =
297       packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
298                                          decoder_frame_length_) +
299       sync_buffer_->FutureLength();
300   // The division below will truncate.
301   const int delay_ms =
302       static_cast<int>(delay_samples) / rtc::CheckedDivExact(fs_hz_, 1000);
303   return delay_ms;
304 }
305 
306 // Deprecated.
307 // TODO(henrik.lundin) Delete.
SetPlayoutMode(NetEqPlayoutMode mode)308 void NetEqImpl::SetPlayoutMode(NetEqPlayoutMode mode) {
309   CriticalSectionScoped lock(crit_sect_.get());
310   if (mode != playout_mode_) {
311     playout_mode_ = mode;
312     CreateDecisionLogic();
313   }
314 }
315 
316 // Deprecated.
317 // TODO(henrik.lundin) Delete.
PlayoutMode() const318 NetEqPlayoutMode NetEqImpl::PlayoutMode() const {
319   CriticalSectionScoped lock(crit_sect_.get());
320   return playout_mode_;
321 }
322 
NetworkStatistics(NetEqNetworkStatistics * stats)323 int NetEqImpl::NetworkStatistics(NetEqNetworkStatistics* stats) {
324   CriticalSectionScoped lock(crit_sect_.get());
325   assert(decoder_database_.get());
326   const size_t total_samples_in_buffers =
327       packet_buffer_->NumSamplesInBuffer(decoder_database_.get(),
328                                          decoder_frame_length_) +
329       sync_buffer_->FutureLength();
330   assert(delay_manager_.get());
331   assert(decision_logic_.get());
332   stats_.GetNetworkStatistics(fs_hz_, total_samples_in_buffers,
333                               decoder_frame_length_, *delay_manager_.get(),
334                               *decision_logic_.get(), stats);
335   return 0;
336 }
337 
GetRtcpStatistics(RtcpStatistics * stats)338 void NetEqImpl::GetRtcpStatistics(RtcpStatistics* stats) {
339   CriticalSectionScoped lock(crit_sect_.get());
340   if (stats) {
341     rtcp_.GetStatistics(false, stats);
342   }
343 }
344 
GetRtcpStatisticsNoReset(RtcpStatistics * stats)345 void NetEqImpl::GetRtcpStatisticsNoReset(RtcpStatistics* stats) {
346   CriticalSectionScoped lock(crit_sect_.get());
347   if (stats) {
348     rtcp_.GetStatistics(true, stats);
349   }
350 }
351 
EnableVad()352 void NetEqImpl::EnableVad() {
353   CriticalSectionScoped lock(crit_sect_.get());
354   assert(vad_.get());
355   vad_->Enable();
356 }
357 
DisableVad()358 void NetEqImpl::DisableVad() {
359   CriticalSectionScoped lock(crit_sect_.get());
360   assert(vad_.get());
361   vad_->Disable();
362 }
363 
GetPlayoutTimestamp(uint32_t * timestamp)364 bool NetEqImpl::GetPlayoutTimestamp(uint32_t* timestamp) {
365   CriticalSectionScoped lock(crit_sect_.get());
366   if (first_packet_) {
367     // We don't have a valid RTP timestamp until we have decoded our first
368     // RTP packet.
369     return false;
370   }
371   *timestamp = timestamp_scaler_->ToExternal(playout_timestamp_);
372   return true;
373 }
374 
last_output_sample_rate_hz() const375 int NetEqImpl::last_output_sample_rate_hz() const {
376   CriticalSectionScoped lock(crit_sect_.get());
377   return last_output_sample_rate_hz_;
378 }
379 
SetTargetNumberOfChannels()380 int NetEqImpl::SetTargetNumberOfChannels() {
381   return kNotImplemented;
382 }
383 
SetTargetSampleRate()384 int NetEqImpl::SetTargetSampleRate() {
385   return kNotImplemented;
386 }
387 
LastError() const388 int NetEqImpl::LastError() const {
389   CriticalSectionScoped lock(crit_sect_.get());
390   return error_code_;
391 }
392 
LastDecoderError()393 int NetEqImpl::LastDecoderError() {
394   CriticalSectionScoped lock(crit_sect_.get());
395   return decoder_error_code_;
396 }
397 
FlushBuffers()398 void NetEqImpl::FlushBuffers() {
399   CriticalSectionScoped lock(crit_sect_.get());
400   LOG(LS_VERBOSE) << "FlushBuffers";
401   packet_buffer_->Flush();
402   assert(sync_buffer_.get());
403   assert(expand_.get());
404   sync_buffer_->Flush();
405   sync_buffer_->set_next_index(sync_buffer_->next_index() -
406                                expand_->overlap_length());
407   // Set to wait for new codec.
408   first_packet_ = true;
409 }
410 
PacketBufferStatistics(int * current_num_packets,int * max_num_packets) const411 void NetEqImpl::PacketBufferStatistics(int* current_num_packets,
412                                        int* max_num_packets) const {
413   CriticalSectionScoped lock(crit_sect_.get());
414   packet_buffer_->BufferStat(current_num_packets, max_num_packets);
415 }
416 
EnableNack(size_t max_nack_list_size)417 void NetEqImpl::EnableNack(size_t max_nack_list_size) {
418   CriticalSectionScoped lock(crit_sect_.get());
419   if (!nack_enabled_) {
420     const int kNackThresholdPackets = 2;
421     nack_.reset(Nack::Create(kNackThresholdPackets));
422     nack_enabled_ = true;
423     nack_->UpdateSampleRate(fs_hz_);
424   }
425   nack_->SetMaxNackListSize(max_nack_list_size);
426 }
427 
DisableNack()428 void NetEqImpl::DisableNack() {
429   CriticalSectionScoped lock(crit_sect_.get());
430   nack_.reset();
431   nack_enabled_ = false;
432 }
433 
GetNackList(int64_t round_trip_time_ms) const434 std::vector<uint16_t> NetEqImpl::GetNackList(int64_t round_trip_time_ms) const {
435   CriticalSectionScoped lock(crit_sect_.get());
436   if (!nack_enabled_) {
437     return std::vector<uint16_t>();
438   }
439   RTC_DCHECK(nack_.get());
440   return nack_->GetNackList(round_trip_time_ms);
441 }
442 
sync_buffer_for_test() const443 const SyncBuffer* NetEqImpl::sync_buffer_for_test() const {
444   CriticalSectionScoped lock(crit_sect_.get());
445   return sync_buffer_.get();
446 }
447 
448 // Methods below this line are private.
449 
InsertPacketInternal(const WebRtcRTPHeader & rtp_header,rtc::ArrayView<const uint8_t> payload,uint32_t receive_timestamp,bool is_sync_packet)450 int NetEqImpl::InsertPacketInternal(const WebRtcRTPHeader& rtp_header,
451                                     rtc::ArrayView<const uint8_t> payload,
452                                     uint32_t receive_timestamp,
453                                     bool is_sync_packet) {
454   if (payload.empty()) {
455     LOG_F(LS_ERROR) << "payload is empty";
456     return kInvalidPointer;
457   }
458   // Sanity checks for sync-packets.
459   if (is_sync_packet) {
460     if (decoder_database_->IsDtmf(rtp_header.header.payloadType) ||
461         decoder_database_->IsRed(rtp_header.header.payloadType) ||
462         decoder_database_->IsComfortNoise(rtp_header.header.payloadType)) {
463       LOG_F(LS_ERROR) << "Sync-packet with an unacceptable payload type "
464                       << static_cast<int>(rtp_header.header.payloadType);
465       return kSyncPacketNotAccepted;
466     }
467     if (first_packet_ ||
468         rtp_header.header.payloadType != current_rtp_payload_type_ ||
469         rtp_header.header.ssrc != ssrc_) {
470       // Even if |current_rtp_payload_type_| is 0xFF, sync-packet isn't
471       // accepted.
472       LOG_F(LS_ERROR)
473           << "Changing codec, SSRC or first packet with sync-packet.";
474       return kSyncPacketNotAccepted;
475     }
476   }
477   PacketList packet_list;
478   RTPHeader main_header;
479   {
480     // Convert to Packet.
481     // Create |packet| within this separate scope, since it should not be used
482     // directly once it's been inserted in the packet list. This way, |packet|
483     // is not defined outside of this block.
484     Packet* packet = new Packet;
485     packet->header.markerBit = false;
486     packet->header.payloadType = rtp_header.header.payloadType;
487     packet->header.sequenceNumber = rtp_header.header.sequenceNumber;
488     packet->header.timestamp = rtp_header.header.timestamp;
489     packet->header.ssrc = rtp_header.header.ssrc;
490     packet->header.numCSRCs = 0;
491     packet->payload_length = payload.size();
492     packet->primary = true;
493     packet->waiting_time = 0;
494     packet->payload = new uint8_t[packet->payload_length];
495     packet->sync_packet = is_sync_packet;
496     if (!packet->payload) {
497       LOG_F(LS_ERROR) << "Payload pointer is NULL.";
498     }
499     assert(!payload.empty());  // Already checked above.
500     memcpy(packet->payload, payload.data(), packet->payload_length);
501     // Insert packet in a packet list.
502     packet_list.push_back(packet);
503     // Save main payloads header for later.
504     memcpy(&main_header, &packet->header, sizeof(main_header));
505   }
506 
507   bool update_sample_rate_and_channels = false;
508   // Reinitialize NetEq if it's needed (changed SSRC or first call).
509   if ((main_header.ssrc != ssrc_) || first_packet_) {
510     // Note: |first_packet_| will be cleared further down in this method, once
511     // the packet has been successfully inserted into the packet buffer.
512 
513     rtcp_.Init(main_header.sequenceNumber);
514 
515     // Flush the packet buffer and DTMF buffer.
516     packet_buffer_->Flush();
517     dtmf_buffer_->Flush();
518 
519     // Store new SSRC.
520     ssrc_ = main_header.ssrc;
521 
522     // Update audio buffer timestamp.
523     sync_buffer_->IncreaseEndTimestamp(main_header.timestamp - timestamp_);
524 
525     // Update codecs.
526     timestamp_ = main_header.timestamp;
527     current_rtp_payload_type_ = main_header.payloadType;
528 
529     // Reset timestamp scaling.
530     timestamp_scaler_->Reset();
531 
532     // Trigger an update of sampling rate and the number of channels.
533     update_sample_rate_and_channels = true;
534   }
535 
536   // Update RTCP statistics, only for regular packets.
537   if (!is_sync_packet)
538     rtcp_.Update(main_header, receive_timestamp);
539 
540   // Check for RED payload type, and separate payloads into several packets.
541   if (decoder_database_->IsRed(main_header.payloadType)) {
542     assert(!is_sync_packet);  // We had a sanity check for this.
543     if (payload_splitter_->SplitRed(&packet_list) != PayloadSplitter::kOK) {
544       PacketBuffer::DeleteAllPackets(&packet_list);
545       return kRedundancySplitError;
546     }
547     // Only accept a few RED payloads of the same type as the main data,
548     // DTMF events and CNG.
549     payload_splitter_->CheckRedPayloads(&packet_list, *decoder_database_);
550     // Update the stored main payload header since the main payload has now
551     // changed.
552     memcpy(&main_header, &packet_list.front()->header, sizeof(main_header));
553   }
554 
555   // Check payload types.
556   if (decoder_database_->CheckPayloadTypes(packet_list) ==
557       DecoderDatabase::kDecoderNotFound) {
558     PacketBuffer::DeleteAllPackets(&packet_list);
559     return kUnknownRtpPayloadType;
560   }
561 
562   // Scale timestamp to internal domain (only for some codecs).
563   timestamp_scaler_->ToInternal(&packet_list);
564 
565   // Process DTMF payloads. Cycle through the list of packets, and pick out any
566   // DTMF payloads found.
567   PacketList::iterator it = packet_list.begin();
568   while (it != packet_list.end()) {
569     Packet* current_packet = (*it);
570     assert(current_packet);
571     assert(current_packet->payload);
572     if (decoder_database_->IsDtmf(current_packet->header.payloadType)) {
573       assert(!current_packet->sync_packet);  // We had a sanity check for this.
574       DtmfEvent event;
575       int ret = DtmfBuffer::ParseEvent(
576           current_packet->header.timestamp,
577           current_packet->payload,
578           current_packet->payload_length,
579           &event);
580       if (ret != DtmfBuffer::kOK) {
581         PacketBuffer::DeleteAllPackets(&packet_list);
582         return kDtmfParsingError;
583       }
584       if (dtmf_buffer_->InsertEvent(event) != DtmfBuffer::kOK) {
585         PacketBuffer::DeleteAllPackets(&packet_list);
586         return kDtmfInsertError;
587       }
588       // TODO(hlundin): Let the destructor of Packet handle the payload.
589       delete [] current_packet->payload;
590       delete current_packet;
591       it = packet_list.erase(it);
592     } else {
593       ++it;
594     }
595   }
596 
597   // Check for FEC in packets, and separate payloads into several packets.
598   int ret = payload_splitter_->SplitFec(&packet_list, decoder_database_.get());
599   if (ret != PayloadSplitter::kOK) {
600     PacketBuffer::DeleteAllPackets(&packet_list);
601     switch (ret) {
602       case PayloadSplitter::kUnknownPayloadType:
603         return kUnknownRtpPayloadType;
604       default:
605         return kOtherError;
606     }
607   }
608 
609   // Split payloads into smaller chunks. This also verifies that all payloads
610   // are of a known payload type. SplitAudio() method is protected against
611   // sync-packets.
612   ret = payload_splitter_->SplitAudio(&packet_list, *decoder_database_);
613   if (ret != PayloadSplitter::kOK) {
614     PacketBuffer::DeleteAllPackets(&packet_list);
615     switch (ret) {
616       case PayloadSplitter::kUnknownPayloadType:
617         return kUnknownRtpPayloadType;
618       case PayloadSplitter::kFrameSplitError:
619         return kFrameSplitError;
620       default:
621         return kOtherError;
622     }
623   }
624 
625   // Update bandwidth estimate, if the packet is not sync-packet.
626   if (!packet_list.empty() && !packet_list.front()->sync_packet) {
627     // The list can be empty here if we got nothing but DTMF payloads.
628     AudioDecoder* decoder =
629         decoder_database_->GetDecoder(main_header.payloadType);
630     assert(decoder);  // Should always get a valid object, since we have
631                       // already checked that the payload types are known.
632     decoder->IncomingPacket(packet_list.front()->payload,
633                             packet_list.front()->payload_length,
634                             packet_list.front()->header.sequenceNumber,
635                             packet_list.front()->header.timestamp,
636                             receive_timestamp);
637   }
638 
639   if (nack_enabled_) {
640     RTC_DCHECK(nack_);
641     if (update_sample_rate_and_channels) {
642       nack_->Reset();
643     }
644     nack_->UpdateLastReceivedPacket(packet_list.front()->header.sequenceNumber,
645                                     packet_list.front()->header.timestamp);
646   }
647 
648   // Insert packets in buffer.
649   const size_t buffer_length_before_insert =
650       packet_buffer_->NumPacketsInBuffer();
651   ret = packet_buffer_->InsertPacketList(
652       &packet_list,
653       *decoder_database_,
654       &current_rtp_payload_type_,
655       &current_cng_rtp_payload_type_);
656   if (ret == PacketBuffer::kFlushed) {
657     // Reset DSP timestamp etc. if packet buffer flushed.
658     new_codec_ = true;
659     update_sample_rate_and_channels = true;
660   } else if (ret != PacketBuffer::kOK) {
661     PacketBuffer::DeleteAllPackets(&packet_list);
662     return kOtherError;
663   }
664 
665   if (first_packet_) {
666     first_packet_ = false;
667     // Update the codec on the next GetAudio call.
668     new_codec_ = true;
669   }
670 
671   if (current_rtp_payload_type_ != 0xFF) {
672     const DecoderDatabase::DecoderInfo* dec_info =
673         decoder_database_->GetDecoderInfo(current_rtp_payload_type_);
674     if (!dec_info) {
675       assert(false);  // Already checked that the payload type is known.
676     }
677   }
678 
679   if (update_sample_rate_and_channels && !packet_buffer_->Empty()) {
680     // We do not use |current_rtp_payload_type_| to |set payload_type|, but
681     // get the next RTP header from |packet_buffer_| to obtain the payload type.
682     // The reason for it is the following corner case. If NetEq receives a
683     // CNG packet with a sample rate different than the current CNG then it
684     // flushes its buffer, assuming send codec must have been changed. However,
685     // payload type of the hypothetically new send codec is not known.
686     const RTPHeader* rtp_header = packet_buffer_->NextRtpHeader();
687     assert(rtp_header);
688     int payload_type = rtp_header->payloadType;
689     AudioDecoder* decoder = decoder_database_->GetDecoder(payload_type);
690     assert(decoder);  // Payloads are already checked to be valid.
691     const DecoderDatabase::DecoderInfo* decoder_info =
692         decoder_database_->GetDecoderInfo(payload_type);
693     assert(decoder_info);
694     if (decoder_info->fs_hz != fs_hz_ ||
695         decoder->Channels() != algorithm_buffer_->Channels()) {
696       SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
697     }
698     if (nack_enabled_) {
699       RTC_DCHECK(nack_);
700       // Update the sample rate even if the rate is not new, because of Reset().
701       nack_->UpdateSampleRate(fs_hz_);
702     }
703   }
704 
705   // TODO(hlundin): Move this code to DelayManager class.
706   const DecoderDatabase::DecoderInfo* dec_info =
707           decoder_database_->GetDecoderInfo(main_header.payloadType);
708   assert(dec_info);  // Already checked that the payload type is known.
709   delay_manager_->LastDecoderType(dec_info->codec_type);
710   if (delay_manager_->last_pack_cng_or_dtmf() == 0) {
711     // Calculate the total speech length carried in each packet.
712     const size_t buffer_length_after_insert =
713         packet_buffer_->NumPacketsInBuffer();
714 
715     if (buffer_length_after_insert > buffer_length_before_insert) {
716       const size_t packet_length_samples =
717           (buffer_length_after_insert - buffer_length_before_insert) *
718           decoder_frame_length_;
719       if (packet_length_samples != decision_logic_->packet_length_samples()) {
720         decision_logic_->set_packet_length_samples(packet_length_samples);
721         delay_manager_->SetPacketAudioLength(
722             rtc::checked_cast<int>((1000 * packet_length_samples) / fs_hz_));
723       }
724     }
725 
726     // Update statistics.
727     if ((int32_t) (main_header.timestamp - timestamp_) >= 0 &&
728         !new_codec_) {
729       // Only update statistics if incoming packet is not older than last played
730       // out packet, and if new codec flag is not set.
731       delay_manager_->Update(main_header.sequenceNumber, main_header.timestamp,
732                              fs_hz_);
733     }
734   } else if (delay_manager_->last_pack_cng_or_dtmf() == -1) {
735     // This is first "normal" packet after CNG or DTMF.
736     // Reset packet time counter and measure time until next packet,
737     // but don't update statistics.
738     delay_manager_->set_last_pack_cng_or_dtmf(0);
739     delay_manager_->ResetPacketIatCount();
740   }
741   return 0;
742 }
743 
GetAudioInternal(size_t max_length,int16_t * output,size_t * samples_per_channel,size_t * num_channels)744 int NetEqImpl::GetAudioInternal(size_t max_length,
745                                 int16_t* output,
746                                 size_t* samples_per_channel,
747                                 size_t* num_channels) {
748   PacketList packet_list;
749   DtmfEvent dtmf_event;
750   Operations operation;
751   bool play_dtmf;
752   int return_value = GetDecision(&operation, &packet_list, &dtmf_event,
753                                  &play_dtmf);
754   if (return_value != 0) {
755     last_mode_ = kModeError;
756     return return_value;
757   }
758 
759   AudioDecoder::SpeechType speech_type;
760   int length = 0;
761   int decode_return_value = Decode(&packet_list, &operation,
762                                    &length, &speech_type);
763 
764   assert(vad_.get());
765   bool sid_frame_available =
766       (operation == kRfc3389Cng && !packet_list.empty());
767   vad_->Update(decoded_buffer_.get(), static_cast<size_t>(length), speech_type,
768                sid_frame_available, fs_hz_);
769 
770   algorithm_buffer_->Clear();
771   switch (operation) {
772     case kNormal: {
773       DoNormal(decoded_buffer_.get(), length, speech_type, play_dtmf);
774       break;
775     }
776     case kMerge: {
777       DoMerge(decoded_buffer_.get(), length, speech_type, play_dtmf);
778       break;
779     }
780     case kExpand: {
781       return_value = DoExpand(play_dtmf);
782       break;
783     }
784     case kAccelerate:
785     case kFastAccelerate: {
786       const bool fast_accelerate =
787           enable_fast_accelerate_ && (operation == kFastAccelerate);
788       return_value = DoAccelerate(decoded_buffer_.get(), length, speech_type,
789                                   play_dtmf, fast_accelerate);
790       break;
791     }
792     case kPreemptiveExpand: {
793       return_value = DoPreemptiveExpand(decoded_buffer_.get(), length,
794                                         speech_type, play_dtmf);
795       break;
796     }
797     case kRfc3389Cng:
798     case kRfc3389CngNoPacket: {
799       return_value = DoRfc3389Cng(&packet_list, play_dtmf);
800       break;
801     }
802     case kCodecInternalCng: {
803       // This handles the case when there is no transmission and the decoder
804       // should produce internal comfort noise.
805       // TODO(hlundin): Write test for codec-internal CNG.
806       DoCodecInternalCng(decoded_buffer_.get(), length);
807       break;
808     }
809     case kDtmf: {
810       // TODO(hlundin): Write test for this.
811       return_value = DoDtmf(dtmf_event, &play_dtmf);
812       break;
813     }
814     case kAlternativePlc: {
815       // TODO(hlundin): Write test for this.
816       DoAlternativePlc(false);
817       break;
818     }
819     case kAlternativePlcIncreaseTimestamp: {
820       // TODO(hlundin): Write test for this.
821       DoAlternativePlc(true);
822       break;
823     }
824     case kAudioRepetitionIncreaseTimestamp: {
825       // TODO(hlundin): Write test for this.
826       sync_buffer_->IncreaseEndTimestamp(
827           static_cast<uint32_t>(output_size_samples_));
828       // Skipping break on purpose. Execution should move on into the
829       // next case.
830       FALLTHROUGH();
831     }
832     case kAudioRepetition: {
833       // TODO(hlundin): Write test for this.
834       // Copy last |output_size_samples_| from |sync_buffer_| to
835       // |algorithm_buffer|.
836       algorithm_buffer_->PushBackFromIndex(
837           *sync_buffer_, sync_buffer_->Size() - output_size_samples_);
838       expand_->Reset();
839       break;
840     }
841     case kUndefined: {
842       LOG(LS_ERROR) << "Invalid operation kUndefined.";
843       assert(false);  // This should not happen.
844       last_mode_ = kModeError;
845       return kInvalidOperation;
846     }
847   }  // End of switch.
848   if (return_value < 0) {
849     return return_value;
850   }
851 
852   if (last_mode_ != kModeRfc3389Cng) {
853     comfort_noise_->Reset();
854   }
855 
856   // Copy from |algorithm_buffer| to |sync_buffer_|.
857   sync_buffer_->PushBack(*algorithm_buffer_);
858 
859   // Extract data from |sync_buffer_| to |output|.
860   size_t num_output_samples_per_channel = output_size_samples_;
861   size_t num_output_samples = output_size_samples_ * sync_buffer_->Channels();
862   if (num_output_samples > max_length) {
863     LOG(LS_WARNING) << "Output array is too short. " << max_length << " < " <<
864         output_size_samples_ << " * " << sync_buffer_->Channels();
865     num_output_samples = max_length;
866     num_output_samples_per_channel = max_length / sync_buffer_->Channels();
867   }
868   const size_t samples_from_sync =
869       sync_buffer_->GetNextAudioInterleaved(num_output_samples_per_channel,
870                                             output);
871   *num_channels = sync_buffer_->Channels();
872   if (sync_buffer_->FutureLength() < expand_->overlap_length()) {
873     // The sync buffer should always contain |overlap_length| samples, but now
874     // too many samples have been extracted. Reinstall the |overlap_length|
875     // lookahead by moving the index.
876     const size_t missing_lookahead_samples =
877         expand_->overlap_length() - sync_buffer_->FutureLength();
878     RTC_DCHECK_GE(sync_buffer_->next_index(), missing_lookahead_samples);
879     sync_buffer_->set_next_index(sync_buffer_->next_index() -
880                                  missing_lookahead_samples);
881   }
882   if (samples_from_sync != output_size_samples_) {
883     LOG(LS_ERROR) << "samples_from_sync (" << samples_from_sync
884                   << ") != output_size_samples_ (" << output_size_samples_
885                   << ")";
886     // TODO(minyue): treatment of under-run, filling zeros
887     memset(output, 0, num_output_samples * sizeof(int16_t));
888     *samples_per_channel = output_size_samples_;
889     return kSampleUnderrun;
890   }
891   *samples_per_channel = output_size_samples_;
892 
893   // Should always have overlap samples left in the |sync_buffer_|.
894   RTC_DCHECK_GE(sync_buffer_->FutureLength(), expand_->overlap_length());
895 
896   if (play_dtmf) {
897     return_value = DtmfOverdub(dtmf_event, sync_buffer_->Channels(), output);
898   }
899 
900   // Update the background noise parameters if last operation wrote data
901   // straight from the decoder to the |sync_buffer_|. That is, none of the
902   // operations that modify the signal can be followed by a parameter update.
903   if ((last_mode_ == kModeNormal) ||
904       (last_mode_ == kModeAccelerateFail) ||
905       (last_mode_ == kModePreemptiveExpandFail) ||
906       (last_mode_ == kModeRfc3389Cng) ||
907       (last_mode_ == kModeCodecInternalCng)) {
908     background_noise_->Update(*sync_buffer_, *vad_.get());
909   }
910 
911   if (operation == kDtmf) {
912     // DTMF data was written the end of |sync_buffer_|.
913     // Update index to end of DTMF data in |sync_buffer_|.
914     sync_buffer_->set_dtmf_index(sync_buffer_->Size());
915   }
916 
917   if (last_mode_ != kModeExpand) {
918     // If last operation was not expand, calculate the |playout_timestamp_| from
919     // the |sync_buffer_|. However, do not update the |playout_timestamp_| if it
920     // would be moved "backwards".
921     uint32_t temp_timestamp = sync_buffer_->end_timestamp() -
922         static_cast<uint32_t>(sync_buffer_->FutureLength());
923     if (static_cast<int32_t>(temp_timestamp - playout_timestamp_) > 0) {
924       playout_timestamp_ = temp_timestamp;
925     }
926   } else {
927     // Use dead reckoning to estimate the |playout_timestamp_|.
928     playout_timestamp_ += static_cast<uint32_t>(output_size_samples_);
929   }
930 
931   if (decode_return_value) return decode_return_value;
932   return return_value;
933 }
934 
GetDecision(Operations * operation,PacketList * packet_list,DtmfEvent * dtmf_event,bool * play_dtmf)935 int NetEqImpl::GetDecision(Operations* operation,
936                            PacketList* packet_list,
937                            DtmfEvent* dtmf_event,
938                            bool* play_dtmf) {
939   // Initialize output variables.
940   *play_dtmf = false;
941   *operation = kUndefined;
942 
943   // Increment time counters.
944   packet_buffer_->IncrementWaitingTimes();
945   stats_.IncreaseCounter(output_size_samples_, fs_hz_);
946 
947   assert(sync_buffer_.get());
948   uint32_t end_timestamp = sync_buffer_->end_timestamp();
949   if (!new_codec_) {
950     const uint32_t five_seconds_samples = 5 * fs_hz_;
951     packet_buffer_->DiscardOldPackets(end_timestamp, five_seconds_samples);
952   }
953   const RTPHeader* header = packet_buffer_->NextRtpHeader();
954 
955   if (decision_logic_->CngRfc3389On() || last_mode_ == kModeRfc3389Cng) {
956     // Because of timestamp peculiarities, we have to "manually" disallow using
957     // a CNG packet with the same timestamp as the one that was last played.
958     // This can happen when using redundancy and will cause the timing to shift.
959     while (header && decoder_database_->IsComfortNoise(header->payloadType) &&
960            (end_timestamp >= header->timestamp ||
961             end_timestamp + decision_logic_->generated_noise_samples() >
962                 header->timestamp)) {
963       // Don't use this packet, discard it.
964       if (packet_buffer_->DiscardNextPacket() != PacketBuffer::kOK) {
965         assert(false);  // Must be ok by design.
966       }
967       // Check buffer again.
968       if (!new_codec_) {
969         packet_buffer_->DiscardOldPackets(end_timestamp, 5 * fs_hz_);
970       }
971       header = packet_buffer_->NextRtpHeader();
972     }
973   }
974 
975   assert(expand_.get());
976   const int samples_left = static_cast<int>(sync_buffer_->FutureLength() -
977       expand_->overlap_length());
978   if (last_mode_ == kModeAccelerateSuccess ||
979       last_mode_ == kModeAccelerateLowEnergy ||
980       last_mode_ == kModePreemptiveExpandSuccess ||
981       last_mode_ == kModePreemptiveExpandLowEnergy) {
982     // Subtract (samples_left + output_size_samples_) from sampleMemory.
983     decision_logic_->AddSampleMemory(
984         -(samples_left + rtc::checked_cast<int>(output_size_samples_)));
985   }
986 
987   // Check if it is time to play a DTMF event.
988   if (dtmf_buffer_->GetEvent(
989       static_cast<uint32_t>(
990           end_timestamp + decision_logic_->generated_noise_samples()),
991       dtmf_event)) {
992     *play_dtmf = true;
993   }
994 
995   // Get instruction.
996   assert(sync_buffer_.get());
997   assert(expand_.get());
998   *operation = decision_logic_->GetDecision(*sync_buffer_,
999                                             *expand_,
1000                                             decoder_frame_length_,
1001                                             header,
1002                                             last_mode_,
1003                                             *play_dtmf,
1004                                             &reset_decoder_);
1005 
1006   // Check if we already have enough samples in the |sync_buffer_|. If so,
1007   // change decision to normal, unless the decision was merge, accelerate, or
1008   // preemptive expand.
1009   if (samples_left >= rtc::checked_cast<int>(output_size_samples_) &&
1010       *operation != kMerge &&
1011       *operation != kAccelerate &&
1012       *operation != kFastAccelerate &&
1013       *operation != kPreemptiveExpand) {
1014     *operation = kNormal;
1015     return 0;
1016   }
1017 
1018   decision_logic_->ExpandDecision(*operation);
1019 
1020   // Check conditions for reset.
1021   if (new_codec_ || *operation == kUndefined) {
1022     // The only valid reason to get kUndefined is that new_codec_ is set.
1023     assert(new_codec_);
1024     if (*play_dtmf && !header) {
1025       timestamp_ = dtmf_event->timestamp;
1026     } else {
1027       if (!header) {
1028         LOG(LS_ERROR) << "Packet missing where it shouldn't.";
1029         return -1;
1030       }
1031       timestamp_ = header->timestamp;
1032       if (*operation == kRfc3389CngNoPacket
1033 #ifndef LEGACY_BITEXACT
1034           // Without this check, it can happen that a non-CNG packet is sent to
1035           // the CNG decoder as if it was a SID frame. This is clearly a bug,
1036           // but is kept for now to maintain bit-exactness with the test
1037           // vectors.
1038           && decoder_database_->IsComfortNoise(header->payloadType)
1039 #endif
1040       ) {
1041         // Change decision to CNG packet, since we do have a CNG packet, but it
1042         // was considered too early to use. Now, use it anyway.
1043         *operation = kRfc3389Cng;
1044       } else if (*operation != kRfc3389Cng) {
1045         *operation = kNormal;
1046       }
1047     }
1048     // Adjust |sync_buffer_| timestamp before setting |end_timestamp| to the
1049     // new value.
1050     sync_buffer_->IncreaseEndTimestamp(timestamp_ - end_timestamp);
1051     end_timestamp = timestamp_;
1052     new_codec_ = false;
1053     decision_logic_->SoftReset();
1054     buffer_level_filter_->Reset();
1055     delay_manager_->Reset();
1056     stats_.ResetMcu();
1057   }
1058 
1059   size_t required_samples = output_size_samples_;
1060   const size_t samples_10_ms = static_cast<size_t>(80 * fs_mult_);
1061   const size_t samples_20_ms = 2 * samples_10_ms;
1062   const size_t samples_30_ms = 3 * samples_10_ms;
1063 
1064   switch (*operation) {
1065     case kExpand: {
1066       timestamp_ = end_timestamp;
1067       return 0;
1068     }
1069     case kRfc3389CngNoPacket:
1070     case kCodecInternalCng: {
1071       return 0;
1072     }
1073     case kDtmf: {
1074       // TODO(hlundin): Write test for this.
1075       // Update timestamp.
1076       timestamp_ = end_timestamp;
1077       if (decision_logic_->generated_noise_samples() > 0 &&
1078           last_mode_ != kModeDtmf) {
1079         // Make a jump in timestamp due to the recently played comfort noise.
1080         uint32_t timestamp_jump =
1081             static_cast<uint32_t>(decision_logic_->generated_noise_samples());
1082         sync_buffer_->IncreaseEndTimestamp(timestamp_jump);
1083         timestamp_ += timestamp_jump;
1084       }
1085       decision_logic_->set_generated_noise_samples(0);
1086       return 0;
1087     }
1088     case kAccelerate:
1089     case kFastAccelerate: {
1090       // In order to do an accelerate we need at least 30 ms of audio data.
1091       if (samples_left >= static_cast<int>(samples_30_ms)) {
1092         // Already have enough data, so we do not need to extract any more.
1093         decision_logic_->set_sample_memory(samples_left);
1094         decision_logic_->set_prev_time_scale(true);
1095         return 0;
1096       } else if (samples_left >= static_cast<int>(samples_10_ms) &&
1097           decoder_frame_length_ >= samples_30_ms) {
1098         // Avoid decoding more data as it might overflow the playout buffer.
1099         *operation = kNormal;
1100         return 0;
1101       } else if (samples_left < static_cast<int>(samples_20_ms) &&
1102           decoder_frame_length_ < samples_30_ms) {
1103         // Build up decoded data by decoding at least 20 ms of audio data. Do
1104         // not perform accelerate yet, but wait until we only need to do one
1105         // decoding.
1106         required_samples = 2 * output_size_samples_;
1107         *operation = kNormal;
1108       }
1109       // If none of the above is true, we have one of two possible situations:
1110       // (1) 20 ms <= samples_left < 30 ms and decoder_frame_length_ < 30 ms; or
1111       // (2) samples_left < 10 ms and decoder_frame_length_ >= 30 ms.
1112       // In either case, we move on with the accelerate decision, and decode one
1113       // frame now.
1114       break;
1115     }
1116     case kPreemptiveExpand: {
1117       // In order to do a preemptive expand we need at least 30 ms of decoded
1118       // audio data.
1119       if ((samples_left >= static_cast<int>(samples_30_ms)) ||
1120           (samples_left >= static_cast<int>(samples_10_ms) &&
1121               decoder_frame_length_ >= samples_30_ms)) {
1122         // Already have enough data, so we do not need to extract any more.
1123         // Or, avoid decoding more data as it might overflow the playout buffer.
1124         // Still try preemptive expand, though.
1125         decision_logic_->set_sample_memory(samples_left);
1126         decision_logic_->set_prev_time_scale(true);
1127         return 0;
1128       }
1129       if (samples_left < static_cast<int>(samples_20_ms) &&
1130           decoder_frame_length_ < samples_30_ms) {
1131         // Build up decoded data by decoding at least 20 ms of audio data.
1132         // Still try to perform preemptive expand.
1133         required_samples = 2 * output_size_samples_;
1134       }
1135       // Move on with the preemptive expand decision.
1136       break;
1137     }
1138     case kMerge: {
1139       required_samples =
1140           std::max(merge_->RequiredFutureSamples(), required_samples);
1141       break;
1142     }
1143     default: {
1144       // Do nothing.
1145     }
1146   }
1147 
1148   // Get packets from buffer.
1149   int extracted_samples = 0;
1150   if (header &&
1151       *operation != kAlternativePlc &&
1152       *operation != kAlternativePlcIncreaseTimestamp &&
1153       *operation != kAudioRepetition &&
1154       *operation != kAudioRepetitionIncreaseTimestamp) {
1155     sync_buffer_->IncreaseEndTimestamp(header->timestamp - end_timestamp);
1156     if (decision_logic_->CngOff()) {
1157       // Adjustment of timestamp only corresponds to an actual packet loss
1158       // if comfort noise is not played. If comfort noise was just played,
1159       // this adjustment of timestamp is only done to get back in sync with the
1160       // stream timestamp; no loss to report.
1161       stats_.LostSamples(header->timestamp - end_timestamp);
1162     }
1163 
1164     if (*operation != kRfc3389Cng) {
1165       // We are about to decode and use a non-CNG packet.
1166       decision_logic_->SetCngOff();
1167     }
1168     // Reset CNG timestamp as a new packet will be delivered.
1169     // (Also if this is a CNG packet, since playedOutTS is updated.)
1170     decision_logic_->set_generated_noise_samples(0);
1171 
1172     extracted_samples = ExtractPackets(required_samples, packet_list);
1173     if (extracted_samples < 0) {
1174       return kPacketBufferCorruption;
1175     }
1176   }
1177 
1178   if (*operation == kAccelerate || *operation == kFastAccelerate ||
1179       *operation == kPreemptiveExpand) {
1180     decision_logic_->set_sample_memory(samples_left + extracted_samples);
1181     decision_logic_->set_prev_time_scale(true);
1182   }
1183 
1184   if (*operation == kAccelerate || *operation == kFastAccelerate) {
1185     // Check that we have enough data (30ms) to do accelerate.
1186     if (extracted_samples + samples_left < static_cast<int>(samples_30_ms)) {
1187       // TODO(hlundin): Write test for this.
1188       // Not enough, do normal operation instead.
1189       *operation = kNormal;
1190     }
1191   }
1192 
1193   timestamp_ = end_timestamp;
1194   return 0;
1195 }
1196 
Decode(PacketList * packet_list,Operations * operation,int * decoded_length,AudioDecoder::SpeechType * speech_type)1197 int NetEqImpl::Decode(PacketList* packet_list, Operations* operation,
1198                       int* decoded_length,
1199                       AudioDecoder::SpeechType* speech_type) {
1200   *speech_type = AudioDecoder::kSpeech;
1201 
1202   // When packet_list is empty, we may be in kCodecInternalCng mode, and for
1203   // that we use current active decoder.
1204   AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1205 
1206   if (!packet_list->empty()) {
1207     const Packet* packet = packet_list->front();
1208     uint8_t payload_type = packet->header.payloadType;
1209     if (!decoder_database_->IsComfortNoise(payload_type)) {
1210       decoder = decoder_database_->GetDecoder(payload_type);
1211       assert(decoder);
1212       if (!decoder) {
1213         LOG(LS_WARNING) << "Unknown payload type "
1214                         << static_cast<int>(payload_type);
1215         PacketBuffer::DeleteAllPackets(packet_list);
1216         return kDecoderNotFound;
1217       }
1218       bool decoder_changed;
1219       decoder_database_->SetActiveDecoder(payload_type, &decoder_changed);
1220       if (decoder_changed) {
1221         // We have a new decoder. Re-init some values.
1222         const DecoderDatabase::DecoderInfo* decoder_info = decoder_database_
1223             ->GetDecoderInfo(payload_type);
1224         assert(decoder_info);
1225         if (!decoder_info) {
1226           LOG(LS_WARNING) << "Unknown payload type "
1227                           << static_cast<int>(payload_type);
1228           PacketBuffer::DeleteAllPackets(packet_list);
1229           return kDecoderNotFound;
1230         }
1231         // If sampling rate or number of channels has changed, we need to make
1232         // a reset.
1233         if (decoder_info->fs_hz != fs_hz_ ||
1234             decoder->Channels() != algorithm_buffer_->Channels()) {
1235           // TODO(tlegrand): Add unittest to cover this event.
1236           SetSampleRateAndChannels(decoder_info->fs_hz, decoder->Channels());
1237         }
1238         sync_buffer_->set_end_timestamp(timestamp_);
1239         playout_timestamp_ = timestamp_;
1240       }
1241     }
1242   }
1243 
1244   if (reset_decoder_) {
1245     // TODO(hlundin): Write test for this.
1246     if (decoder)
1247       decoder->Reset();
1248 
1249     // Reset comfort noise decoder.
1250     AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1251     if (cng_decoder)
1252       cng_decoder->Reset();
1253 
1254     reset_decoder_ = false;
1255   }
1256 
1257 #ifdef LEGACY_BITEXACT
1258   // Due to a bug in old SignalMCU, it could happen that CNG operation was
1259   // decided, but a speech packet was provided. The speech packet will be used
1260   // to update the comfort noise decoder, as if it was a SID frame, which is
1261   // clearly wrong.
1262   if (*operation == kRfc3389Cng) {
1263     return 0;
1264   }
1265 #endif
1266 
1267   *decoded_length = 0;
1268   // Update codec-internal PLC state.
1269   if ((*operation == kMerge) && decoder && decoder->HasDecodePlc()) {
1270     decoder->DecodePlc(1, &decoded_buffer_[*decoded_length]);
1271   }
1272 
1273   int return_value;
1274   if (*operation == kCodecInternalCng) {
1275     RTC_DCHECK(packet_list->empty());
1276     return_value = DecodeCng(decoder, decoded_length, speech_type);
1277   } else {
1278     return_value = DecodeLoop(packet_list, *operation, decoder,
1279                               decoded_length, speech_type);
1280   }
1281 
1282   if (*decoded_length < 0) {
1283     // Error returned from the decoder.
1284     *decoded_length = 0;
1285     sync_buffer_->IncreaseEndTimestamp(
1286         static_cast<uint32_t>(decoder_frame_length_));
1287     int error_code = 0;
1288     if (decoder)
1289       error_code = decoder->ErrorCode();
1290     if (error_code != 0) {
1291       // Got some error code from the decoder.
1292       decoder_error_code_ = error_code;
1293       return_value = kDecoderErrorCode;
1294       LOG(LS_WARNING) << "Decoder returned error code: " << error_code;
1295     } else {
1296       // Decoder does not implement error codes. Return generic error.
1297       return_value = kOtherDecoderError;
1298       LOG(LS_WARNING) << "Decoder error (no error code)";
1299     }
1300     *operation = kExpand;  // Do expansion to get data instead.
1301   }
1302   if (*speech_type != AudioDecoder::kComfortNoise) {
1303     // Don't increment timestamp if codec returned CNG speech type
1304     // since in this case, the we will increment the CNGplayedTS counter.
1305     // Increase with number of samples per channel.
1306     assert(*decoded_length == 0 ||
1307            (decoder && decoder->Channels() == sync_buffer_->Channels()));
1308     sync_buffer_->IncreaseEndTimestamp(
1309         *decoded_length / static_cast<int>(sync_buffer_->Channels()));
1310   }
1311   return return_value;
1312 }
1313 
DecodeCng(AudioDecoder * decoder,int * decoded_length,AudioDecoder::SpeechType * speech_type)1314 int NetEqImpl::DecodeCng(AudioDecoder* decoder, int* decoded_length,
1315                          AudioDecoder::SpeechType* speech_type) {
1316   if (!decoder) {
1317     // This happens when active decoder is not defined.
1318     *decoded_length = -1;
1319     return 0;
1320   }
1321 
1322   while (*decoded_length < rtc::checked_cast<int>(output_size_samples_)) {
1323     const int length = decoder->Decode(
1324             nullptr, 0, fs_hz_,
1325             (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1326             &decoded_buffer_[*decoded_length], speech_type);
1327     if (length > 0) {
1328       *decoded_length += length;
1329     } else {
1330       // Error.
1331       LOG(LS_WARNING) << "Failed to decode CNG";
1332       *decoded_length = -1;
1333       break;
1334     }
1335     if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1336       // Guard against overflow.
1337       LOG(LS_WARNING) << "Decoded too much CNG.";
1338       return kDecodedTooMuch;
1339     }
1340   }
1341   return 0;
1342 }
1343 
DecodeLoop(PacketList * packet_list,const Operations & operation,AudioDecoder * decoder,int * decoded_length,AudioDecoder::SpeechType * speech_type)1344 int NetEqImpl::DecodeLoop(PacketList* packet_list, const Operations& operation,
1345                           AudioDecoder* decoder, int* decoded_length,
1346                           AudioDecoder::SpeechType* speech_type) {
1347   Packet* packet = NULL;
1348   if (!packet_list->empty()) {
1349     packet = packet_list->front();
1350   }
1351 
1352   // Do decoding.
1353   while (packet &&
1354       !decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1355     assert(decoder);  // At this point, we must have a decoder object.
1356     // The number of channels in the |sync_buffer_| should be the same as the
1357     // number decoder channels.
1358     assert(sync_buffer_->Channels() == decoder->Channels());
1359     assert(decoded_buffer_length_ >= kMaxFrameSize * decoder->Channels());
1360     assert(operation == kNormal || operation == kAccelerate ||
1361            operation == kFastAccelerate || operation == kMerge ||
1362            operation == kPreemptiveExpand);
1363     packet_list->pop_front();
1364     size_t payload_length = packet->payload_length;
1365     int decode_length;
1366     if (packet->sync_packet) {
1367       // Decode to silence with the same frame size as the last decode.
1368       memset(&decoded_buffer_[*decoded_length], 0,
1369              decoder_frame_length_ * decoder->Channels() *
1370                  sizeof(decoded_buffer_[0]));
1371       decode_length = rtc::checked_cast<int>(decoder_frame_length_);
1372     } else if (!packet->primary) {
1373       // This is a redundant payload; call the special decoder method.
1374       decode_length = decoder->DecodeRedundant(
1375           packet->payload, packet->payload_length, fs_hz_,
1376           (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1377           &decoded_buffer_[*decoded_length], speech_type);
1378     } else {
1379       decode_length =
1380           decoder->Decode(
1381               packet->payload, packet->payload_length, fs_hz_,
1382               (decoded_buffer_length_ - *decoded_length) * sizeof(int16_t),
1383               &decoded_buffer_[*decoded_length], speech_type);
1384     }
1385 
1386     delete[] packet->payload;
1387     delete packet;
1388     packet = NULL;
1389     if (decode_length > 0) {
1390       *decoded_length += decode_length;
1391       // Update |decoder_frame_length_| with number of samples per channel.
1392       decoder_frame_length_ =
1393           static_cast<size_t>(decode_length) / decoder->Channels();
1394     } else if (decode_length < 0) {
1395       // Error.
1396       LOG(LS_WARNING) << "Decode " << decode_length << " " << payload_length;
1397       *decoded_length = -1;
1398       PacketBuffer::DeleteAllPackets(packet_list);
1399       break;
1400     }
1401     if (*decoded_length > static_cast<int>(decoded_buffer_length_)) {
1402       // Guard against overflow.
1403       LOG(LS_WARNING) << "Decoded too much.";
1404       PacketBuffer::DeleteAllPackets(packet_list);
1405       return kDecodedTooMuch;
1406     }
1407     if (!packet_list->empty()) {
1408       packet = packet_list->front();
1409     } else {
1410       packet = NULL;
1411     }
1412   }  // End of decode loop.
1413 
1414   // If the list is not empty at this point, either a decoding error terminated
1415   // the while-loop, or list must hold exactly one CNG packet.
1416   assert(packet_list->empty() || *decoded_length < 0 ||
1417          (packet_list->size() == 1 && packet &&
1418              decoder_database_->IsComfortNoise(packet->header.payloadType)));
1419   return 0;
1420 }
1421 
DoNormal(const int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1422 void NetEqImpl::DoNormal(const int16_t* decoded_buffer, size_t decoded_length,
1423                          AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1424   assert(normal_.get());
1425   assert(mute_factor_array_.get());
1426   normal_->Process(decoded_buffer, decoded_length, last_mode_,
1427                    mute_factor_array_.get(), algorithm_buffer_.get());
1428   if (decoded_length != 0) {
1429     last_mode_ = kModeNormal;
1430   }
1431 
1432   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1433   if ((speech_type == AudioDecoder::kComfortNoise)
1434       || ((last_mode_ == kModeCodecInternalCng)
1435           && (decoded_length == 0))) {
1436     // TODO(hlundin): Remove second part of || statement above.
1437     last_mode_ = kModeCodecInternalCng;
1438   }
1439 
1440   if (!play_dtmf) {
1441     dtmf_tone_generator_->Reset();
1442   }
1443 }
1444 
DoMerge(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1445 void NetEqImpl::DoMerge(int16_t* decoded_buffer, size_t decoded_length,
1446                         AudioDecoder::SpeechType speech_type, bool play_dtmf) {
1447   assert(mute_factor_array_.get());
1448   assert(merge_.get());
1449   size_t new_length = merge_->Process(decoded_buffer, decoded_length,
1450                                       mute_factor_array_.get(),
1451                                       algorithm_buffer_.get());
1452   size_t expand_length_correction = new_length -
1453       decoded_length / algorithm_buffer_->Channels();
1454 
1455   // Update in-call and post-call statistics.
1456   if (expand_->MuteFactor(0) == 0) {
1457     // Expand generates only noise.
1458     stats_.ExpandedNoiseSamples(expand_length_correction);
1459   } else {
1460     // Expansion generates more than only noise.
1461     stats_.ExpandedVoiceSamples(expand_length_correction);
1462   }
1463 
1464   last_mode_ = kModeMerge;
1465   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1466   if (speech_type == AudioDecoder::kComfortNoise) {
1467     last_mode_ = kModeCodecInternalCng;
1468   }
1469   expand_->Reset();
1470   if (!play_dtmf) {
1471     dtmf_tone_generator_->Reset();
1472   }
1473 }
1474 
DoExpand(bool play_dtmf)1475 int NetEqImpl::DoExpand(bool play_dtmf) {
1476   while ((sync_buffer_->FutureLength() - expand_->overlap_length()) <
1477       output_size_samples_) {
1478     algorithm_buffer_->Clear();
1479     int return_value = expand_->Process(algorithm_buffer_.get());
1480     size_t length = algorithm_buffer_->Size();
1481 
1482     // Update in-call and post-call statistics.
1483     if (expand_->MuteFactor(0) == 0) {
1484       // Expand operation generates only noise.
1485       stats_.ExpandedNoiseSamples(length);
1486     } else {
1487       // Expand operation generates more than only noise.
1488       stats_.ExpandedVoiceSamples(length);
1489     }
1490 
1491     last_mode_ = kModeExpand;
1492 
1493     if (return_value < 0) {
1494       return return_value;
1495     }
1496 
1497     sync_buffer_->PushBack(*algorithm_buffer_);
1498     algorithm_buffer_->Clear();
1499   }
1500   if (!play_dtmf) {
1501     dtmf_tone_generator_->Reset();
1502   }
1503   return 0;
1504 }
1505 
DoAccelerate(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf,bool fast_accelerate)1506 int NetEqImpl::DoAccelerate(int16_t* decoded_buffer,
1507                             size_t decoded_length,
1508                             AudioDecoder::SpeechType speech_type,
1509                             bool play_dtmf,
1510                             bool fast_accelerate) {
1511   const size_t required_samples =
1512       static_cast<size_t>(240 * fs_mult_);  // Must have 30 ms.
1513   size_t borrowed_samples_per_channel = 0;
1514   size_t num_channels = algorithm_buffer_->Channels();
1515   size_t decoded_length_per_channel = decoded_length / num_channels;
1516   if (decoded_length_per_channel < required_samples) {
1517     // Must move data from the |sync_buffer_| in order to get 30 ms.
1518     borrowed_samples_per_channel = static_cast<int>(required_samples -
1519         decoded_length_per_channel);
1520     memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1521             decoded_buffer,
1522             sizeof(int16_t) * decoded_length);
1523     sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1524                                          decoded_buffer);
1525     decoded_length = required_samples * num_channels;
1526   }
1527 
1528   size_t samples_removed;
1529   Accelerate::ReturnCodes return_code =
1530       accelerate_->Process(decoded_buffer, decoded_length, fast_accelerate,
1531                            algorithm_buffer_.get(), &samples_removed);
1532   stats_.AcceleratedSamples(samples_removed);
1533   switch (return_code) {
1534     case Accelerate::kSuccess:
1535       last_mode_ = kModeAccelerateSuccess;
1536       break;
1537     case Accelerate::kSuccessLowEnergy:
1538       last_mode_ = kModeAccelerateLowEnergy;
1539       break;
1540     case Accelerate::kNoStretch:
1541       last_mode_ = kModeAccelerateFail;
1542       break;
1543     case Accelerate::kError:
1544       // TODO(hlundin): Map to kModeError instead?
1545       last_mode_ = kModeAccelerateFail;
1546       return kAccelerateError;
1547   }
1548 
1549   if (borrowed_samples_per_channel > 0) {
1550     // Copy borrowed samples back to the |sync_buffer_|.
1551     size_t length = algorithm_buffer_->Size();
1552     if (length < borrowed_samples_per_channel) {
1553       // This destroys the beginning of the buffer, but will not cause any
1554       // problems.
1555       sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1556                                    sync_buffer_->Size() -
1557                                    borrowed_samples_per_channel);
1558       sync_buffer_->PushFrontZeros(borrowed_samples_per_channel - length);
1559       algorithm_buffer_->PopFront(length);
1560       assert(algorithm_buffer_->Empty());
1561     } else {
1562       sync_buffer_->ReplaceAtIndex(*algorithm_buffer_,
1563                                    borrowed_samples_per_channel,
1564                                    sync_buffer_->Size() -
1565                                    borrowed_samples_per_channel);
1566       algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1567     }
1568   }
1569 
1570   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1571   if (speech_type == AudioDecoder::kComfortNoise) {
1572     last_mode_ = kModeCodecInternalCng;
1573   }
1574   if (!play_dtmf) {
1575     dtmf_tone_generator_->Reset();
1576   }
1577   expand_->Reset();
1578   return 0;
1579 }
1580 
DoPreemptiveExpand(int16_t * decoded_buffer,size_t decoded_length,AudioDecoder::SpeechType speech_type,bool play_dtmf)1581 int NetEqImpl::DoPreemptiveExpand(int16_t* decoded_buffer,
1582                                   size_t decoded_length,
1583                                   AudioDecoder::SpeechType speech_type,
1584                                   bool play_dtmf) {
1585   const size_t required_samples =
1586       static_cast<size_t>(240 * fs_mult_);  // Must have 30 ms.
1587   size_t num_channels = algorithm_buffer_->Channels();
1588   size_t borrowed_samples_per_channel = 0;
1589   size_t old_borrowed_samples_per_channel = 0;
1590   size_t decoded_length_per_channel = decoded_length / num_channels;
1591   if (decoded_length_per_channel < required_samples) {
1592     // Must move data from the |sync_buffer_| in order to get 30 ms.
1593     borrowed_samples_per_channel =
1594         required_samples - decoded_length_per_channel;
1595     // Calculate how many of these were already played out.
1596     old_borrowed_samples_per_channel =
1597         (borrowed_samples_per_channel > sync_buffer_->FutureLength()) ?
1598         (borrowed_samples_per_channel - sync_buffer_->FutureLength()) : 0;
1599     memmove(&decoded_buffer[borrowed_samples_per_channel * num_channels],
1600             decoded_buffer,
1601             sizeof(int16_t) * decoded_length);
1602     sync_buffer_->ReadInterleavedFromEnd(borrowed_samples_per_channel,
1603                                          decoded_buffer);
1604     decoded_length = required_samples * num_channels;
1605   }
1606 
1607   size_t samples_added;
1608   PreemptiveExpand::ReturnCodes return_code = preemptive_expand_->Process(
1609       decoded_buffer, decoded_length,
1610       old_borrowed_samples_per_channel,
1611       algorithm_buffer_.get(), &samples_added);
1612   stats_.PreemptiveExpandedSamples(samples_added);
1613   switch (return_code) {
1614     case PreemptiveExpand::kSuccess:
1615       last_mode_ = kModePreemptiveExpandSuccess;
1616       break;
1617     case PreemptiveExpand::kSuccessLowEnergy:
1618       last_mode_ = kModePreemptiveExpandLowEnergy;
1619       break;
1620     case PreemptiveExpand::kNoStretch:
1621       last_mode_ = kModePreemptiveExpandFail;
1622       break;
1623     case PreemptiveExpand::kError:
1624       // TODO(hlundin): Map to kModeError instead?
1625       last_mode_ = kModePreemptiveExpandFail;
1626       return kPreemptiveExpandError;
1627   }
1628 
1629   if (borrowed_samples_per_channel > 0) {
1630     // Copy borrowed samples back to the |sync_buffer_|.
1631     sync_buffer_->ReplaceAtIndex(
1632         *algorithm_buffer_, borrowed_samples_per_channel,
1633         sync_buffer_->Size() - borrowed_samples_per_channel);
1634     algorithm_buffer_->PopFront(borrowed_samples_per_channel);
1635   }
1636 
1637   // If last packet was decoded as an inband CNG, set mode to CNG instead.
1638   if (speech_type == AudioDecoder::kComfortNoise) {
1639     last_mode_ = kModeCodecInternalCng;
1640   }
1641   if (!play_dtmf) {
1642     dtmf_tone_generator_->Reset();
1643   }
1644   expand_->Reset();
1645   return 0;
1646 }
1647 
DoRfc3389Cng(PacketList * packet_list,bool play_dtmf)1648 int NetEqImpl::DoRfc3389Cng(PacketList* packet_list, bool play_dtmf) {
1649   if (!packet_list->empty()) {
1650     // Must have exactly one SID frame at this point.
1651     assert(packet_list->size() == 1);
1652     Packet* packet = packet_list->front();
1653     packet_list->pop_front();
1654     if (!decoder_database_->IsComfortNoise(packet->header.payloadType)) {
1655 #ifdef LEGACY_BITEXACT
1656       // This can happen due to a bug in GetDecision. Change the payload type
1657       // to a CNG type, and move on. Note that this means that we are in fact
1658       // sending a non-CNG payload to the comfort noise decoder for decoding.
1659       // Clearly wrong, but will maintain bit-exactness with legacy.
1660       if (fs_hz_ == 8000) {
1661         packet->header.payloadType =
1662             decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGnb);
1663       } else if (fs_hz_ == 16000) {
1664         packet->header.payloadType =
1665             decoder_database_->GetRtpPayloadType(NetEqDecoder::kDecoderCNGwb);
1666       } else if (fs_hz_ == 32000) {
1667         packet->header.payloadType = decoder_database_->GetRtpPayloadType(
1668             NetEqDecoder::kDecoderCNGswb32kHz);
1669       } else if (fs_hz_ == 48000) {
1670         packet->header.payloadType = decoder_database_->GetRtpPayloadType(
1671             NetEqDecoder::kDecoderCNGswb48kHz);
1672       }
1673       assert(decoder_database_->IsComfortNoise(packet->header.payloadType));
1674 #else
1675       LOG(LS_ERROR) << "Trying to decode non-CNG payload as CNG.";
1676       return kOtherError;
1677 #endif
1678     }
1679     // UpdateParameters() deletes |packet|.
1680     if (comfort_noise_->UpdateParameters(packet) ==
1681         ComfortNoise::kInternalError) {
1682       algorithm_buffer_->Zeros(output_size_samples_);
1683       return -comfort_noise_->internal_error_code();
1684     }
1685   }
1686   int cn_return = comfort_noise_->Generate(output_size_samples_,
1687                                            algorithm_buffer_.get());
1688   expand_->Reset();
1689   last_mode_ = kModeRfc3389Cng;
1690   if (!play_dtmf) {
1691     dtmf_tone_generator_->Reset();
1692   }
1693   if (cn_return == ComfortNoise::kInternalError) {
1694     decoder_error_code_ = comfort_noise_->internal_error_code();
1695     return kComfortNoiseErrorCode;
1696   } else if (cn_return == ComfortNoise::kUnknownPayloadType) {
1697     return kUnknownRtpPayloadType;
1698   }
1699   return 0;
1700 }
1701 
DoCodecInternalCng(const int16_t * decoded_buffer,size_t decoded_length)1702 void NetEqImpl::DoCodecInternalCng(const int16_t* decoded_buffer,
1703                                    size_t decoded_length) {
1704   RTC_DCHECK(normal_.get());
1705   RTC_DCHECK(mute_factor_array_.get());
1706   normal_->Process(decoded_buffer, decoded_length, last_mode_,
1707                    mute_factor_array_.get(), algorithm_buffer_.get());
1708   last_mode_ = kModeCodecInternalCng;
1709   expand_->Reset();
1710 }
1711 
DoDtmf(const DtmfEvent & dtmf_event,bool * play_dtmf)1712 int NetEqImpl::DoDtmf(const DtmfEvent& dtmf_event, bool* play_dtmf) {
1713   // This block of the code and the block further down, handling |dtmf_switch|
1714   // are commented out. Otherwise playing out-of-band DTMF would fail in VoE
1715   // test, DtmfTest.ManualSuccessfullySendsOutOfBandTelephoneEvents. This is
1716   // equivalent to |dtmf_switch| always be false.
1717   //
1718   // See http://webrtc-codereview.appspot.com/1195004/ for discussion
1719   // On this issue. This change might cause some glitches at the point of
1720   // switch from audio to DTMF. Issue 1545 is filed to track this.
1721   //
1722   //  bool dtmf_switch = false;
1723   //  if ((last_mode_ != kModeDtmf) && dtmf_tone_generator_->initialized()) {
1724   //    // Special case; see below.
1725   //    // We must catch this before calling Generate, since |initialized| is
1726   //    // modified in that call.
1727   //    dtmf_switch = true;
1728   //  }
1729 
1730   int dtmf_return_value = 0;
1731   if (!dtmf_tone_generator_->initialized()) {
1732     // Initialize if not already done.
1733     dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1734                                                    dtmf_event.volume);
1735   }
1736 
1737   if (dtmf_return_value == 0) {
1738     // Generate DTMF signal.
1739     dtmf_return_value = dtmf_tone_generator_->Generate(output_size_samples_,
1740                                                        algorithm_buffer_.get());
1741   }
1742 
1743   if (dtmf_return_value < 0) {
1744     algorithm_buffer_->Zeros(output_size_samples_);
1745     return dtmf_return_value;
1746   }
1747 
1748   //  if (dtmf_switch) {
1749   //    // This is the special case where the previous operation was DTMF
1750   //    // overdub, but the current instruction is "regular" DTMF. We must make
1751   //    // sure that the DTMF does not have any discontinuities. The first DTMF
1752   //    // sample that we generate now must be played out immediately, therefore
1753   //    // it must be copied to the speech buffer.
1754   //    // TODO(hlundin): This code seems incorrect. (Legacy.) Write test and
1755   //    // verify correct operation.
1756   //    assert(false);
1757   //    // Must generate enough data to replace all of the |sync_buffer_|
1758   //    // "future".
1759   //    int required_length = sync_buffer_->FutureLength();
1760   //    assert(dtmf_tone_generator_->initialized());
1761   //    dtmf_return_value = dtmf_tone_generator_->Generate(required_length,
1762   //                                                       algorithm_buffer_);
1763   //    assert((size_t) required_length == algorithm_buffer_->Size());
1764   //    if (dtmf_return_value < 0) {
1765   //      algorithm_buffer_->Zeros(output_size_samples_);
1766   //      return dtmf_return_value;
1767   //    }
1768   //
1769   //    // Overwrite the "future" part of the speech buffer with the new DTMF
1770   //    // data.
1771   //    // TODO(hlundin): It seems that this overwriting has gone lost.
1772   //    // Not adapted for multi-channel yet.
1773   //    assert(algorithm_buffer_->Channels() == 1);
1774   //    if (algorithm_buffer_->Channels() != 1) {
1775   //      LOG(LS_WARNING) << "DTMF not supported for more than one channel";
1776   //      return kStereoNotSupported;
1777   //    }
1778   //    // Shuffle the remaining data to the beginning of algorithm buffer.
1779   //    algorithm_buffer_->PopFront(sync_buffer_->FutureLength());
1780   //  }
1781 
1782   sync_buffer_->IncreaseEndTimestamp(
1783       static_cast<uint32_t>(output_size_samples_));
1784   expand_->Reset();
1785   last_mode_ = kModeDtmf;
1786 
1787   // Set to false because the DTMF is already in the algorithm buffer.
1788   *play_dtmf = false;
1789   return 0;
1790 }
1791 
DoAlternativePlc(bool increase_timestamp)1792 void NetEqImpl::DoAlternativePlc(bool increase_timestamp) {
1793   AudioDecoder* decoder = decoder_database_->GetActiveDecoder();
1794   size_t length;
1795   if (decoder && decoder->HasDecodePlc()) {
1796     // Use the decoder's packet-loss concealment.
1797     // TODO(hlundin): Will probably need a longer buffer for multi-channel.
1798     int16_t decoded_buffer[kMaxFrameSize];
1799     length = decoder->DecodePlc(1, decoded_buffer);
1800     if (length > 0)
1801       algorithm_buffer_->PushBackInterleaved(decoded_buffer, length);
1802   } else {
1803     // Do simple zero-stuffing.
1804     length = output_size_samples_;
1805     algorithm_buffer_->Zeros(length);
1806     // By not advancing the timestamp, NetEq inserts samples.
1807     stats_.AddZeros(length);
1808   }
1809   if (increase_timestamp) {
1810     sync_buffer_->IncreaseEndTimestamp(static_cast<uint32_t>(length));
1811   }
1812   expand_->Reset();
1813 }
1814 
DtmfOverdub(const DtmfEvent & dtmf_event,size_t num_channels,int16_t * output) const1815 int NetEqImpl::DtmfOverdub(const DtmfEvent& dtmf_event, size_t num_channels,
1816                            int16_t* output) const {
1817   size_t out_index = 0;
1818   size_t overdub_length = output_size_samples_;  // Default value.
1819 
1820   if (sync_buffer_->dtmf_index() > sync_buffer_->next_index()) {
1821     // Special operation for transition from "DTMF only" to "DTMF overdub".
1822     out_index = std::min(
1823         sync_buffer_->dtmf_index() - sync_buffer_->next_index(),
1824         output_size_samples_);
1825     overdub_length = output_size_samples_ - out_index;
1826   }
1827 
1828   AudioMultiVector dtmf_output(num_channels);
1829   int dtmf_return_value = 0;
1830   if (!dtmf_tone_generator_->initialized()) {
1831     dtmf_return_value = dtmf_tone_generator_->Init(fs_hz_, dtmf_event.event_no,
1832                                                    dtmf_event.volume);
1833   }
1834   if (dtmf_return_value == 0) {
1835     dtmf_return_value = dtmf_tone_generator_->Generate(overdub_length,
1836                                                        &dtmf_output);
1837     assert(overdub_length == dtmf_output.Size());
1838   }
1839   dtmf_output.ReadInterleaved(overdub_length, &output[out_index]);
1840   return dtmf_return_value < 0 ? dtmf_return_value : 0;
1841 }
1842 
ExtractPackets(size_t required_samples,PacketList * packet_list)1843 int NetEqImpl::ExtractPackets(size_t required_samples,
1844                               PacketList* packet_list) {
1845   bool first_packet = true;
1846   uint8_t prev_payload_type = 0;
1847   uint32_t prev_timestamp = 0;
1848   uint16_t prev_sequence_number = 0;
1849   bool next_packet_available = false;
1850 
1851   const RTPHeader* header = packet_buffer_->NextRtpHeader();
1852   assert(header);
1853   if (!header) {
1854     LOG(LS_ERROR) << "Packet buffer unexpectedly empty.";
1855     return -1;
1856   }
1857   uint32_t first_timestamp = header->timestamp;
1858   int extracted_samples = 0;
1859 
1860   // Packet extraction loop.
1861   do {
1862     timestamp_ = header->timestamp;
1863     size_t discard_count = 0;
1864     Packet* packet = packet_buffer_->GetNextPacket(&discard_count);
1865     // |header| may be invalid after the |packet_buffer_| operation.
1866     header = NULL;
1867     if (!packet) {
1868       LOG(LS_ERROR) << "Should always be able to extract a packet here";
1869       assert(false);  // Should always be able to extract a packet here.
1870       return -1;
1871     }
1872     stats_.PacketsDiscarded(discard_count);
1873     // Store waiting time in ms; packets->waiting_time is in "output blocks".
1874     stats_.StoreWaitingTime(packet->waiting_time * kOutputSizeMs);
1875     assert(packet->payload_length > 0);
1876     packet_list->push_back(packet);  // Store packet in list.
1877 
1878     if (first_packet) {
1879       first_packet = false;
1880       if (nack_enabled_) {
1881         RTC_DCHECK(nack_);
1882         // TODO(henrik.lundin): Should we update this for all decoded packets?
1883         nack_->UpdateLastDecodedPacket(packet->header.sequenceNumber,
1884                                        packet->header.timestamp);
1885       }
1886       prev_sequence_number = packet->header.sequenceNumber;
1887       prev_timestamp = packet->header.timestamp;
1888       prev_payload_type = packet->header.payloadType;
1889     }
1890 
1891     // Store number of extracted samples.
1892     int packet_duration = 0;
1893     AudioDecoder* decoder = decoder_database_->GetDecoder(
1894         packet->header.payloadType);
1895     if (decoder) {
1896       if (packet->sync_packet) {
1897         packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1898       } else {
1899         if (packet->primary) {
1900           packet_duration = decoder->PacketDuration(packet->payload,
1901                                                     packet->payload_length);
1902         } else {
1903           packet_duration = decoder->
1904               PacketDurationRedundant(packet->payload, packet->payload_length);
1905           stats_.SecondaryDecodedSamples(packet_duration);
1906         }
1907       }
1908     } else {
1909       LOG(LS_WARNING) << "Unknown payload type "
1910                       << static_cast<int>(packet->header.payloadType);
1911       assert(false);
1912     }
1913     if (packet_duration <= 0) {
1914       // Decoder did not return a packet duration. Assume that the packet
1915       // contains the same number of samples as the previous one.
1916       packet_duration = rtc::checked_cast<int>(decoder_frame_length_);
1917     }
1918     extracted_samples = packet->header.timestamp - first_timestamp +
1919         packet_duration;
1920 
1921     // Check what packet is available next.
1922     header = packet_buffer_->NextRtpHeader();
1923     next_packet_available = false;
1924     if (header && prev_payload_type == header->payloadType) {
1925       int16_t seq_no_diff = header->sequenceNumber - prev_sequence_number;
1926       size_t ts_diff = header->timestamp - prev_timestamp;
1927       if (seq_no_diff == 1 ||
1928           (seq_no_diff == 0 && ts_diff == decoder_frame_length_)) {
1929         // The next sequence number is available, or the next part of a packet
1930         // that was split into pieces upon insertion.
1931         next_packet_available = true;
1932       }
1933       prev_sequence_number = header->sequenceNumber;
1934     }
1935   } while (extracted_samples < rtc::checked_cast<int>(required_samples) &&
1936            next_packet_available);
1937 
1938   if (extracted_samples > 0) {
1939     // Delete old packets only when we are going to decode something. Otherwise,
1940     // we could end up in the situation where we never decode anything, since
1941     // all incoming packets are considered too old but the buffer will also
1942     // never be flooded and flushed.
1943     packet_buffer_->DiscardAllOldPackets(timestamp_);
1944   }
1945 
1946   return extracted_samples;
1947 }
1948 
UpdatePlcComponents(int fs_hz,size_t channels)1949 void NetEqImpl::UpdatePlcComponents(int fs_hz, size_t channels) {
1950   // Delete objects and create new ones.
1951   expand_.reset(expand_factory_->Create(background_noise_.get(),
1952                                         sync_buffer_.get(), &random_vector_,
1953                                         &stats_, fs_hz, channels));
1954   merge_.reset(new Merge(fs_hz, channels, expand_.get(), sync_buffer_.get()));
1955 }
1956 
SetSampleRateAndChannels(int fs_hz,size_t channels)1957 void NetEqImpl::SetSampleRateAndChannels(int fs_hz, size_t channels) {
1958   LOG(LS_VERBOSE) << "SetSampleRateAndChannels " << fs_hz << " " << channels;
1959   // TODO(hlundin): Change to an enumerator and skip assert.
1960   assert(fs_hz == 8000 || fs_hz == 16000 || fs_hz ==  32000 || fs_hz == 48000);
1961   assert(channels > 0);
1962 
1963   fs_hz_ = fs_hz;
1964   fs_mult_ = fs_hz / 8000;
1965   output_size_samples_ = static_cast<size_t>(kOutputSizeMs * 8 * fs_mult_);
1966   decoder_frame_length_ = 3 * output_size_samples_;  // Initialize to 30ms.
1967 
1968   last_mode_ = kModeNormal;
1969 
1970   // Create a new array of mute factors and set all to 1.
1971   mute_factor_array_.reset(new int16_t[channels]);
1972   for (size_t i = 0; i < channels; ++i) {
1973     mute_factor_array_[i] = 16384;  // 1.0 in Q14.
1974   }
1975 
1976   AudioDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder();
1977   if (cng_decoder)
1978     cng_decoder->Reset();
1979 
1980   // Reinit post-decode VAD with new sample rate.
1981   assert(vad_.get());  // Cannot be NULL here.
1982   vad_->Init();
1983 
1984   // Delete algorithm buffer and create a new one.
1985   algorithm_buffer_.reset(new AudioMultiVector(channels));
1986 
1987   // Delete sync buffer and create a new one.
1988   sync_buffer_.reset(new SyncBuffer(channels, kSyncBufferSize * fs_mult_));
1989 
1990   // Delete BackgroundNoise object and create a new one.
1991   background_noise_.reset(new BackgroundNoise(channels));
1992   background_noise_->set_mode(background_noise_mode_);
1993 
1994   // Reset random vector.
1995   random_vector_.Reset();
1996 
1997   UpdatePlcComponents(fs_hz, channels);
1998 
1999   // Move index so that we create a small set of future samples (all 0).
2000   sync_buffer_->set_next_index(sync_buffer_->next_index() -
2001       expand_->overlap_length());
2002 
2003   normal_.reset(new Normal(fs_hz, decoder_database_.get(), *background_noise_,
2004                            expand_.get()));
2005   accelerate_.reset(
2006       accelerate_factory_->Create(fs_hz, channels, *background_noise_));
2007   preemptive_expand_.reset(preemptive_expand_factory_->Create(
2008       fs_hz, channels, *background_noise_, expand_->overlap_length()));
2009 
2010   // Delete ComfortNoise object and create a new one.
2011   comfort_noise_.reset(new ComfortNoise(fs_hz, decoder_database_.get(),
2012                                         sync_buffer_.get()));
2013 
2014   // Verify that |decoded_buffer_| is long enough.
2015   if (decoded_buffer_length_ < kMaxFrameSize * channels) {
2016     // Reallocate to larger size.
2017     decoded_buffer_length_ = kMaxFrameSize * channels;
2018     decoded_buffer_.reset(new int16_t[decoded_buffer_length_]);
2019   }
2020 
2021   // Create DecisionLogic if it is not created yet, then communicate new sample
2022   // rate and output size to DecisionLogic object.
2023   if (!decision_logic_.get()) {
2024     CreateDecisionLogic();
2025   }
2026   decision_logic_->SetSampleRate(fs_hz_, output_size_samples_);
2027 }
2028 
LastOutputType()2029 NetEqOutputType NetEqImpl::LastOutputType() {
2030   assert(vad_.get());
2031   assert(expand_.get());
2032   if (last_mode_ == kModeCodecInternalCng || last_mode_ == kModeRfc3389Cng) {
2033     return kOutputCNG;
2034   } else if (last_mode_ == kModeExpand && expand_->MuteFactor(0) == 0) {
2035     // Expand mode has faded down to background noise only (very long expand).
2036     return kOutputPLCtoCNG;
2037   } else if (last_mode_ == kModeExpand) {
2038     return kOutputPLC;
2039   } else if (vad_->running() && !vad_->active_speech()) {
2040     return kOutputVADPassive;
2041   } else {
2042     return kOutputNormal;
2043   }
2044 }
2045 
CreateDecisionLogic()2046 void NetEqImpl::CreateDecisionLogic() {
2047   decision_logic_.reset(DecisionLogic::Create(fs_hz_, output_size_samples_,
2048                                               playout_mode_,
2049                                               decoder_database_.get(),
2050                                               *packet_buffer_.get(),
2051                                               delay_manager_.get(),
2052                                               buffer_level_filter_.get()));
2053 }
2054 }  // namespace webrtc
2055