• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Go support for Protocol Buffers - Google's data interchange format
2//
3// Copyright 2010 The Go Authors.  All rights reserved.
4// https://github.com/golang/protobuf
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10//     * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12//     * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16//     * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32/*
33Package proto converts data structures to and from the wire format of
34protocol buffers.  It works in concert with the Go source code generated
35for .proto files by the protocol compiler.
36
37A summary of the properties of the protocol buffer interface
38for a protocol buffer variable v:
39
40  - Names are turned from camel_case to CamelCase for export.
41  - There are no methods on v to set fields; just treat
42	them as structure fields.
43  - There are getters that return a field's value if set,
44	and return the field's default value if unset.
45	The getters work even if the receiver is a nil message.
46  - The zero value for a struct is its correct initialization state.
47	All desired fields must be set before marshaling.
48  - A Reset() method will restore a protobuf struct to its zero state.
49  - Non-repeated fields are pointers to the values; nil means unset.
50	That is, optional or required field int32 f becomes F *int32.
51  - Repeated fields are slices.
52  - Helper functions are available to aid the setting of fields.
53	msg.Foo = proto.String("hello") // set field
54  - Constants are defined to hold the default values of all fields that
55	have them.  They have the form Default_StructName_FieldName.
56	Because the getter methods handle defaulted values,
57	direct use of these constants should be rare.
58  - Enums are given type names and maps from names to values.
59	Enum values are prefixed by the enclosing message's name, or by the
60	enum's type name if it is a top-level enum. Enum types have a String
61	method, and a Enum method to assist in message construction.
62  - Nested messages, groups and enums have type names prefixed with the name of
63	the surrounding message type.
64  - Extensions are given descriptor names that start with E_,
65	followed by an underscore-delimited list of the nested messages
66	that contain it (if any) followed by the CamelCased name of the
67	extension field itself.  HasExtension, ClearExtension, GetExtension
68	and SetExtension are functions for manipulating extensions.
69  - Oneof field sets are given a single field in their message,
70	with distinguished wrapper types for each possible field value.
71  - Marshal and Unmarshal are functions to encode and decode the wire format.
72
73When the .proto file specifies `syntax="proto3"`, there are some differences:
74
75  - Non-repeated fields of non-message type are values instead of pointers.
76  - Enum types do not get an Enum method.
77
78The simplest way to describe this is to see an example.
79Given file test.proto, containing
80
81	package example;
82
83	enum FOO { X = 17; }
84
85	message Test {
86	  required string label = 1;
87	  optional int32 type = 2 [default=77];
88	  repeated int64 reps = 3;
89	  optional group OptionalGroup = 4 {
90	    required string RequiredField = 5;
91	  }
92	  oneof union {
93	    int32 number = 6;
94	    string name = 7;
95	  }
96	}
97
98The resulting file, test.pb.go, is:
99
100	package example
101
102	import proto "github.com/golang/protobuf/proto"
103	import math "math"
104
105	type FOO int32
106	const (
107		FOO_X FOO = 17
108	)
109	var FOO_name = map[int32]string{
110		17: "X",
111	}
112	var FOO_value = map[string]int32{
113		"X": 17,
114	}
115
116	func (x FOO) Enum() *FOO {
117		p := new(FOO)
118		*p = x
119		return p
120	}
121	func (x FOO) String() string {
122		return proto.EnumName(FOO_name, int32(x))
123	}
124	func (x *FOO) UnmarshalJSON(data []byte) error {
125		value, err := proto.UnmarshalJSONEnum(FOO_value, data)
126		if err != nil {
127			return err
128		}
129		*x = FOO(value)
130		return nil
131	}
132
133	type Test struct {
134		Label         *string             `protobuf:"bytes,1,req,name=label" json:"label,omitempty"`
135		Type          *int32              `protobuf:"varint,2,opt,name=type,def=77" json:"type,omitempty"`
136		Reps          []int64             `protobuf:"varint,3,rep,name=reps" json:"reps,omitempty"`
137		Optionalgroup *Test_OptionalGroup `protobuf:"group,4,opt,name=OptionalGroup" json:"optionalgroup,omitempty"`
138		// Types that are valid to be assigned to Union:
139		//	*Test_Number
140		//	*Test_Name
141		Union            isTest_Union `protobuf_oneof:"union"`
142		XXX_unrecognized []byte       `json:"-"`
143	}
144	func (m *Test) Reset()         { *m = Test{} }
145	func (m *Test) String() string { return proto.CompactTextString(m) }
146	func (*Test) ProtoMessage() {}
147
148	type isTest_Union interface {
149		isTest_Union()
150	}
151
152	type Test_Number struct {
153		Number int32 `protobuf:"varint,6,opt,name=number"`
154	}
155	type Test_Name struct {
156		Name string `protobuf:"bytes,7,opt,name=name"`
157	}
158
159	func (*Test_Number) isTest_Union() {}
160	func (*Test_Name) isTest_Union()   {}
161
162	func (m *Test) GetUnion() isTest_Union {
163		if m != nil {
164			return m.Union
165		}
166		return nil
167	}
168	const Default_Test_Type int32 = 77
169
170	func (m *Test) GetLabel() string {
171		if m != nil && m.Label != nil {
172			return *m.Label
173		}
174		return ""
175	}
176
177	func (m *Test) GetType() int32 {
178		if m != nil && m.Type != nil {
179			return *m.Type
180		}
181		return Default_Test_Type
182	}
183
184	func (m *Test) GetOptionalgroup() *Test_OptionalGroup {
185		if m != nil {
186			return m.Optionalgroup
187		}
188		return nil
189	}
190
191	type Test_OptionalGroup struct {
192		RequiredField *string `protobuf:"bytes,5,req" json:"RequiredField,omitempty"`
193	}
194	func (m *Test_OptionalGroup) Reset()         { *m = Test_OptionalGroup{} }
195	func (m *Test_OptionalGroup) String() string { return proto.CompactTextString(m) }
196
197	func (m *Test_OptionalGroup) GetRequiredField() string {
198		if m != nil && m.RequiredField != nil {
199			return *m.RequiredField
200		}
201		return ""
202	}
203
204	func (m *Test) GetNumber() int32 {
205		if x, ok := m.GetUnion().(*Test_Number); ok {
206			return x.Number
207		}
208		return 0
209	}
210
211	func (m *Test) GetName() string {
212		if x, ok := m.GetUnion().(*Test_Name); ok {
213			return x.Name
214		}
215		return ""
216	}
217
218	func init() {
219		proto.RegisterEnum("example.FOO", FOO_name, FOO_value)
220	}
221
222To create and play with a Test object:
223
224	package main
225
226	import (
227		"log"
228
229		"github.com/golang/protobuf/proto"
230		pb "./example.pb"
231	)
232
233	func main() {
234		test := &pb.Test{
235			Label: proto.String("hello"),
236			Type:  proto.Int32(17),
237			Reps:  []int64{1, 2, 3},
238			Optionalgroup: &pb.Test_OptionalGroup{
239				RequiredField: proto.String("good bye"),
240			},
241			Union: &pb.Test_Name{"fred"},
242		}
243		data, err := proto.Marshal(test)
244		if err != nil {
245			log.Fatal("marshaling error: ", err)
246		}
247		newTest := &pb.Test{}
248		err = proto.Unmarshal(data, newTest)
249		if err != nil {
250			log.Fatal("unmarshaling error: ", err)
251		}
252		// Now test and newTest contain the same data.
253		if test.GetLabel() != newTest.GetLabel() {
254			log.Fatalf("data mismatch %q != %q", test.GetLabel(), newTest.GetLabel())
255		}
256		// Use a type switch to determine which oneof was set.
257		switch u := test.Union.(type) {
258		case *pb.Test_Number: // u.Number contains the number.
259		case *pb.Test_Name: // u.Name contains the string.
260		}
261		// etc.
262	}
263*/
264package proto
265
266import (
267	"encoding/json"
268	"fmt"
269	"log"
270	"reflect"
271	"sort"
272	"strconv"
273	"sync"
274)
275
276// RequiredNotSetError is an error type returned by either Marshal or Unmarshal.
277// Marshal reports this when a required field is not initialized.
278// Unmarshal reports this when a required field is missing from the wire data.
279type RequiredNotSetError struct{ field string }
280
281func (e *RequiredNotSetError) Error() string {
282	if e.field == "" {
283		return fmt.Sprintf("proto: required field not set")
284	}
285	return fmt.Sprintf("proto: required field %q not set", e.field)
286}
287func (e *RequiredNotSetError) RequiredNotSet() bool {
288	return true
289}
290
291type invalidUTF8Error struct{ field string }
292
293func (e *invalidUTF8Error) Error() string {
294	if e.field == "" {
295		return "proto: invalid UTF-8 detected"
296	}
297	return fmt.Sprintf("proto: field %q contains invalid UTF-8", e.field)
298}
299func (e *invalidUTF8Error) InvalidUTF8() bool {
300	return true
301}
302
303// errInvalidUTF8 is a sentinel error to identify fields with invalid UTF-8.
304// This error should not be exposed to the external API as such errors should
305// be recreated with the field information.
306var errInvalidUTF8 = &invalidUTF8Error{}
307
308// isNonFatal reports whether the error is either a RequiredNotSet error
309// or a InvalidUTF8 error.
310func isNonFatal(err error) bool {
311	if re, ok := err.(interface{ RequiredNotSet() bool }); ok && re.RequiredNotSet() {
312		return true
313	}
314	if re, ok := err.(interface{ InvalidUTF8() bool }); ok && re.InvalidUTF8() {
315		return true
316	}
317	return false
318}
319
320type nonFatal struct{ E error }
321
322// Merge merges err into nf and reports whether it was successful.
323// Otherwise it returns false for any fatal non-nil errors.
324func (nf *nonFatal) Merge(err error) (ok bool) {
325	if err == nil {
326		return true // not an error
327	}
328	if !isNonFatal(err) {
329		return false // fatal error
330	}
331	if nf.E == nil {
332		nf.E = err // store first instance of non-fatal error
333	}
334	return true
335}
336
337// Message is implemented by generated protocol buffer messages.
338type Message interface {
339	Reset()
340	String() string
341	ProtoMessage()
342}
343
344// A Buffer is a buffer manager for marshaling and unmarshaling
345// protocol buffers.  It may be reused between invocations to
346// reduce memory usage.  It is not necessary to use a Buffer;
347// the global functions Marshal and Unmarshal create a
348// temporary Buffer and are fine for most applications.
349type Buffer struct {
350	buf   []byte // encode/decode byte stream
351	index int    // read point
352
353	deterministic bool
354}
355
356// NewBuffer allocates a new Buffer and initializes its internal data to
357// the contents of the argument slice.
358func NewBuffer(e []byte) *Buffer {
359	return &Buffer{buf: e}
360}
361
362// Reset resets the Buffer, ready for marshaling a new protocol buffer.
363func (p *Buffer) Reset() {
364	p.buf = p.buf[0:0] // for reading/writing
365	p.index = 0        // for reading
366}
367
368// SetBuf replaces the internal buffer with the slice,
369// ready for unmarshaling the contents of the slice.
370func (p *Buffer) SetBuf(s []byte) {
371	p.buf = s
372	p.index = 0
373}
374
375// Bytes returns the contents of the Buffer.
376func (p *Buffer) Bytes() []byte { return p.buf }
377
378// SetDeterministic sets whether to use deterministic serialization.
379//
380// Deterministic serialization guarantees that for a given binary, equal
381// messages will always be serialized to the same bytes. This implies:
382//
383//   - Repeated serialization of a message will return the same bytes.
384//   - Different processes of the same binary (which may be executing on
385//     different machines) will serialize equal messages to the same bytes.
386//
387// Note that the deterministic serialization is NOT canonical across
388// languages. It is not guaranteed to remain stable over time. It is unstable
389// across different builds with schema changes due to unknown fields.
390// Users who need canonical serialization (e.g., persistent storage in a
391// canonical form, fingerprinting, etc.) should define their own
392// canonicalization specification and implement their own serializer rather
393// than relying on this API.
394//
395// If deterministic serialization is requested, map entries will be sorted
396// by keys in lexographical order. This is an implementation detail and
397// subject to change.
398func (p *Buffer) SetDeterministic(deterministic bool) {
399	p.deterministic = deterministic
400}
401
402/*
403 * Helper routines for simplifying the creation of optional fields of basic type.
404 */
405
406// Bool is a helper routine that allocates a new bool value
407// to store v and returns a pointer to it.
408func Bool(v bool) *bool {
409	return &v
410}
411
412// Int32 is a helper routine that allocates a new int32 value
413// to store v and returns a pointer to it.
414func Int32(v int32) *int32 {
415	return &v
416}
417
418// Int is a helper routine that allocates a new int32 value
419// to store v and returns a pointer to it, but unlike Int32
420// its argument value is an int.
421func Int(v int) *int32 {
422	p := new(int32)
423	*p = int32(v)
424	return p
425}
426
427// Int64 is a helper routine that allocates a new int64 value
428// to store v and returns a pointer to it.
429func Int64(v int64) *int64 {
430	return &v
431}
432
433// Float32 is a helper routine that allocates a new float32 value
434// to store v and returns a pointer to it.
435func Float32(v float32) *float32 {
436	return &v
437}
438
439// Float64 is a helper routine that allocates a new float64 value
440// to store v and returns a pointer to it.
441func Float64(v float64) *float64 {
442	return &v
443}
444
445// Uint32 is a helper routine that allocates a new uint32 value
446// to store v and returns a pointer to it.
447func Uint32(v uint32) *uint32 {
448	return &v
449}
450
451// Uint64 is a helper routine that allocates a new uint64 value
452// to store v and returns a pointer to it.
453func Uint64(v uint64) *uint64 {
454	return &v
455}
456
457// String is a helper routine that allocates a new string value
458// to store v and returns a pointer to it.
459func String(v string) *string {
460	return &v
461}
462
463// EnumName is a helper function to simplify printing protocol buffer enums
464// by name.  Given an enum map and a value, it returns a useful string.
465func EnumName(m map[int32]string, v int32) string {
466	s, ok := m[v]
467	if ok {
468		return s
469	}
470	return strconv.Itoa(int(v))
471}
472
473// UnmarshalJSONEnum is a helper function to simplify recovering enum int values
474// from their JSON-encoded representation. Given a map from the enum's symbolic
475// names to its int values, and a byte buffer containing the JSON-encoded
476// value, it returns an int32 that can be cast to the enum type by the caller.
477//
478// The function can deal with both JSON representations, numeric and symbolic.
479func UnmarshalJSONEnum(m map[string]int32, data []byte, enumName string) (int32, error) {
480	if data[0] == '"' {
481		// New style: enums are strings.
482		var repr string
483		if err := json.Unmarshal(data, &repr); err != nil {
484			return -1, err
485		}
486		val, ok := m[repr]
487		if !ok {
488			return 0, fmt.Errorf("unrecognized enum %s value %q", enumName, repr)
489		}
490		return val, nil
491	}
492	// Old style: enums are ints.
493	var val int32
494	if err := json.Unmarshal(data, &val); err != nil {
495		return 0, fmt.Errorf("cannot unmarshal %#q into enum %s", data, enumName)
496	}
497	return val, nil
498}
499
500// DebugPrint dumps the encoded data in b in a debugging format with a header
501// including the string s. Used in testing but made available for general debugging.
502func (p *Buffer) DebugPrint(s string, b []byte) {
503	var u uint64
504
505	obuf := p.buf
506	index := p.index
507	p.buf = b
508	p.index = 0
509	depth := 0
510
511	fmt.Printf("\n--- %s ---\n", s)
512
513out:
514	for {
515		for i := 0; i < depth; i++ {
516			fmt.Print("  ")
517		}
518
519		index := p.index
520		if index == len(p.buf) {
521			break
522		}
523
524		op, err := p.DecodeVarint()
525		if err != nil {
526			fmt.Printf("%3d: fetching op err %v\n", index, err)
527			break out
528		}
529		tag := op >> 3
530		wire := op & 7
531
532		switch wire {
533		default:
534			fmt.Printf("%3d: t=%3d unknown wire=%d\n",
535				index, tag, wire)
536			break out
537
538		case WireBytes:
539			var r []byte
540
541			r, err = p.DecodeRawBytes(false)
542			if err != nil {
543				break out
544			}
545			fmt.Printf("%3d: t=%3d bytes [%d]", index, tag, len(r))
546			if len(r) <= 6 {
547				for i := 0; i < len(r); i++ {
548					fmt.Printf(" %.2x", r[i])
549				}
550			} else {
551				for i := 0; i < 3; i++ {
552					fmt.Printf(" %.2x", r[i])
553				}
554				fmt.Printf(" ..")
555				for i := len(r) - 3; i < len(r); i++ {
556					fmt.Printf(" %.2x", r[i])
557				}
558			}
559			fmt.Printf("\n")
560
561		case WireFixed32:
562			u, err = p.DecodeFixed32()
563			if err != nil {
564				fmt.Printf("%3d: t=%3d fix32 err %v\n", index, tag, err)
565				break out
566			}
567			fmt.Printf("%3d: t=%3d fix32 %d\n", index, tag, u)
568
569		case WireFixed64:
570			u, err = p.DecodeFixed64()
571			if err != nil {
572				fmt.Printf("%3d: t=%3d fix64 err %v\n", index, tag, err)
573				break out
574			}
575			fmt.Printf("%3d: t=%3d fix64 %d\n", index, tag, u)
576
577		case WireVarint:
578			u, err = p.DecodeVarint()
579			if err != nil {
580				fmt.Printf("%3d: t=%3d varint err %v\n", index, tag, err)
581				break out
582			}
583			fmt.Printf("%3d: t=%3d varint %d\n", index, tag, u)
584
585		case WireStartGroup:
586			fmt.Printf("%3d: t=%3d start\n", index, tag)
587			depth++
588
589		case WireEndGroup:
590			depth--
591			fmt.Printf("%3d: t=%3d end\n", index, tag)
592		}
593	}
594
595	if depth != 0 {
596		fmt.Printf("%3d: start-end not balanced %d\n", p.index, depth)
597	}
598	fmt.Printf("\n")
599
600	p.buf = obuf
601	p.index = index
602}
603
604// SetDefaults sets unset protocol buffer fields to their default values.
605// It only modifies fields that are both unset and have defined defaults.
606// It recursively sets default values in any non-nil sub-messages.
607func SetDefaults(pb Message) {
608	setDefaults(reflect.ValueOf(pb), true, false)
609}
610
611// v is a pointer to a struct.
612func setDefaults(v reflect.Value, recur, zeros bool) {
613	v = v.Elem()
614
615	defaultMu.RLock()
616	dm, ok := defaults[v.Type()]
617	defaultMu.RUnlock()
618	if !ok {
619		dm = buildDefaultMessage(v.Type())
620		defaultMu.Lock()
621		defaults[v.Type()] = dm
622		defaultMu.Unlock()
623	}
624
625	for _, sf := range dm.scalars {
626		f := v.Field(sf.index)
627		if !f.IsNil() {
628			// field already set
629			continue
630		}
631		dv := sf.value
632		if dv == nil && !zeros {
633			// no explicit default, and don't want to set zeros
634			continue
635		}
636		fptr := f.Addr().Interface() // **T
637		// TODO: Consider batching the allocations we do here.
638		switch sf.kind {
639		case reflect.Bool:
640			b := new(bool)
641			if dv != nil {
642				*b = dv.(bool)
643			}
644			*(fptr.(**bool)) = b
645		case reflect.Float32:
646			f := new(float32)
647			if dv != nil {
648				*f = dv.(float32)
649			}
650			*(fptr.(**float32)) = f
651		case reflect.Float64:
652			f := new(float64)
653			if dv != nil {
654				*f = dv.(float64)
655			}
656			*(fptr.(**float64)) = f
657		case reflect.Int32:
658			// might be an enum
659			if ft := f.Type(); ft != int32PtrType {
660				// enum
661				f.Set(reflect.New(ft.Elem()))
662				if dv != nil {
663					f.Elem().SetInt(int64(dv.(int32)))
664				}
665			} else {
666				// int32 field
667				i := new(int32)
668				if dv != nil {
669					*i = dv.(int32)
670				}
671				*(fptr.(**int32)) = i
672			}
673		case reflect.Int64:
674			i := new(int64)
675			if dv != nil {
676				*i = dv.(int64)
677			}
678			*(fptr.(**int64)) = i
679		case reflect.String:
680			s := new(string)
681			if dv != nil {
682				*s = dv.(string)
683			}
684			*(fptr.(**string)) = s
685		case reflect.Uint8:
686			// exceptional case: []byte
687			var b []byte
688			if dv != nil {
689				db := dv.([]byte)
690				b = make([]byte, len(db))
691				copy(b, db)
692			} else {
693				b = []byte{}
694			}
695			*(fptr.(*[]byte)) = b
696		case reflect.Uint32:
697			u := new(uint32)
698			if dv != nil {
699				*u = dv.(uint32)
700			}
701			*(fptr.(**uint32)) = u
702		case reflect.Uint64:
703			u := new(uint64)
704			if dv != nil {
705				*u = dv.(uint64)
706			}
707			*(fptr.(**uint64)) = u
708		default:
709			log.Printf("proto: can't set default for field %v (sf.kind=%v)", f, sf.kind)
710		}
711	}
712
713	for _, ni := range dm.nested {
714		f := v.Field(ni)
715		// f is *T or []*T or map[T]*T
716		switch f.Kind() {
717		case reflect.Ptr:
718			if f.IsNil() {
719				continue
720			}
721			setDefaults(f, recur, zeros)
722
723		case reflect.Slice:
724			for i := 0; i < f.Len(); i++ {
725				e := f.Index(i)
726				if e.IsNil() {
727					continue
728				}
729				setDefaults(e, recur, zeros)
730			}
731
732		case reflect.Map:
733			for _, k := range f.MapKeys() {
734				e := f.MapIndex(k)
735				if e.IsNil() {
736					continue
737				}
738				setDefaults(e, recur, zeros)
739			}
740		}
741	}
742}
743
744var (
745	// defaults maps a protocol buffer struct type to a slice of the fields,
746	// with its scalar fields set to their proto-declared non-zero default values.
747	defaultMu sync.RWMutex
748	defaults  = make(map[reflect.Type]defaultMessage)
749
750	int32PtrType = reflect.TypeOf((*int32)(nil))
751)
752
753// defaultMessage represents information about the default values of a message.
754type defaultMessage struct {
755	scalars []scalarField
756	nested  []int // struct field index of nested messages
757}
758
759type scalarField struct {
760	index int          // struct field index
761	kind  reflect.Kind // element type (the T in *T or []T)
762	value interface{}  // the proto-declared default value, or nil
763}
764
765// t is a struct type.
766func buildDefaultMessage(t reflect.Type) (dm defaultMessage) {
767	sprop := GetProperties(t)
768	for _, prop := range sprop.Prop {
769		fi, ok := sprop.decoderTags.get(prop.Tag)
770		if !ok {
771			// XXX_unrecognized
772			continue
773		}
774		ft := t.Field(fi).Type
775
776		sf, nested, err := fieldDefault(ft, prop)
777		switch {
778		case err != nil:
779			log.Print(err)
780		case nested:
781			dm.nested = append(dm.nested, fi)
782		case sf != nil:
783			sf.index = fi
784			dm.scalars = append(dm.scalars, *sf)
785		}
786	}
787
788	return dm
789}
790
791// fieldDefault returns the scalarField for field type ft.
792// sf will be nil if the field can not have a default.
793// nestedMessage will be true if this is a nested message.
794// Note that sf.index is not set on return.
795func fieldDefault(ft reflect.Type, prop *Properties) (sf *scalarField, nestedMessage bool, err error) {
796	var canHaveDefault bool
797	switch ft.Kind() {
798	case reflect.Ptr:
799		if ft.Elem().Kind() == reflect.Struct {
800			nestedMessage = true
801		} else {
802			canHaveDefault = true // proto2 scalar field
803		}
804
805	case reflect.Slice:
806		switch ft.Elem().Kind() {
807		case reflect.Ptr:
808			nestedMessage = true // repeated message
809		case reflect.Uint8:
810			canHaveDefault = true // bytes field
811		}
812
813	case reflect.Map:
814		if ft.Elem().Kind() == reflect.Ptr {
815			nestedMessage = true // map with message values
816		}
817	}
818
819	if !canHaveDefault {
820		if nestedMessage {
821			return nil, true, nil
822		}
823		return nil, false, nil
824	}
825
826	// We now know that ft is a pointer or slice.
827	sf = &scalarField{kind: ft.Elem().Kind()}
828
829	// scalar fields without defaults
830	if !prop.HasDefault {
831		return sf, false, nil
832	}
833
834	// a scalar field: either *T or []byte
835	switch ft.Elem().Kind() {
836	case reflect.Bool:
837		x, err := strconv.ParseBool(prop.Default)
838		if err != nil {
839			return nil, false, fmt.Errorf("proto: bad default bool %q: %v", prop.Default, err)
840		}
841		sf.value = x
842	case reflect.Float32:
843		x, err := strconv.ParseFloat(prop.Default, 32)
844		if err != nil {
845			return nil, false, fmt.Errorf("proto: bad default float32 %q: %v", prop.Default, err)
846		}
847		sf.value = float32(x)
848	case reflect.Float64:
849		x, err := strconv.ParseFloat(prop.Default, 64)
850		if err != nil {
851			return nil, false, fmt.Errorf("proto: bad default float64 %q: %v", prop.Default, err)
852		}
853		sf.value = x
854	case reflect.Int32:
855		x, err := strconv.ParseInt(prop.Default, 10, 32)
856		if err != nil {
857			return nil, false, fmt.Errorf("proto: bad default int32 %q: %v", prop.Default, err)
858		}
859		sf.value = int32(x)
860	case reflect.Int64:
861		x, err := strconv.ParseInt(prop.Default, 10, 64)
862		if err != nil {
863			return nil, false, fmt.Errorf("proto: bad default int64 %q: %v", prop.Default, err)
864		}
865		sf.value = x
866	case reflect.String:
867		sf.value = prop.Default
868	case reflect.Uint8:
869		// []byte (not *uint8)
870		sf.value = []byte(prop.Default)
871	case reflect.Uint32:
872		x, err := strconv.ParseUint(prop.Default, 10, 32)
873		if err != nil {
874			return nil, false, fmt.Errorf("proto: bad default uint32 %q: %v", prop.Default, err)
875		}
876		sf.value = uint32(x)
877	case reflect.Uint64:
878		x, err := strconv.ParseUint(prop.Default, 10, 64)
879		if err != nil {
880			return nil, false, fmt.Errorf("proto: bad default uint64 %q: %v", prop.Default, err)
881		}
882		sf.value = x
883	default:
884		return nil, false, fmt.Errorf("proto: unhandled def kind %v", ft.Elem().Kind())
885	}
886
887	return sf, false, nil
888}
889
890// mapKeys returns a sort.Interface to be used for sorting the map keys.
891// Map fields may have key types of non-float scalars, strings and enums.
892func mapKeys(vs []reflect.Value) sort.Interface {
893	s := mapKeySorter{vs: vs}
894
895	// Type specialization per https://developers.google.com/protocol-buffers/docs/proto#maps.
896	if len(vs) == 0 {
897		return s
898	}
899	switch vs[0].Kind() {
900	case reflect.Int32, reflect.Int64:
901		s.less = func(a, b reflect.Value) bool { return a.Int() < b.Int() }
902	case reflect.Uint32, reflect.Uint64:
903		s.less = func(a, b reflect.Value) bool { return a.Uint() < b.Uint() }
904	case reflect.Bool:
905		s.less = func(a, b reflect.Value) bool { return !a.Bool() && b.Bool() } // false < true
906	case reflect.String:
907		s.less = func(a, b reflect.Value) bool { return a.String() < b.String() }
908	default:
909		panic(fmt.Sprintf("unsupported map key type: %v", vs[0].Kind()))
910	}
911
912	return s
913}
914
915type mapKeySorter struct {
916	vs   []reflect.Value
917	less func(a, b reflect.Value) bool
918}
919
920func (s mapKeySorter) Len() int      { return len(s.vs) }
921func (s mapKeySorter) Swap(i, j int) { s.vs[i], s.vs[j] = s.vs[j], s.vs[i] }
922func (s mapKeySorter) Less(i, j int) bool {
923	return s.less(s.vs[i], s.vs[j])
924}
925
926// isProto3Zero reports whether v is a zero proto3 value.
927func isProto3Zero(v reflect.Value) bool {
928	switch v.Kind() {
929	case reflect.Bool:
930		return !v.Bool()
931	case reflect.Int32, reflect.Int64:
932		return v.Int() == 0
933	case reflect.Uint32, reflect.Uint64:
934		return v.Uint() == 0
935	case reflect.Float32, reflect.Float64:
936		return v.Float() == 0
937	case reflect.String:
938		return v.String() == ""
939	}
940	return false
941}
942
943const (
944	// ProtoPackageIsVersion3 is referenced from generated protocol buffer files
945	// to assert that that code is compatible with this version of the proto package.
946	ProtoPackageIsVersion3 = true
947
948	// ProtoPackageIsVersion2 is referenced from generated protocol buffer files
949	// to assert that that code is compatible with this version of the proto package.
950	ProtoPackageIsVersion2 = true
951
952	// ProtoPackageIsVersion1 is referenced from generated protocol buffer files
953	// to assert that that code is compatible with this version of the proto package.
954	ProtoPackageIsVersion1 = true
955)
956
957// InternalMessageInfo is a type used internally by generated .pb.go files.
958// This type is not intended to be used by non-generated code.
959// This type is not subject to any compatibility guarantee.
960type InternalMessageInfo struct {
961	marshal   *marshalInfo
962	unmarshal *unmarshalInfo
963	merge     *mergeInfo
964	discard   *discardInfo
965}
966