• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "compile/Png.h"
18 
19 #include <png.h>
20 #include <zlib.h>
21 
22 #include <algorithm>
23 #include <unordered_map>
24 #include <unordered_set>
25 
26 #include "android-base/errors.h"
27 #include "android-base/logging.h"
28 #include "android-base/macros.h"
29 
30 #include "trace/TraceBuffer.h"
31 
32 namespace aapt {
33 
34 // Custom deleter that destroys libpng read and info structs.
35 class PngReadStructDeleter {
36  public:
PngReadStructDeleter(png_structp read_ptr,png_infop info_ptr)37   PngReadStructDeleter(png_structp read_ptr, png_infop info_ptr)
38       : read_ptr_(read_ptr), info_ptr_(info_ptr) {}
39 
~PngReadStructDeleter()40   ~PngReadStructDeleter() {
41     png_destroy_read_struct(&read_ptr_, &info_ptr_, nullptr);
42   }
43 
44  private:
45   png_structp read_ptr_;
46   png_infop info_ptr_;
47 
48   DISALLOW_COPY_AND_ASSIGN(PngReadStructDeleter);
49 };
50 
51 // Custom deleter that destroys libpng write and info structs.
52 class PngWriteStructDeleter {
53  public:
PngWriteStructDeleter(png_structp write_ptr,png_infop info_ptr)54   PngWriteStructDeleter(png_structp write_ptr, png_infop info_ptr)
55       : write_ptr_(write_ptr), info_ptr_(info_ptr) {}
56 
~PngWriteStructDeleter()57   ~PngWriteStructDeleter() {
58     png_destroy_write_struct(&write_ptr_, &info_ptr_);
59   }
60 
61  private:
62   png_structp write_ptr_;
63   png_infop info_ptr_;
64 
65   DISALLOW_COPY_AND_ASSIGN(PngWriteStructDeleter);
66 };
67 
68 // Custom warning logging method that uses IDiagnostics.
LogWarning(png_structp png_ptr,png_const_charp warning_msg)69 static void LogWarning(png_structp png_ptr, png_const_charp warning_msg) {
70   IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
71   diag->Warn(DiagMessage() << warning_msg);
72 }
73 
74 // Custom error logging method that uses IDiagnostics.
LogError(png_structp png_ptr,png_const_charp error_msg)75 static void LogError(png_structp png_ptr, png_const_charp error_msg) {
76   IDiagnostics* diag = (IDiagnostics*)png_get_error_ptr(png_ptr);
77   diag->Error(DiagMessage() << error_msg);
78 
79   // Causes libpng to longjmp to the spot where setjmp was set. This is how libpng does
80   // error handling. If this custom error handler method were to return, libpng would, by
81   // default, print the error message to stdout and call the same png_longjmp method.
82   png_longjmp(png_ptr, 1);
83 }
84 
ReadDataFromStream(png_structp png_ptr,png_bytep buffer,png_size_t len)85 static void ReadDataFromStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
86   io::InputStream* in = (io::InputStream*)png_get_io_ptr(png_ptr);
87 
88   const void* in_buffer;
89   size_t in_len;
90   if (!in->Next(&in_buffer, &in_len)) {
91     if (in->HadError()) {
92       std::stringstream error_msg_builder;
93       error_msg_builder << "failed reading from input";
94       if (!in->GetError().empty()) {
95         error_msg_builder << ": " << in->GetError();
96       }
97       std::string err = error_msg_builder.str();
98       png_error(png_ptr, err.c_str());
99     }
100     return;
101   }
102 
103   const size_t bytes_read = std::min(in_len, len);
104   memcpy(buffer, in_buffer, bytes_read);
105   if (bytes_read != in_len) {
106     in->BackUp(in_len - bytes_read);
107   }
108 }
109 
WriteDataToStream(png_structp png_ptr,png_bytep buffer,png_size_t len)110 static void WriteDataToStream(png_structp png_ptr, png_bytep buffer, png_size_t len) {
111   io::OutputStream* out = (io::OutputStream*)png_get_io_ptr(png_ptr);
112 
113   void* out_buffer;
114   size_t out_len;
115   while (len > 0) {
116     if (!out->Next(&out_buffer, &out_len)) {
117       if (out->HadError()) {
118         std::stringstream err_msg_builder;
119         err_msg_builder << "failed writing to output";
120         if (!out->GetError().empty()) {
121           err_msg_builder << ": " << out->GetError();
122         }
123         std::string err = out->GetError();
124         png_error(png_ptr, err.c_str());
125       }
126       return;
127     }
128 
129     const size_t bytes_written = std::min(out_len, len);
130     memcpy(out_buffer, buffer, bytes_written);
131 
132     // Advance the input buffer.
133     buffer += bytes_written;
134     len -= bytes_written;
135 
136     // Advance the output buffer.
137     out_len -= bytes_written;
138   }
139 
140   // If the entire output buffer wasn't used, backup.
141   if (out_len > 0) {
142     out->BackUp(out_len);
143   }
144 }
145 
ReadPng(IAaptContext * context,const Source & source,io::InputStream * in)146 std::unique_ptr<Image> ReadPng(IAaptContext* context, const Source& source, io::InputStream* in) {
147   TRACE_CALL();
148   // Create a diagnostics that has the source information encoded.
149   SourcePathDiagnostics source_diag(source, context->GetDiagnostics());
150 
151   // Read the first 8 bytes of the file looking for the PNG signature.
152   // Bail early if it does not match.
153   const png_byte* signature;
154   size_t buffer_size;
155   if (!in->Next((const void**)&signature, &buffer_size)) {
156     if (in->HadError()) {
157       source_diag.Error(DiagMessage() << "failed to read PNG signature: " << in->GetError());
158     } else {
159       source_diag.Error(DiagMessage() << "not enough data for PNG signature");
160     }
161     return {};
162   }
163 
164   if (buffer_size < kPngSignatureSize || png_sig_cmp(signature, 0, kPngSignatureSize) != 0) {
165     source_diag.Error(DiagMessage() << "file signature does not match PNG signature");
166     return {};
167   }
168 
169   // Start at the beginning of the first chunk.
170   in->BackUp(buffer_size - kPngSignatureSize);
171 
172   // Create and initialize the png_struct with the default error and warning handlers.
173   // The header version is also passed in to ensure that this was built against the same
174   // version of libpng.
175   png_structp read_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
176   if (read_ptr == nullptr) {
177     source_diag.Error(DiagMessage() << "failed to create libpng read png_struct");
178     return {};
179   }
180 
181   // Create and initialize the memory for image header and data.
182   png_infop info_ptr = png_create_info_struct(read_ptr);
183   if (info_ptr == nullptr) {
184     source_diag.Error(DiagMessage() << "failed to create libpng read png_info");
185     png_destroy_read_struct(&read_ptr, nullptr, nullptr);
186     return {};
187   }
188 
189   // Automatically release PNG resources at end of scope.
190   PngReadStructDeleter png_read_deleter(read_ptr, info_ptr);
191 
192   // libpng uses longjmp to jump to an error handling routine.
193   // setjmp will only return true if it was jumped to, aka there was
194   // an error.
195   if (setjmp(png_jmpbuf(read_ptr))) {
196     return {};
197   }
198 
199   // Handle warnings ourselves via IDiagnostics.
200   png_set_error_fn(read_ptr, (png_voidp)&source_diag, LogError, LogWarning);
201 
202   // Set up the read functions which read from our custom data sources.
203   png_set_read_fn(read_ptr, (png_voidp)in, ReadDataFromStream);
204 
205   // Skip the signature that we already read.
206   png_set_sig_bytes(read_ptr, kPngSignatureSize);
207 
208   // Read the chunk headers.
209   png_read_info(read_ptr, info_ptr);
210 
211   // Extract image meta-data from the various chunk headers.
212   uint32_t width, height;
213   int bit_depth, color_type, interlace_method, compression_method, filter_method;
214   png_get_IHDR(read_ptr, info_ptr, &width, &height, &bit_depth, &color_type,
215                &interlace_method, &compression_method, &filter_method);
216 
217   // When the image is read, expand it so that it is in RGBA 8888 format
218   // so that image handling is uniform.
219 
220   if (color_type == PNG_COLOR_TYPE_PALETTE) {
221     png_set_palette_to_rgb(read_ptr);
222   }
223 
224   if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8) {
225     png_set_expand_gray_1_2_4_to_8(read_ptr);
226   }
227 
228   if (png_get_valid(read_ptr, info_ptr, PNG_INFO_tRNS)) {
229     png_set_tRNS_to_alpha(read_ptr);
230   }
231 
232   if (bit_depth == 16) {
233     png_set_strip_16(read_ptr);
234   }
235 
236   if (!(color_type & PNG_COLOR_MASK_ALPHA)) {
237     png_set_add_alpha(read_ptr, 0xFF, PNG_FILLER_AFTER);
238   }
239 
240   if (color_type == PNG_COLOR_TYPE_GRAY ||
241       color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
242     png_set_gray_to_rgb(read_ptr);
243   }
244 
245   if (interlace_method != PNG_INTERLACE_NONE) {
246     png_set_interlace_handling(read_ptr);
247   }
248 
249   // Once all the options for reading have been set, we need to flush
250   // them to libpng.
251   png_read_update_info(read_ptr, info_ptr);
252 
253   // 9-patch uses int32_t to index images, so we cap the image dimensions to
254   // something
255   // that can always be represented by 9-patch.
256   if (width > std::numeric_limits<int32_t>::max() || height > std::numeric_limits<int32_t>::max()) {
257     source_diag.Error(DiagMessage()
258                       << "PNG image dimensions are too large: " << width << "x" << height);
259     return {};
260   }
261 
262   std::unique_ptr<Image> output_image = util::make_unique<Image>();
263   output_image->width = static_cast<int32_t>(width);
264   output_image->height = static_cast<int32_t>(height);
265 
266   const size_t row_bytes = png_get_rowbytes(read_ptr, info_ptr);
267   CHECK(row_bytes == 4 * width);  // RGBA
268 
269   // Allocate one large block to hold the image.
270   output_image->data = std::unique_ptr<uint8_t[]>(new uint8_t[height * row_bytes]);
271 
272   // Create an array of rows that index into the data block.
273   output_image->rows = std::unique_ptr<uint8_t* []>(new uint8_t*[height]);
274   for (uint32_t h = 0; h < height; h++) {
275     output_image->rows[h] = output_image->data.get() + (h * row_bytes);
276   }
277 
278   // Actually read the image pixels.
279   png_read_image(read_ptr, output_image->rows.get());
280 
281   // Finish reading. This will read any other chunks after the image data.
282   png_read_end(read_ptr, info_ptr);
283 
284   return output_image;
285 }
286 
287 // Experimentally chosen constant to be added to the overhead of using color type
288 // PNG_COLOR_TYPE_PALETTE to account for the uncompressability of the palette chunk.
289 // Without this, many small PNGs encoded with palettes are larger after compression than
290 // the same PNGs encoded as RGBA.
291 constexpr static const size_t kPaletteOverheadConstant = 1024u * 10u;
292 
293 // Pick a color type by which to encode the image, based on which color type will take
294 // the least amount of disk space.
295 //
296 // 9-patch images traditionally have not been encoded with palettes.
297 // The original rationale was to avoid dithering until after scaling,
298 // but I don't think this would be an issue with palettes. Either way,
299 // our naive size estimation tends to be wrong for small images like 9-patches
300 // and using palettes balloons the size of the resulting 9-patch.
301 // In order to not regress in size, restrict 9-patch to not use palettes.
302 
303 // The options are:
304 //
305 // - RGB
306 // - RGBA
307 // - RGB + cheap alpha
308 // - Color palette
309 // - Color palette + cheap alpha
310 // - Color palette + alpha palette
311 // - Grayscale
312 // - Grayscale + cheap alpha
313 // - Grayscale + alpha
314 //
PickColorType(int32_t width,int32_t height,bool grayscale,bool convertible_to_grayscale,bool has_nine_patch,size_t color_palette_size,size_t alpha_palette_size)315 static int PickColorType(int32_t width, int32_t height, bool grayscale,
316                          bool convertible_to_grayscale, bool has_nine_patch,
317                          size_t color_palette_size, size_t alpha_palette_size) {
318   const size_t palette_chunk_size = 16 + color_palette_size * 3;
319   const size_t alpha_chunk_size = 16 + alpha_palette_size;
320   const size_t color_alpha_data_chunk_size = 16 + 4 * width * height;
321   const size_t color_data_chunk_size = 16 + 3 * width * height;
322   const size_t grayscale_alpha_data_chunk_size = 16 + 2 * width * height;
323   const size_t palette_data_chunk_size = 16 + width * height;
324 
325   if (grayscale) {
326     if (alpha_palette_size == 0) {
327       // This is the smallest the data can be.
328       return PNG_COLOR_TYPE_GRAY;
329     } else if (color_palette_size <= 256 && !has_nine_patch) {
330       // This grayscale has alpha and can fit within a palette.
331       // See if it is worth fitting into a palette.
332       const size_t palette_threshold = palette_chunk_size + alpha_chunk_size +
333                                        palette_data_chunk_size +
334                                        kPaletteOverheadConstant;
335       if (grayscale_alpha_data_chunk_size > palette_threshold) {
336         return PNG_COLOR_TYPE_PALETTE;
337       }
338     }
339     return PNG_COLOR_TYPE_GRAY_ALPHA;
340   }
341 
342   if (color_palette_size <= 256 && !has_nine_patch) {
343     // This image can fit inside a palette. Let's see if it is worth it.
344     size_t total_size_with_palette =
345         palette_data_chunk_size + palette_chunk_size;
346     size_t total_size_without_palette = color_data_chunk_size;
347     if (alpha_palette_size > 0) {
348       total_size_with_palette += alpha_palette_size;
349       total_size_without_palette = color_alpha_data_chunk_size;
350     }
351 
352     if (total_size_without_palette >
353         total_size_with_palette + kPaletteOverheadConstant) {
354       return PNG_COLOR_TYPE_PALETTE;
355     }
356   }
357 
358   if (convertible_to_grayscale) {
359     if (alpha_palette_size == 0) {
360       return PNG_COLOR_TYPE_GRAY;
361     } else {
362       return PNG_COLOR_TYPE_GRAY_ALPHA;
363     }
364   }
365 
366   if (alpha_palette_size == 0) {
367     return PNG_COLOR_TYPE_RGB;
368   }
369   return PNG_COLOR_TYPE_RGBA;
370 }
371 
372 // Assigns indices to the color and alpha palettes, encodes them, and then invokes
373 // png_set_PLTE/png_set_tRNS.
374 // This must be done before writing image data.
375 // Image data must be transformed to use the indices assigned within the palette.
WritePalette(png_structp write_ptr,png_infop write_info_ptr,std::unordered_map<uint32_t,int> * color_palette,std::unordered_set<uint32_t> * alpha_palette)376 static void WritePalette(png_structp write_ptr, png_infop write_info_ptr,
377                          std::unordered_map<uint32_t, int>* color_palette,
378                          std::unordered_set<uint32_t>* alpha_palette) {
379   CHECK(color_palette->size() <= 256);
380   CHECK(alpha_palette->size() <= 256);
381 
382   // Populate the PNG palette struct and assign indices to the color palette.
383 
384   // Colors in the alpha palette should have smaller indices.
385   // This will ensure that we can truncate the alpha palette if it is
386   // smaller than the color palette.
387   int index = 0;
388   for (uint32_t color : *alpha_palette) {
389     (*color_palette)[color] = index++;
390   }
391 
392   // Assign the rest of the entries.
393   for (auto& entry : *color_palette) {
394     if (entry.second == -1) {
395       entry.second = index++;
396     }
397   }
398 
399   // Create the PNG color palette struct.
400   auto color_palette_bytes = std::unique_ptr<png_color[]>(new png_color[color_palette->size()]);
401 
402   std::unique_ptr<png_byte[]> alpha_palette_bytes;
403   if (!alpha_palette->empty()) {
404     alpha_palette_bytes = std::unique_ptr<png_byte[]>(new png_byte[alpha_palette->size()]);
405   }
406 
407   for (const auto& entry : *color_palette) {
408     const uint32_t color = entry.first;
409     const int index = entry.second;
410     CHECK(index >= 0);
411     CHECK(static_cast<size_t>(index) < color_palette->size());
412 
413     png_colorp slot = color_palette_bytes.get() + index;
414     slot->red = color >> 24;
415     slot->green = color >> 16;
416     slot->blue = color >> 8;
417 
418     const png_byte alpha = color & 0x000000ff;
419     if (alpha != 0xff && alpha_palette_bytes) {
420       CHECK(static_cast<size_t>(index) < alpha_palette->size());
421       alpha_palette_bytes[index] = alpha;
422     }
423   }
424 
425   // The bytes get copied here, so it is safe to release color_palette_bytes at
426   // the end of function
427   // scope.
428   png_set_PLTE(write_ptr, write_info_ptr, color_palette_bytes.get(), color_palette->size());
429 
430   if (alpha_palette_bytes) {
431     png_set_tRNS(write_ptr, write_info_ptr, alpha_palette_bytes.get(), alpha_palette->size(),
432                  nullptr);
433   }
434 }
435 
436 // Write the 9-patch custom PNG chunks to write_info_ptr. This must be done
437 // before writing image data.
WriteNinePatch(png_structp write_ptr,png_infop write_info_ptr,const NinePatch * nine_patch)438 static void WriteNinePatch(png_structp write_ptr, png_infop write_info_ptr,
439                            const NinePatch* nine_patch) {
440   // The order of the chunks is important.
441   // 9-patch code in older platforms expects the 9-patch chunk to be last.
442 
443   png_unknown_chunk unknown_chunks[3];
444   memset(unknown_chunks, 0, sizeof(unknown_chunks));
445 
446   size_t index = 0;
447   size_t chunk_len = 0;
448 
449   std::unique_ptr<uint8_t[]> serialized_outline =
450       nine_patch->SerializeRoundedRectOutline(&chunk_len);
451   strcpy((char*)unknown_chunks[index].name, "npOl");
452   unknown_chunks[index].size = chunk_len;
453   unknown_chunks[index].data = (png_bytep)serialized_outline.get();
454   unknown_chunks[index].location = PNG_HAVE_PLTE;
455   index++;
456 
457   std::unique_ptr<uint8_t[]> serialized_layout_bounds;
458   if (nine_patch->layout_bounds.nonZero()) {
459     serialized_layout_bounds = nine_patch->SerializeLayoutBounds(&chunk_len);
460     strcpy((char*)unknown_chunks[index].name, "npLb");
461     unknown_chunks[index].size = chunk_len;
462     unknown_chunks[index].data = (png_bytep)serialized_layout_bounds.get();
463     unknown_chunks[index].location = PNG_HAVE_PLTE;
464     index++;
465   }
466 
467   std::unique_ptr<uint8_t[]> serialized_nine_patch = nine_patch->SerializeBase(&chunk_len);
468   strcpy((char*)unknown_chunks[index].name, "npTc");
469   unknown_chunks[index].size = chunk_len;
470   unknown_chunks[index].data = (png_bytep)serialized_nine_patch.get();
471   unknown_chunks[index].location = PNG_HAVE_PLTE;
472   index++;
473 
474   // Handle all unknown chunks. We are manually setting the chunks here,
475   // so we will only ever handle our custom chunks.
476   png_set_keep_unknown_chunks(write_ptr, PNG_HANDLE_CHUNK_ALWAYS, nullptr, 0);
477 
478   // Set the actual chunks here. The data gets copied, so our buffers can
479   // safely go out of scope.
480   png_set_unknown_chunks(write_ptr, write_info_ptr, unknown_chunks, index);
481 }
482 
WritePng(IAaptContext * context,const Image * image,const NinePatch * nine_patch,io::OutputStream * out,const PngOptions & options)483 bool WritePng(IAaptContext* context, const Image* image,
484               const NinePatch* nine_patch, io::OutputStream* out,
485               const PngOptions& options) {
486   TRACE_CALL();
487   // Create and initialize the write png_struct with the default error and
488   // warning handlers.
489   // The header version is also passed in to ensure that this was built against the same
490   // version of libpng.
491   png_structp write_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
492   if (write_ptr == nullptr) {
493     context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_struct");
494     return false;
495   }
496 
497   // Allocate memory to store image header data.
498   png_infop write_info_ptr = png_create_info_struct(write_ptr);
499   if (write_info_ptr == nullptr) {
500     context->GetDiagnostics()->Error(DiagMessage() << "failed to create libpng write png_info");
501     png_destroy_write_struct(&write_ptr, nullptr);
502     return false;
503   }
504 
505   // Automatically release PNG resources at end of scope.
506   PngWriteStructDeleter png_write_deleter(write_ptr, write_info_ptr);
507 
508   // libpng uses longjmp to jump to error handling routines.
509   // setjmp will return true only if it was jumped to, aka, there was an error.
510   if (setjmp(png_jmpbuf(write_ptr))) {
511     return false;
512   }
513 
514   // Handle warnings with our IDiagnostics.
515   png_set_error_fn(write_ptr, (png_voidp)context->GetDiagnostics(), LogError, LogWarning);
516 
517   // Set up the write functions which write to our custom data sources.
518   png_set_write_fn(write_ptr, (png_voidp)out, WriteDataToStream, nullptr);
519 
520   // We want small files and can take the performance hit to achieve this goal.
521   png_set_compression_level(write_ptr, Z_BEST_COMPRESSION);
522 
523   // Begin analysis of the image data.
524   // Scan the entire image and determine if:
525   // 1. Every pixel has R == G == B (grayscale)
526   // 2. Every pixel has A == 255 (opaque)
527   // 3. There are no more than 256 distinct RGBA colors (palette).
528   std::unordered_map<uint32_t, int> color_palette;
529   std::unordered_set<uint32_t> alpha_palette;
530   bool needs_to_zero_rgb_channels_of_transparent_pixels = false;
531   bool grayscale = true;
532   int max_gray_deviation = 0;
533 
534   for (int32_t y = 0; y < image->height; y++) {
535     const uint8_t* row = image->rows[y];
536     for (int32_t x = 0; x < image->width; x++) {
537       int red = *row++;
538       int green = *row++;
539       int blue = *row++;
540       int alpha = *row++;
541 
542       if (alpha == 0) {
543         // The color is completely transparent.
544         // For purposes of palettes and grayscale optimization,
545         // treat all channels as 0x00.
546         needs_to_zero_rgb_channels_of_transparent_pixels =
547             needs_to_zero_rgb_channels_of_transparent_pixels ||
548             (red != 0 || green != 0 || blue != 0);
549         red = green = blue = 0;
550       }
551 
552       // Insert the color into the color palette.
553       const uint32_t color = red << 24 | green << 16 | blue << 8 | alpha;
554       color_palette[color] = -1;
555 
556       // If the pixel has non-opaque alpha, insert it into the
557       // alpha palette.
558       if (alpha != 0xff) {
559         alpha_palette.insert(color);
560       }
561 
562       // Check if the image is indeed grayscale.
563       if (grayscale) {
564         if (red != green || red != blue) {
565           grayscale = false;
566         }
567       }
568 
569       // Calculate the gray scale deviation so that it can be compared
570       // with the threshold.
571       max_gray_deviation = std::max(std::abs(red - green), max_gray_deviation);
572       max_gray_deviation = std::max(std::abs(green - blue), max_gray_deviation);
573       max_gray_deviation = std::max(std::abs(blue - red), max_gray_deviation);
574     }
575   }
576 
577   if (context->IsVerbose()) {
578     DiagMessage msg;
579     msg << " paletteSize=" << color_palette.size()
580         << " alphaPaletteSize=" << alpha_palette.size()
581         << " maxGrayDeviation=" << max_gray_deviation
582         << " grayScale=" << (grayscale ? "true" : "false");
583     context->GetDiagnostics()->Note(msg);
584   }
585 
586   const bool convertible_to_grayscale = max_gray_deviation <= options.grayscale_tolerance;
587 
588   const int new_color_type = PickColorType(
589       image->width, image->height, grayscale, convertible_to_grayscale,
590       nine_patch != nullptr, color_palette.size(), alpha_palette.size());
591 
592   if (context->IsVerbose()) {
593     DiagMessage msg;
594     msg << "encoding PNG ";
595     if (nine_patch) {
596       msg << "(with 9-patch) as ";
597     }
598     switch (new_color_type) {
599       case PNG_COLOR_TYPE_GRAY:
600         msg << "GRAY";
601         break;
602       case PNG_COLOR_TYPE_GRAY_ALPHA:
603         msg << "GRAY + ALPHA";
604         break;
605       case PNG_COLOR_TYPE_RGB:
606         msg << "RGB";
607         break;
608       case PNG_COLOR_TYPE_RGB_ALPHA:
609         msg << "RGBA";
610         break;
611       case PNG_COLOR_TYPE_PALETTE:
612         msg << "PALETTE";
613         break;
614       default:
615         msg << "unknown type " << new_color_type;
616         break;
617     }
618     context->GetDiagnostics()->Note(msg);
619   }
620 
621   png_set_IHDR(write_ptr, write_info_ptr, image->width, image->height, 8,
622                new_color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
623                PNG_FILTER_TYPE_DEFAULT);
624 
625   if (new_color_type & PNG_COLOR_MASK_PALETTE) {
626     // Assigns indices to the palette, and writes the encoded palette to the
627     // libpng writePtr.
628     WritePalette(write_ptr, write_info_ptr, &color_palette, &alpha_palette);
629     png_set_filter(write_ptr, 0, PNG_NO_FILTERS);
630   } else {
631     png_set_filter(write_ptr, 0, PNG_ALL_FILTERS);
632   }
633 
634   if (nine_patch) {
635     WriteNinePatch(write_ptr, write_info_ptr, nine_patch);
636   }
637 
638   // Flush our updates to the header.
639   png_write_info(write_ptr, write_info_ptr);
640 
641   // Write out each row of image data according to its encoding.
642   if (new_color_type == PNG_COLOR_TYPE_PALETTE) {
643     // 1 byte/pixel.
644     auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width]);
645 
646     for (int32_t y = 0; y < image->height; y++) {
647       png_const_bytep in_row = image->rows[y];
648       for (int32_t x = 0; x < image->width; x++) {
649         int rr = *in_row++;
650         int gg = *in_row++;
651         int bb = *in_row++;
652         int aa = *in_row++;
653         if (aa == 0) {
654           // Zero out color channels when transparent.
655           rr = gg = bb = 0;
656         }
657 
658         const uint32_t color = rr << 24 | gg << 16 | bb << 8 | aa;
659         const int idx = color_palette[color];
660         CHECK(idx != -1);
661         out_row[x] = static_cast<png_byte>(idx);
662       }
663       png_write_row(write_ptr, out_row.get());
664     }
665   } else if (new_color_type == PNG_COLOR_TYPE_GRAY ||
666              new_color_type == PNG_COLOR_TYPE_GRAY_ALPHA) {
667     const size_t bpp = new_color_type == PNG_COLOR_TYPE_GRAY ? 1 : 2;
668     auto out_row =
669         std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
670 
671     for (int32_t y = 0; y < image->height; y++) {
672       png_const_bytep in_row = image->rows[y];
673       for (int32_t x = 0; x < image->width; x++) {
674         int rr = in_row[x * 4];
675         int gg = in_row[x * 4 + 1];
676         int bb = in_row[x * 4 + 2];
677         int aa = in_row[x * 4 + 3];
678         if (aa == 0) {
679           // Zero out the gray channel when transparent.
680           rr = gg = bb = 0;
681         }
682 
683         if (grayscale) {
684           // The image was already grayscale, red == green == blue.
685           out_row[x * bpp] = in_row[x * 4];
686         } else {
687           // The image is convertible to grayscale, use linear-luminance of
688           // sRGB colorspace:
689           // https://en.wikipedia.org/wiki/Grayscale#Colorimetric_.28luminance-preserving.29_conversion_to_grayscale
690           out_row[x * bpp] =
691               (png_byte)(rr * 0.2126f + gg * 0.7152f + bb * 0.0722f);
692         }
693 
694         if (bpp == 2) {
695           // Write out alpha if we have it.
696           out_row[x * bpp + 1] = aa;
697         }
698       }
699       png_write_row(write_ptr, out_row.get());
700     }
701   } else if (new_color_type == PNG_COLOR_TYPE_RGB || new_color_type == PNG_COLOR_TYPE_RGBA) {
702     const size_t bpp = new_color_type == PNG_COLOR_TYPE_RGB ? 3 : 4;
703     if (needs_to_zero_rgb_channels_of_transparent_pixels) {
704       // The source RGBA data can't be used as-is, because we need to zero out
705       // the RGB values of transparent pixels.
706       auto out_row = std::unique_ptr<png_byte[]>(new png_byte[image->width * bpp]);
707 
708       for (int32_t y = 0; y < image->height; y++) {
709         png_const_bytep in_row = image->rows[y];
710         for (int32_t x = 0; x < image->width; x++) {
711           int rr = *in_row++;
712           int gg = *in_row++;
713           int bb = *in_row++;
714           int aa = *in_row++;
715           if (aa == 0) {
716             // Zero out the RGB channels when transparent.
717             rr = gg = bb = 0;
718           }
719           out_row[x * bpp] = rr;
720           out_row[x * bpp + 1] = gg;
721           out_row[x * bpp + 2] = bb;
722           if (bpp == 4) {
723             out_row[x * bpp + 3] = aa;
724           }
725         }
726         png_write_row(write_ptr, out_row.get());
727       }
728     } else {
729       // The source image can be used as-is, just tell libpng whether or not to
730       // ignore the alpha channel.
731       if (new_color_type == PNG_COLOR_TYPE_RGB) {
732         // Delete the extraneous alpha values that we appended to our buffer
733         // when reading the original values.
734         png_set_filler(write_ptr, 0, PNG_FILLER_AFTER);
735       }
736       png_write_image(write_ptr, image->rows.get());
737     }
738   } else {
739     LOG(FATAL) << "unreachable";
740   }
741 
742   png_write_end(write_ptr, write_info_ptr);
743   return true;
744 }
745 
746 }  // namespace aapt
747