1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_RUNTIME_BASE_MUTEX_INL_H_
18 #define ART_RUNTIME_BASE_MUTEX_INL_H_
19
20 #include <inttypes.h>
21
22 #include "mutex.h"
23
24 #include "base/utils.h"
25 #include "base/value_object.h"
26 #include "thread.h"
27
28 #if ART_USE_FUTEXES
29 #include "linux/futex.h"
30 #include "sys/syscall.h"
31 #ifndef SYS_futex
32 #define SYS_futex __NR_futex
33 #endif
34 #endif // ART_USE_FUTEXES
35
36 #define CHECK_MUTEX_CALL(call, args) CHECK_PTHREAD_CALL(call, args, name_)
37
38 namespace art {
39
40 #if ART_USE_FUTEXES
futex(volatile int * uaddr,int op,int val,const struct timespec * timeout,volatile int * uaddr2,int val3)41 static inline int futex(volatile int *uaddr, int op, int val, const struct timespec *timeout,
42 volatile int *uaddr2, int val3) {
43 return syscall(SYS_futex, uaddr, op, val, timeout, uaddr2, val3);
44 }
45 #endif // ART_USE_FUTEXES
46
47 // The following isn't strictly necessary, but we want updates on Atomic<pid_t> to be lock-free.
48 // TODO: Use std::atomic::is_always_lock_free after switching to C++17 atomics.
49 static_assert(sizeof(pid_t) <= sizeof(int32_t), "pid_t should fit in 32 bits");
50
SafeGetTid(const Thread * self)51 static inline pid_t SafeGetTid(const Thread* self) {
52 if (self != nullptr) {
53 return self->GetTid();
54 } else {
55 return GetTid();
56 }
57 }
58
CheckUnattachedThread(LockLevel level)59 static inline void CheckUnattachedThread(LockLevel level) NO_THREAD_SAFETY_ANALYSIS {
60 // The check below enumerates the cases where we expect not to be able to sanity check locks
61 // on a thread. Lock checking is disabled to avoid deadlock when checking shutdown lock.
62 // TODO: tighten this check.
63 if (kDebugLocking) {
64 CHECK(!Locks::IsSafeToCallAbortRacy() ||
65 // Used during thread creation to avoid races with runtime shutdown. Thread::Current not
66 // yet established.
67 level == kRuntimeShutdownLock ||
68 // Thread Ids are allocated/released before threads are established.
69 level == kAllocatedThreadIdsLock ||
70 // Thread LDT's are initialized without Thread::Current established.
71 level == kModifyLdtLock ||
72 // Threads are unregistered while holding the thread list lock, during this process they
73 // no longer exist and so we expect an unlock with no self.
74 level == kThreadListLock ||
75 // Ignore logging which may or may not have set up thread data structures.
76 level == kLoggingLock ||
77 // When transitioning from suspended to runnable, a daemon thread might be in
78 // a situation where the runtime is shutting down. To not crash our debug locking
79 // mechanism we just pass null Thread* to the MutexLock during that transition
80 // (see Thread::TransitionFromSuspendedToRunnable).
81 level == kThreadSuspendCountLock ||
82 // Avoid recursive death.
83 level == kAbortLock ||
84 // Locks at the absolute top of the stack can be locked at any time.
85 level == kTopLockLevel) << level;
86 }
87 }
88
RegisterAsLocked(Thread * self)89 inline void BaseMutex::RegisterAsLocked(Thread* self) {
90 if (UNLIKELY(self == nullptr)) {
91 CheckUnattachedThread(level_);
92 return;
93 }
94 LockLevel level = level_;
95 // It would be nice to avoid this condition checking in the non-debug case,
96 // but that would make the various methods that check if a mutex is held not
97 // work properly for thread wait locks. Since the vast majority of lock
98 // acquisitions are not thread wait locks, this check should not be too
99 // expensive.
100 if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitLock) != nullptr) {
101 level = kThreadWaitWakeLock;
102 }
103 if (kDebugLocking) {
104 // Check if a bad Mutex of this level or lower is held.
105 bool bad_mutexes_held = false;
106 // Specifically allow a kTopLockLevel lock to be gained when the current thread holds the
107 // mutator_lock_ exclusive. This is because we suspending when holding locks at this level is
108 // not allowed and if we hold the mutator_lock_ exclusive we must unsuspend stuff eventually
109 // so there are no deadlocks.
110 if (level == kTopLockLevel &&
111 Locks::mutator_lock_->IsSharedHeld(self) &&
112 !Locks::mutator_lock_->IsExclusiveHeld(self)) {
113 LOG(ERROR) << "Lock level violation: holding \"" << Locks::mutator_lock_->name_ << "\" "
114 << "(level " << kMutatorLock << " - " << static_cast<int>(kMutatorLock)
115 << ") non-exclusive while locking \"" << name_ << "\" "
116 << "(level " << level << " - " << static_cast<int>(level) << ") a top level"
117 << "mutex. This is not allowed.";
118 bad_mutexes_held = true;
119 } else if (this == Locks::mutator_lock_ && self->GetHeldMutex(kTopLockLevel) != nullptr) {
120 LOG(ERROR) << "Lock level violation. Locking mutator_lock_ while already having a "
121 << "kTopLevelLock (" << self->GetHeldMutex(kTopLockLevel)->name_ << "held is "
122 << "not allowed.";
123 bad_mutexes_held = true;
124 }
125 for (int i = level; i >= 0; --i) {
126 LockLevel lock_level_i = static_cast<LockLevel>(i);
127 BaseMutex* held_mutex = self->GetHeldMutex(lock_level_i);
128 if (level == kTopLockLevel &&
129 lock_level_i == kMutatorLock &&
130 Locks::mutator_lock_->IsExclusiveHeld(self)) {
131 // This is checked above.
132 continue;
133 } else if (UNLIKELY(held_mutex != nullptr) && lock_level_i != kAbortLock) {
134 LOG(ERROR) << "Lock level violation: holding \"" << held_mutex->name_ << "\" "
135 << "(level " << lock_level_i << " - " << i
136 << ") while locking \"" << name_ << "\" "
137 << "(level " << level << " - " << static_cast<int>(level) << ")";
138 if (lock_level_i > kAbortLock) {
139 // Only abort in the check below if this is more than abort level lock.
140 bad_mutexes_held = true;
141 }
142 }
143 }
144 if (gAborting == 0) { // Avoid recursive aborts.
145 CHECK(!bad_mutexes_held);
146 }
147 }
148 // Don't record monitors as they are outside the scope of analysis. They may be inspected off of
149 // the monitor list.
150 if (level != kMonitorLock) {
151 self->SetHeldMutex(level, this);
152 }
153 }
154
RegisterAsUnlocked(Thread * self)155 inline void BaseMutex::RegisterAsUnlocked(Thread* self) {
156 if (UNLIKELY(self == nullptr)) {
157 CheckUnattachedThread(level_);
158 return;
159 }
160 if (level_ != kMonitorLock) {
161 auto level = level_;
162 if (UNLIKELY(level == kThreadWaitLock) && self->GetHeldMutex(kThreadWaitWakeLock) == this) {
163 level = kThreadWaitWakeLock;
164 }
165 if (kDebugLocking && gAborting == 0) { // Avoid recursive aborts.
166 if (level == kThreadWaitWakeLock) {
167 CHECK(self->GetHeldMutex(kThreadWaitLock) != nullptr) << "Held " << kThreadWaitWakeLock << " without " << kThreadWaitLock;;
168 }
169 CHECK(self->GetHeldMutex(level) == this) << "Unlocking on unacquired mutex: " << name_;
170 }
171 self->SetHeldMutex(level, nullptr);
172 }
173 }
174
SharedLock(Thread * self)175 inline void ReaderWriterMutex::SharedLock(Thread* self) {
176 DCHECK(self == nullptr || self == Thread::Current());
177 #if ART_USE_FUTEXES
178 bool done = false;
179 do {
180 int32_t cur_state = state_.load(std::memory_order_relaxed);
181 if (LIKELY(cur_state >= 0)) {
182 // Add as an extra reader.
183 done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
184 } else {
185 HandleSharedLockContention(self, cur_state);
186 }
187 } while (!done);
188 #else
189 CHECK_MUTEX_CALL(pthread_rwlock_rdlock, (&rwlock_));
190 #endif
191 DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
192 RegisterAsLocked(self);
193 AssertSharedHeld(self);
194 }
195
SharedUnlock(Thread * self)196 inline void ReaderWriterMutex::SharedUnlock(Thread* self) {
197 DCHECK(self == nullptr || self == Thread::Current());
198 DCHECK(GetExclusiveOwnerTid() == 0 || GetExclusiveOwnerTid() == -1);
199 AssertSharedHeld(self);
200 RegisterAsUnlocked(self);
201 #if ART_USE_FUTEXES
202 bool done = false;
203 do {
204 int32_t cur_state = state_.load(std::memory_order_relaxed);
205 if (LIKELY(cur_state > 0)) {
206 // Reduce state by 1 and impose lock release load/store ordering.
207 // Note, the relaxed loads below musn't reorder before the CompareAndSet.
208 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
209 // a status bit into the state on contention.
210 done = state_.CompareAndSetWeakSequentiallyConsistent(cur_state, cur_state - 1);
211 if (done && (cur_state - 1) == 0) { // Weak CAS may fail spuriously.
212 if (num_pending_writers_.load(std::memory_order_seq_cst) > 0 ||
213 num_pending_readers_.load(std::memory_order_seq_cst) > 0) {
214 // Wake any exclusive waiters as there are now no readers.
215 futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
216 }
217 }
218 } else {
219 LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
220 }
221 } while (!done);
222 #else
223 CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
224 #endif
225 }
226
IsExclusiveHeld(const Thread * self)227 inline bool Mutex::IsExclusiveHeld(const Thread* self) const {
228 DCHECK(self == nullptr || self == Thread::Current());
229 bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
230 if (kDebugLocking) {
231 // Sanity debug check that if we think it is locked we have it in our held mutexes.
232 if (result && self != nullptr && level_ != kMonitorLock && !gAborting) {
233 if (level_ == kThreadWaitLock && self->GetHeldMutex(kThreadWaitLock) != this) {
234 CHECK_EQ(self->GetHeldMutex(kThreadWaitWakeLock), this);
235 } else {
236 CHECK_EQ(self->GetHeldMutex(level_), this);
237 }
238 }
239 }
240 return result;
241 }
242
GetExclusiveOwnerTid()243 inline pid_t Mutex::GetExclusiveOwnerTid() const {
244 return exclusive_owner_.load(std::memory_order_relaxed);
245 }
246
AssertExclusiveHeld(const Thread * self)247 inline void Mutex::AssertExclusiveHeld(const Thread* self) const {
248 if (kDebugLocking && (gAborting == 0)) {
249 CHECK(IsExclusiveHeld(self)) << *this;
250 }
251 }
252
AssertHeld(const Thread * self)253 inline void Mutex::AssertHeld(const Thread* self) const {
254 AssertExclusiveHeld(self);
255 }
256
IsExclusiveHeld(const Thread * self)257 inline bool ReaderWriterMutex::IsExclusiveHeld(const Thread* self) const {
258 DCHECK(self == nullptr || self == Thread::Current());
259 bool result = (GetExclusiveOwnerTid() == SafeGetTid(self));
260 if (kDebugLocking) {
261 // Sanity that if the pthread thinks we own the lock the Thread agrees.
262 if (self != nullptr && result) {
263 CHECK_EQ(self->GetHeldMutex(level_), this);
264 }
265 }
266 return result;
267 }
268
GetExclusiveOwnerTid()269 inline pid_t ReaderWriterMutex::GetExclusiveOwnerTid() const {
270 #if ART_USE_FUTEXES
271 int32_t state = state_.load(std::memory_order_relaxed);
272 if (state == 0) {
273 return 0; // No owner.
274 } else if (state > 0) {
275 return -1; // Shared.
276 } else {
277 return exclusive_owner_.load(std::memory_order_relaxed);
278 }
279 #else
280 return exclusive_owner_.load(std::memory_order_relaxed);
281 #endif
282 }
283
AssertExclusiveHeld(const Thread * self)284 inline void ReaderWriterMutex::AssertExclusiveHeld(const Thread* self) const {
285 if (kDebugLocking && (gAborting == 0)) {
286 CHECK(IsExclusiveHeld(self)) << *this;
287 }
288 }
289
AssertWriterHeld(const Thread * self)290 inline void ReaderWriterMutex::AssertWriterHeld(const Thread* self) const {
291 AssertExclusiveHeld(self);
292 }
293
TransitionFromRunnableToSuspended(Thread * self)294 inline void MutatorMutex::TransitionFromRunnableToSuspended(Thread* self) {
295 AssertSharedHeld(self);
296 RegisterAsUnlocked(self);
297 }
298
TransitionFromSuspendedToRunnable(Thread * self)299 inline void MutatorMutex::TransitionFromSuspendedToRunnable(Thread* self) {
300 RegisterAsLocked(self);
301 AssertSharedHeld(self);
302 }
303
ReaderMutexLock(Thread * self,ReaderWriterMutex & mu)304 inline ReaderMutexLock::ReaderMutexLock(Thread* self, ReaderWriterMutex& mu)
305 : self_(self), mu_(mu) {
306 mu_.SharedLock(self_);
307 }
308
~ReaderMutexLock()309 inline ReaderMutexLock::~ReaderMutexLock() {
310 mu_.SharedUnlock(self_);
311 }
312
313 } // namespace art
314
315 #endif // ART_RUNTIME_BASE_MUTEX_INL_H_
316