1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This file implements the RegisterBankInfo class.
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
14 #include "llvm/ADT/SmallString.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetOpcodes.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29
30 #include <algorithm> // For std::max.
31
32 #define DEBUG_TYPE "registerbankinfo"
33
34 using namespace llvm;
35
36 STATISTIC(NumPartialMappingsCreated,
37 "Number of partial mappings dynamically created");
38 STATISTIC(NumPartialMappingsAccessed,
39 "Number of partial mappings dynamically accessed");
40 STATISTIC(NumValueMappingsCreated,
41 "Number of value mappings dynamically created");
42 STATISTIC(NumValueMappingsAccessed,
43 "Number of value mappings dynamically accessed");
44 STATISTIC(NumOperandsMappingsCreated,
45 "Number of operands mappings dynamically created");
46 STATISTIC(NumOperandsMappingsAccessed,
47 "Number of operands mappings dynamically accessed");
48 STATISTIC(NumInstructionMappingsCreated,
49 "Number of instruction mappings dynamically created");
50 STATISTIC(NumInstructionMappingsAccessed,
51 "Number of instruction mappings dynamically accessed");
52
53 const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
54 const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
55
56 //------------------------------------------------------------------------------
57 // RegisterBankInfo implementation.
58 //------------------------------------------------------------------------------
RegisterBankInfo(RegisterBank ** RegBanks,unsigned NumRegBanks)59 RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
60 unsigned NumRegBanks)
61 : RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
62 #ifndef NDEBUG
63 for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
64 assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
65 assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
66 }
67 #endif // NDEBUG
68 }
69
verify(const TargetRegisterInfo & TRI) const70 bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
71 #ifndef NDEBUG
72 for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
73 const RegisterBank &RegBank = getRegBank(Idx);
74 assert(Idx == RegBank.getID() &&
75 "ID does not match the index in the array");
76 LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
77 assert(RegBank.verify(TRI) && "RegBank is invalid");
78 }
79 #endif // NDEBUG
80 return true;
81 }
82
83 const RegisterBank *
getRegBank(unsigned Reg,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI) const84 RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
85 const TargetRegisterInfo &TRI) const {
86 if (TargetRegisterInfo::isPhysicalRegister(Reg))
87 return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg, TRI));
88
89 assert(Reg && "NoRegister does not have a register bank");
90 const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
91 if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
92 return RB;
93 if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
94 return &getRegBankFromRegClass(*RC);
95 return nullptr;
96 }
97
98 const TargetRegisterClass &
getMinimalPhysRegClass(unsigned Reg,const TargetRegisterInfo & TRI) const99 RegisterBankInfo::getMinimalPhysRegClass(unsigned Reg,
100 const TargetRegisterInfo &TRI) const {
101 assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
102 "Reg must be a physreg");
103 const auto &RegRCIt = PhysRegMinimalRCs.find(Reg);
104 if (RegRCIt != PhysRegMinimalRCs.end())
105 return *RegRCIt->second;
106 const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClass(Reg);
107 PhysRegMinimalRCs[Reg] = PhysRC;
108 return *PhysRC;
109 }
110
getRegBankFromConstraints(const MachineInstr & MI,unsigned OpIdx,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI) const111 const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
112 const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
113 const TargetRegisterInfo &TRI) const {
114 // The mapping of the registers may be available via the
115 // register class constraints.
116 const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI);
117
118 if (!RC)
119 return nullptr;
120
121 const RegisterBank &RegBank = getRegBankFromRegClass(*RC);
122 // Sanity check that the target properly implemented getRegBankFromRegClass.
123 assert(RegBank.covers(*RC) &&
124 "The mapping of the register bank does not make sense");
125 return &RegBank;
126 }
127
constrainGenericRegister(unsigned Reg,const TargetRegisterClass & RC,MachineRegisterInfo & MRI)128 const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
129 unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
130
131 // If the register already has a class, fallback to MRI::constrainRegClass.
132 auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
133 if (RegClassOrBank.is<const TargetRegisterClass *>())
134 return MRI.constrainRegClass(Reg, &RC);
135
136 const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
137 // Otherwise, all we can do is ensure the bank covers the class, and set it.
138 if (RB && !RB->covers(RC))
139 return nullptr;
140
141 // If nothing was set or the class is simply compatible, set it.
142 MRI.setRegClass(Reg, &RC);
143 return &RC;
144 }
145
146 /// Check whether or not \p MI should be treated like a copy
147 /// for the mappings.
148 /// Copy like instruction are special for mapping because
149 /// they don't have actual register constraints. Moreover,
150 /// they sometimes have register classes assigned and we can
151 /// just use that instead of failing to provide a generic mapping.
isCopyLike(const MachineInstr & MI)152 static bool isCopyLike(const MachineInstr &MI) {
153 return MI.isCopy() || MI.isPHI() ||
154 MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
155 }
156
157 const RegisterBankInfo::InstructionMapping &
getInstrMappingImpl(const MachineInstr & MI) const158 RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
159 // For copies we want to walk over the operands and try to find one
160 // that has a register bank since the instruction itself will not get
161 // us any constraint.
162 bool IsCopyLike = isCopyLike(MI);
163 // For copy like instruction, only the mapping of the definition
164 // is important. The rest is not constrained.
165 unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
166
167 const MachineFunction &MF = *MI.getMF();
168 const TargetSubtargetInfo &STI = MF.getSubtarget();
169 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
170 const MachineRegisterInfo &MRI = MF.getRegInfo();
171 // We may need to query the instruction encoding to guess the mapping.
172 const TargetInstrInfo &TII = *STI.getInstrInfo();
173
174 // Before doing anything complicated check if the mapping is not
175 // directly available.
176 bool CompleteMapping = true;
177
178 SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
179 for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
180 ++OpIdx) {
181 const MachineOperand &MO = MI.getOperand(OpIdx);
182 if (!MO.isReg())
183 continue;
184 unsigned Reg = MO.getReg();
185 if (!Reg)
186 continue;
187 // The register bank of Reg is just a side effect of the current
188 // excution and in particular, there is no reason to believe this
189 // is the best default mapping for the current instruction. Keep
190 // it as an alternative register bank if we cannot figure out
191 // something.
192 const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
193 // For copy-like instruction, we want to reuse the register bank
194 // that is already set on Reg, if any, since those instructions do
195 // not have any constraints.
196 const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
197 if (!CurRegBank) {
198 // If this is a target specific instruction, we can deduce
199 // the register bank from the encoding constraints.
200 CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI);
201 if (!CurRegBank) {
202 // All our attempts failed, give up.
203 CompleteMapping = false;
204
205 if (!IsCopyLike)
206 // MI does not carry enough information to guess the mapping.
207 return getInvalidInstructionMapping();
208 continue;
209 }
210 }
211 const ValueMapping *ValMapping =
212 &getValueMapping(0, getSizeInBits(Reg, MRI, TRI), *CurRegBank);
213 if (IsCopyLike) {
214 OperandsMapping[0] = ValMapping;
215 CompleteMapping = true;
216 break;
217 }
218 OperandsMapping[OpIdx] = ValMapping;
219 }
220
221 if (IsCopyLike && !CompleteMapping)
222 // No way to deduce the type from what we have.
223 return getInvalidInstructionMapping();
224
225 assert(CompleteMapping && "Setting an uncomplete mapping");
226 return getInstructionMapping(
227 DefaultMappingID, /*Cost*/ 1,
228 /*OperandsMapping*/ getOperandsMapping(OperandsMapping),
229 NumOperandsForMapping);
230 }
231
232 /// Hashing function for PartialMapping.
hashPartialMapping(unsigned StartIdx,unsigned Length,const RegisterBank * RegBank)233 static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
234 const RegisterBank *RegBank) {
235 return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
236 }
237
238 /// Overloaded version of hash_value for a PartialMapping.
239 hash_code
hash_value(const RegisterBankInfo::PartialMapping & PartMapping)240 llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
241 return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
242 PartMapping.RegBank);
243 }
244
245 const RegisterBankInfo::PartialMapping &
getPartialMapping(unsigned StartIdx,unsigned Length,const RegisterBank & RegBank) const246 RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
247 const RegisterBank &RegBank) const {
248 ++NumPartialMappingsAccessed;
249
250 hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
251 const auto &It = MapOfPartialMappings.find(Hash);
252 if (It != MapOfPartialMappings.end())
253 return *It->second;
254
255 ++NumPartialMappingsCreated;
256
257 auto &PartMapping = MapOfPartialMappings[Hash];
258 PartMapping = llvm::make_unique<PartialMapping>(StartIdx, Length, RegBank);
259 return *PartMapping;
260 }
261
262 const RegisterBankInfo::ValueMapping &
getValueMapping(unsigned StartIdx,unsigned Length,const RegisterBank & RegBank) const263 RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
264 const RegisterBank &RegBank) const {
265 return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
266 }
267
268 static hash_code
hashValueMapping(const RegisterBankInfo::PartialMapping * BreakDown,unsigned NumBreakDowns)269 hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
270 unsigned NumBreakDowns) {
271 if (LLVM_LIKELY(NumBreakDowns == 1))
272 return hash_value(*BreakDown);
273 SmallVector<size_t, 8> Hashes(NumBreakDowns);
274 for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
275 Hashes.push_back(hash_value(BreakDown[Idx]));
276 return hash_combine_range(Hashes.begin(), Hashes.end());
277 }
278
279 const RegisterBankInfo::ValueMapping &
getValueMapping(const PartialMapping * BreakDown,unsigned NumBreakDowns) const280 RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
281 unsigned NumBreakDowns) const {
282 ++NumValueMappingsAccessed;
283
284 hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
285 const auto &It = MapOfValueMappings.find(Hash);
286 if (It != MapOfValueMappings.end())
287 return *It->second;
288
289 ++NumValueMappingsCreated;
290
291 auto &ValMapping = MapOfValueMappings[Hash];
292 ValMapping = llvm::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
293 return *ValMapping;
294 }
295
296 template <typename Iterator>
297 const RegisterBankInfo::ValueMapping *
getOperandsMapping(Iterator Begin,Iterator End) const298 RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
299
300 ++NumOperandsMappingsAccessed;
301
302 // The addresses of the value mapping are unique.
303 // Therefore, we can use them directly to hash the operand mapping.
304 hash_code Hash = hash_combine_range(Begin, End);
305 auto &Res = MapOfOperandsMappings[Hash];
306 if (Res)
307 return Res.get();
308
309 ++NumOperandsMappingsCreated;
310
311 // Create the array of ValueMapping.
312 // Note: this array will not hash to this instance of operands
313 // mapping, because we use the pointer of the ValueMapping
314 // to hash and we expect them to uniquely identify an instance
315 // of value mapping.
316 Res = llvm::make_unique<ValueMapping[]>(std::distance(Begin, End));
317 unsigned Idx = 0;
318 for (Iterator It = Begin; It != End; ++It, ++Idx) {
319 const ValueMapping *ValMap = *It;
320 if (!ValMap)
321 continue;
322 Res[Idx] = *ValMap;
323 }
324 return Res.get();
325 }
326
getOperandsMapping(const SmallVectorImpl<const RegisterBankInfo::ValueMapping * > & OpdsMapping) const327 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
328 const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
329 const {
330 return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
331 }
332
getOperandsMapping(std::initializer_list<const RegisterBankInfo::ValueMapping * > OpdsMapping) const333 const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
334 std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
335 const {
336 return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
337 }
338
339 static hash_code
hashInstructionMapping(unsigned ID,unsigned Cost,const RegisterBankInfo::ValueMapping * OperandsMapping,unsigned NumOperands)340 hashInstructionMapping(unsigned ID, unsigned Cost,
341 const RegisterBankInfo::ValueMapping *OperandsMapping,
342 unsigned NumOperands) {
343 return hash_combine(ID, Cost, OperandsMapping, NumOperands);
344 }
345
346 const RegisterBankInfo::InstructionMapping &
getInstructionMappingImpl(bool IsInvalid,unsigned ID,unsigned Cost,const RegisterBankInfo::ValueMapping * OperandsMapping,unsigned NumOperands) const347 RegisterBankInfo::getInstructionMappingImpl(
348 bool IsInvalid, unsigned ID, unsigned Cost,
349 const RegisterBankInfo::ValueMapping *OperandsMapping,
350 unsigned NumOperands) const {
351 assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
352 OperandsMapping == nullptr && NumOperands == 0) ||
353 !IsInvalid) &&
354 "Mismatch argument for invalid input");
355 ++NumInstructionMappingsAccessed;
356
357 hash_code Hash =
358 hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
359 const auto &It = MapOfInstructionMappings.find(Hash);
360 if (It != MapOfInstructionMappings.end())
361 return *It->second;
362
363 ++NumInstructionMappingsCreated;
364
365 auto &InstrMapping = MapOfInstructionMappings[Hash];
366 if (IsInvalid)
367 InstrMapping = llvm::make_unique<InstructionMapping>();
368 else
369 InstrMapping = llvm::make_unique<InstructionMapping>(
370 ID, Cost, OperandsMapping, NumOperands);
371 return *InstrMapping;
372 }
373
374 const RegisterBankInfo::InstructionMapping &
getInstrMapping(const MachineInstr & MI) const375 RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
376 const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
377 if (Mapping.isValid())
378 return Mapping;
379 llvm_unreachable("The target must implement this");
380 }
381
382 RegisterBankInfo::InstructionMappings
getInstrPossibleMappings(const MachineInstr & MI) const383 RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
384 InstructionMappings PossibleMappings;
385 // Put the default mapping first.
386 PossibleMappings.push_back(&getInstrMapping(MI));
387 // Then the alternative mapping, if any.
388 InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
389 for (const InstructionMapping *AltMapping : AltMappings)
390 PossibleMappings.push_back(AltMapping);
391 #ifndef NDEBUG
392 for (const InstructionMapping *Mapping : PossibleMappings)
393 assert(Mapping->verify(MI) && "Mapping is invalid");
394 #endif
395 return PossibleMappings;
396 }
397
398 RegisterBankInfo::InstructionMappings
getInstrAlternativeMappings(const MachineInstr & MI) const399 RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
400 // No alternative for MI.
401 return InstructionMappings();
402 }
403
applyDefaultMapping(const OperandsMapper & OpdMapper)404 void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
405 MachineInstr &MI = OpdMapper.getMI();
406 MachineRegisterInfo &MRI = OpdMapper.getMRI();
407 LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
408 for (unsigned OpIdx = 0,
409 EndIdx = OpdMapper.getInstrMapping().getNumOperands();
410 OpIdx != EndIdx; ++OpIdx) {
411 LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
412 MachineOperand &MO = MI.getOperand(OpIdx);
413 if (!MO.isReg()) {
414 LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
415 continue;
416 }
417 if (!MO.getReg()) {
418 LLVM_DEBUG(dbgs() << " is %%noreg, nothing to be done\n");
419 continue;
420 }
421 assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
422 0 &&
423 "Invalid mapping");
424 assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
425 1 &&
426 "This mapping is too complex for this function");
427 iterator_range<SmallVectorImpl<unsigned>::const_iterator> NewRegs =
428 OpdMapper.getVRegs(OpIdx);
429 if (NewRegs.begin() == NewRegs.end()) {
430 LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
431 continue;
432 }
433 unsigned OrigReg = MO.getReg();
434 unsigned NewReg = *NewRegs.begin();
435 LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
436 MO.setReg(NewReg);
437 LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));
438
439 // The OperandsMapper creates plain scalar, we may have to fix that.
440 // Check if the types match and if not, fix that.
441 LLT OrigTy = MRI.getType(OrigReg);
442 LLT NewTy = MRI.getType(NewReg);
443 if (OrigTy != NewTy) {
444 // The default mapping is not supposed to change the size of
445 // the storage. However, right now we don't necessarily bump all
446 // the types to storage size. For instance, we can consider
447 // s16 G_AND legal whereas the storage size is going to be 32.
448 assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() &&
449 "Types with difference size cannot be handled by the default "
450 "mapping");
451 LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
452 << OrigTy);
453 MRI.setType(NewReg, OrigTy);
454 }
455 LLVM_DEBUG(dbgs() << '\n');
456 }
457 }
458
getSizeInBits(unsigned Reg,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI) const459 unsigned RegisterBankInfo::getSizeInBits(unsigned Reg,
460 const MachineRegisterInfo &MRI,
461 const TargetRegisterInfo &TRI) const {
462 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
463 // The size is not directly available for physical registers.
464 // Instead, we need to access a register class that contains Reg and
465 // get the size of that register class.
466 // Because this is expensive, we'll cache the register class by calling
467 auto *RC = &getMinimalPhysRegClass(Reg, TRI);
468 assert(RC && "Expecting Register class");
469 return TRI.getRegSizeInBits(*RC);
470 }
471 return TRI.getRegSizeInBits(Reg, MRI);
472 }
473
474 //------------------------------------------------------------------------------
475 // Helper classes implementation.
476 //------------------------------------------------------------------------------
477 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const478 LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
479 print(dbgs());
480 dbgs() << '\n';
481 }
482 #endif
483
verify() const484 bool RegisterBankInfo::PartialMapping::verify() const {
485 assert(RegBank && "Register bank not set");
486 assert(Length && "Empty mapping");
487 assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
488 // Check if the minimum width fits into RegBank.
489 assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
490 return true;
491 }
492
print(raw_ostream & OS) const493 void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
494 OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
495 if (RegBank)
496 OS << *RegBank;
497 else
498 OS << "nullptr";
499 }
500
verify(unsigned MeaningfulBitWidth) const501 bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
502 assert(NumBreakDowns && "Value mapped nowhere?!");
503 unsigned OrigValueBitWidth = 0;
504 for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
505 // Check that each register bank is big enough to hold the partial value:
506 // this check is done by PartialMapping::verify
507 assert(PartMap.verify() && "Partial mapping is invalid");
508 // The original value should completely be mapped.
509 // Thus the maximum accessed index + 1 is the size of the original value.
510 OrigValueBitWidth =
511 std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
512 }
513 assert(OrigValueBitWidth >= MeaningfulBitWidth &&
514 "Meaningful bits not covered by the mapping");
515 APInt ValueMask(OrigValueBitWidth, 0);
516 for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
517 // Check that the union of the partial mappings covers the whole value,
518 // without overlaps.
519 // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
520 APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
521 PartMap.getHighBitIdx() + 1);
522 ValueMask ^= PartMapMask;
523 assert((ValueMask & PartMapMask) == PartMapMask &&
524 "Some partial mappings overlap");
525 }
526 assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
527 return true;
528 }
529
530 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const531 LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
532 print(dbgs());
533 dbgs() << '\n';
534 }
535 #endif
536
print(raw_ostream & OS) const537 void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
538 OS << "#BreakDown: " << NumBreakDowns << " ";
539 bool IsFirst = true;
540 for (const PartialMapping &PartMap : *this) {
541 if (!IsFirst)
542 OS << ", ";
543 OS << '[' << PartMap << ']';
544 IsFirst = false;
545 }
546 }
547
verify(const MachineInstr & MI) const548 bool RegisterBankInfo::InstructionMapping::verify(
549 const MachineInstr &MI) const {
550 // Check that all the register operands are properly mapped.
551 // Check the constructor invariant.
552 // For PHI, we only care about mapping the definition.
553 assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
554 "NumOperands must match, see constructor");
555 assert(MI.getParent() && MI.getMF() &&
556 "MI must be connected to a MachineFunction");
557 const MachineFunction &MF = *MI.getMF();
558 const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
559 (void)RBI;
560
561 for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
562 const MachineOperand &MO = MI.getOperand(Idx);
563 if (!MO.isReg()) {
564 assert(!getOperandMapping(Idx).isValid() &&
565 "We should not care about non-reg mapping");
566 continue;
567 }
568 unsigned Reg = MO.getReg();
569 if (!Reg)
570 continue;
571 assert(getOperandMapping(Idx).isValid() &&
572 "We must have a mapping for reg operands");
573 const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
574 (void)MOMapping;
575 // Register size in bits.
576 // This size must match what the mapping expects.
577 assert(MOMapping.verify(RBI->getSizeInBits(
578 Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
579 "Value mapping is invalid");
580 }
581 return true;
582 }
583
584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const585 LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
586 print(dbgs());
587 dbgs() << '\n';
588 }
589 #endif
590
print(raw_ostream & OS) const591 void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
592 OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
593
594 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
595 const ValueMapping &ValMapping = getOperandMapping(OpIdx);
596 if (OpIdx)
597 OS << ", ";
598 OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
599 }
600 }
601
602 const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
603
OperandsMapper(MachineInstr & MI,const InstructionMapping & InstrMapping,MachineRegisterInfo & MRI)604 RegisterBankInfo::OperandsMapper::OperandsMapper(
605 MachineInstr &MI, const InstructionMapping &InstrMapping,
606 MachineRegisterInfo &MRI)
607 : MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
608 unsigned NumOpds = InstrMapping.getNumOperands();
609 OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
610 assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
611 }
612
613 iterator_range<SmallVectorImpl<unsigned>::iterator>
getVRegsMem(unsigned OpIdx)614 RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
615 assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
616 unsigned NumPartialVal =
617 getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
618 int StartIdx = OpToNewVRegIdx[OpIdx];
619
620 if (StartIdx == OperandsMapper::DontKnowIdx) {
621 // This is the first time we try to access OpIdx.
622 // Create the cells that will hold all the partial values at the
623 // end of the list of NewVReg.
624 StartIdx = NewVRegs.size();
625 OpToNewVRegIdx[OpIdx] = StartIdx;
626 for (unsigned i = 0; i < NumPartialVal; ++i)
627 NewVRegs.push_back(0);
628 }
629 SmallVectorImpl<unsigned>::iterator End =
630 getNewVRegsEnd(StartIdx, NumPartialVal);
631
632 return make_range(&NewVRegs[StartIdx], End);
633 }
634
635 SmallVectorImpl<unsigned>::const_iterator
getNewVRegsEnd(unsigned StartIdx,unsigned NumVal) const636 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
637 unsigned NumVal) const {
638 return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
639 }
640 SmallVectorImpl<unsigned>::iterator
getNewVRegsEnd(unsigned StartIdx,unsigned NumVal)641 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
642 unsigned NumVal) {
643 assert((NewVRegs.size() == StartIdx + NumVal ||
644 NewVRegs.size() > StartIdx + NumVal) &&
645 "NewVRegs too small to contain all the partial mapping");
646 return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
647 : &NewVRegs[StartIdx + NumVal];
648 }
649
createVRegs(unsigned OpIdx)650 void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
651 assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
652 iterator_range<SmallVectorImpl<unsigned>::iterator> NewVRegsForOpIdx =
653 getVRegsMem(OpIdx);
654 const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
655 const PartialMapping *PartMap = ValMapping.begin();
656 for (unsigned &NewVReg : NewVRegsForOpIdx) {
657 assert(PartMap != ValMapping.end() && "Out-of-bound access");
658 assert(NewVReg == 0 && "Register has already been created");
659 // The new registers are always bound to scalar with the right size.
660 // The actual type has to be set when the target does the mapping
661 // of the instruction.
662 // The rationale is that this generic code cannot guess how the
663 // target plans to split the input type.
664 NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
665 MRI.setRegBank(NewVReg, *PartMap->RegBank);
666 ++PartMap;
667 }
668 }
669
setVRegs(unsigned OpIdx,unsigned PartialMapIdx,unsigned NewVReg)670 void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
671 unsigned PartialMapIdx,
672 unsigned NewVReg) {
673 assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
674 assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
675 PartialMapIdx &&
676 "Out-of-bound access for partial mapping");
677 // Make sure the memory is initialized for that operand.
678 (void)getVRegsMem(OpIdx);
679 assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
680 "This value is already set");
681 NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
682 }
683
684 iterator_range<SmallVectorImpl<unsigned>::const_iterator>
getVRegs(unsigned OpIdx,bool ForDebug) const685 RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
686 bool ForDebug) const {
687 (void)ForDebug;
688 assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
689 int StartIdx = OpToNewVRegIdx[OpIdx];
690
691 if (StartIdx == OperandsMapper::DontKnowIdx)
692 return make_range(NewVRegs.end(), NewVRegs.end());
693
694 unsigned PartMapSize =
695 getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
696 SmallVectorImpl<unsigned>::const_iterator End =
697 getNewVRegsEnd(StartIdx, PartMapSize);
698 iterator_range<SmallVectorImpl<unsigned>::const_iterator> Res =
699 make_range(&NewVRegs[StartIdx], End);
700 #ifndef NDEBUG
701 for (unsigned VReg : Res)
702 assert((VReg || ForDebug) && "Some registers are uninitialized");
703 #endif
704 return Res;
705 }
706
707 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const708 LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
709 print(dbgs(), true);
710 dbgs() << '\n';
711 }
712 #endif
713
print(raw_ostream & OS,bool ForDebug) const714 void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
715 bool ForDebug) const {
716 unsigned NumOpds = getInstrMapping().getNumOperands();
717 if (ForDebug) {
718 OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
719 // Print out the internal state of the index table.
720 OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
721 bool IsFirst = true;
722 for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
723 if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
724 if (!IsFirst)
725 OS << ", ";
726 OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
727 IsFirst = false;
728 }
729 }
730 OS << '\n';
731 } else
732 OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
733
734 OS << "Operand Mapping: ";
735 // If we have a function, we can pretty print the name of the registers.
736 // Otherwise we will print the raw numbers.
737 const TargetRegisterInfo *TRI =
738 getMI().getParent() && getMI().getMF()
739 ? getMI().getMF()->getSubtarget().getRegisterInfo()
740 : nullptr;
741 bool IsFirst = true;
742 for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
743 if (OpToNewVRegIdx[Idx] == DontKnowIdx)
744 continue;
745 if (!IsFirst)
746 OS << ", ";
747 IsFirst = false;
748 OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
749 bool IsFirstNewVReg = true;
750 for (unsigned VReg : getVRegs(Idx)) {
751 if (!IsFirstNewVReg)
752 OS << ", ";
753 IsFirstNewVReg = false;
754 OS << printReg(VReg, TRI);
755 }
756 OS << "])";
757 }
758 }
759