1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass inserts stack protectors into functions which need them. A variable
11 // with a random value in it is stored onto the stack before the local variables
12 // are allocated. Upon exiting the block, the stored value is checked. If it's
13 // changed, then there was some sort of violation and the program aborts.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/CodeGen/StackProtector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <utility>
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "stack-protector"
55
56 STATISTIC(NumFunProtected, "Number of functions protected");
57 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
58 " taken.");
59
60 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
61 cl::init(true), cl::Hidden);
62
63 char StackProtector::ID = 0;
64
65 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
66 "Insert stack protectors", false, true)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)67 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
68 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
69 "Insert stack protectors", false, true)
70
71 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
72
getAnalysisUsage(AnalysisUsage & AU) const73 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
74 AU.addRequired<TargetPassConfig>();
75 AU.addPreserved<DominatorTreeWrapperPass>();
76 }
77
runOnFunction(Function & Fn)78 bool StackProtector::runOnFunction(Function &Fn) {
79 F = &Fn;
80 M = F->getParent();
81 DominatorTreeWrapperPass *DTWP =
82 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
83 DT = DTWP ? &DTWP->getDomTree() : nullptr;
84 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
85 Trip = TM->getTargetTriple();
86 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
87 HasPrologue = false;
88 HasIRCheck = false;
89
90 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
91 if (Attr.isStringAttribute() &&
92 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
93 return false; // Invalid integer string
94
95 if (!RequiresStackProtector())
96 return false;
97
98 // TODO(etienneb): Functions with funclets are not correctly supported now.
99 // Do nothing if this is funclet-based personality.
100 if (Fn.hasPersonalityFn()) {
101 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
102 if (isFuncletEHPersonality(Personality))
103 return false;
104 }
105
106 ++NumFunProtected;
107 return InsertStackProtectors();
108 }
109
110 /// \param [out] IsLarge is set to true if a protectable array is found and
111 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
112 /// multiple arrays, this gets set if any of them is large.
ContainsProtectableArray(Type * Ty,bool & IsLarge,bool Strong,bool InStruct) const113 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
114 bool Strong,
115 bool InStruct) const {
116 if (!Ty)
117 return false;
118 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
119 if (!AT->getElementType()->isIntegerTy(8)) {
120 // If we're on a non-Darwin platform or we're inside of a structure, don't
121 // add stack protectors unless the array is a character array.
122 // However, in strong mode any array, regardless of type and size,
123 // triggers a protector.
124 if (!Strong && (InStruct || !Trip.isOSDarwin()))
125 return false;
126 }
127
128 // If an array has more than SSPBufferSize bytes of allocated space, then we
129 // emit stack protectors.
130 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
131 IsLarge = true;
132 return true;
133 }
134
135 if (Strong)
136 // Require a protector for all arrays in strong mode
137 return true;
138 }
139
140 const StructType *ST = dyn_cast<StructType>(Ty);
141 if (!ST)
142 return false;
143
144 bool NeedsProtector = false;
145 for (StructType::element_iterator I = ST->element_begin(),
146 E = ST->element_end();
147 I != E; ++I)
148 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
149 // If the element is a protectable array and is large (>= SSPBufferSize)
150 // then we are done. If the protectable array is not large, then
151 // keep looking in case a subsequent element is a large array.
152 if (IsLarge)
153 return true;
154 NeedsProtector = true;
155 }
156
157 return NeedsProtector;
158 }
159
isLifetimeInst(const Instruction * I)160 static bool isLifetimeInst(const Instruction *I) {
161 if (const auto Intrinsic = dyn_cast<IntrinsicInst>(I)) {
162 const auto Id = Intrinsic->getIntrinsicID();
163 return Id == Intrinsic::lifetime_start || Id == Intrinsic::lifetime_end;
164 }
165 return false;
166 }
167
HasAddressTaken(const Instruction * AI)168 bool StackProtector::HasAddressTaken(const Instruction *AI) {
169 for (const User *U : AI->users()) {
170 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
171 if (AI == SI->getValueOperand())
172 return true;
173 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
174 if (AI == SI->getOperand(0))
175 return true;
176 } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
177 // Ignore intrinsics that are not calls. TODO: Use isLoweredToCall().
178 if (!isa<DbgInfoIntrinsic>(CI) && !isLifetimeInst(CI))
179 return true;
180 } else if (isa<InvokeInst>(U)) {
181 return true;
182 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
183 if (HasAddressTaken(SI))
184 return true;
185 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
186 // Keep track of what PHI nodes we have already visited to ensure
187 // they are only visited once.
188 if (VisitedPHIs.insert(PN).second)
189 if (HasAddressTaken(PN))
190 return true;
191 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
192 if (HasAddressTaken(GEP))
193 return true;
194 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
195 if (HasAddressTaken(BI))
196 return true;
197 }
198 }
199 return false;
200 }
201
202 /// Check whether or not this function needs a stack protector based
203 /// upon the stack protector level.
204 ///
205 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
206 /// The standard heuristic which will add a guard variable to functions that
207 /// call alloca with a either a variable size or a size >= SSPBufferSize,
208 /// functions with character buffers larger than SSPBufferSize, and functions
209 /// with aggregates containing character buffers larger than SSPBufferSize. The
210 /// strong heuristic will add a guard variables to functions that call alloca
211 /// regardless of size, functions with any buffer regardless of type and size,
212 /// functions with aggregates that contain any buffer regardless of type and
213 /// size, and functions that contain stack-based variables that have had their
214 /// address taken.
RequiresStackProtector()215 bool StackProtector::RequiresStackProtector() {
216 bool Strong = false;
217 bool NeedsProtector = false;
218 for (const BasicBlock &BB : *F)
219 for (const Instruction &I : BB)
220 if (const CallInst *CI = dyn_cast<CallInst>(&I))
221 if (CI->getCalledFunction() ==
222 Intrinsic::getDeclaration(F->getParent(),
223 Intrinsic::stackprotector))
224 HasPrologue = true;
225
226 if (F->hasFnAttribute(Attribute::SafeStack))
227 return false;
228
229 // We are constructing the OptimizationRemarkEmitter on the fly rather than
230 // using the analysis pass to avoid building DominatorTree and LoopInfo which
231 // are not available this late in the IR pipeline.
232 OptimizationRemarkEmitter ORE(F);
233
234 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
235 ORE.emit([&]() {
236 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
237 << "Stack protection applied to function "
238 << ore::NV("Function", F)
239 << " due to a function attribute or command-line switch";
240 });
241 NeedsProtector = true;
242 Strong = true; // Use the same heuristic as strong to determine SSPLayout
243 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
244 Strong = true;
245 else if (HasPrologue)
246 NeedsProtector = true;
247 else if (!F->hasFnAttribute(Attribute::StackProtect))
248 return false;
249
250 for (const BasicBlock &BB : *F) {
251 for (const Instruction &I : BB) {
252 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
253 if (AI->isArrayAllocation()) {
254 auto RemarkBuilder = [&]() {
255 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
256 &I)
257 << "Stack protection applied to function "
258 << ore::NV("Function", F)
259 << " due to a call to alloca or use of a variable length "
260 "array";
261 };
262 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
263 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
264 // A call to alloca with size >= SSPBufferSize requires
265 // stack protectors.
266 Layout.insert(std::make_pair(AI,
267 MachineFrameInfo::SSPLK_LargeArray));
268 ORE.emit(RemarkBuilder);
269 NeedsProtector = true;
270 } else if (Strong) {
271 // Require protectors for all alloca calls in strong mode.
272 Layout.insert(std::make_pair(AI,
273 MachineFrameInfo::SSPLK_SmallArray));
274 ORE.emit(RemarkBuilder);
275 NeedsProtector = true;
276 }
277 } else {
278 // A call to alloca with a variable size requires protectors.
279 Layout.insert(std::make_pair(AI,
280 MachineFrameInfo::SSPLK_LargeArray));
281 ORE.emit(RemarkBuilder);
282 NeedsProtector = true;
283 }
284 continue;
285 }
286
287 bool IsLarge = false;
288 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
289 Layout.insert(std::make_pair(AI, IsLarge
290 ? MachineFrameInfo::SSPLK_LargeArray
291 : MachineFrameInfo::SSPLK_SmallArray));
292 ORE.emit([&]() {
293 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
294 << "Stack protection applied to function "
295 << ore::NV("Function", F)
296 << " due to a stack allocated buffer or struct containing a "
297 "buffer";
298 });
299 NeedsProtector = true;
300 continue;
301 }
302
303 if (Strong && HasAddressTaken(AI)) {
304 ++NumAddrTaken;
305 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
306 ORE.emit([&]() {
307 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
308 &I)
309 << "Stack protection applied to function "
310 << ore::NV("Function", F)
311 << " due to the address of a local variable being taken";
312 });
313 NeedsProtector = true;
314 }
315 }
316 }
317 }
318
319 return NeedsProtector;
320 }
321
322 /// Create a stack guard loading and populate whether SelectionDAG SSP is
323 /// supported.
getStackGuard(const TargetLoweringBase * TLI,Module * M,IRBuilder<> & B,bool * SupportsSelectionDAGSP=nullptr)324 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
325 IRBuilder<> &B,
326 bool *SupportsSelectionDAGSP = nullptr) {
327 if (Value *Guard = TLI->getIRStackGuard(B))
328 return B.CreateLoad(Guard, true, "StackGuard");
329
330 // Use SelectionDAG SSP handling, since there isn't an IR guard.
331 //
332 // This is more or less weird, since we optionally output whether we
333 // should perform a SelectionDAG SP here. The reason is that it's strictly
334 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
335 // mutating. There is no way to get this bit without mutating the IR, so
336 // getting this bit has to happen in this right time.
337 //
338 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
339 // will put more burden on the backends' overriding work, especially when it
340 // actually conveys the same information getIRStackGuard() already gives.
341 if (SupportsSelectionDAGSP)
342 *SupportsSelectionDAGSP = true;
343 TLI->insertSSPDeclarations(*M);
344 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
345 }
346
347 /// Insert code into the entry block that stores the stack guard
348 /// variable onto the stack:
349 ///
350 /// entry:
351 /// StackGuardSlot = alloca i8*
352 /// StackGuard = <stack guard>
353 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
354 ///
355 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
356 /// node.
CreatePrologue(Function * F,Module * M,ReturnInst * RI,const TargetLoweringBase * TLI,AllocaInst * & AI)357 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
358 const TargetLoweringBase *TLI, AllocaInst *&AI) {
359 bool SupportsSelectionDAGSP = false;
360 IRBuilder<> B(&F->getEntryBlock().front());
361 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
362 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
363
364 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
365 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
366 {GuardSlot, AI});
367 return SupportsSelectionDAGSP;
368 }
369
370 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
371 /// function.
372 ///
373 /// - The prologue code loads and stores the stack guard onto the stack.
374 /// - The epilogue checks the value stored in the prologue against the original
375 /// value. It calls __stack_chk_fail if they differ.
InsertStackProtectors()376 bool StackProtector::InsertStackProtectors() {
377 // If the target wants to XOR the frame pointer into the guard value, it's
378 // impossible to emit the check in IR, so the target *must* support stack
379 // protection in SDAG.
380 bool SupportsSelectionDAGSP =
381 TLI->useStackGuardXorFP() ||
382 (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
383 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
384
385 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
386 BasicBlock *BB = &*I++;
387 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
388 if (!RI)
389 continue;
390
391 // Generate prologue instrumentation if not already generated.
392 if (!HasPrologue) {
393 HasPrologue = true;
394 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
395 }
396
397 // SelectionDAG based code generation. Nothing else needs to be done here.
398 // The epilogue instrumentation is postponed to SelectionDAG.
399 if (SupportsSelectionDAGSP)
400 break;
401
402 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
403 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
404 // instrumentation has already been generated.
405 HasIRCheck = true;
406
407 // Generate epilogue instrumentation. The epilogue intrumentation can be
408 // function-based or inlined depending on which mechanism the target is
409 // providing.
410 if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
411 // Generate the function-based epilogue instrumentation.
412 // The target provides a guard check function, generate a call to it.
413 IRBuilder<> B(RI);
414 LoadInst *Guard = B.CreateLoad(AI, true, "Guard");
415 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
416 llvm::Function *Function = cast<llvm::Function>(GuardCheck);
417 Call->setAttributes(Function->getAttributes());
418 Call->setCallingConv(Function->getCallingConv());
419 } else {
420 // Generate the epilogue with inline instrumentation.
421 // If we do not support SelectionDAG based tail calls, generate IR level
422 // tail calls.
423 //
424 // For each block with a return instruction, convert this:
425 //
426 // return:
427 // ...
428 // ret ...
429 //
430 // into this:
431 //
432 // return:
433 // ...
434 // %1 = <stack guard>
435 // %2 = load StackGuardSlot
436 // %3 = cmp i1 %1, %2
437 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
438 //
439 // SP_return:
440 // ret ...
441 //
442 // CallStackCheckFailBlk:
443 // call void @__stack_chk_fail()
444 // unreachable
445
446 // Create the FailBB. We duplicate the BB every time since the MI tail
447 // merge pass will merge together all of the various BB into one including
448 // fail BB generated by the stack protector pseudo instruction.
449 BasicBlock *FailBB = CreateFailBB();
450
451 // Split the basic block before the return instruction.
452 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
453
454 // Update the dominator tree if we need to.
455 if (DT && DT->isReachableFromEntry(BB)) {
456 DT->addNewBlock(NewBB, BB);
457 DT->addNewBlock(FailBB, BB);
458 }
459
460 // Remove default branch instruction to the new BB.
461 BB->getTerminator()->eraseFromParent();
462
463 // Move the newly created basic block to the point right after the old
464 // basic block so that it's in the "fall through" position.
465 NewBB->moveAfter(BB);
466
467 // Generate the stack protector instructions in the old basic block.
468 IRBuilder<> B(BB);
469 Value *Guard = getStackGuard(TLI, M, B);
470 LoadInst *LI2 = B.CreateLoad(AI, true);
471 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
472 auto SuccessProb =
473 BranchProbabilityInfo::getBranchProbStackProtector(true);
474 auto FailureProb =
475 BranchProbabilityInfo::getBranchProbStackProtector(false);
476 MDNode *Weights = MDBuilder(F->getContext())
477 .createBranchWeights(SuccessProb.getNumerator(),
478 FailureProb.getNumerator());
479 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
480 }
481 }
482
483 // Return if we didn't modify any basic blocks. i.e., there are no return
484 // statements in the function.
485 return HasPrologue;
486 }
487
488 /// CreateFailBB - Create a basic block to jump to when the stack protector
489 /// check fails.
CreateFailBB()490 BasicBlock *StackProtector::CreateFailBB() {
491 LLVMContext &Context = F->getContext();
492 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
493 IRBuilder<> B(FailBB);
494 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
495 if (Trip.isOSOpenBSD()) {
496 Constant *StackChkFail =
497 M->getOrInsertFunction("__stack_smash_handler",
498 Type::getVoidTy(Context),
499 Type::getInt8PtrTy(Context));
500
501 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
502 } else {
503 Constant *StackChkFail =
504 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
505
506 B.CreateCall(StackChkFail, {});
507 }
508 B.CreateUnreachable();
509 return FailBB;
510 }
511
shouldEmitSDCheck(const BasicBlock & BB) const512 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
513 return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator());
514 }
515
copyToMachineFrameInfo(MachineFrameInfo & MFI) const516 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
517 if (Layout.empty())
518 return;
519
520 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
521 if (MFI.isDeadObjectIndex(I))
522 continue;
523
524 const AllocaInst *AI = MFI.getObjectAllocation(I);
525 if (!AI)
526 continue;
527
528 SSPLayoutMap::const_iterator LI = Layout.find(AI);
529 if (LI == Layout.end())
530 continue;
531
532 MFI.setObjectSSPLayout(I, LI->second);
533 }
534 }
535