• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * libjingle
3  * Copyright 2015 Google Inc.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7  *
8  *  1. Redistributions of source code must retain the above copyright notice,
9  *     this list of conditions and the following disclaimer.
10  *  2. Redistributions in binary form must reproduce the above copyright notice,
11  *     this list of conditions and the following disclaimer in the documentation
12  *     and/or other materials provided with the distribution.
13  *  3. The name of the author may not be used to endorse or promote products
14  *     derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
17  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
19  * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
22  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
23  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
24  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
25  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 package org.webrtc;
29 
30 import android.graphics.Point;
31 import android.opengl.GLES20;
32 import android.opengl.Matrix;
33 
34 import java.nio.ByteBuffer;
35 
36 /**
37  * Static helper functions for renderer implementations.
38  */
39 public class RendererCommon {
40   /** Interface for reporting rendering events. */
41   public static interface RendererEvents {
42     /**
43      * Callback fired once first frame is rendered.
44      */
onFirstFrameRendered()45     public void onFirstFrameRendered();
46 
47     /**
48      * Callback fired when rendered frame resolution or rotation has changed.
49      */
onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation)50     public void onFrameResolutionChanged(int videoWidth, int videoHeight, int rotation);
51   }
52 
53   /** Interface for rendering frames on an EGLSurface. */
54   public static interface GlDrawer {
55     /**
56      * Functions for drawing frames with different sources. The rendering surface target is
57      * implied by the current EGL context of the calling thread and requires no explicit argument.
58      * The coordinates specify the viewport location on the surface target.
59      */
drawOes(int oesTextureId, float[] texMatrix, int x, int y, int width, int height)60     void drawOes(int oesTextureId, float[] texMatrix, int x, int y, int width, int height);
drawRgb(int textureId, float[] texMatrix, int x, int y, int width, int height)61     void drawRgb(int textureId, float[] texMatrix, int x, int y, int width, int height);
drawYuv(int[] yuvTextures, float[] texMatrix, int x, int y, int width, int height)62     void drawYuv(int[] yuvTextures, float[] texMatrix, int x, int y, int width, int height);
63 
64     /**
65      * Release all GL resources. This needs to be done manually, otherwise resources may leak.
66      */
release()67     void release();
68   }
69 
70   /**
71    * Helper class for uploading YUV bytebuffer frames to textures that handles stride > width. This
72    * class keeps an internal ByteBuffer to avoid unnecessary allocations for intermediate copies.
73    */
74   public static class YuvUploader {
75     // Intermediate copy buffer for uploading yuv frames that are not packed, i.e. stride > width.
76     // TODO(magjed): Investigate when GL_UNPACK_ROW_LENGTH is available, or make a custom shader
77     // that handles stride and compare performance with intermediate copy.
78     private ByteBuffer copyBuffer;
79 
80     /**
81      * Upload |planes| into |outputYuvTextures|, taking stride into consideration.
82      * |outputYuvTextures| must have been generated in advance.
83      */
uploadYuvData( int[] outputYuvTextures, int width, int height, int[] strides, ByteBuffer[] planes)84     public void uploadYuvData(
85         int[] outputYuvTextures, int width, int height, int[] strides, ByteBuffer[] planes) {
86       final int[] planeWidths = new int[] {width, width / 2, width / 2};
87       final int[] planeHeights = new int[] {height, height / 2, height / 2};
88       // Make a first pass to see if we need a temporary copy buffer.
89       int copyCapacityNeeded = 0;
90       for (int i = 0; i < 3; ++i) {
91         if (strides[i] > planeWidths[i]) {
92           copyCapacityNeeded = Math.max(copyCapacityNeeded, planeWidths[i] * planeHeights[i]);
93         }
94       }
95       // Allocate copy buffer if necessary.
96       if (copyCapacityNeeded > 0
97           && (copyBuffer == null || copyBuffer.capacity() < copyCapacityNeeded)) {
98         copyBuffer = ByteBuffer.allocateDirect(copyCapacityNeeded);
99       }
100       // Upload each plane.
101       for (int i = 0; i < 3; ++i) {
102         GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
103         GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, outputYuvTextures[i]);
104         // GLES only accepts packed data, i.e. stride == planeWidth.
105         final ByteBuffer packedByteBuffer;
106         if (strides[i] == planeWidths[i]) {
107           // Input is packed already.
108           packedByteBuffer = planes[i];
109         } else {
110           VideoRenderer.nativeCopyPlane(
111               planes[i], planeWidths[i], planeHeights[i], strides[i], copyBuffer, planeWidths[i]);
112           packedByteBuffer = copyBuffer;
113         }
114         GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_LUMINANCE, planeWidths[i],
115             planeHeights[i], 0, GLES20.GL_LUMINANCE, GLES20.GL_UNSIGNED_BYTE, packedByteBuffer);
116       }
117     }
118   }
119 
120   // Types of video scaling:
121   // SCALE_ASPECT_FIT - video frame is scaled to fit the size of the view by
122   //    maintaining the aspect ratio (black borders may be displayed).
123   // SCALE_ASPECT_FILL - video frame is scaled to fill the size of the view by
124   //    maintaining the aspect ratio. Some portion of the video frame may be
125   //    clipped.
126   // SCALE_ASPECT_BALANCED - Compromise between FIT and FILL. Video frame will fill as much as
127   // possible of the view while maintaining aspect ratio, under the constraint that at least
128   // |BALANCED_VISIBLE_FRACTION| of the frame content will be shown.
129   public static enum ScalingType { SCALE_ASPECT_FIT, SCALE_ASPECT_FILL, SCALE_ASPECT_BALANCED }
130   // The minimum fraction of the frame content that will be shown for |SCALE_ASPECT_BALANCED|.
131   // This limits excessive cropping when adjusting display size.
132   private static float BALANCED_VISIBLE_FRACTION = 0.5625f;
identityMatrix()133   public static final float[] identityMatrix() {
134     return new float[] {
135         1, 0, 0, 0,
136         0, 1, 0, 0,
137         0, 0, 1, 0,
138         0, 0, 0, 1};
139   }
140   // Matrix with transform y' = 1 - y.
verticalFlipMatrix()141   public static final float[] verticalFlipMatrix() {
142     return new float[] {
143         1,  0, 0, 0,
144         0, -1, 0, 0,
145         0,  0, 1, 0,
146         0,  1, 0, 1};
147   }
148 
149   // Matrix with transform x' = 1 - x.
horizontalFlipMatrix()150   public static final float[] horizontalFlipMatrix() {
151     return new float[] {
152         -1, 0, 0, 0,
153          0, 1, 0, 0,
154          0, 0, 1, 0,
155          1, 0, 0, 1};
156   }
157 
158   /**
159    * Returns texture matrix that will have the effect of rotating the frame |rotationDegree|
160    * clockwise when rendered.
161    */
rotateTextureMatrix(float[] textureMatrix, float rotationDegree)162   public static float[] rotateTextureMatrix(float[] textureMatrix, float rotationDegree) {
163     final float[] rotationMatrix = new float[16];
164     Matrix.setRotateM(rotationMatrix, 0, rotationDegree, 0, 0, 1);
165     adjustOrigin(rotationMatrix);
166     return multiplyMatrices(textureMatrix, rotationMatrix);
167   }
168 
169   /**
170    * Returns new matrix with the result of a * b.
171    */
multiplyMatrices(float[] a, float[] b)172   public static float[] multiplyMatrices(float[] a, float[] b) {
173     final float[] resultMatrix = new float[16];
174     Matrix.multiplyMM(resultMatrix, 0, a, 0, b, 0);
175     return resultMatrix;
176   }
177 
178   /**
179    * Returns layout transformation matrix that applies an optional mirror effect and compensates
180    * for video vs display aspect ratio.
181    */
getLayoutMatrix( boolean mirror, float videoAspectRatio, float displayAspectRatio)182   public static float[] getLayoutMatrix(
183       boolean mirror, float videoAspectRatio, float displayAspectRatio) {
184     float scaleX = 1;
185     float scaleY = 1;
186     // Scale X or Y dimension so that video and display size have same aspect ratio.
187     if (displayAspectRatio > videoAspectRatio) {
188       scaleY = videoAspectRatio / displayAspectRatio;
189     } else {
190       scaleX = displayAspectRatio / videoAspectRatio;
191     }
192     // Apply optional horizontal flip.
193     if (mirror) {
194       scaleX *= -1;
195     }
196     final float matrix[] = new float[16];
197     Matrix.setIdentityM(matrix, 0);
198     Matrix.scaleM(matrix, 0, scaleX, scaleY, 1);
199     adjustOrigin(matrix);
200     return matrix;
201   }
202 
203   /**
204    * Calculate display size based on scaling type, video aspect ratio, and maximum display size.
205    */
getDisplaySize(ScalingType scalingType, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight)206   public static Point getDisplaySize(ScalingType scalingType, float videoAspectRatio,
207       int maxDisplayWidth, int maxDisplayHeight) {
208     return getDisplaySize(convertScalingTypeToVisibleFraction(scalingType), videoAspectRatio,
209         maxDisplayWidth, maxDisplayHeight);
210   }
211 
212   /**
213    * Move |matrix| transformation origin to (0.5, 0.5). This is the origin for texture coordinates
214    * that are in the range 0 to 1.
215    */
adjustOrigin(float[] matrix)216   private static void adjustOrigin(float[] matrix) {
217     // Note that OpenGL is using column-major order.
218     // Pre translate with -0.5 to move coordinates to range [-0.5, 0.5].
219     matrix[12] -= 0.5f * (matrix[0] + matrix[4]);
220     matrix[13] -= 0.5f * (matrix[1] + matrix[5]);
221     // Post translate with 0.5 to move coordinates to range [0, 1].
222     matrix[12] += 0.5f;
223     matrix[13] += 0.5f;
224   }
225 
226   /**
227    * Each scaling type has a one-to-one correspondence to a numeric minimum fraction of the video
228    * that must remain visible.
229    */
convertScalingTypeToVisibleFraction(ScalingType scalingType)230   private static float convertScalingTypeToVisibleFraction(ScalingType scalingType) {
231     switch (scalingType) {
232       case SCALE_ASPECT_FIT:
233         return 1.0f;
234       case SCALE_ASPECT_FILL:
235         return 0.0f;
236       case SCALE_ASPECT_BALANCED:
237         return BALANCED_VISIBLE_FRACTION;
238       default:
239         throw new IllegalArgumentException();
240     }
241   }
242 
243   /**
244    * Calculate display size based on minimum fraction of the video that must remain visible,
245    * video aspect ratio, and maximum display size.
246    */
getDisplaySize(float minVisibleFraction, float videoAspectRatio, int maxDisplayWidth, int maxDisplayHeight)247   private static Point getDisplaySize(float minVisibleFraction, float videoAspectRatio,
248       int maxDisplayWidth, int maxDisplayHeight) {
249     // If there is no constraint on the amount of cropping, fill the allowed display area.
250     if (minVisibleFraction == 0 || videoAspectRatio == 0) {
251       return new Point(maxDisplayWidth, maxDisplayHeight);
252     }
253     // Each dimension is constrained on max display size and how much we are allowed to crop.
254     final int width = Math.min(maxDisplayWidth,
255         Math.round(maxDisplayHeight / minVisibleFraction * videoAspectRatio));
256     final int height = Math.min(maxDisplayHeight,
257         Math.round(maxDisplayWidth / minVisibleFraction / videoAspectRatio));
258     return new Point(width, height);
259   }
260 }
261