1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2014 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include "protobuf.h"
32
33 // -----------------------------------------------------------------------------
34 // Repeated field container type.
35 // -----------------------------------------------------------------------------
36
37 const rb_data_type_t RepeatedField_type = {
38 "Google::Protobuf::RepeatedField",
39 { RepeatedField_mark, RepeatedField_free, NULL },
40 };
41
42 VALUE cRepeatedField;
43
ruby_to_RepeatedField(VALUE _self)44 RepeatedField* ruby_to_RepeatedField(VALUE _self) {
45 RepeatedField* self;
46 TypedData_Get_Struct(_self, RepeatedField, &RepeatedField_type, self);
47 return self;
48 }
49
RepeatedField_memoryat(RepeatedField * self,int index,int element_size)50 void* RepeatedField_memoryat(RepeatedField* self, int index, int element_size) {
51 return ((uint8_t *)self->elements) + index * element_size;
52 }
53
index_position(VALUE _index,RepeatedField * repeated_field)54 static int index_position(VALUE _index, RepeatedField* repeated_field) {
55 int index = NUM2INT(_index);
56 if (index < 0 && repeated_field->size > 0) {
57 index = repeated_field->size + index;
58 }
59 return index;
60 }
61
RepeatedField_subarray(VALUE _self,long beg,long len)62 VALUE RepeatedField_subarray(VALUE _self, long beg, long len) {
63 RepeatedField* self = ruby_to_RepeatedField(_self);
64 int element_size = native_slot_size(self->field_type);
65 upb_fieldtype_t field_type = self->field_type;
66 VALUE field_type_class = self->field_type_class;
67
68 size_t off = beg * element_size;
69 VALUE ary = rb_ary_new2(len);
70 for (int i = beg; i < beg + len; i++, off += element_size) {
71 void* mem = ((uint8_t *)self->elements) + off;
72 VALUE elem = native_slot_get(field_type, field_type_class, mem);
73 rb_ary_push(ary, elem);
74 }
75 return ary;
76 }
77
78 /*
79 * call-seq:
80 * RepeatedField.each(&block)
81 *
82 * Invokes the block once for each element of the repeated field. RepeatedField
83 * also includes Enumerable; combined with this method, the repeated field thus
84 * acts like an ordinary Ruby sequence.
85 */
RepeatedField_each(VALUE _self)86 VALUE RepeatedField_each(VALUE _self) {
87 RepeatedField* self = ruby_to_RepeatedField(_self);
88 upb_fieldtype_t field_type = self->field_type;
89 VALUE field_type_class = self->field_type_class;
90 int element_size = native_slot_size(field_type);
91
92 size_t off = 0;
93 for (int i = 0; i < self->size; i++, off += element_size) {
94 void* memory = (void *) (((uint8_t *)self->elements) + off);
95 VALUE val = native_slot_get(field_type, field_type_class, memory);
96 rb_yield(val);
97 }
98 return _self;
99 }
100
101
102 /*
103 * call-seq:
104 * RepeatedField.[](index) => value
105 *
106 * Accesses the element at the given index. Returns nil on out-of-bounds
107 */
RepeatedField_index(int argc,VALUE * argv,VALUE _self)108 VALUE RepeatedField_index(int argc, VALUE* argv, VALUE _self) {
109 RepeatedField* self = ruby_to_RepeatedField(_self);
110 int element_size = native_slot_size(self->field_type);
111 upb_fieldtype_t field_type = self->field_type;
112 VALUE field_type_class = self->field_type_class;
113
114 VALUE arg = argv[0];
115 long beg, len;
116
117 if (argc == 1){
118 if (FIXNUM_P(arg)) {
119 /* standard case */
120 void* memory;
121 int index = index_position(argv[0], self);
122 if (index < 0 || index >= self->size) {
123 return Qnil;
124 }
125 memory = RepeatedField_memoryat(self, index, element_size);
126 return native_slot_get(field_type, field_type_class, memory);
127 }else{
128 /* check if idx is Range */
129 switch (rb_range_beg_len(arg, &beg, &len, self->size, 0)) {
130 case Qfalse:
131 break;
132 case Qnil:
133 return Qnil;
134 default:
135 return RepeatedField_subarray(_self, beg, len);
136 }
137 }
138 }
139 /* assume 2 arguments */
140 beg = NUM2LONG(argv[0]);
141 len = NUM2LONG(argv[1]);
142 if (beg < 0) {
143 beg += self->size;
144 }
145 if (beg >= self->size) {
146 return Qnil;
147 }
148 return RepeatedField_subarray(_self, beg, len);
149 }
150
151 /*
152 * call-seq:
153 * RepeatedField.[]=(index, value)
154 *
155 * Sets the element at the given index. On out-of-bounds assignments, extends
156 * the array and fills the hole (if any) with default values.
157 */
RepeatedField_index_set(VALUE _self,VALUE _index,VALUE val)158 VALUE RepeatedField_index_set(VALUE _self, VALUE _index, VALUE val) {
159 RepeatedField* self = ruby_to_RepeatedField(_self);
160 upb_fieldtype_t field_type = self->field_type;
161 VALUE field_type_class = self->field_type_class;
162 int element_size = native_slot_size(field_type);
163 void* memory;
164
165 int index = index_position(_index, self);
166 if (index < 0 || index >= (INT_MAX - 1)) {
167 return Qnil;
168 }
169 if (index >= self->size) {
170 upb_fieldtype_t field_type = self->field_type;
171 int element_size = native_slot_size(field_type);
172 RepeatedField_reserve(self, index + 1);
173 for (int i = self->size; i <= index; i++) {
174 void* elem = RepeatedField_memoryat(self, i, element_size);
175 native_slot_init(field_type, elem);
176 }
177 self->size = index + 1;
178 }
179
180 memory = RepeatedField_memoryat(self, index, element_size);
181 native_slot_set(field_type, field_type_class, memory, val);
182 return Qnil;
183 }
184
185 static int kInitialSize = 8;
186
RepeatedField_reserve(RepeatedField * self,int new_size)187 void RepeatedField_reserve(RepeatedField* self, int new_size) {
188 void* old_elems = self->elements;
189 int elem_size = native_slot_size(self->field_type);
190 if (new_size <= self->capacity) {
191 return;
192 }
193 if (self->capacity == 0) {
194 self->capacity = kInitialSize;
195 }
196 while (self->capacity < new_size) {
197 self->capacity *= 2;
198 }
199 self->elements = ALLOC_N(uint8_t, elem_size * self->capacity);
200 if (old_elems != NULL) {
201 memcpy(self->elements, old_elems, self->size * elem_size);
202 xfree(old_elems);
203 }
204 }
205
206 /*
207 * call-seq:
208 * RepeatedField.push(value)
209 *
210 * Adds a new element to the repeated field.
211 */
RepeatedField_push(VALUE _self,VALUE val)212 VALUE RepeatedField_push(VALUE _self, VALUE val) {
213 RepeatedField* self = ruby_to_RepeatedField(_self);
214 upb_fieldtype_t field_type = self->field_type;
215 int element_size = native_slot_size(field_type);
216 void* memory;
217
218 RepeatedField_reserve(self, self->size + 1);
219 memory = (void *) (((uint8_t *)self->elements) + self->size * element_size);
220 native_slot_set(field_type, self->field_type_class, memory, val);
221 // native_slot_set may raise an error; bump size only after set.
222 self->size++;
223 return _self;
224 }
225
226
227 // Used by parsing handlers.
RepeatedField_push_native(VALUE _self,void * data)228 void RepeatedField_push_native(VALUE _self, void* data) {
229 RepeatedField* self = ruby_to_RepeatedField(_self);
230 upb_fieldtype_t field_type = self->field_type;
231 int element_size = native_slot_size(field_type);
232 void* memory;
233
234 RepeatedField_reserve(self, self->size + 1);
235 memory = (void *) (((uint8_t *)self->elements) + self->size * element_size);
236 memcpy(memory, data, element_size);
237 self->size++;
238 }
239
RepeatedField_index_native(VALUE _self,int index)240 void* RepeatedField_index_native(VALUE _self, int index) {
241 RepeatedField* self = ruby_to_RepeatedField(_self);
242 upb_fieldtype_t field_type = self->field_type;
243 int element_size = native_slot_size(field_type);
244 return RepeatedField_memoryat(self, index, element_size);
245 }
246
247 /*
248 * Private ruby method, used by RepeatedField.pop
249 */
RepeatedField_pop_one(VALUE _self)250 VALUE RepeatedField_pop_one(VALUE _self) {
251 RepeatedField* self = ruby_to_RepeatedField(_self);
252 upb_fieldtype_t field_type = self->field_type;
253 VALUE field_type_class = self->field_type_class;
254 int element_size = native_slot_size(field_type);
255 int index;
256 void* memory;
257 VALUE ret;
258
259 if (self->size == 0) {
260 return Qnil;
261 }
262 index = self->size - 1;
263 memory = RepeatedField_memoryat(self, index, element_size);
264 ret = native_slot_get(field_type, field_type_class, memory);
265 self->size--;
266 return ret;
267 }
268
269 /*
270 * call-seq:
271 * RepeatedField.replace(list)
272 *
273 * Replaces the contents of the repeated field with the given list of elements.
274 */
RepeatedField_replace(VALUE _self,VALUE list)275 VALUE RepeatedField_replace(VALUE _self, VALUE list) {
276 RepeatedField* self = ruby_to_RepeatedField(_self);
277 Check_Type(list, T_ARRAY);
278 self->size = 0;
279 for (int i = 0; i < RARRAY_LEN(list); i++) {
280 RepeatedField_push(_self, rb_ary_entry(list, i));
281 }
282 return list;
283 }
284
285 /*
286 * call-seq:
287 * RepeatedField.clear
288 *
289 * Clears (removes all elements from) this repeated field.
290 */
RepeatedField_clear(VALUE _self)291 VALUE RepeatedField_clear(VALUE _self) {
292 RepeatedField* self = ruby_to_RepeatedField(_self);
293 self->size = 0;
294 return _self;
295 }
296
297 /*
298 * call-seq:
299 * RepeatedField.length
300 *
301 * Returns the length of this repeated field.
302 */
RepeatedField_length(VALUE _self)303 VALUE RepeatedField_length(VALUE _self) {
304 RepeatedField* self = ruby_to_RepeatedField(_self);
305 return INT2NUM(self->size);
306 }
307
RepeatedField_new_this_type(VALUE _self)308 static VALUE RepeatedField_new_this_type(VALUE _self) {
309 RepeatedField* self = ruby_to_RepeatedField(_self);
310 VALUE new_rptfield = Qnil;
311 VALUE element_type = fieldtype_to_ruby(self->field_type);
312 if (self->field_type_class != Qnil) {
313 new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2,
314 element_type, self->field_type_class);
315 } else {
316 new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 1,
317 element_type);
318 }
319 return new_rptfield;
320 }
321
322 /*
323 * call-seq:
324 * RepeatedField.dup => repeated_field
325 *
326 * Duplicates this repeated field with a shallow copy. References to all
327 * non-primitive element objects (e.g., submessages) are shared.
328 */
RepeatedField_dup(VALUE _self)329 VALUE RepeatedField_dup(VALUE _self) {
330 RepeatedField* self = ruby_to_RepeatedField(_self);
331 VALUE new_rptfield = RepeatedField_new_this_type(_self);
332 RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield);
333 upb_fieldtype_t field_type = self->field_type;
334 size_t elem_size = native_slot_size(field_type);
335 size_t off = 0;
336 RepeatedField_reserve(new_rptfield_self, self->size);
337 for (int i = 0; i < self->size; i++, off += elem_size) {
338 void* to_mem = (uint8_t *)new_rptfield_self->elements + off;
339 void* from_mem = (uint8_t *)self->elements + off;
340 native_slot_dup(field_type, to_mem, from_mem);
341 new_rptfield_self->size++;
342 }
343
344 return new_rptfield;
345 }
346
347 // Internal only: used by Google::Protobuf.deep_copy.
RepeatedField_deep_copy(VALUE _self)348 VALUE RepeatedField_deep_copy(VALUE _self) {
349 RepeatedField* self = ruby_to_RepeatedField(_self);
350 VALUE new_rptfield = RepeatedField_new_this_type(_self);
351 RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield);
352 upb_fieldtype_t field_type = self->field_type;
353 size_t elem_size = native_slot_size(field_type);
354 size_t off = 0;
355 RepeatedField_reserve(new_rptfield_self, self->size);
356 for (int i = 0; i < self->size; i++, off += elem_size) {
357 void* to_mem = (uint8_t *)new_rptfield_self->elements + off;
358 void* from_mem = (uint8_t *)self->elements + off;
359 native_slot_deep_copy(field_type, to_mem, from_mem);
360 new_rptfield_self->size++;
361 }
362
363 return new_rptfield;
364 }
365
366 /*
367 * call-seq:
368 * RepeatedField.to_ary => array
369 *
370 * Used when converted implicitly into array, e.g. compared to an Array.
371 * Also called as a fallback of Object#to_a
372 */
RepeatedField_to_ary(VALUE _self)373 VALUE RepeatedField_to_ary(VALUE _self) {
374 RepeatedField* self = ruby_to_RepeatedField(_self);
375 upb_fieldtype_t field_type = self->field_type;
376
377 size_t elem_size = native_slot_size(field_type);
378 size_t off = 0;
379 VALUE ary = rb_ary_new2(self->size);
380 for (int i = 0; i < self->size; i++, off += elem_size) {
381 void* mem = ((uint8_t *)self->elements) + off;
382 VALUE elem = native_slot_get(field_type, self->field_type_class, mem);
383 rb_ary_push(ary, elem);
384 }
385 return ary;
386 }
387
388 /*
389 * call-seq:
390 * RepeatedField.==(other) => boolean
391 *
392 * Compares this repeated field to another. Repeated fields are equal if their
393 * element types are equal, their lengths are equal, and each element is equal.
394 * Elements are compared as per normal Ruby semantics, by calling their :==
395 * methods (or performing a more efficient comparison for primitive types).
396 *
397 * Repeated fields with dissimilar element types are never equal, even if value
398 * comparison (for example, between integers and floats) would have otherwise
399 * indicated that every element has equal value.
400 */
RepeatedField_eq(VALUE _self,VALUE _other)401 VALUE RepeatedField_eq(VALUE _self, VALUE _other) {
402 RepeatedField* self;
403 RepeatedField* other;
404
405 if (_self == _other) {
406 return Qtrue;
407 }
408
409 if (TYPE(_other) == T_ARRAY) {
410 VALUE self_ary = RepeatedField_to_ary(_self);
411 return rb_equal(self_ary, _other);
412 }
413
414 self = ruby_to_RepeatedField(_self);
415 other = ruby_to_RepeatedField(_other);
416 if (self->field_type != other->field_type ||
417 self->field_type_class != other->field_type_class ||
418 self->size != other->size) {
419 return Qfalse;
420 }
421
422 {
423 upb_fieldtype_t field_type = self->field_type;
424 size_t elem_size = native_slot_size(field_type);
425 size_t off = 0;
426 for (int i = 0; i < self->size; i++, off += elem_size) {
427 void* self_mem = ((uint8_t *)self->elements) + off;
428 void* other_mem = ((uint8_t *)other->elements) + off;
429 if (!native_slot_eq(field_type, self_mem, other_mem)) {
430 return Qfalse;
431 }
432 }
433 return Qtrue;
434 }
435 }
436
437 /*
438 * call-seq:
439 * RepeatedField.hash => hash_value
440 *
441 * Returns a hash value computed from this repeated field's elements.
442 */
RepeatedField_hash(VALUE _self)443 VALUE RepeatedField_hash(VALUE _self) {
444 RepeatedField* self = ruby_to_RepeatedField(_self);
445
446 VALUE hash = LL2NUM(0);
447
448 upb_fieldtype_t field_type = self->field_type;
449 VALUE field_type_class = self->field_type_class;
450 size_t elem_size = native_slot_size(field_type);
451 size_t off = 0;
452 for (int i = 0; i < self->size; i++, off += elem_size) {
453 void* mem = ((uint8_t *)self->elements) + off;
454 VALUE elem = native_slot_get(field_type, field_type_class, mem);
455 hash = rb_funcall(hash, rb_intern("<<"), 1, INT2NUM(2));
456 hash = rb_funcall(hash, rb_intern("^"), 1,
457 rb_funcall(elem, rb_intern("hash"), 0));
458 }
459
460 return hash;
461 }
462
463 /*
464 * call-seq:
465 * RepeatedField.+(other) => repeated field
466 *
467 * Returns a new repeated field that contains the concatenated list of this
468 * repeated field's elements and other's elements. The other (second) list may
469 * be either another repeated field or a Ruby array.
470 */
RepeatedField_plus(VALUE _self,VALUE list)471 VALUE RepeatedField_plus(VALUE _self, VALUE list) {
472 VALUE dupped = RepeatedField_dup(_self);
473
474 if (TYPE(list) == T_ARRAY) {
475 for (int i = 0; i < RARRAY_LEN(list); i++) {
476 VALUE elem = rb_ary_entry(list, i);
477 RepeatedField_push(dupped, elem);
478 }
479 } else if (RB_TYPE_P(list, T_DATA) && RTYPEDDATA_P(list) &&
480 RTYPEDDATA_TYPE(list) == &RepeatedField_type) {
481 RepeatedField* self = ruby_to_RepeatedField(_self);
482 RepeatedField* list_rptfield = ruby_to_RepeatedField(list);
483 if (self->field_type != list_rptfield->field_type ||
484 self->field_type_class != list_rptfield->field_type_class) {
485 rb_raise(rb_eArgError,
486 "Attempt to append RepeatedField with different element type.");
487 }
488 for (int i = 0; i < list_rptfield->size; i++) {
489 void* mem = RepeatedField_index_native(list, i);
490 RepeatedField_push_native(dupped, mem);
491 }
492 } else {
493 rb_raise(rb_eArgError, "Unknown type appending to RepeatedField");
494 }
495
496 return dupped;
497 }
498
499 /*
500 * call-seq:
501 * RepeatedField.concat(other) => self
502 *
503 * concats the passed in array to self. Returns a Ruby array.
504 */
RepeatedField_concat(VALUE _self,VALUE list)505 VALUE RepeatedField_concat(VALUE _self, VALUE list) {
506 Check_Type(list, T_ARRAY);
507 for (int i = 0; i < RARRAY_LEN(list); i++) {
508 RepeatedField_push(_self, rb_ary_entry(list, i));
509 }
510 return _self;
511 }
512
513
validate_type_class(upb_fieldtype_t type,VALUE klass)514 void validate_type_class(upb_fieldtype_t type, VALUE klass) {
515 if (rb_ivar_get(klass, descriptor_instancevar_interned) == Qnil) {
516 rb_raise(rb_eArgError,
517 "Type class has no descriptor. Please pass a "
518 "class or enum as returned by the DescriptorPool.");
519 }
520 if (type == UPB_TYPE_MESSAGE) {
521 VALUE desc = rb_ivar_get(klass, descriptor_instancevar_interned);
522 if (!RB_TYPE_P(desc, T_DATA) || !RTYPEDDATA_P(desc) ||
523 RTYPEDDATA_TYPE(desc) != &_Descriptor_type) {
524 rb_raise(rb_eArgError, "Descriptor has an incorrect type.");
525 }
526 if (rb_get_alloc_func(klass) != &Message_alloc) {
527 rb_raise(rb_eArgError,
528 "Message class was not returned by the DescriptorPool.");
529 }
530 } else if (type == UPB_TYPE_ENUM) {
531 VALUE enumdesc = rb_ivar_get(klass, descriptor_instancevar_interned);
532 if (!RB_TYPE_P(enumdesc, T_DATA) || !RTYPEDDATA_P(enumdesc) ||
533 RTYPEDDATA_TYPE(enumdesc) != &_EnumDescriptor_type) {
534 rb_raise(rb_eArgError, "Descriptor has an incorrect type.");
535 }
536 }
537 }
538
RepeatedField_init_args(int argc,VALUE * argv,VALUE _self)539 void RepeatedField_init_args(int argc, VALUE* argv,
540 VALUE _self) {
541 RepeatedField* self = ruby_to_RepeatedField(_self);
542 VALUE ary = Qnil;
543 if (argc < 1) {
544 rb_raise(rb_eArgError, "Expected at least 1 argument.");
545 }
546 self->field_type = ruby_to_fieldtype(argv[0]);
547
548 if (self->field_type == UPB_TYPE_MESSAGE ||
549 self->field_type == UPB_TYPE_ENUM) {
550 if (argc < 2) {
551 rb_raise(rb_eArgError, "Expected at least 2 arguments for message/enum.");
552 }
553 self->field_type_class = argv[1];
554 if (argc > 2) {
555 ary = argv[2];
556 }
557 validate_type_class(self->field_type, self->field_type_class);
558 } else {
559 if (argc > 2) {
560 rb_raise(rb_eArgError, "Too many arguments: expected 1 or 2.");
561 }
562 if (argc > 1) {
563 ary = argv[1];
564 }
565 }
566
567 if (ary != Qnil) {
568 if (!RB_TYPE_P(ary, T_ARRAY)) {
569 rb_raise(rb_eArgError, "Expected array as initialize argument");
570 }
571 for (int i = 0; i < RARRAY_LEN(ary); i++) {
572 RepeatedField_push(_self, rb_ary_entry(ary, i));
573 }
574 }
575 }
576
577 // Mark, free, alloc, init and class setup functions.
578
RepeatedField_mark(void * _self)579 void RepeatedField_mark(void* _self) {
580 RepeatedField* self = (RepeatedField*)_self;
581 upb_fieldtype_t field_type = self->field_type;
582 int element_size = native_slot_size(field_type);
583 rb_gc_mark(self->field_type_class);
584 for (int i = 0; i < self->size; i++) {
585 void* memory = (((uint8_t *)self->elements) + i * element_size);
586 native_slot_mark(self->field_type, memory);
587 }
588 }
589
RepeatedField_free(void * _self)590 void RepeatedField_free(void* _self) {
591 RepeatedField* self = (RepeatedField*)_self;
592 xfree(self->elements);
593 xfree(self);
594 }
595
596 /*
597 * call-seq:
598 * RepeatedField.new(type, type_class = nil, initial_elems = [])
599 *
600 * Creates a new repeated field. The provided type must be a Ruby symbol, and
601 * can take on the same values as those accepted by FieldDescriptor#type=. If
602 * the type is :message or :enum, type_class must be non-nil, and must be the
603 * Ruby class or module returned by Descriptor#msgclass or
604 * EnumDescriptor#enummodule, respectively. An initial list of elements may also
605 * be provided.
606 */
RepeatedField_alloc(VALUE klass)607 VALUE RepeatedField_alloc(VALUE klass) {
608 RepeatedField* self = ALLOC(RepeatedField);
609 self->elements = NULL;
610 self->size = 0;
611 self->capacity = 0;
612 self->field_type = -1;
613 self->field_type_class = Qnil;
614 return TypedData_Wrap_Struct(klass, &RepeatedField_type, self);
615 }
616
RepeatedField_init(int argc,VALUE * argv,VALUE self)617 VALUE RepeatedField_init(int argc, VALUE* argv, VALUE self) {
618 RepeatedField_init_args(argc, argv, self);
619 return Qnil;
620 }
621
RepeatedField_register(VALUE module)622 void RepeatedField_register(VALUE module) {
623 VALUE klass = rb_define_class_under(
624 module, "RepeatedField", rb_cObject);
625 rb_define_alloc_func(klass, RepeatedField_alloc);
626 cRepeatedField = klass;
627 rb_gc_register_address(&cRepeatedField);
628
629 rb_define_method(klass, "initialize",
630 RepeatedField_init, -1);
631 rb_define_method(klass, "each", RepeatedField_each, 0);
632 rb_define_method(klass, "[]", RepeatedField_index, -1);
633 rb_define_method(klass, "at", RepeatedField_index, -1);
634 rb_define_method(klass, "[]=", RepeatedField_index_set, 2);
635 rb_define_method(klass, "push", RepeatedField_push, 1);
636 rb_define_method(klass, "<<", RepeatedField_push, 1);
637 rb_define_private_method(klass, "pop_one", RepeatedField_pop_one, 0);
638 rb_define_method(klass, "replace", RepeatedField_replace, 1);
639 rb_define_method(klass, "clear", RepeatedField_clear, 0);
640 rb_define_method(klass, "length", RepeatedField_length, 0);
641 rb_define_method(klass, "size", RepeatedField_length, 0);
642 rb_define_method(klass, "dup", RepeatedField_dup, 0);
643 // Also define #clone so that we don't inherit Object#clone.
644 rb_define_method(klass, "clone", RepeatedField_dup, 0);
645 rb_define_method(klass, "==", RepeatedField_eq, 1);
646 rb_define_method(klass, "to_ary", RepeatedField_to_ary, 0);
647 rb_define_method(klass, "hash", RepeatedField_hash, 0);
648 rb_define_method(klass, "+", RepeatedField_plus, 1);
649 rb_define_method(klass, "concat", RepeatedField_concat, 1);
650 rb_include_module(klass, rb_mEnumerable);
651 }
652