1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_ARM_CONSTANTS_ARM_H_
6 #define V8_ARM_CONSTANTS_ARM_H_
7
8 #include <stdint.h>
9
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/boxed-float.h"
13 #include "src/globals.h"
14 #include "src/utils.h"
15
16 // ARM EABI is required.
17 #if defined(__arm__) && !defined(__ARM_EABI__)
18 #error ARM EABI support is required.
19 #endif
20
21 namespace v8 {
22 namespace internal {
23
24 // Constant pool marker.
25 // Use UDF, the permanently undefined instruction.
26 const int kConstantPoolMarkerMask = 0xfff000f0;
27 const int kConstantPoolMarker = 0xe7f000f0;
28 const int kConstantPoolLengthMaxMask = 0xffff;
EncodeConstantPoolLength(int length)29 inline int EncodeConstantPoolLength(int length) {
30 DCHECK((length & kConstantPoolLengthMaxMask) == length);
31 return ((length & 0xfff0) << 4) | (length & 0xf);
32 }
DecodeConstantPoolLength(int instr)33 inline int DecodeConstantPoolLength(int instr) {
34 DCHECK_EQ(instr & kConstantPoolMarkerMask, kConstantPoolMarker);
35 return ((instr >> 4) & 0xfff0) | (instr & 0xf);
36 }
37
38 // Number of registers in normal ARM mode.
39 const int kNumRegisters = 16;
40
41 // VFP support.
42 const int kNumVFPSingleRegisters = 32;
43 const int kNumVFPDoubleRegisters = 32;
44 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
45
46 // PC is register 15.
47 const int kPCRegister = 15;
48 const int kNoRegister = -1;
49
50 // Used in embedded constant pool builder - max reach in bits for
51 // various load instructions (unsigned)
52 const int kLdrMaxReachBits = 12;
53 const int kVldrMaxReachBits = 10;
54
55 // Actual value of root register is offset from the root array's start
56 // to take advantage of negative displacement values. Loads allow a uint12
57 // value with a separate sign bit (range [-4095, +4095]), so the first root
58 // is still addressable with a single load instruction.
59 constexpr int kRootRegisterBias = 4095;
60
61 // -----------------------------------------------------------------------------
62 // Conditions.
63
64 // Defines constants and accessor classes to assemble, disassemble and
65 // simulate ARM instructions.
66 //
67 // Section references in the code refer to the "ARM Architecture Reference
68 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
69 //
70 // Constants for specific fields are defined in their respective named enums.
71 // General constants are in an anonymous enum in class Instr.
72
73 // Values for the condition field as defined in section A3.2
74 enum Condition {
75 kNoCondition = -1,
76
77 eq = 0 << 28, // Z set Equal.
78 ne = 1 << 28, // Z clear Not equal.
79 cs = 2 << 28, // C set Unsigned higher or same.
80 cc = 3 << 28, // C clear Unsigned lower.
81 mi = 4 << 28, // N set Negative.
82 pl = 5 << 28, // N clear Positive or zero.
83 vs = 6 << 28, // V set Overflow.
84 vc = 7 << 28, // V clear No overflow.
85 hi = 8 << 28, // C set, Z clear Unsigned higher.
86 ls = 9 << 28, // C clear or Z set Unsigned lower or same.
87 ge = 10 << 28, // N == V Greater or equal.
88 lt = 11 << 28, // N != V Less than.
89 gt = 12 << 28, // Z clear, N == V Greater than.
90 le = 13 << 28, // Z set or N != V Less then or equal
91 al = 14 << 28, // Always.
92
93 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
94 kNumberOfConditions = 16,
95
96 // Aliases.
97 hs = cs, // C set Unsigned higher or same.
98 lo = cc // C clear Unsigned lower.
99 };
100
101
NegateCondition(Condition cond)102 inline Condition NegateCondition(Condition cond) {
103 DCHECK(cond != al);
104 return static_cast<Condition>(cond ^ ne);
105 }
106
107
108 // -----------------------------------------------------------------------------
109 // Instructions encoding.
110
111 // Instr is merely used by the Assembler to distinguish 32bit integers
112 // representing instructions from usual 32 bit values.
113 // Instruction objects are pointers to 32bit values, and provide methods to
114 // access the various ISA fields.
115 typedef int32_t Instr;
116
117
118 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
119 // as defined in section A3.4
120 enum Opcode {
121 AND = 0 << 21, // Logical AND.
122 EOR = 1 << 21, // Logical Exclusive OR.
123 SUB = 2 << 21, // Subtract.
124 RSB = 3 << 21, // Reverse Subtract.
125 ADD = 4 << 21, // Add.
126 ADC = 5 << 21, // Add with Carry.
127 SBC = 6 << 21, // Subtract with Carry.
128 RSC = 7 << 21, // Reverse Subtract with Carry.
129 TST = 8 << 21, // Test.
130 TEQ = 9 << 21, // Test Equivalence.
131 CMP = 10 << 21, // Compare.
132 CMN = 11 << 21, // Compare Negated.
133 ORR = 12 << 21, // Logical (inclusive) OR.
134 MOV = 13 << 21, // Move.
135 BIC = 14 << 21, // Bit Clear.
136 MVN = 15 << 21 // Move Not.
137 };
138
139
140 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
141 enum MiscInstructionsBits74 {
142 // With bits 22-21 01.
143 BX = 1 << 4,
144 BXJ = 2 << 4,
145 BLX = 3 << 4,
146 BKPT = 7 << 4,
147
148 // With bits 22-21 11.
149 CLZ = 1 << 4
150 };
151
152
153 // Instruction encoding bits and masks.
154 enum {
155 H = 1 << 5, // Halfword (or byte).
156 S6 = 1 << 6, // Signed (or unsigned).
157 L = 1 << 20, // Load (or store).
158 S = 1 << 20, // Set condition code (or leave unchanged).
159 W = 1 << 21, // Writeback base register (or leave unchanged).
160 A = 1 << 21, // Accumulate in multiply instruction (or not).
161 B = 1 << 22, // Unsigned byte (or word).
162 N = 1 << 22, // Long (or short).
163 U = 1 << 23, // Positive (or negative) offset/index.
164 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
165 I = 1 << 25, // Immediate shifter operand (or not).
166 B0 = 1 << 0,
167 B4 = 1 << 4,
168 B5 = 1 << 5,
169 B6 = 1 << 6,
170 B7 = 1 << 7,
171 B8 = 1 << 8,
172 B9 = 1 << 9,
173 B10 = 1 << 10,
174 B12 = 1 << 12,
175 B16 = 1 << 16,
176 B17 = 1 << 17,
177 B18 = 1 << 18,
178 B19 = 1 << 19,
179 B20 = 1 << 20,
180 B21 = 1 << 21,
181 B22 = 1 << 22,
182 B23 = 1 << 23,
183 B24 = 1 << 24,
184 B25 = 1 << 25,
185 B26 = 1 << 26,
186 B27 = 1 << 27,
187 B28 = 1 << 28,
188
189 // Instruction bit masks.
190 kCondMask = 15 << 28,
191 kALUMask = 0x6f << 21,
192 kRdMask = 15 << 12, // In str instruction.
193 kCoprocessorMask = 15 << 8,
194 kOpCodeMask = 15 << 21, // In data-processing instructions.
195 kImm24Mask = (1 << 24) - 1,
196 kImm16Mask = (1 << 16) - 1,
197 kImm8Mask = (1 << 8) - 1,
198 kOff12Mask = (1 << 12) - 1,
199 kOff8Mask = (1 << 8) - 1
200 };
201
202 enum BarrierOption {
203 OSHLD = 0x1,
204 OSHST = 0x2,
205 OSH = 0x3,
206 NSHLD = 0x5,
207 NSHST = 0x6,
208 NSH = 0x7,
209 ISHLD = 0x9,
210 ISHST = 0xa,
211 ISH = 0xb,
212 LD = 0xd,
213 ST = 0xe,
214 SY = 0xf,
215 };
216
217
218 // -----------------------------------------------------------------------------
219 // Addressing modes and instruction variants.
220
221 // Condition code updating mode.
222 enum SBit {
223 SetCC = 1 << 20, // Set condition code.
224 LeaveCC = 0 << 20 // Leave condition code unchanged.
225 };
226
227
228 // Status register selection.
229 enum SRegister {
230 CPSR = 0 << 22,
231 SPSR = 1 << 22
232 };
233
234
235 // Shifter types for Data-processing operands as defined in section A5.1.2.
236 enum ShiftOp {
237 LSL = 0 << 5, // Logical shift left.
238 LSR = 1 << 5, // Logical shift right.
239 ASR = 2 << 5, // Arithmetic shift right.
240 ROR = 3 << 5, // Rotate right.
241
242 // RRX is encoded as ROR with shift_imm == 0.
243 // Use a special code to make the distinction. The RRX ShiftOp is only used
244 // as an argument, and will never actually be encoded. The Assembler will
245 // detect it and emit the correct ROR shift operand with shift_imm == 0.
246 RRX = -1,
247 kNumberOfShifts = 4
248 };
249
250
251 // Status register fields.
252 enum SRegisterField {
253 CPSR_c = CPSR | 1 << 16,
254 CPSR_x = CPSR | 1 << 17,
255 CPSR_s = CPSR | 1 << 18,
256 CPSR_f = CPSR | 1 << 19,
257 SPSR_c = SPSR | 1 << 16,
258 SPSR_x = SPSR | 1 << 17,
259 SPSR_s = SPSR | 1 << 18,
260 SPSR_f = SPSR | 1 << 19
261 };
262
263 // Status register field mask (or'ed SRegisterField enum values).
264 typedef uint32_t SRegisterFieldMask;
265
266
267 // Memory operand addressing mode.
268 enum AddrMode {
269 // Bit encoding P U W.
270 Offset = (8|4|0) << 21, // Offset (without writeback to base).
271 PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback.
272 PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback.
273 NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base).
274 NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback.
275 NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback.
276 };
277
278
279 // Load/store multiple addressing mode.
280 enum BlockAddrMode {
281 // Bit encoding P U W .
282 da = (0|0|0) << 21, // Decrement after.
283 ia = (0|4|0) << 21, // Increment after.
284 db = (8|0|0) << 21, // Decrement before.
285 ib = (8|4|0) << 21, // Increment before.
286 da_w = (0|0|1) << 21, // Decrement after with writeback to base.
287 ia_w = (0|4|1) << 21, // Increment after with writeback to base.
288 db_w = (8|0|1) << 21, // Decrement before with writeback to base.
289 ib_w = (8|4|1) << 21, // Increment before with writeback to base.
290
291 // Alias modes for comparison when writeback does not matter.
292 da_x = (0|0|0) << 21, // Decrement after.
293 ia_x = (0|4|0) << 21, // Increment after.
294 db_x = (8|0|0) << 21, // Decrement before.
295 ib_x = (8|4|0) << 21, // Increment before.
296
297 kBlockAddrModeMask = (8|4|1) << 21
298 };
299
300
301 // Coprocessor load/store operand size.
302 enum LFlag {
303 Long = 1 << 22, // Long load/store coprocessor.
304 Short = 0 << 22 // Short load/store coprocessor.
305 };
306
307 // Neon sizes.
308 enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
309
310 // NEON data type
311 enum NeonDataType {
312 NeonS8 = 0,
313 NeonS16 = 1,
314 NeonS32 = 2,
315 // Gap to make it easier to extract U and size.
316 NeonU8 = 4,
317 NeonU16 = 5,
318 NeonU32 = 6
319 };
320
NeonU(NeonDataType dt)321 inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
NeonSz(NeonDataType dt)322 inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
323
324 // Convert sizes to data types (U bit is clear).
NeonSizeToDataType(NeonSize size)325 inline NeonDataType NeonSizeToDataType(NeonSize size) {
326 DCHECK_NE(Neon64, size);
327 return static_cast<NeonDataType>(size);
328 }
329
NeonDataTypeToSize(NeonDataType dt)330 inline NeonSize NeonDataTypeToSize(NeonDataType dt) {
331 return static_cast<NeonSize>(NeonSz(dt));
332 }
333
334 enum NeonListType {
335 nlt_1 = 0x7,
336 nlt_2 = 0xA,
337 nlt_3 = 0x6,
338 nlt_4 = 0x2
339 };
340
341 // -----------------------------------------------------------------------------
342 // Supervisor Call (svc) specific support.
343
344 // Special Software Interrupt codes when used in the presence of the ARM
345 // simulator.
346 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
347 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
348 enum SoftwareInterruptCodes {
349 // transition to C code
350 kCallRtRedirected = 0x10,
351 // break point
352 kBreakpoint = 0x20,
353 // stop
354 kStopCode = 1 << 23
355 };
356 const uint32_t kStopCodeMask = kStopCode - 1;
357 const uint32_t kMaxStopCode = kStopCode - 1;
358 const int32_t kDefaultStopCode = -1;
359
360
361 // Type of VFP register. Determines register encoding.
362 enum VFPRegPrecision {
363 kSinglePrecision = 0,
364 kDoublePrecision = 1,
365 kSimd128Precision = 2
366 };
367
368 // VFP FPSCR constants.
369 enum VFPConversionMode {
370 kFPSCRRounding = 0,
371 kDefaultRoundToZero = 1
372 };
373
374 // This mask does not include the "inexact" or "input denormal" cumulative
375 // exceptions flags, because we usually don't want to check for it.
376 const uint32_t kVFPExceptionMask = 0xf;
377 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
378 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
379 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
380 const uint32_t kVFPInexactExceptionBit = 1 << 4;
381 const uint32_t kVFPFlushToZeroMask = 1 << 24;
382 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
383
384 const uint32_t kVFPNConditionFlagBit = 1 << 31;
385 const uint32_t kVFPZConditionFlagBit = 1 << 30;
386 const uint32_t kVFPCConditionFlagBit = 1 << 29;
387 const uint32_t kVFPVConditionFlagBit = 1 << 28;
388
389
390 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
391 enum VFPRoundingMode {
392 RN = 0 << 22, // Round to Nearest.
393 RP = 1 << 22, // Round towards Plus Infinity.
394 RM = 2 << 22, // Round towards Minus Infinity.
395 RZ = 3 << 22, // Round towards zero.
396
397 // Aliases.
398 kRoundToNearest = RN,
399 kRoundToPlusInf = RP,
400 kRoundToMinusInf = RM,
401 kRoundToZero = RZ
402 };
403
404 const uint32_t kVFPRoundingModeMask = 3 << 22;
405
406 enum CheckForInexactConversion {
407 kCheckForInexactConversion,
408 kDontCheckForInexactConversion
409 };
410
411 // -----------------------------------------------------------------------------
412 // Hints.
413
414 // Branch hints are not used on the ARM. They are defined so that they can
415 // appear in shared function signatures, but will be ignored in ARM
416 // implementations.
417 enum Hint { no_hint };
418
419 // Hints are not used on the arm. Negating is trivial.
NegateHint(Hint ignored)420 inline Hint NegateHint(Hint ignored) { return no_hint; }
421
422
423 // -----------------------------------------------------------------------------
424 // Instruction abstraction.
425
426 // The class Instruction enables access to individual fields defined in the ARM
427 // architecture instruction set encoding as described in figure A3-1.
428 // Note that the Assembler uses typedef int32_t Instr.
429 //
430 // Example: Test whether the instruction at ptr does set the condition code
431 // bits.
432 //
433 // bool InstructionSetsConditionCodes(byte* ptr) {
434 // Instruction* instr = Instruction::At(ptr);
435 // int type = instr->TypeValue();
436 // return ((type == 0) || (type == 1)) && instr->HasS();
437 // }
438 //
439
440 constexpr uint8_t kInstrSize = 4;
441 constexpr uint8_t kInstrSizeLog2 = 2;
442
443 class Instruction {
444 public:
445 // Difference between address of current opcode and value read from pc
446 // register.
447 static constexpr int kPcLoadDelta = 8;
448
449 // Helper macro to define static accessors.
450 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
451 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
452 static inline return_type Name(Instr instr) { \
453 char* temp = reinterpret_cast<char*>(&instr); \
454 return reinterpret_cast<Instruction*>(temp)->Name(); \
455 }
456
457 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
458
459 // Get the raw instruction bits.
InstructionBits()460 inline Instr InstructionBits() const {
461 return *reinterpret_cast<const Instr*>(this);
462 }
463
464 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)465 inline void SetInstructionBits(Instr value) {
466 *reinterpret_cast<Instr*>(this) = value;
467 }
468
469 // Extract a single bit from the instruction bits and return it as bit 0 in
470 // the result.
Bit(int nr)471 inline int Bit(int nr) const {
472 return (InstructionBits() >> nr) & 1;
473 }
474
475 // Extract a bit field <hi:lo> from the instruction bits and return it in the
476 // least-significant bits of the result.
Bits(int hi,int lo)477 inline int Bits(int hi, int lo) const {
478 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
479 }
480
481 // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(int hi,int lo)482 inline int BitField(int hi, int lo) const {
483 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
484 }
485
486 // Static support.
487
488 // Extract a single bit from the instruction bits and return it as bit 0 in
489 // the result.
Bit(Instr instr,int nr)490 static inline int Bit(Instr instr, int nr) {
491 return (instr >> nr) & 1;
492 }
493
494 // Extract a bit field <hi:lo> from the instruction bits and return it in the
495 // least-significant bits of the result.
Bits(Instr instr,int hi,int lo)496 static inline int Bits(Instr instr, int hi, int lo) {
497 return (instr >> lo) & ((2 << (hi - lo)) - 1);
498 }
499
500 // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(Instr instr,int hi,int lo)501 static inline int BitField(Instr instr, int hi, int lo) {
502 return instr & (((2 << (hi - lo)) - 1) << lo);
503 }
504
505 // Accessors for the different named fields used in the ARM encoding.
506 // The naming of these accessor corresponds to figure A3-1.
507 //
508 // Two kind of accessors are declared:
509 // - <Name>Field() will return the raw field, i.e. the field's bits at their
510 // original place in the instruction encoding.
511 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
512 // 0xC0810002 ConditionField(instr) will return 0xC0000000.
513 // - <Name>Value() will return the field value, shifted back to bit 0.
514 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
515 // 0xC0810002 ConditionField(instr) will return 0xC.
516
517
518 // Generally applicable fields
ConditionValue()519 inline int ConditionValue() const { return Bits(31, 28); }
ConditionField()520 inline Condition ConditionField() const {
521 return static_cast<Condition>(BitField(31, 28));
522 }
523 DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
524 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
525
TypeValue()526 inline int TypeValue() const { return Bits(27, 25); }
SpecialValue()527 inline int SpecialValue() const { return Bits(27, 23); }
528
RnValue()529 inline int RnValue() const { return Bits(19, 16); }
530 DECLARE_STATIC_ACCESSOR(RnValue);
RdValue()531 inline int RdValue() const { return Bits(15, 12); }
532 DECLARE_STATIC_ACCESSOR(RdValue);
533
CoprocessorValue()534 inline int CoprocessorValue() const { return Bits(11, 8); }
535 // Support for VFP.
536 // Vn(19-16) | Vd(15-12) | Vm(3-0)
VnValue()537 inline int VnValue() const { return Bits(19, 16); }
VmValue()538 inline int VmValue() const { return Bits(3, 0); }
VdValue()539 inline int VdValue() const { return Bits(15, 12); }
NValue()540 inline int NValue() const { return Bit(7); }
MValue()541 inline int MValue() const { return Bit(5); }
DValue()542 inline int DValue() const { return Bit(22); }
RtValue()543 inline int RtValue() const { return Bits(15, 12); }
PValue()544 inline int PValue() const { return Bit(24); }
UValue()545 inline int UValue() const { return Bit(23); }
Opc1Value()546 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()547 inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()548 inline int Opc3Value() const { return Bits(7, 6); }
SzValue()549 inline int SzValue() const { return Bit(8); }
VLValue()550 inline int VLValue() const { return Bit(20); }
VCValue()551 inline int VCValue() const { return Bit(8); }
VAValue()552 inline int VAValue() const { return Bits(23, 21); }
VBValue()553 inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)554 inline int VFPNRegValue(VFPRegPrecision pre) {
555 return VFPGlueRegValue(pre, 16, 7);
556 }
VFPMRegValue(VFPRegPrecision pre)557 inline int VFPMRegValue(VFPRegPrecision pre) {
558 return VFPGlueRegValue(pre, 0, 5);
559 }
VFPDRegValue(VFPRegPrecision pre)560 inline int VFPDRegValue(VFPRegPrecision pre) {
561 return VFPGlueRegValue(pre, 12, 22);
562 }
563
564 // Fields used in Data processing instructions
OpcodeValue()565 inline int OpcodeValue() const {
566 return static_cast<Opcode>(Bits(24, 21));
567 }
OpcodeField()568 inline Opcode OpcodeField() const {
569 return static_cast<Opcode>(BitField(24, 21));
570 }
SValue()571 inline int SValue() const { return Bit(20); }
572 // with register
RmValue()573 inline int RmValue() const { return Bits(3, 0); }
574 DECLARE_STATIC_ACCESSOR(RmValue);
ShiftValue()575 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()576 inline ShiftOp ShiftField() const {
577 return static_cast<ShiftOp>(BitField(6, 5));
578 }
RegShiftValue()579 inline int RegShiftValue() const { return Bit(4); }
RsValue()580 inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()581 inline int ShiftAmountValue() const { return Bits(11, 7); }
582 // with immediate
RotateValue()583 inline int RotateValue() const { return Bits(11, 8); }
584 DECLARE_STATIC_ACCESSOR(RotateValue);
Immed8Value()585 inline int Immed8Value() const { return Bits(7, 0); }
586 DECLARE_STATIC_ACCESSOR(Immed8Value);
Immed4Value()587 inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()588 inline int ImmedMovwMovtValue() const {
589 return Immed4Value() << 12 | Offset12Value(); }
590 DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
591
592 // Fields used in Load/Store instructions
PUValue()593 inline int PUValue() const { return Bits(24, 23); }
PUField()594 inline int PUField() const { return BitField(24, 23); }
BValue()595 inline int BValue() const { return Bit(22); }
WValue()596 inline int WValue() const { return Bit(21); }
LValue()597 inline int LValue() const { return Bit(20); }
598 // with register uses same fields as Data processing instructions above
599 // with immediate
Offset12Value()600 inline int Offset12Value() const { return Bits(11, 0); }
601 // multiple
RlistValue()602 inline int RlistValue() const { return Bits(15, 0); }
603 // extra loads and stores
SignValue()604 inline int SignValue() const { return Bit(6); }
HValue()605 inline int HValue() const { return Bit(5); }
ImmedHValue()606 inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()607 inline int ImmedLValue() const { return Bits(3, 0); }
608
609 // Fields used in Branch instructions
LinkValue()610 inline int LinkValue() const { return Bit(24); }
SImmed24Value()611 inline int SImmed24Value() const {
612 return signed_bitextract_32(23, 0, InstructionBits());
613 }
614
IsBranch()615 bool IsBranch() { return Bit(27) == 1 && Bit(25) == 1; }
616
GetBranchOffset()617 int GetBranchOffset() {
618 DCHECK(IsBranch());
619 return SImmed24Value() * kInstrSize;
620 }
621
SetBranchOffset(int32_t branch_offset)622 void SetBranchOffset(int32_t branch_offset) {
623 DCHECK(IsBranch());
624 DCHECK_EQ(branch_offset % kInstrSize, 0);
625 int32_t new_imm24 = branch_offset / kInstrSize;
626 CHECK(is_int24(new_imm24));
627 SetInstructionBits((InstructionBits() & ~(kImm24Mask)) |
628 (new_imm24 & kImm24Mask));
629 }
630
631 // Fields used in Software interrupt instructions
SvcValue()632 inline SoftwareInterruptCodes SvcValue() const {
633 return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
634 }
635
636 // Test for special encodings of type 0 instructions (extra loads and stores,
637 // as well as multiplications).
IsSpecialType0()638 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
639
640 // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()641 inline bool IsMiscType0() const { return (Bit(24) == 1)
642 && (Bit(23) == 0)
643 && (Bit(20) == 0)
644 && ((Bit(7) == 0)); }
645
646 // Test for nop-like instructions which fall under type 1.
IsNopLikeType1()647 inline bool IsNopLikeType1() const { return Bits(24, 8) == 0x120F0; }
648
649 // Test for a stop instruction.
IsStop()650 inline bool IsStop() const {
651 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
652 }
653
654 // Special accessors that test for existence of a value.
HasS()655 inline bool HasS() const { return SValue() == 1; }
HasB()656 inline bool HasB() const { return BValue() == 1; }
HasW()657 inline bool HasW() const { return WValue() == 1; }
HasL()658 inline bool HasL() const { return LValue() == 1; }
HasU()659 inline bool HasU() const { return UValue() == 1; }
HasSign()660 inline bool HasSign() const { return SignValue() == 1; }
HasH()661 inline bool HasH() const { return HValue() == 1; }
HasLink()662 inline bool HasLink() const { return LinkValue() == 1; }
663
664 // Decode the double immediate from a vmov instruction.
665 Float64 DoubleImmedVmov() const;
666
667 // Instructions are read of out a code stream. The only way to get a
668 // reference to an instruction is to convert a pointer. There is no way
669 // to allocate or create instances of class Instruction.
670 // Use the At(pc) function to create references to Instruction.
At(Address pc)671 static Instruction* At(Address pc) {
672 return reinterpret_cast<Instruction*>(pc);
673 }
674
675
676 private:
677 // Join split register codes, depending on register precision.
678 // four_bit is the position of the least-significant bit of the four
679 // bit specifier. one_bit is the position of the additional single bit
680 // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)681 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
682 if (pre == kSinglePrecision) {
683 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
684 } else {
685 int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
686 if (pre == kDoublePrecision) {
687 return reg_num;
688 }
689 DCHECK_EQ(kSimd128Precision, pre);
690 DCHECK_EQ(reg_num & 1, 0);
691 return reg_num / 2;
692 }
693 }
694
695 // We need to prevent the creation of instances of class Instruction.
696 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
697 };
698
699
700 // Helper functions for converting between register numbers and names.
701 class Registers {
702 public:
703 // Return the name of the register.
704 static const char* Name(int reg);
705
706 // Lookup the register number for the name provided.
707 static int Number(const char* name);
708
709 struct RegisterAlias {
710 int reg;
711 const char* name;
712 };
713
714 private:
715 static const char* names_[kNumRegisters];
716 static const RegisterAlias aliases_[];
717 };
718
719 // Helper functions for converting between VFP register numbers and names.
720 class VFPRegisters {
721 public:
722 // Return the name of the register.
723 static const char* Name(int reg, bool is_double);
724
725 // Lookup the register number for the name provided.
726 // Set flag pointed by is_double to true if register
727 // is double-precision.
728 static int Number(const char* name, bool* is_double);
729
730 private:
731 static const char* names_[kNumVFPRegisters];
732 };
733
734 // Relative jumps on ARM can address ±32 MB.
735 constexpr size_t kMaxPCRelativeCodeRangeInMB = 32;
736
737 } // namespace internal
738 } // namespace v8
739
740 #endif // V8_ARM_CONSTANTS_ARM_H_
741