• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// Generic dominator tree construction - This file provides routines to
12 /// construct immediate dominator information for a flow-graph based on the
13 /// Semi-NCA algorithm described in this dissertation:
14 ///
15 ///   Linear-Time Algorithms for Dominators and Related Problems
16 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
17 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
18 ///
19 /// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
20 /// out that the theoretically slower O(n*log(n)) implementation is actually
21 /// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
22 ///
23 /// The file uses the Depth Based Search algorithm to perform incremental
24 /// updates (insertion and deletions). The implemented algorithm is based on
25 /// this publication:
26 ///
27 ///   An Experimental Study of Dynamic Dominators
28 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
29 ///   https://arxiv.org/pdf/1604.02711.pdf
30 ///
31 //===----------------------------------------------------------------------===//
32 
33 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
34 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
35 
36 #include <queue>
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/DepthFirstIterator.h"
40 #include "llvm/ADT/PointerIntPair.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/GenericDomTree.h"
44 
45 #define DEBUG_TYPE "dom-tree-builder"
46 
47 namespace llvm {
48 namespace DomTreeBuilder {
49 
50 template <typename DomTreeT>
51 struct SemiNCAInfo {
52   using NodePtr = typename DomTreeT::NodePtr;
53   using NodeT = typename DomTreeT::NodeType;
54   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
55   using RootsT = decltype(DomTreeT::Roots);
56   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
57 
58   // Information record used by Semi-NCA during tree construction.
59   struct InfoRec {
60     unsigned DFSNum = 0;
61     unsigned Parent = 0;
62     unsigned Semi = 0;
63     NodePtr Label = nullptr;
64     NodePtr IDom = nullptr;
65     SmallVector<NodePtr, 2> ReverseChildren;
66   };
67 
68   // Number to node mapping is 1-based. Initialize the mapping to start with
69   // a dummy element.
70   std::vector<NodePtr> NumToNode = {nullptr};
71   DenseMap<NodePtr, InfoRec> NodeToInfo;
72 
73   using UpdateT = typename DomTreeT::UpdateType;
74   struct BatchUpdateInfo {
75     SmallVector<UpdateT, 4> Updates;
76     using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>;
77 
78     // In order to be able to walk a CFG that is out of sync with the CFG
79     // DominatorTree last knew about, use the list of updates to reconstruct
80     // previous CFG versions of the current CFG. For each node, we store a set
81     // of its virtually added/deleted future successors and predecessors.
82     // Note that these children are from the future relative to what the
83     // DominatorTree knows about -- using them to gets us some snapshot of the
84     // CFG from the past (relative to the state of the CFG).
85     DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FutureSuccessors;
86     DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FuturePredecessors;
87     // Remembers if the whole tree was recalculated at some point during the
88     // current batch update.
89     bool IsRecalculated = false;
90   };
91 
92   BatchUpdateInfo *BatchUpdates;
93   using BatchUpdatePtr = BatchUpdateInfo *;
94 
95   // If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfoSemiNCAInfo96   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
97 
clearSemiNCAInfo98   void clear() {
99     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
100     NodeToInfo.clear();
101     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
102     // in progress, we need this information to continue it.
103   }
104 
105   template <bool Inverse>
106   struct ChildrenGetter {
107     using ResultTy = SmallVector<NodePtr, 8>;
108 
GetSemiNCAInfo::ChildrenGetter109     static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) {
110       auto RChildren = reverse(children<NodePtr>(N));
111       return ResultTy(RChildren.begin(), RChildren.end());
112     }
113 
GetSemiNCAInfo::ChildrenGetter114     static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) {
115       auto IChildren = inverse_children<NodePtr>(N);
116       return ResultTy(IChildren.begin(), IChildren.end());
117     }
118 
119     using Tag = std::integral_constant<bool, Inverse>;
120 
121     // The function below is the core part of the batch updater. It allows the
122     // Depth Based Search algorithm to perform incremental updates in lockstep
123     // with updates to the CFG. We emulated lockstep CFG updates by getting its
124     // next snapshots by reverse-applying future updates.
GetSemiNCAInfo::ChildrenGetter125     static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) {
126       ResultTy Res = Get(N, Tag());
127       // If there's no batch update in progress, simply return node's children.
128       if (!BUI) return Res;
129 
130       // CFG children are actually its *most current* children, and we have to
131       // reverse-apply the future updates to get the node's children at the
132       // point in time the update was performed.
133       auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors
134                                                     : BUI->FutureSuccessors;
135       auto FCIt = FutureChildren.find(N);
136       if (FCIt == FutureChildren.end()) return Res;
137 
138       for (auto ChildAndKind : FCIt->second) {
139         const NodePtr Child = ChildAndKind.getPointer();
140         const UpdateKind UK = ChildAndKind.getInt();
141 
142         // Reverse-apply the future update.
143         if (UK == UpdateKind::Insert) {
144           // If there's an insertion in the future, it means that the edge must
145           // exist in the current CFG, but was not present in it before.
146           assert(llvm::find(Res, Child) != Res.end()
147                  && "Expected child not found in the CFG");
148           Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end());
149           LLVM_DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> "
150                             << BlockNamePrinter(Child) << "\n");
151         } else {
152           // If there's an deletion in the future, it means that the edge cannot
153           // exist in the current CFG, but existed in it before.
154           assert(llvm::find(Res, Child) == Res.end() &&
155                  "Unexpected child found in the CFG");
156           LLVM_DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N)
157                             << " -> " << BlockNamePrinter(Child) << "\n");
158           Res.push_back(Child);
159         }
160       }
161 
162       return Res;
163     }
164   };
165 
getIDomSemiNCAInfo166   NodePtr getIDom(NodePtr BB) const {
167     auto InfoIt = NodeToInfo.find(BB);
168     if (InfoIt == NodeToInfo.end()) return nullptr;
169 
170     return InfoIt->second.IDom;
171   }
172 
getNodeForBlockSemiNCAInfo173   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
174     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
175 
176     // Haven't calculated this node yet?  Get or calculate the node for the
177     // immediate dominator.
178     NodePtr IDom = getIDom(BB);
179 
180     assert(IDom || DT.DomTreeNodes[nullptr]);
181     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
182 
183     // Add a new tree node for this NodeT, and link it as a child of
184     // IDomNode
185     return (DT.DomTreeNodes[BB] = IDomNode->addChild(
186         llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
187         .get();
188   }
189 
AlwaysDescendSemiNCAInfo190   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
191 
192   struct BlockNamePrinter {
193     NodePtr N;
194 
BlockNamePrinterSemiNCAInfo::BlockNamePrinter195     BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinterSemiNCAInfo::BlockNamePrinter196     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
197 
198     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
199       if (!BP.N)
200         O << "nullptr";
201       else
202         BP.N->printAsOperand(O, false);
203 
204       return O;
205     }
206   };
207 
208   // Custom DFS implementation which can skip nodes based on a provided
209   // predicate. It also collects ReverseChildren so that we don't have to spend
210   // time getting predecessors in SemiNCA.
211   //
212   // If IsReverse is set to true, the DFS walk will be performed backwards
213   // relative to IsPostDom -- using reverse edges for dominators and forward
214   // edges for postdominators.
215   template <bool IsReverse = false, typename DescendCondition>
runDFSSemiNCAInfo216   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
217                   unsigned AttachToNum) {
218     assert(V);
219     SmallVector<NodePtr, 64> WorkList = {V};
220     if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
221 
222     while (!WorkList.empty()) {
223       const NodePtr BB = WorkList.pop_back_val();
224       auto &BBInfo = NodeToInfo[BB];
225 
226       // Visited nodes always have positive DFS numbers.
227       if (BBInfo.DFSNum != 0) continue;
228       BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
229       BBInfo.Label = BB;
230       NumToNode.push_back(BB);
231 
232       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
233       for (const NodePtr Succ :
234            ChildrenGetter<Direction>::Get(BB, BatchUpdates)) {
235         const auto SIT = NodeToInfo.find(Succ);
236         // Don't visit nodes more than once but remember to collect
237         // ReverseChildren.
238         if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
239           if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
240           continue;
241         }
242 
243         if (!Condition(BB, Succ)) continue;
244 
245         // It's fine to add Succ to the map, because we know that it will be
246         // visited later.
247         auto &SuccInfo = NodeToInfo[Succ];
248         WorkList.push_back(Succ);
249         SuccInfo.Parent = LastNum;
250         SuccInfo.ReverseChildren.push_back(BB);
251       }
252     }
253 
254     return LastNum;
255   }
256 
evalSemiNCAInfo257   NodePtr eval(NodePtr VIn, unsigned LastLinked) {
258     auto &VInInfo = NodeToInfo[VIn];
259     if (VInInfo.DFSNum < LastLinked)
260       return VIn;
261 
262     SmallVector<NodePtr, 32> Work;
263     SmallPtrSet<NodePtr, 32> Visited;
264 
265     if (VInInfo.Parent >= LastLinked)
266       Work.push_back(VIn);
267 
268     while (!Work.empty()) {
269       NodePtr V = Work.back();
270       auto &VInfo = NodeToInfo[V];
271       NodePtr VAncestor = NumToNode[VInfo.Parent];
272 
273       // Process Ancestor first
274       if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
275         Work.push_back(VAncestor);
276         continue;
277       }
278       Work.pop_back();
279 
280       // Update VInfo based on Ancestor info
281       if (VInfo.Parent < LastLinked)
282         continue;
283 
284       auto &VAInfo = NodeToInfo[VAncestor];
285       NodePtr VAncestorLabel = VAInfo.Label;
286       NodePtr VLabel = VInfo.Label;
287       if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
288         VInfo.Label = VAncestorLabel;
289       VInfo.Parent = VAInfo.Parent;
290     }
291 
292     return VInInfo.Label;
293   }
294 
295   // This function requires DFS to be run before calling it.
296   void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
297     const unsigned NextDFSNum(NumToNode.size());
298     // Initialize IDoms to spanning tree parents.
299     for (unsigned i = 1; i < NextDFSNum; ++i) {
300       const NodePtr V = NumToNode[i];
301       auto &VInfo = NodeToInfo[V];
302       VInfo.IDom = NumToNode[VInfo.Parent];
303     }
304 
305     // Step #1: Calculate the semidominators of all vertices.
306     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
307       NodePtr W = NumToNode[i];
308       auto &WInfo = NodeToInfo[W];
309 
310       // Initialize the semi dominator to point to the parent node.
311       WInfo.Semi = WInfo.Parent;
312       for (const auto &N : WInfo.ReverseChildren) {
313         if (NodeToInfo.count(N) == 0)  // Skip unreachable predecessors.
314           continue;
315 
316         const TreeNodePtr TN = DT.getNode(N);
317         // Skip predecessors whose level is above the subtree we are processing.
318         if (TN && TN->getLevel() < MinLevel)
319           continue;
320 
321         unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
322         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
323       }
324     }
325 
326     // Step #2: Explicitly define the immediate dominator of each vertex.
327     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
328     // Note that the parents were stored in IDoms and later got invalidated
329     // during path compression in Eval.
330     for (unsigned i = 2; i < NextDFSNum; ++i) {
331       const NodePtr W = NumToNode[i];
332       auto &WInfo = NodeToInfo[W];
333       const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
334       NodePtr WIDomCandidate = WInfo.IDom;
335       while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
336         WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
337 
338       WInfo.IDom = WIDomCandidate;
339     }
340   }
341 
342   // PostDominatorTree always has a virtual root that represents a virtual CFG
343   // node that serves as a single exit from the function. All the other exits
344   // (CFG nodes with terminators and nodes in infinite loops are logically
345   // connected to this virtual CFG exit node).
346   // This functions maps a nullptr CFG node to the virtual root tree node.
addVirtualRootSemiNCAInfo347   void addVirtualRoot() {
348     assert(IsPostDom && "Only postdominators have a virtual root");
349     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
350 
351     auto &BBInfo = NodeToInfo[nullptr];
352     BBInfo.DFSNum = BBInfo.Semi = 1;
353     BBInfo.Label = nullptr;
354 
355     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
356   }
357 
358   // For postdominators, nodes with no forward successors are trivial roots that
359   // are always selected as tree roots. Roots with forward successors correspond
360   // to CFG nodes within infinite loops.
HasForwardSuccessorsSemiNCAInfo361   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
362     assert(N && "N must be a valid node");
363     return !ChildrenGetter<false>::Get(N, BUI).empty();
364   }
365 
GetEntryNodeSemiNCAInfo366   static NodePtr GetEntryNode(const DomTreeT &DT) {
367     assert(DT.Parent && "Parent not set");
368     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
369   }
370 
371   // Finds all roots without relaying on the set of roots already stored in the
372   // tree.
373   // We define roots to be some non-redundant set of the CFG nodes
FindRootsSemiNCAInfo374   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
375     assert(DT.Parent && "Parent pointer is not set");
376     RootsT Roots;
377 
378     // For dominators, function entry CFG node is always a tree root node.
379     if (!IsPostDom) {
380       Roots.push_back(GetEntryNode(DT));
381       return Roots;
382     }
383 
384     SemiNCAInfo SNCA(BUI);
385 
386     // PostDominatorTree always has a virtual root.
387     SNCA.addVirtualRoot();
388     unsigned Num = 1;
389 
390     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
391 
392     // Step #1: Find all the trivial roots that are going to will definitely
393     // remain tree roots.
394     unsigned Total = 0;
395     // It may happen that there are some new nodes in the CFG that are result of
396     // the ongoing batch update, but we cannot really pretend that they don't
397     // exist -- we won't see any outgoing or incoming edges to them, so it's
398     // fine to discover them here, as they would end up appearing in the CFG at
399     // some point anyway.
400     for (const NodePtr N : nodes(DT.Parent)) {
401       ++Total;
402       // If it has no *successors*, it is definitely a root.
403       if (!HasForwardSuccessors(N, BUI)) {
404         Roots.push_back(N);
405         // Run DFS not to walk this part of CFG later.
406         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
407         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
408                           << "\n");
409         LLVM_DEBUG(dbgs() << "Last visited node: "
410                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
411       }
412     }
413 
414     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
415 
416     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
417     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
418     // nodes in infinite loops).
419     bool HasNonTrivialRoots = false;
420     // Accounting for the virtual exit, see if we had any reverse-unreachable
421     // nodes.
422     if (Total + 1 != Num) {
423       HasNonTrivialRoots = true;
424       // Make another DFS pass over all other nodes to find the
425       // reverse-unreachable blocks, and find the furthest paths we'll be able
426       // to make.
427       // Note that this looks N^2, but it's really 2N worst case, if every node
428       // is unreachable. This is because we are still going to only visit each
429       // unreachable node once, we may just visit it in two directions,
430       // depending on how lucky we get.
431       SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
432       for (const NodePtr I : nodes(DT.Parent)) {
433         if (SNCA.NodeToInfo.count(I) == 0) {
434           LLVM_DEBUG(dbgs()
435                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
436           // Find the furthest away we can get by following successors, then
437           // follow them in reverse.  This gives us some reasonable answer about
438           // the post-dom tree inside any infinite loop. In particular, it
439           // guarantees we get to the farthest away point along *some*
440           // path. This also matches the GCC's behavior.
441           // If we really wanted a totally complete picture of dominance inside
442           // this infinite loop, we could do it with SCC-like algorithms to find
443           // the lowest and highest points in the infinite loop.  In theory, it
444           // would be nice to give the canonical backedge for the loop, but it's
445           // expensive and does not always lead to a minimal set of roots.
446           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
447 
448           const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
449           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
450           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
451                             << "(non-trivial root): "
452                             << BlockNamePrinter(FurthestAway) << "\n");
453           ConnectToExitBlock.insert(FurthestAway);
454           Roots.push_back(FurthestAway);
455           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
456                             << NewNum << "\n\t\t\tRemoving DFS info\n");
457           for (unsigned i = NewNum; i > Num; --i) {
458             const NodePtr N = SNCA.NumToNode[i];
459             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
460                               << BlockNamePrinter(N) << "\n");
461             SNCA.NodeToInfo.erase(N);
462             SNCA.NumToNode.pop_back();
463           }
464           const unsigned PrevNum = Num;
465           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
466           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
467           for (unsigned i = PrevNum + 1; i <= Num; ++i)
468             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
469                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
470         }
471       }
472     }
473 
474     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
475     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
476     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
477                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
478 
479     assert((Total + 1 == Num) && "Everything should have been visited");
480 
481     // Step #3: If we found some non-trivial roots, make them non-redundant.
482     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
483 
484     LLVM_DEBUG(dbgs() << "Found roots: ");
485     LLVM_DEBUG(for (auto *Root
486                     : Roots) dbgs()
487                << BlockNamePrinter(Root) << " ");
488     LLVM_DEBUG(dbgs() << "\n");
489 
490     return Roots;
491   }
492 
493   // This function only makes sense for postdominators.
494   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
495   // to start in order to visit all the CFG nodes (including the
496   // reverse-unreachable ones).
497   // When the search for non-trivial roots is done it may happen that some of
498   // the non-trivial roots are reverse-reachable from other non-trivial roots,
499   // which makes them redundant. This function removes them from the set of
500   // input roots.
RemoveRedundantRootsSemiNCAInfo501   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
502                                    RootsT &Roots) {
503     assert(IsPostDom && "This function is for postdominators only");
504     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
505 
506     SemiNCAInfo SNCA(BUI);
507 
508     for (unsigned i = 0; i < Roots.size(); ++i) {
509       auto &Root = Roots[i];
510       // Trivial roots are always non-redundant.
511       if (!HasForwardSuccessors(Root, BUI)) continue;
512       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
513                         << " remains a root\n");
514       SNCA.clear();
515       // Do a forward walk looking for the other roots.
516       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
517       // Skip the start node and begin from the second one (note that DFS uses
518       // 1-based indexing).
519       for (unsigned x = 2; x <= Num; ++x) {
520         const NodePtr N = SNCA.NumToNode[x];
521         // If we wound another root in a (forward) DFS walk, remove the current
522         // root from the set of roots, as it is reverse-reachable from the other
523         // one.
524         if (llvm::find(Roots, N) != Roots.end()) {
525           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
526                             << BlockNamePrinter(N) << "\n\tRemoving root "
527                             << BlockNamePrinter(Root) << "\n");
528           std::swap(Root, Roots.back());
529           Roots.pop_back();
530 
531           // Root at the back takes the current root's place.
532           // Start the next loop iteration with the same index.
533           --i;
534           break;
535         }
536       }
537     }
538   }
539 
540   template <typename DescendCondition>
doFullDFSWalkSemiNCAInfo541   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
542     if (!IsPostDom) {
543       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
544       runDFS(DT.Roots[0], 0, DC, 0);
545       return;
546     }
547 
548     addVirtualRoot();
549     unsigned Num = 1;
550     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
551   }
552 
CalculateFromScratchSemiNCAInfo553   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
554     auto *Parent = DT.Parent;
555     DT.reset();
556     DT.Parent = Parent;
557     SemiNCAInfo SNCA(nullptr);  // Since we are rebuilding the whole tree,
558                                 // there's no point doing it incrementally.
559 
560     // Step #0: Number blocks in depth-first order and initialize variables used
561     // in later stages of the algorithm.
562     DT.Roots = FindRoots(DT, nullptr);
563     SNCA.doFullDFSWalk(DT, AlwaysDescend);
564 
565     SNCA.runSemiNCA(DT);
566     if (BUI) {
567       BUI->IsRecalculated = true;
568       LLVM_DEBUG(
569           dbgs() << "DomTree recalculated, skipping future batch updates\n");
570     }
571 
572     if (DT.Roots.empty()) return;
573 
574     // Add a node for the root. If the tree is a PostDominatorTree it will be
575     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
576     // all real exits (including multiple exit blocks, infinite loops).
577     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
578 
579     DT.RootNode = (DT.DomTreeNodes[Root] =
580                        llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
581         .get();
582     SNCA.attachNewSubtree(DT, DT.RootNode);
583   }
584 
attachNewSubtreeSemiNCAInfo585   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
586     // Attach the first unreachable block to AttachTo.
587     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
588     // Loop over all of the discovered blocks in the function...
589     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
590       NodePtr W = NumToNode[i];
591       LLVM_DEBUG(dbgs() << "\tdiscovered a new reachable node "
592                         << BlockNamePrinter(W) << "\n");
593 
594       // Don't replace this with 'count', the insertion side effect is important
595       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
596 
597       NodePtr ImmDom = getIDom(W);
598 
599       // Get or calculate the node for the immediate dominator.
600       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
601 
602       // Add a new tree node for this BasicBlock, and link it as a child of
603       // IDomNode.
604       DT.DomTreeNodes[W] = IDomNode->addChild(
605           llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
606     }
607   }
608 
reattachExistingSubtreeSemiNCAInfo609   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
610     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
611     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
612       const NodePtr N = NumToNode[i];
613       const TreeNodePtr TN = DT.getNode(N);
614       assert(TN);
615       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
616       TN->setIDom(NewIDom);
617     }
618   }
619 
620   // Helper struct used during edge insertions.
621   struct InsertionInfo {
622     using BucketElementTy = std::pair<unsigned, TreeNodePtr>;
623     struct DecreasingLevel {
operatorSemiNCAInfo::InsertionInfo::DecreasingLevel624       bool operator()(const BucketElementTy &First,
625                       const BucketElementTy &Second) const {
626         return First.first > Second.first;
627       }
628     };
629 
630     std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>,
631         DecreasingLevel>
632         Bucket;  // Queue of tree nodes sorted by level in descending order.
633     SmallDenseSet<TreeNodePtr, 8> Affected;
634     SmallDenseMap<TreeNodePtr, unsigned, 8> Visited;
635     SmallVector<TreeNodePtr, 8> AffectedQueue;
636     SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue;
637   };
638 
InsertEdgeSemiNCAInfo639   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
640                          const NodePtr From, const NodePtr To) {
641     assert((From || IsPostDom) &&
642            "From has to be a valid CFG node or a virtual root");
643     assert(To && "Cannot be a nullptr");
644     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
645                       << BlockNamePrinter(To) << "\n");
646     TreeNodePtr FromTN = DT.getNode(From);
647 
648     if (!FromTN) {
649       // Ignore edges from unreachable nodes for (forward) dominators.
650       if (!IsPostDom) return;
651 
652       // The unreachable node becomes a new root -- a tree node for it.
653       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
654       FromTN =
655           (DT.DomTreeNodes[From] = VirtualRoot->addChild(
656                llvm::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
657               .get();
658       DT.Roots.push_back(From);
659     }
660 
661     DT.DFSInfoValid = false;
662 
663     const TreeNodePtr ToTN = DT.getNode(To);
664     if (!ToTN)
665       InsertUnreachable(DT, BUI, FromTN, To);
666     else
667       InsertReachable(DT, BUI, FromTN, ToTN);
668   }
669 
670   // Determines if some existing root becomes reverse-reachable after the
671   // insertion. Rebuilds the whole tree if that situation happens.
UpdateRootsBeforeInsertionSemiNCAInfo672   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
673                                          const TreeNodePtr From,
674                                          const TreeNodePtr To) {
675     assert(IsPostDom && "This function is only for postdominators");
676     // Destination node is not attached to the virtual root, so it cannot be a
677     // root.
678     if (!DT.isVirtualRoot(To->getIDom())) return false;
679 
680     auto RIt = llvm::find(DT.Roots, To->getBlock());
681     if (RIt == DT.Roots.end())
682       return false;  // To is not a root, nothing to update.
683 
684     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
685                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
686 
687     CalculateFromScratch(DT, BUI);
688     return true;
689   }
690 
691   // Updates the set of roots after insertion or deletion. This ensures that
692   // roots are the same when after a series of updates and when the tree would
693   // be built from scratch.
UpdateRootsAfterUpdateSemiNCAInfo694   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
695     assert(IsPostDom && "This function is only for postdominators");
696 
697     // The tree has only trivial roots -- nothing to update.
698     if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
699           return HasForwardSuccessors(N, BUI);
700         }))
701       return;
702 
703     // Recalculate the set of roots.
704     auto Roots = FindRoots(DT, BUI);
705     if (DT.Roots.size() != Roots.size() ||
706         !std::is_permutation(DT.Roots.begin(), DT.Roots.end(), Roots.begin())) {
707       // The roots chosen in the CFG have changed. This is because the
708       // incremental algorithm does not really know or use the set of roots and
709       // can make a different (implicit) decision about which node within an
710       // infinite loop becomes a root.
711 
712       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
713                         << "The entire tree needs to be rebuilt\n");
714       // It may be possible to update the tree without recalculating it, but
715       // we do not know yet how to do it, and it happens rarely in practise.
716       CalculateFromScratch(DT, BUI);
717       return;
718     }
719   }
720 
721   // Handles insertion to a node already in the dominator tree.
InsertReachableSemiNCAInfo722   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
723                               const TreeNodePtr From, const TreeNodePtr To) {
724     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
725                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
726     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
727     // DT.findNCD expects both pointers to be valid. When From is a virtual
728     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
729     // the NCD manually.
730     const NodePtr NCDBlock =
731         (From->getBlock() && To->getBlock())
732             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
733             : nullptr;
734     assert(NCDBlock || DT.isPostDominator());
735     const TreeNodePtr NCD = DT.getNode(NCDBlock);
736     assert(NCD);
737 
738     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
739     const TreeNodePtr ToIDom = To->getIDom();
740 
741     // Nothing affected -- NCA property holds.
742     // (Based on the lemma 2.5 from the second paper.)
743     if (NCD == To || NCD == ToIDom) return;
744 
745     // Identify and collect affected nodes.
746     InsertionInfo II;
747     LLVM_DEBUG(dbgs() << "Marking " << BlockNamePrinter(To)
748                       << " as affected\n");
749     II.Affected.insert(To);
750     const unsigned ToLevel = To->getLevel();
751     LLVM_DEBUG(dbgs() << "Putting " << BlockNamePrinter(To)
752                       << " into a Bucket\n");
753     II.Bucket.push({ToLevel, To});
754 
755     while (!II.Bucket.empty()) {
756       const TreeNodePtr CurrentNode = II.Bucket.top().second;
757       const unsigned  CurrentLevel = CurrentNode->getLevel();
758       II.Bucket.pop();
759       LLVM_DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: "
760                         << BlockNamePrinter(CurrentNode) << "\n");
761 
762       II.Visited.insert({CurrentNode, CurrentLevel});
763       II.AffectedQueue.push_back(CurrentNode);
764 
765       // Discover and collect affected successors of the current node.
766       VisitInsertion(DT, BUI, CurrentNode, CurrentLevel, NCD, II);
767     }
768 
769     // Finish by updating immediate dominators and levels.
770     UpdateInsertion(DT, BUI, NCD, II);
771   }
772 
773   // Visits an affected node and collect its affected successors.
VisitInsertionSemiNCAInfo774   static void VisitInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
775                              const TreeNodePtr TN, const unsigned RootLevel,
776                              const TreeNodePtr NCD, InsertionInfo &II) {
777     const unsigned NCDLevel = NCD->getLevel();
778     LLVM_DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << ",  RootLevel "
779                       << RootLevel << "\n");
780 
781     SmallVector<TreeNodePtr, 8> Stack = {TN};
782     assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
783 
784     SmallPtrSet<TreeNodePtr, 8> Processed;
785 
786     do {
787       TreeNodePtr Next = Stack.pop_back_val();
788       LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(Next) << "\n");
789 
790       for (const NodePtr Succ :
791            ChildrenGetter<IsPostDom>::Get(Next->getBlock(), BUI)) {
792         const TreeNodePtr SuccTN = DT.getNode(Succ);
793         assert(SuccTN && "Unreachable successor found at reachable insertion");
794         const unsigned SuccLevel = SuccTN->getLevel();
795 
796         LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
797                           << ", level = " << SuccLevel << "\n");
798 
799         // Do not process the same node multiple times.
800         if (Processed.count(Next) > 0)
801           continue;
802 
803         // Succ dominated by subtree From -- not affected.
804         // (Based on the lemma 2.5 from the second paper.)
805         if (SuccLevel > RootLevel) {
806           LLVM_DEBUG(dbgs() << "\t\tDominated by subtree From\n");
807           if (II.Visited.count(SuccTN) != 0) {
808             LLVM_DEBUG(dbgs() << "\t\t\talready visited at level "
809                               << II.Visited[SuccTN] << "\n\t\t\tcurrent level "
810                               << RootLevel << ")\n");
811 
812             // A node can be necessary to visit again if we see it again at
813             // a lower level than before.
814             if (II.Visited[SuccTN] >= RootLevel)
815               continue;
816           }
817 
818           LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
819                             << BlockNamePrinter(Succ) << "\n");
820           II.Visited.insert({SuccTN, RootLevel});
821           II.VisitedNotAffectedQueue.push_back(SuccTN);
822           Stack.push_back(SuccTN);
823         } else if ((SuccLevel > NCDLevel + 1) &&
824             II.Affected.count(SuccTN) == 0) {
825           LLVM_DEBUG(dbgs() << "\t\tMarking affected and adding "
826                             << BlockNamePrinter(Succ) << " to a Bucket\n");
827           II.Affected.insert(SuccTN);
828           II.Bucket.push({SuccLevel, SuccTN});
829         }
830       }
831 
832       Processed.insert(Next);
833     } while (!Stack.empty());
834   }
835 
836   // Updates immediate dominators and levels after insertion.
UpdateInsertionSemiNCAInfo837   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
838                               const TreeNodePtr NCD, InsertionInfo &II) {
839     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
840 
841     for (const TreeNodePtr TN : II.AffectedQueue) {
842       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
843                         << ") = " << BlockNamePrinter(NCD) << "\n");
844       TN->setIDom(NCD);
845     }
846 
847     UpdateLevelsAfterInsertion(II);
848     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
849   }
850 
UpdateLevelsAfterInsertionSemiNCAInfo851   static void UpdateLevelsAfterInsertion(InsertionInfo &II) {
852     LLVM_DEBUG(
853         dbgs() << "Updating levels for visited but not affected nodes\n");
854 
855     for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) {
856       LLVM_DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = ("
857                         << BlockNamePrinter(TN->getIDom()) << ") "
858                         << TN->getIDom()->getLevel() << " + 1\n");
859       TN->UpdateLevel();
860     }
861   }
862 
863   // Handles insertion to previously unreachable nodes.
InsertUnreachableSemiNCAInfo864   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
865                                 const TreeNodePtr From, const NodePtr To) {
866     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
867                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
868 
869     // Collect discovered edges to already reachable nodes.
870     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
871     // Discover and connect nodes that became reachable with the insertion.
872     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
873 
874     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
875                       << " -> (prev unreachable) " << BlockNamePrinter(To)
876                       << "\n");
877 
878     // Used the discovered edges and inset discovered connecting (incoming)
879     // edges.
880     for (const auto &Edge : DiscoveredEdgesToReachable) {
881       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
882                         << BlockNamePrinter(Edge.first) << " -> "
883                         << BlockNamePrinter(Edge.second) << "\n");
884       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
885     }
886   }
887 
888   // Connects nodes that become reachable with an insertion.
ComputeUnreachableDominatorsSemiNCAInfo889   static void ComputeUnreachableDominators(
890       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
891       const TreeNodePtr Incoming,
892       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
893           &DiscoveredConnectingEdges) {
894     assert(!DT.getNode(Root) && "Root must not be reachable");
895 
896     // Visit only previously unreachable nodes.
897     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
898                                                                   NodePtr To) {
899       const TreeNodePtr ToTN = DT.getNode(To);
900       if (!ToTN) return true;
901 
902       DiscoveredConnectingEdges.push_back({From, ToTN});
903       return false;
904     };
905 
906     SemiNCAInfo SNCA(BUI);
907     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
908     SNCA.runSemiNCA(DT);
909     SNCA.attachNewSubtree(DT, Incoming);
910 
911     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
912   }
913 
DeleteEdgeSemiNCAInfo914   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
915                          const NodePtr From, const NodePtr To) {
916     assert(From && To && "Cannot disconnect nullptrs");
917     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
918                       << BlockNamePrinter(To) << "\n");
919 
920 #ifndef NDEBUG
921     // Ensure that the edge was in fact deleted from the CFG before informing
922     // the DomTree about it.
923     // The check is O(N), so run it only in debug configuration.
924     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
925       auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI);
926       return llvm::find(Successors, SuccCandidate) != Successors.end();
927     };
928     (void)IsSuccessor;
929     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
930 #endif
931 
932     const TreeNodePtr FromTN = DT.getNode(From);
933     // Deletion in an unreachable subtree -- nothing to do.
934     if (!FromTN) return;
935 
936     const TreeNodePtr ToTN = DT.getNode(To);
937     if (!ToTN) {
938       LLVM_DEBUG(
939           dbgs() << "\tTo (" << BlockNamePrinter(To)
940                  << ") already unreachable -- there is no edge to delete\n");
941       return;
942     }
943 
944     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
945     const TreeNodePtr NCD = DT.getNode(NCDBlock);
946 
947     // If To dominates From -- nothing to do.
948     if (ToTN != NCD) {
949       DT.DFSInfoValid = false;
950 
951       const TreeNodePtr ToIDom = ToTN->getIDom();
952       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
953                         << BlockNamePrinter(ToIDom) << "\n");
954 
955       // To remains reachable after deletion.
956       // (Based on the caption under Figure 4. from the second paper.)
957       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
958         DeleteReachable(DT, BUI, FromTN, ToTN);
959       else
960         DeleteUnreachable(DT, BUI, ToTN);
961     }
962 
963     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
964   }
965 
966   // Handles deletions that leave destination nodes reachable.
DeleteReachableSemiNCAInfo967   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
968                               const TreeNodePtr FromTN,
969                               const TreeNodePtr ToTN) {
970     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
971                       << " -> " << BlockNamePrinter(ToTN) << "\n");
972     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
973 
974     // Find the top of the subtree that needs to be rebuilt.
975     // (Based on the lemma 2.6 from the second paper.)
976     const NodePtr ToIDom =
977         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
978     assert(ToIDom || DT.isPostDominator());
979     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
980     assert(ToIDomTN);
981     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
982     // Top of the subtree to rebuild is the root node. Rebuild the tree from
983     // scratch.
984     if (!PrevIDomSubTree) {
985       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
986       CalculateFromScratch(DT, BUI);
987       return;
988     }
989 
990     // Only visit nodes in the subtree starting at To.
991     const unsigned Level = ToIDomTN->getLevel();
992     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
993       return DT.getNode(To)->getLevel() > Level;
994     };
995 
996     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
997                       << "\n");
998 
999     SemiNCAInfo SNCA(BUI);
1000     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1001     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1002     SNCA.runSemiNCA(DT, Level);
1003     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1004   }
1005 
1006   // Checks if a node has proper support, as defined on the page 3 and later
1007   // explained on the page 7 of the second paper.
HasProperSupportSemiNCAInfo1008   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1009                                const TreeNodePtr TN) {
1010     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1011                       << "\n");
1012     for (const NodePtr Pred :
1013          ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) {
1014       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1015       if (!DT.getNode(Pred)) continue;
1016 
1017       const NodePtr Support =
1018           DT.findNearestCommonDominator(TN->getBlock(), Pred);
1019       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1020       if (Support != TN->getBlock()) {
1021         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1022                           << " is reachable from support "
1023                           << BlockNamePrinter(Support) << "\n");
1024         return true;
1025       }
1026     }
1027 
1028     return false;
1029   }
1030 
1031   // Handle deletions that make destination node unreachable.
1032   // (Based on the lemma 2.7 from the second paper.)
DeleteUnreachableSemiNCAInfo1033   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1034                                 const TreeNodePtr ToTN) {
1035     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1036                       << BlockNamePrinter(ToTN) << "\n");
1037     assert(ToTN);
1038     assert(ToTN->getBlock());
1039 
1040     if (IsPostDom) {
1041       // Deletion makes a region reverse-unreachable and creates a new root.
1042       // Simulate that by inserting an edge from the virtual root to ToTN and
1043       // adding it as a new root.
1044       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1045       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1046                         << "\n");
1047       DT.Roots.push_back(ToTN->getBlock());
1048       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1049       return;
1050     }
1051 
1052     SmallVector<NodePtr, 16> AffectedQueue;
1053     const unsigned Level = ToTN->getLevel();
1054 
1055     // Traverse destination node's descendants with greater level in the tree
1056     // and collect visited nodes.
1057     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1058       const TreeNodePtr TN = DT.getNode(To);
1059       assert(TN);
1060       if (TN->getLevel() > Level) return true;
1061       if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
1062         AffectedQueue.push_back(To);
1063 
1064       return false;
1065     };
1066 
1067     SemiNCAInfo SNCA(BUI);
1068     unsigned LastDFSNum =
1069         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1070 
1071     TreeNodePtr MinNode = ToTN;
1072 
1073     // Identify the top of the subtree to rebuild by finding the NCD of all
1074     // the affected nodes.
1075     for (const NodePtr N : AffectedQueue) {
1076       const TreeNodePtr TN = DT.getNode(N);
1077       const NodePtr NCDBlock =
1078           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1079       assert(NCDBlock || DT.isPostDominator());
1080       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1081       assert(NCD);
1082 
1083       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1084                         << " with NCD = " << BlockNamePrinter(NCD)
1085                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1086       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1087     }
1088 
1089     // Root reached, rebuild the whole tree from scratch.
1090     if (!MinNode->getIDom()) {
1091       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1092       CalculateFromScratch(DT, BUI);
1093       return;
1094     }
1095 
1096     // Erase the unreachable subtree in reverse preorder to process all children
1097     // before deleting their parent.
1098     for (unsigned i = LastDFSNum; i > 0; --i) {
1099       const NodePtr N = SNCA.NumToNode[i];
1100       const TreeNodePtr TN = DT.getNode(N);
1101       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1102 
1103       EraseNode(DT, TN);
1104     }
1105 
1106     // The affected subtree start at the To node -- there's no extra work to do.
1107     if (MinNode == ToTN) return;
1108 
1109     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1110                       << BlockNamePrinter(MinNode) << "\n");
1111     const unsigned MinLevel = MinNode->getLevel();
1112     const TreeNodePtr PrevIDom = MinNode->getIDom();
1113     assert(PrevIDom);
1114     SNCA.clear();
1115 
1116     // Identify nodes that remain in the affected subtree.
1117     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1118       const TreeNodePtr ToTN = DT.getNode(To);
1119       return ToTN && ToTN->getLevel() > MinLevel;
1120     };
1121     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1122 
1123     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1124                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1125 
1126     // Rebuild the remaining part of affected subtree.
1127     SNCA.runSemiNCA(DT, MinLevel);
1128     SNCA.reattachExistingSubtree(DT, PrevIDom);
1129   }
1130 
1131   // Removes leaf tree nodes from the dominator tree.
EraseNodeSemiNCAInfo1132   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1133     assert(TN);
1134     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1135 
1136     const TreeNodePtr IDom = TN->getIDom();
1137     assert(IDom);
1138 
1139     auto ChIt = llvm::find(IDom->Children, TN);
1140     assert(ChIt != IDom->Children.end());
1141     std::swap(*ChIt, IDom->Children.back());
1142     IDom->Children.pop_back();
1143 
1144     DT.DomTreeNodes.erase(TN->getBlock());
1145   }
1146 
1147   //~~
1148   //===--------------------- DomTree Batch Updater --------------------------===
1149   //~~
1150 
ApplyUpdatesSemiNCAInfo1151   static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) {
1152     const size_t NumUpdates = Updates.size();
1153     if (NumUpdates == 0)
1154       return;
1155 
1156     // Take the fast path for a single update and avoid running the batch update
1157     // machinery.
1158     if (NumUpdates == 1) {
1159       const auto &Update = Updates.front();
1160       if (Update.getKind() == UpdateKind::Insert)
1161         DT.insertEdge(Update.getFrom(), Update.getTo());
1162       else
1163         DT.deleteEdge(Update.getFrom(), Update.getTo());
1164 
1165       return;
1166     }
1167 
1168     BatchUpdateInfo BUI;
1169     LegalizeUpdates(Updates, BUI.Updates);
1170 
1171     const size_t NumLegalized = BUI.Updates.size();
1172     BUI.FutureSuccessors.reserve(NumLegalized);
1173     BUI.FuturePredecessors.reserve(NumLegalized);
1174 
1175     // Use the legalized future updates to initialize future successors and
1176     // predecessors. Note that these sets will only decrease size over time, as
1177     // the next CFG snapshots slowly approach the actual (current) CFG.
1178     for (UpdateT &U : BUI.Updates) {
1179       BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
1180       BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
1181     }
1182 
1183     LLVM_DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n");
1184     LLVM_DEBUG(if (NumLegalized < 32) for (const auto &U
1185                                            : reverse(BUI.Updates)) dbgs()
1186                << '\t' << U << "\n");
1187     LLVM_DEBUG(dbgs() << "\n");
1188 
1189     // Recalculate the DominatorTree when the number of updates
1190     // exceeds a threshold, which usually makes direct updating slower than
1191     // recalculation. We select this threshold proportional to the
1192     // size of the DominatorTree. The constant is selected
1193     // by choosing the one with an acceptable performance on some real-world
1194     // inputs.
1195 
1196     // Make unittests of the incremental algorithm work
1197     if (DT.DomTreeNodes.size() <= 100) {
1198       if (NumLegalized > DT.DomTreeNodes.size())
1199         CalculateFromScratch(DT, &BUI);
1200     } else if (NumLegalized > DT.DomTreeNodes.size() / 40)
1201       CalculateFromScratch(DT, &BUI);
1202 
1203     // If the DominatorTree was recalculated at some point, stop the batch
1204     // updates. Full recalculations ignore batch updates and look at the actual
1205     // CFG.
1206     for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i)
1207       ApplyNextUpdate(DT, BUI);
1208   }
1209 
1210   // This function serves double purpose:
1211   // a) It removes redundant updates, which makes it easier to reverse-apply
1212   //    them when traversing CFG.
1213   // b) It optimizes away updates that cancel each other out, as the end result
1214   //    is the same.
1215   //
1216   // It relies on the property of the incremental updates that says that the
1217   // order of updates doesn't matter. This allows us to reorder them and end up
1218   // with the exact same DomTree every time.
1219   //
1220   // Following the same logic, the function doesn't care about the order of
1221   // input updates, so it's OK to pass it an unordered sequence of updates, that
1222   // doesn't make sense when applied sequentially, eg. performing double
1223   // insertions or deletions and then doing an opposite update.
1224   //
1225   // In the future, it should be possible to schedule updates in way that
1226   // minimizes the amount of work needed done during incremental updates.
LegalizeUpdatesSemiNCAInfo1227   static void LegalizeUpdates(ArrayRef<UpdateT> AllUpdates,
1228                               SmallVectorImpl<UpdateT> &Result) {
1229     LLVM_DEBUG(dbgs() << "Legalizing " << AllUpdates.size() << " updates\n");
1230     // Count the total number of inserions of each edge.
1231     // Each insertion adds 1 and deletion subtracts 1. The end number should be
1232     // one of {-1 (deletion), 0 (NOP), +1 (insertion)}. Otherwise, the sequence
1233     // of updates contains multiple updates of the same kind and we assert for
1234     // that case.
1235     SmallDenseMap<std::pair<NodePtr, NodePtr>, int, 4> Operations;
1236     Operations.reserve(AllUpdates.size());
1237 
1238     for (const auto &U : AllUpdates) {
1239       NodePtr From = U.getFrom();
1240       NodePtr To = U.getTo();
1241       if (IsPostDom) std::swap(From, To);  // Reverse edge for postdominators.
1242 
1243       Operations[{From, To}] += (U.getKind() == UpdateKind::Insert ? 1 : -1);
1244     }
1245 
1246     Result.clear();
1247     Result.reserve(Operations.size());
1248     for (auto &Op : Operations) {
1249       const int NumInsertions = Op.second;
1250       assert(std::abs(NumInsertions) <= 1 && "Unbalanced operations!");
1251       if (NumInsertions == 0) continue;
1252       const UpdateKind UK =
1253           NumInsertions > 0 ? UpdateKind::Insert : UpdateKind::Delete;
1254       Result.push_back({UK, Op.first.first, Op.first.second});
1255     }
1256 
1257     // Make the order consistent by not relying on pointer values within the
1258     // set. Reuse the old Operations map.
1259     // In the future, we should sort by something else to minimize the amount
1260     // of work needed to perform the series of updates.
1261     for (size_t i = 0, e = AllUpdates.size(); i != e; ++i) {
1262       const auto &U = AllUpdates[i];
1263       if (!IsPostDom)
1264         Operations[{U.getFrom(), U.getTo()}] = int(i);
1265       else
1266         Operations[{U.getTo(), U.getFrom()}] = int(i);
1267     }
1268 
1269     llvm::sort(Result.begin(), Result.end(),
1270                [&Operations](const UpdateT &A, const UpdateT &B) {
1271                  return Operations[{A.getFrom(), A.getTo()}] >
1272                         Operations[{B.getFrom(), B.getTo()}];
1273                });
1274   }
1275 
ApplyNextUpdateSemiNCAInfo1276   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1277     assert(!BUI.Updates.empty() && "No updates to apply!");
1278     UpdateT CurrentUpdate = BUI.Updates.pop_back_val();
1279     LLVM_DEBUG(dbgs() << "Applying update: " << CurrentUpdate << "\n");
1280 
1281     // Move to the next snapshot of the CFG by removing the reverse-applied
1282     // current update. Since updates are performed in the same order they are
1283     // legalized it's sufficient to pop the last item here.
1284     auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()];
1285     assert(FS.back().getPointer() == CurrentUpdate.getTo() &&
1286            FS.back().getInt() == CurrentUpdate.getKind());
1287     FS.pop_back();
1288     if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom());
1289 
1290     auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()];
1291     assert(FP.back().getPointer() == CurrentUpdate.getFrom() &&
1292            FP.back().getInt() == CurrentUpdate.getKind());
1293     FP.pop_back();
1294     if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo());
1295 
1296     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1297       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1298     else
1299       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1300   }
1301 
1302   //~~
1303   //===--------------- DomTree correctness verification ---------------------===
1304   //~~
1305 
1306   // Check if the tree has correct roots. A DominatorTree always has a single
1307   // root which is the function's entry node. A PostDominatorTree can have
1308   // multiple roots - one for each node with no successors and for infinite
1309   // loops.
1310   // Running time: O(N).
verifyRootsSemiNCAInfo1311   bool verifyRoots(const DomTreeT &DT) {
1312     if (!DT.Parent && !DT.Roots.empty()) {
1313       errs() << "Tree has no parent but has roots!\n";
1314       errs().flush();
1315       return false;
1316     }
1317 
1318     if (!IsPostDom) {
1319       if (DT.Roots.empty()) {
1320         errs() << "Tree doesn't have a root!\n";
1321         errs().flush();
1322         return false;
1323       }
1324 
1325       if (DT.getRoot() != GetEntryNode(DT)) {
1326         errs() << "Tree's root is not its parent's entry node!\n";
1327         errs().flush();
1328         return false;
1329       }
1330     }
1331 
1332     RootsT ComputedRoots = FindRoots(DT, nullptr);
1333     if (DT.Roots.size() != ComputedRoots.size() ||
1334         !std::is_permutation(DT.Roots.begin(), DT.Roots.end(),
1335                              ComputedRoots.begin())) {
1336       errs() << "Tree has different roots than freshly computed ones!\n";
1337       errs() << "\tPDT roots: ";
1338       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1339       errs() << "\n\tComputed roots: ";
1340       for (const NodePtr N : ComputedRoots)
1341         errs() << BlockNamePrinter(N) << ", ";
1342       errs() << "\n";
1343       errs().flush();
1344       return false;
1345     }
1346 
1347     return true;
1348   }
1349 
1350   // Checks if the tree contains all reachable nodes in the input graph.
1351   // Running time: O(N).
verifyReachabilitySemiNCAInfo1352   bool verifyReachability(const DomTreeT &DT) {
1353     clear();
1354     doFullDFSWalk(DT, AlwaysDescend);
1355 
1356     for (auto &NodeToTN : DT.DomTreeNodes) {
1357       const TreeNodePtr TN = NodeToTN.second.get();
1358       const NodePtr BB = TN->getBlock();
1359 
1360       // Virtual root has a corresponding virtual CFG node.
1361       if (DT.isVirtualRoot(TN)) continue;
1362 
1363       if (NodeToInfo.count(BB) == 0) {
1364         errs() << "DomTree node " << BlockNamePrinter(BB)
1365                << " not found by DFS walk!\n";
1366         errs().flush();
1367 
1368         return false;
1369       }
1370     }
1371 
1372     for (const NodePtr N : NumToNode) {
1373       if (N && !DT.getNode(N)) {
1374         errs() << "CFG node " << BlockNamePrinter(N)
1375                << " not found in the DomTree!\n";
1376         errs().flush();
1377 
1378         return false;
1379       }
1380     }
1381 
1382     return true;
1383   }
1384 
1385   // Check if for every parent with a level L in the tree all of its children
1386   // have level L + 1.
1387   // Running time: O(N).
VerifyLevelsSemiNCAInfo1388   static bool VerifyLevels(const DomTreeT &DT) {
1389     for (auto &NodeToTN : DT.DomTreeNodes) {
1390       const TreeNodePtr TN = NodeToTN.second.get();
1391       const NodePtr BB = TN->getBlock();
1392       if (!BB) continue;
1393 
1394       const TreeNodePtr IDom = TN->getIDom();
1395       if (!IDom && TN->getLevel() != 0) {
1396         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1397                << " has a nonzero level " << TN->getLevel() << "!\n";
1398         errs().flush();
1399 
1400         return false;
1401       }
1402 
1403       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1404         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1405                << TN->getLevel() << " while its IDom "
1406                << BlockNamePrinter(IDom->getBlock()) << " has level "
1407                << IDom->getLevel() << "!\n";
1408         errs().flush();
1409 
1410         return false;
1411       }
1412     }
1413 
1414     return true;
1415   }
1416 
1417   // Check if the computed DFS numbers are correct. Note that DFS info may not
1418   // be valid, and when that is the case, we don't verify the numbers.
1419   // Running time: O(N log(N)).
VerifyDFSNumbersSemiNCAInfo1420   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1421     if (!DT.DFSInfoValid || !DT.Parent)
1422       return true;
1423 
1424     const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0];
1425     const TreeNodePtr Root = DT.getNode(RootBB);
1426 
1427     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1428       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1429              << TN->getDFSNumOut() << '}';
1430     };
1431 
1432     // Verify the root's DFS In number. Although DFS numbering would also work
1433     // if we started from some other value, we assume 0-based numbering.
1434     if (Root->getDFSNumIn() != 0) {
1435       errs() << "DFSIn number for the tree root is not:\n\t";
1436       PrintNodeAndDFSNums(Root);
1437       errs() << '\n';
1438       errs().flush();
1439       return false;
1440     }
1441 
1442     // For each tree node verify if children's DFS numbers cover their parent's
1443     // DFS numbers with no gaps.
1444     for (const auto &NodeToTN : DT.DomTreeNodes) {
1445       const TreeNodePtr Node = NodeToTN.second.get();
1446 
1447       // Handle tree leaves.
1448       if (Node->getChildren().empty()) {
1449         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1450           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1451           PrintNodeAndDFSNums(Node);
1452           errs() << '\n';
1453           errs().flush();
1454           return false;
1455         }
1456 
1457         continue;
1458       }
1459 
1460       // Make a copy and sort it such that it is possible to check if there are
1461       // no gaps between DFS numbers of adjacent children.
1462       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1463       llvm::sort(Children.begin(), Children.end(),
1464                  [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1465                    return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1466                  });
1467 
1468       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1469           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1470         assert(FirstCh);
1471 
1472         errs() << "Incorrect DFS numbers for:\n\tParent ";
1473         PrintNodeAndDFSNums(Node);
1474 
1475         errs() << "\n\tChild ";
1476         PrintNodeAndDFSNums(FirstCh);
1477 
1478         if (SecondCh) {
1479           errs() << "\n\tSecond child ";
1480           PrintNodeAndDFSNums(SecondCh);
1481         }
1482 
1483         errs() << "\nAll children: ";
1484         for (const TreeNodePtr Ch : Children) {
1485           PrintNodeAndDFSNums(Ch);
1486           errs() << ", ";
1487         }
1488 
1489         errs() << '\n';
1490         errs().flush();
1491       };
1492 
1493       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1494         PrintChildrenError(Children.front(), nullptr);
1495         return false;
1496       }
1497 
1498       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1499         PrintChildrenError(Children.back(), nullptr);
1500         return false;
1501       }
1502 
1503       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1504         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1505           PrintChildrenError(Children[i], Children[i + 1]);
1506           return false;
1507         }
1508       }
1509     }
1510 
1511     return true;
1512   }
1513 
1514   // The below routines verify the correctness of the dominator tree relative to
1515   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1516   // properties, called the parent property and the sibling property.  Tarjan
1517   // and Lengauer prove (but don't explicitly name) the properties as part of
1518   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1519   // things about semidominators and idoms, and some of them are simply asserted
1520   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1521   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1522   // directed bipolar orders, and independent spanning trees" by Loukas
1523   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1524   // and Vertex-Disjoint Paths " by the same authors.
1525 
1526   // A very simple and direct explanation of these properties can be found in
1527   // "An Experimental Study of Dynamic Dominators", found at
1528   // https://arxiv.org/abs/1604.02711
1529 
1530   // The easiest way to think of the parent property is that it's a requirement
1531   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1532   // be an immediate dominator of CHILD, all paths in the CFG must go through
1533   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1534   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1535   // there are, then you now have a path from PARENT to CHILD that goes around
1536   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1537   // a dominator of CHILD (let alone an immediate one).
1538 
1539   // The sibling property is similar.  It says that for each pair of sibling
1540   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1541   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1542   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1543   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1544   // RIGHT, not a sibling.
1545 
1546   // It is possible to verify the parent and sibling properties in
1547   // linear time, but the algorithms are complex. Instead, we do it in a
1548   // straightforward N^2 and N^3 way below, using direct path reachability.
1549 
1550   // Checks if the tree has the parent property: if for all edges from V to W in
1551   // the input graph, such that V is reachable, the parent of W in the tree is
1552   // an ancestor of V in the tree.
1553   // Running time: O(N^2).
1554   //
1555   // This means that if a node gets disconnected from the graph, then all of
1556   // the nodes it dominated previously will now become unreachable.
verifyParentPropertySemiNCAInfo1557   bool verifyParentProperty(const DomTreeT &DT) {
1558     for (auto &NodeToTN : DT.DomTreeNodes) {
1559       const TreeNodePtr TN = NodeToTN.second.get();
1560       const NodePtr BB = TN->getBlock();
1561       if (!BB || TN->getChildren().empty()) continue;
1562 
1563       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1564                         << BlockNamePrinter(TN) << "\n");
1565       clear();
1566       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1567         return From != BB && To != BB;
1568       });
1569 
1570       for (TreeNodePtr Child : TN->getChildren())
1571         if (NodeToInfo.count(Child->getBlock()) != 0) {
1572           errs() << "Child " << BlockNamePrinter(Child)
1573                  << " reachable after its parent " << BlockNamePrinter(BB)
1574                  << " is removed!\n";
1575           errs().flush();
1576 
1577           return false;
1578         }
1579     }
1580 
1581     return true;
1582   }
1583 
1584   // Check if the tree has sibling property: if a node V does not dominate a
1585   // node W for all siblings V and W in the tree.
1586   // Running time: O(N^3).
1587   //
1588   // This means that if a node gets disconnected from the graph, then all of its
1589   // siblings will now still be reachable.
verifySiblingPropertySemiNCAInfo1590   bool verifySiblingProperty(const DomTreeT &DT) {
1591     for (auto &NodeToTN : DT.DomTreeNodes) {
1592       const TreeNodePtr TN = NodeToTN.second.get();
1593       const NodePtr BB = TN->getBlock();
1594       if (!BB || TN->getChildren().empty()) continue;
1595 
1596       const auto &Siblings = TN->getChildren();
1597       for (const TreeNodePtr N : Siblings) {
1598         clear();
1599         NodePtr BBN = N->getBlock();
1600         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1601           return From != BBN && To != BBN;
1602         });
1603 
1604         for (const TreeNodePtr S : Siblings) {
1605           if (S == N) continue;
1606 
1607           if (NodeToInfo.count(S->getBlock()) == 0) {
1608             errs() << "Node " << BlockNamePrinter(S)
1609                    << " not reachable when its sibling " << BlockNamePrinter(N)
1610                    << " is removed!\n";
1611             errs().flush();
1612 
1613             return false;
1614           }
1615         }
1616       }
1617     }
1618 
1619     return true;
1620   }
1621 
1622   // Check if the given tree is the same as a freshly computed one for the same
1623   // Parent.
1624   // Running time: O(N^2), but faster in practise (same as tree construction).
1625   //
1626   // Note that this does not check if that the tree construction algorithm is
1627   // correct and should be only used for fast (but possibly unsound)
1628   // verification.
IsSameAsFreshTreeSemiNCAInfo1629   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1630     DomTreeT FreshTree;
1631     FreshTree.recalculate(*DT.Parent);
1632     const bool Different = DT.compare(FreshTree);
1633 
1634     if (Different) {
1635       errs() << (DT.isPostDominator() ? "Post" : "")
1636              << "DominatorTree is different than a freshly computed one!\n"
1637              << "\tCurrent:\n";
1638       DT.print(errs());
1639       errs() << "\n\tFreshly computed tree:\n";
1640       FreshTree.print(errs());
1641       errs().flush();
1642     }
1643 
1644     return !Different;
1645   }
1646 };
1647 
1648 template <class DomTreeT>
Calculate(DomTreeT & DT)1649 void Calculate(DomTreeT &DT) {
1650   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1651 }
1652 
1653 template <class DomTreeT>
InsertEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1654 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1655                 typename DomTreeT::NodePtr To) {
1656   if (DT.isPostDominator()) std::swap(From, To);
1657   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1658 }
1659 
1660 template <class DomTreeT>
DeleteEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1661 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1662                 typename DomTreeT::NodePtr To) {
1663   if (DT.isPostDominator()) std::swap(From, To);
1664   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1665 }
1666 
1667 template <class DomTreeT>
ApplyUpdates(DomTreeT & DT,ArrayRef<typename DomTreeT::UpdateType> Updates)1668 void ApplyUpdates(DomTreeT &DT,
1669                   ArrayRef<typename DomTreeT::UpdateType> Updates) {
1670   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates);
1671 }
1672 
1673 template <class DomTreeT>
Verify(const DomTreeT & DT,typename DomTreeT::VerificationLevel VL)1674 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1675   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1676 
1677   // Simplist check is to compare against a new tree. This will also
1678   // usefully print the old and new trees, if they are different.
1679   if (!SNCA.IsSameAsFreshTree(DT))
1680     return false;
1681 
1682   // Common checks to verify the properties of the tree. O(N log N) at worst
1683   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1684       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1685     return false;
1686 
1687   // Extra checks depending on VerificationLevel. Up to O(N^3)
1688   if (VL == DomTreeT::VerificationLevel::Basic ||
1689       VL == DomTreeT::VerificationLevel::Full)
1690     if (!SNCA.verifyParentProperty(DT))
1691       return false;
1692   if (VL == DomTreeT::VerificationLevel::Full)
1693     if (!SNCA.verifySiblingProperty(DT))
1694       return false;
1695 
1696   return true;
1697 }
1698 
1699 }  // namespace DomTreeBuilder
1700 }  // namespace llvm
1701 
1702 #undef DEBUG_TYPE
1703 
1704 #endif
1705