1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_BASE_BITS_H_
6 #define V8_BASE_BITS_H_
7
8 #include <stdint.h>
9 #include <type_traits>
10
11 #include "src/base/base-export.h"
12 #include "src/base/macros.h"
13 #if V8_CC_MSVC
14 #include <intrin.h>
15 #endif
16 #if V8_OS_WIN32
17 #include "src/base/win32-headers.h"
18 #endif
19
20 namespace v8 {
21 namespace base {
22
23 namespace internal {
24 template <typename T>
25 class CheckedNumeric;
26 }
27
28 namespace bits {
29
30 // CountPopulation(value) returns the number of bits set in |value|.
31 template <typename T>
32 constexpr inline
33 typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
34 unsigned>::type
CountPopulation(T value)35 CountPopulation(T value) {
36 #if V8_HAS_BUILTIN_POPCOUNT
37 return sizeof(T) == 8 ? __builtin_popcountll(static_cast<uint64_t>(value))
38 : __builtin_popcount(static_cast<uint32_t>(value));
39 #else
40 constexpr uint64_t mask[] = {0x5555555555555555, 0x3333333333333333,
41 0x0f0f0f0f0f0f0f0f, 0x00ff00ff00ff00ff,
42 0x0000ffff0000ffff, 0x00000000ffffffff};
43 value = ((value >> 1) & mask[0]) + (value & mask[0]);
44 value = ((value >> 2) & mask[1]) + (value & mask[1]);
45 value = ((value >> 4) & mask[2]) + (value & mask[2]);
46 if (sizeof(T) > 1)
47 value = ((value >> (sizeof(T) > 1 ? 8 : 0)) & mask[3]) + (value & mask[3]);
48 if (sizeof(T) > 2)
49 value = ((value >> (sizeof(T) > 2 ? 16 : 0)) & mask[4]) + (value & mask[4]);
50 if (sizeof(T) > 4)
51 value = ((value >> (sizeof(T) > 4 ? 32 : 0)) & mask[5]) + (value & mask[5]);
52 return static_cast<unsigned>(value);
53 #endif
54 }
55
56 // ReverseBits(value) returns |value| in reverse bit order.
57 template <typename T>
ReverseBits(T value)58 T ReverseBits(T value) {
59 DCHECK((sizeof(value) == 1) || (sizeof(value) == 2) || (sizeof(value) == 4) ||
60 (sizeof(value) == 8));
61 T result = 0;
62 for (unsigned i = 0; i < (sizeof(value) * 8); i++) {
63 result = (result << 1) | (value & 1);
64 value >>= 1;
65 }
66 return result;
67 }
68
69 // CountLeadingZeros(value) returns the number of zero bits following the most
70 // significant 1 bit in |value| if |value| is non-zero, otherwise it returns
71 // {sizeof(T) * 8}.
72 template <typename T, unsigned bits = sizeof(T) * 8>
73 inline constexpr
74 typename std::enable_if<std::is_unsigned<T>::value && sizeof(T) <= 8,
75 unsigned>::type
CountLeadingZeros(T value)76 CountLeadingZeros(T value) {
77 static_assert(bits > 0, "invalid instantiation");
78 #if V8_HAS_BUILTIN_CLZ
79 return value == 0
80 ? bits
81 : bits == 64
82 ? __builtin_clzll(static_cast<uint64_t>(value))
83 : __builtin_clz(static_cast<uint32_t>(value)) - (32 - bits);
84 #else
85 // Binary search algorithm taken from "Hacker's Delight" (by Henry S. Warren,
86 // Jr.), figures 5-11 and 5-12.
87 if (bits == 1) return static_cast<unsigned>(value) ^ 1;
88 T upper_half = value >> (bits / 2);
89 T next_value = upper_half != 0 ? upper_half : value;
90 unsigned add = upper_half != 0 ? 0 : bits / 2;
91 constexpr unsigned next_bits = bits == 1 ? 1 : bits / 2;
92 return CountLeadingZeros<T, next_bits>(next_value) + add;
93 #endif
94 }
95
CountLeadingZeros32(uint32_t value)96 inline constexpr unsigned CountLeadingZeros32(uint32_t value) {
97 return CountLeadingZeros(value);
98 }
CountLeadingZeros64(uint64_t value)99 inline constexpr unsigned CountLeadingZeros64(uint64_t value) {
100 return CountLeadingZeros(value);
101 }
102
103 // CountTrailingZeros(value) returns the number of zero bits preceding the
104 // least significant 1 bit in |value| if |value| is non-zero, otherwise it
105 // returns {sizeof(T) * 8}.
106 template <typename T, unsigned bits = sizeof(T) * 8>
107 inline constexpr
108 typename std::enable_if<std::is_integral<T>::value && sizeof(T) <= 8,
109 unsigned>::type
CountTrailingZeros(T value)110 CountTrailingZeros(T value) {
111 #if V8_HAS_BUILTIN_CTZ
112 return value == 0 ? bits
113 : bits == 64 ? __builtin_ctzll(static_cast<uint64_t>(value))
114 : __builtin_ctz(static_cast<uint32_t>(value));
115 #else
116 // Fall back to popcount (see "Hacker's Delight" by Henry S. Warren, Jr.),
117 // chapter 5-4. On x64, since is faster than counting in a loop and faster
118 // than doing binary search.
119 using U = typename std::make_unsigned<T>::type;
120 U u = value;
121 return CountPopulation(static_cast<U>(~u & (u - 1u)));
122 #endif
123 }
124
CountTrailingZeros32(uint32_t value)125 inline constexpr unsigned CountTrailingZeros32(uint32_t value) {
126 return CountTrailingZeros(value);
127 }
CountTrailingZeros64(uint64_t value)128 inline constexpr unsigned CountTrailingZeros64(uint64_t value) {
129 return CountTrailingZeros(value);
130 }
131
132 // Returns true iff |value| is a power of 2.
133 template <typename T,
134 typename = typename std::enable_if<std::is_integral<T>::value ||
135 std::is_enum<T>::value>::type>
IsPowerOfTwo(T value)136 constexpr inline bool IsPowerOfTwo(T value) {
137 return value > 0 && (value & (value - 1)) == 0;
138 }
139
140 // RoundUpToPowerOfTwo32(value) returns the smallest power of two which is
141 // greater than or equal to |value|. If you pass in a |value| that is already a
142 // power of two, it is returned as is. |value| must be less than or equal to
143 // 0x80000000u. Uses computation based on leading zeros if we have compiler
144 // support for that. Falls back to the implementation from "Hacker's Delight" by
145 // Henry S. Warren, Jr., figure 3-3, page 48, where the function is called clp2.
146 V8_BASE_EXPORT uint32_t RoundUpToPowerOfTwo32(uint32_t value);
147 // Same for 64 bit integers. |value| must be <= 2^63
148 V8_BASE_EXPORT uint64_t RoundUpToPowerOfTwo64(uint64_t value);
149
150 // RoundDownToPowerOfTwo32(value) returns the greatest power of two which is
151 // less than or equal to |value|. If you pass in a |value| that is already a
152 // power of two, it is returned as is.
RoundDownToPowerOfTwo32(uint32_t value)153 inline uint32_t RoundDownToPowerOfTwo32(uint32_t value) {
154 if (value > 0x80000000u) return 0x80000000u;
155 uint32_t result = RoundUpToPowerOfTwo32(value);
156 if (result > value) result >>= 1;
157 return result;
158 }
159
160
161 // Precondition: 0 <= shift < 32
RotateRight32(uint32_t value,uint32_t shift)162 inline uint32_t RotateRight32(uint32_t value, uint32_t shift) {
163 if (shift == 0) return value;
164 return (value >> shift) | (value << (32 - shift));
165 }
166
167 // Precondition: 0 <= shift < 32
RotateLeft32(uint32_t value,uint32_t shift)168 inline uint32_t RotateLeft32(uint32_t value, uint32_t shift) {
169 if (shift == 0) return value;
170 return (value << shift) | (value >> (32 - shift));
171 }
172
173 // Precondition: 0 <= shift < 64
RotateRight64(uint64_t value,uint64_t shift)174 inline uint64_t RotateRight64(uint64_t value, uint64_t shift) {
175 if (shift == 0) return value;
176 return (value >> shift) | (value << (64 - shift));
177 }
178
179 // Precondition: 0 <= shift < 64
RotateLeft64(uint64_t value,uint64_t shift)180 inline uint64_t RotateLeft64(uint64_t value, uint64_t shift) {
181 if (shift == 0) return value;
182 return (value << shift) | (value >> (64 - shift));
183 }
184
185
186 // SignedAddOverflow32(lhs,rhs,val) performs a signed summation of |lhs| and
187 // |rhs| and stores the result into the variable pointed to by |val| and
188 // returns true if the signed summation resulted in an overflow.
SignedAddOverflow32(int32_t lhs,int32_t rhs,int32_t * val)189 inline bool SignedAddOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
190 #if V8_HAS_BUILTIN_SADD_OVERFLOW
191 return __builtin_sadd_overflow(lhs, rhs, val);
192 #else
193 uint32_t res = static_cast<uint32_t>(lhs) + static_cast<uint32_t>(rhs);
194 *val = bit_cast<int32_t>(res);
195 return ((res ^ lhs) & (res ^ rhs) & (1U << 31)) != 0;
196 #endif
197 }
198
199
200 // SignedSubOverflow32(lhs,rhs,val) performs a signed subtraction of |lhs| and
201 // |rhs| and stores the result into the variable pointed to by |val| and
202 // returns true if the signed subtraction resulted in an overflow.
SignedSubOverflow32(int32_t lhs,int32_t rhs,int32_t * val)203 inline bool SignedSubOverflow32(int32_t lhs, int32_t rhs, int32_t* val) {
204 #if V8_HAS_BUILTIN_SSUB_OVERFLOW
205 return __builtin_ssub_overflow(lhs, rhs, val);
206 #else
207 uint32_t res = static_cast<uint32_t>(lhs) - static_cast<uint32_t>(rhs);
208 *val = bit_cast<int32_t>(res);
209 return ((res ^ lhs) & (res ^ ~rhs) & (1U << 31)) != 0;
210 #endif
211 }
212
213 // SignedMulOverflow32(lhs,rhs,val) performs a signed multiplication of |lhs|
214 // and |rhs| and stores the result into the variable pointed to by |val| and
215 // returns true if the signed multiplication resulted in an overflow.
216 V8_BASE_EXPORT bool SignedMulOverflow32(int32_t lhs, int32_t rhs, int32_t* val);
217
218 // SignedAddOverflow64(lhs,rhs,val) performs a signed summation of |lhs| and
219 // |rhs| and stores the result into the variable pointed to by |val| and
220 // returns true if the signed summation resulted in an overflow.
SignedAddOverflow64(int64_t lhs,int64_t rhs,int64_t * val)221 inline bool SignedAddOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
222 uint64_t res = static_cast<uint64_t>(lhs) + static_cast<uint64_t>(rhs);
223 *val = bit_cast<int64_t>(res);
224 return ((res ^ lhs) & (res ^ rhs) & (1ULL << 63)) != 0;
225 }
226
227
228 // SignedSubOverflow64(lhs,rhs,val) performs a signed subtraction of |lhs| and
229 // |rhs| and stores the result into the variable pointed to by |val| and
230 // returns true if the signed subtraction resulted in an overflow.
SignedSubOverflow64(int64_t lhs,int64_t rhs,int64_t * val)231 inline bool SignedSubOverflow64(int64_t lhs, int64_t rhs, int64_t* val) {
232 uint64_t res = static_cast<uint64_t>(lhs) - static_cast<uint64_t>(rhs);
233 *val = bit_cast<int64_t>(res);
234 return ((res ^ lhs) & (res ^ ~rhs) & (1ULL << 63)) != 0;
235 }
236
237 // SignedMulOverflow64(lhs,rhs,val) performs a signed multiplication of |lhs|
238 // and |rhs| and stores the result into the variable pointed to by |val| and
239 // returns true if the signed multiplication resulted in an overflow.
240 V8_BASE_EXPORT bool SignedMulOverflow64(int64_t lhs, int64_t rhs, int64_t* val);
241
242 // SignedMulHigh32(lhs, rhs) multiplies two signed 32-bit values |lhs| and
243 // |rhs|, extracts the most significant 32 bits of the result, and returns
244 // those.
245 V8_BASE_EXPORT int32_t SignedMulHigh32(int32_t lhs, int32_t rhs);
246
247 // SignedMulHighAndAdd32(lhs, rhs, acc) multiplies two signed 32-bit values
248 // |lhs| and |rhs|, extracts the most significant 32 bits of the result, and
249 // adds the accumulate value |acc|.
250 V8_BASE_EXPORT int32_t SignedMulHighAndAdd32(int32_t lhs, int32_t rhs,
251 int32_t acc);
252
253 // SignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
254 // truncated to int32. If |rhs| is zero, then zero is returned. If |lhs|
255 // is minint and |rhs| is -1, it returns minint.
256 V8_BASE_EXPORT int32_t SignedDiv32(int32_t lhs, int32_t rhs);
257
258 // SignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
259 // truncated to int32. If either |rhs| is zero or |lhs| is minint and |rhs|
260 // is -1, it returns zero.
261 V8_BASE_EXPORT int32_t SignedMod32(int32_t lhs, int32_t rhs);
262
263 // UnsignedAddOverflow32(lhs,rhs,val) performs an unsigned summation of |lhs|
264 // and |rhs| and stores the result into the variable pointed to by |val| and
265 // returns true if the unsigned summation resulted in an overflow.
UnsignedAddOverflow32(uint32_t lhs,uint32_t rhs,uint32_t * val)266 inline bool UnsignedAddOverflow32(uint32_t lhs, uint32_t rhs, uint32_t* val) {
267 #if V8_HAS_BUILTIN_SADD_OVERFLOW
268 return __builtin_uadd_overflow(lhs, rhs, val);
269 #else
270 *val = lhs + rhs;
271 return *val < (lhs | rhs);
272 #endif
273 }
274
275
276 // UnsignedDiv32(lhs, rhs) divides |lhs| by |rhs| and returns the quotient
277 // truncated to uint32. If |rhs| is zero, then zero is returned.
UnsignedDiv32(uint32_t lhs,uint32_t rhs)278 inline uint32_t UnsignedDiv32(uint32_t lhs, uint32_t rhs) {
279 return rhs ? lhs / rhs : 0u;
280 }
281
282
283 // UnsignedMod32(lhs, rhs) divides |lhs| by |rhs| and returns the remainder
284 // truncated to uint32. If |rhs| is zero, then zero is returned.
UnsignedMod32(uint32_t lhs,uint32_t rhs)285 inline uint32_t UnsignedMod32(uint32_t lhs, uint32_t rhs) {
286 return rhs ? lhs % rhs : 0u;
287 }
288
289
290 // Clamp |value| on overflow and underflow conditions.
291 V8_BASE_EXPORT int64_t
292 FromCheckedNumeric(const internal::CheckedNumeric<int64_t> value);
293
294 // SignedSaturatedAdd64(lhs, rhs) adds |lhs| and |rhs|,
295 // checks and returns the result.
296 V8_BASE_EXPORT int64_t SignedSaturatedAdd64(int64_t lhs, int64_t rhs);
297
298 // SignedSaturatedSub64(lhs, rhs) subtracts |lhs| by |rhs|,
299 // checks and returns the result.
300 V8_BASE_EXPORT int64_t SignedSaturatedSub64(int64_t lhs, int64_t rhs);
301
302 } // namespace bits
303 } // namespace base
304 } // namespace v8
305
306 #endif // V8_BASE_BITS_H_
307