• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*-------------------------------------------------------------------------
2  * drawElements Quality Program Reference Renderer
3  * -----------------------------------------------
4  *
5  * Copyright 2014 The Android Open Source Project
6  *
7  * Licensed under the Apache License, Version 2.0 (the "License");
8  * you may not use this file except in compliance with the License.
9  * You may obtain a copy of the License at
10  *
11  *      http://www.apache.org/licenses/LICENSE-2.0
12  *
13  * Unless required by applicable law or agreed to in writing, software
14  * distributed under the License is distributed on an "AS IS" BASIS,
15  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  * See the License for the specific language governing permissions and
17  * limitations under the License.
18  *
19  *//*!
20  * \file
21  * \brief Reference rasterizer
22  *//*--------------------------------------------------------------------*/
23 
24 #include "rrRasterizer.hpp"
25 #include "deMath.h"
26 #include "tcuVectorUtil.hpp"
27 
28 namespace rr
29 {
30 
toSubpixelCoord(float v)31 inline deInt64 toSubpixelCoord (float v)
32 {
33 	return (deInt64)(v * (1<<RASTERIZER_SUBPIXEL_BITS) + (v < 0.f ? -0.5f : 0.5f));
34 }
35 
toSubpixelCoord(deInt32 v)36 inline deInt64 toSubpixelCoord (deInt32 v)
37 {
38 	return v << RASTERIZER_SUBPIXEL_BITS;
39 }
40 
ceilSubpixelToPixelCoord(deInt64 coord,bool fillEdge)41 inline deInt32 ceilSubpixelToPixelCoord (deInt64 coord, bool fillEdge)
42 {
43 	if (coord >= 0)
44 		return (deInt32)((coord + ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS);
45 	else
46 		return (deInt32)((coord + (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS);
47 }
48 
floorSubpixelToPixelCoord(deInt64 coord,bool fillEdge)49 inline deInt32 floorSubpixelToPixelCoord (deInt64 coord, bool fillEdge)
50 {
51 	if (coord >= 0)
52 		return (deInt32)((coord - (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS);
53 	else
54 		return (deInt32)((coord - ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS);
55 }
56 
initEdgeCCW(EdgeFunction & edge,const HorizontalFill horizontalFill,const VerticalFill verticalFill,const deInt64 x0,const deInt64 y0,const deInt64 x1,const deInt64 y1)57 static inline void initEdgeCCW (EdgeFunction& edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill, const deInt64 x0, const deInt64 y0, const deInt64 x1, const deInt64 y1)
58 {
59 	// \note See EdgeFunction documentation for details.
60 
61 	const deInt64	xd			= x1-x0;
62 	const deInt64	yd			= y1-y0;
63 	bool			inclusive	= false;	//!< Inclusive in CCW orientation.
64 
65 	if (yd == 0)
66 		inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0;
67 	else
68 		inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0;
69 
70 	edge.a			= (y0 - y1);
71 	edge.b			= (x1 - x0);
72 	edge.c			= x0*y1 - y0*x1;
73 	edge.inclusive	= inclusive; //!< \todo [pyry] Swap for CW triangles
74 }
75 
reverseEdge(EdgeFunction & edge)76 static inline void reverseEdge (EdgeFunction& edge)
77 {
78 	edge.a			= -edge.a;
79 	edge.b			= -edge.b;
80 	edge.c			= -edge.c;
81 	edge.inclusive	= !edge.inclusive;
82 }
83 
evaluateEdge(const EdgeFunction & edge,const deInt64 x,const deInt64 y)84 static inline deInt64 evaluateEdge (const EdgeFunction& edge, const deInt64 x, const deInt64 y)
85 {
86 	return edge.a*x + edge.b*y + edge.c;
87 }
88 
isInsideCCW(const EdgeFunction & edge,const deInt64 edgeVal)89 static inline bool isInsideCCW (const EdgeFunction& edge, const deInt64 edgeVal)
90 {
91 	return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0);
92 }
93 
94 namespace LineRasterUtil
95 {
96 
97 struct SubpixelLineSegment
98 {
99 	const tcu::Vector<deInt64,2>	m_v0;
100 	const tcu::Vector<deInt64,2>	m_v1;
101 
SubpixelLineSegmentrr::LineRasterUtil::SubpixelLineSegment102 	SubpixelLineSegment (const tcu::Vector<deInt64,2>& v0, const tcu::Vector<deInt64,2>& v1)
103 		: m_v0(v0)
104 		, m_v1(v1)
105 	{
106 	}
107 
directionrr::LineRasterUtil::SubpixelLineSegment108 	tcu::Vector<deInt64,2> direction (void) const
109 	{
110 		return m_v1 - m_v0;
111 	}
112 };
113 
114 enum LINE_SIDE
115 {
116 	LINE_SIDE_INTERSECT = 0,
117 	LINE_SIDE_LEFT,
118 	LINE_SIDE_RIGHT
119 };
120 
toSubpixelVector(const tcu::Vec2 & v)121 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::Vec2& v)
122 {
123 	return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y()));
124 }
125 
toSubpixelVector(const tcu::IVec2 & v)126 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::IVec2& v)
127 {
128 	return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y()));
129 }
130 
131 #if defined(DE_DEBUG)
isTheCenterOfTheFragment(const tcu::Vector<deInt64,2> & a)132 static bool isTheCenterOfTheFragment (const tcu::Vector<deInt64,2>& a)
133 {
134 	const deUint64 pixelSize = 1ll << (RASTERIZER_SUBPIXEL_BITS);
135 	const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
136 	return	((a.x() & (pixelSize-1)) == halfPixel &&
137 				(a.y() & (pixelSize-1)) == halfPixel);
138 }
139 
inViewport(const tcu::IVec2 & p,const tcu::IVec4 & viewport)140 static bool inViewport (const tcu::IVec2& p, const tcu::IVec4& viewport)
141 {
142 	return	p.x() >= viewport.x() &&
143 			p.y() >= viewport.y() &&
144 			p.x() <  viewport.x() + viewport.z() &&
145 			p.y() <  viewport.y() + viewport.w();
146 }
147 #endif // DE_DEBUG
148 
149 // returns true if vertex is on the left side of the line
vertexOnLeftSideOfLine(const tcu::Vector<deInt64,2> & p,const SubpixelLineSegment & l)150 static bool vertexOnLeftSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
151 {
152 	const tcu::Vector<deInt64,2> u = l.direction();
153 	const tcu::Vector<deInt64,2> v = ( p - l.m_v0);
154 	const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x());
155 	return crossProduct < 0;
156 }
157 
158 // returns true if vertex is on the right side of the line
vertexOnRightSideOfLine(const tcu::Vector<deInt64,2> & p,const SubpixelLineSegment & l)159 static bool vertexOnRightSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
160 {
161 	const tcu::Vector<deInt64,2> u = l.direction();
162 	const tcu::Vector<deInt64,2> v = ( p - l.m_v0);
163 	const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x());
164 	return crossProduct > 0;
165 }
166 
167 // returns true if vertex is on the line
vertexOnLine(const tcu::Vector<deInt64,2> & p,const SubpixelLineSegment & l)168 static bool vertexOnLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
169 {
170 	const tcu::Vector<deInt64,2> u = l.direction();
171 	const tcu::Vector<deInt64,2> v = ( p - l.m_v0);
172 	const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x());
173 	return crossProduct == 0; // cross product == 0
174 }
175 
176 // returns true if vertex is on the line segment
vertexOnLineSegment(const tcu::Vector<deInt64,2> & p,const SubpixelLineSegment & l)177 static bool vertexOnLineSegment (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l)
178 {
179 	if (!vertexOnLine(p, l))
180 		return false;
181 
182 	const tcu::Vector<deInt64,2> v	= l.direction();
183 	const tcu::Vector<deInt64,2> u1	= ( p - l.m_v0);
184 	const tcu::Vector<deInt64,2> u2	= ( p - l.m_v1);
185 
186 	if (v.x() == 0 && v.y() == 0)
187 		return false;
188 
189 	return	tcu::dot( v, u1) >= 0 &&
190 			tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0
191 }
192 
getVertexSide(const tcu::Vector<deInt64,2> & v,const SubpixelLineSegment & l)193 static LINE_SIDE getVertexSide (const tcu::Vector<deInt64,2>& v, const SubpixelLineSegment& l)
194 {
195 	if (vertexOnLeftSideOfLine(v, l))
196 		return LINE_SIDE_LEFT;
197 	else if (vertexOnRightSideOfLine(v, l))
198 		return LINE_SIDE_RIGHT;
199 	else if (vertexOnLine(v, l))
200 		return LINE_SIDE_INTERSECT;
201 	else
202 	{
203 		DE_ASSERT(false);
204 		return LINE_SIDE_INTERSECT;
205 	}
206 }
207 
208 // returns true if angle between line and given cornerExitNormal is in range (-45, 45)
lineInCornerAngleRange(const SubpixelLineSegment & line,const tcu::Vector<deInt64,2> & cornerExitNormal)209 bool lineInCornerAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal)
210 {
211 	// v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45)
212 	const tcu::Vector<deInt64,2> v = line.direction();
213 	const deInt64 dotProduct = dot(v, cornerExitNormal);
214 
215 	// dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2)
216 	if (dotProduct < 0)
217 		return false;
218 	return 2 * dotProduct * dotProduct > tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal);
219 }
220 
221 // returns true if angle between line and given cornerExitNormal is in range (-135, 135)
lineInCornerOutsideAngleRange(const SubpixelLineSegment & line,const tcu::Vector<deInt64,2> & cornerExitNormal)222 bool lineInCornerOutsideAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal)
223 {
224 	// v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135)
225 	const tcu::Vector<deInt64,2> v = line.direction();
226 	const deInt64 dotProduct = dot(v, cornerExitNormal);
227 
228 	// dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2)
229 	if (dotProduct >= 0)
230 		return true;
231 	return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal);
232 }
233 
doesLineSegmentExitDiamond(const SubpixelLineSegment & line,const tcu::Vector<deInt64,2> & diamondCenter)234 bool doesLineSegmentExitDiamond (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& diamondCenter)
235 {
236 	DE_ASSERT(isTheCenterOfTheFragment(diamondCenter));
237 
238 	// Diamond Center is at diamondCenter in subpixel coords
239 
240 	const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
241 
242 	// Reject distant diamonds early
243 	{
244 		const tcu::Vector<deInt64,2>	u				= line.direction();
245 		const tcu::Vector<deInt64,2>	v				= (diamondCenter - line.m_v0);
246 		const deInt64					crossProduct	= (u.x() * v.y() - u.y() * v.x());
247 
248 		// crossProduct = |p| |l| sin(theta)
249 		// distanceFromLine = |p| sin(theta)
250 		// => distanceFromLine = crossProduct / |l|
251 		//
252 		// |distanceFromLine| > C
253 		// => distanceFromLine^2 > C^2
254 		// => crossProduct^2 / |l|^2 > C^2
255 		// => crossProduct^2 > |l|^2 * C^2
256 
257 		const deInt64	floorSqrtMaxInt64			= 3037000499LL; //!< floor(sqrt(MAX_INT64))
258 
259 		const deInt64	broadRejectDistance			= 2 * halfPixel;
260 		const deInt64	broadRejectDistanceSquared	= broadRejectDistance * broadRejectDistance;
261 		const bool		crossProductOverflows		= (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64);
262 		const deInt64	crossProductSquared			= (crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow
263 		const deInt64	lineLengthSquared			= tcu::lengthSquared(u);
264 		const bool		limitValueCouldOverflow		= ((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63;
265 		const deInt64	limitValue					= (limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow
266 
267 		// only cross overflows
268 		if (crossProductOverflows && !limitValueCouldOverflow)
269 			return false;
270 
271 		// both representable
272 		if (!crossProductOverflows && !limitValueCouldOverflow)
273 		{
274 			if (crossProductSquared > limitValue)
275 				return false;
276 		}
277 	}
278 
279 	const struct DiamondBound
280 	{
281 		tcu::Vector<deInt64,2>	p0;
282 		tcu::Vector<deInt64,2>	p1;
283 		bool					edgeInclusive; // would a point on the bound be inside of the region
284 	} bounds[] =
285 	{
286 		{ diamondCenter + tcu::Vector<deInt64,2>(0,				-halfPixel),	diamondCenter + tcu::Vector<deInt64,2>(-halfPixel,	0),				 false	},
287 		{ diamondCenter + tcu::Vector<deInt64,2>(-halfPixel,	0),				diamondCenter + tcu::Vector<deInt64,2>(0,			halfPixel),		 false	},
288 		{ diamondCenter + tcu::Vector<deInt64,2>(0,				halfPixel),		diamondCenter + tcu::Vector<deInt64,2>(halfPixel,	0),				 true	},
289 		{ diamondCenter + tcu::Vector<deInt64,2>(halfPixel,		0),				diamondCenter + tcu::Vector<deInt64,2>(0,			-halfPixel),	 true	},
290 	};
291 
292 	const struct DiamondCorners
293 	{
294 		enum CORNER_EDGE_CASE_BEHAVIOR
295 		{
296 			CORNER_EDGE_CASE_NONE,							// if the line intersects just a corner, no entering or exiting
297 			CORNER_EDGE_CASE_HIT,							// if the line intersects just a corner, entering and exit
298 			CORNER_EDGE_CASE_HIT_FIRST_QUARTER,				// if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside)
299 			CORNER_EDGE_CASE_HIT_SECOND_QUARTER				// if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside)
300 		};
301 		enum CORNER_START_CASE_BEHAVIOR
302 		{
303 			CORNER_START_CASE_NONE,							// the line starting point is outside, no exiting
304 			CORNER_START_CASE_OUTSIDE,						// exit, if line does not intersect the region (preturbing moves the start point inside)
305 			CORNER_START_CASE_POSITIVE_Y_45,				// exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side.
306 			CORNER_START_CASE_NEGATIVE_Y_45					// exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side.
307 		};
308 		enum CORNER_END_CASE_BEHAVIOR
309 		{
310 			CORNER_END_CASE_NONE,							// end is inside, no exiting (preturbing moves the line end inside)
311 			CORNER_END_CASE_DIRECTION,						// exit, if line intersected the region (preturbing moves the line end outside)
312 			CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER,	// exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside)
313 			CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER	// exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside)
314 		};
315 
316 		tcu::Vector<deInt64,2>		dp;
317 		bool						pointInclusive;			// would a point in this corner intersect with the region
318 		CORNER_EDGE_CASE_BEHAVIOR	lineBehavior;			// would a line segment going through this corner intersect with the region
319 		CORNER_START_CASE_BEHAVIOR	startBehavior;			// how the corner behaves if the start point at the corner
320 		CORNER_END_CASE_BEHAVIOR	endBehavior;			// how the corner behaves if the end point at the corner
321 	} corners[] =
322 	{
323 		{ tcu::Vector<deInt64,2>(0,				-halfPixel),	false,	DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER,	DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45,	DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER},
324 		{ tcu::Vector<deInt64,2>(-halfPixel,	0),				false,	DiamondCorners::CORNER_EDGE_CASE_NONE,					DiamondCorners::CORNER_START_CASE_NONE,				DiamondCorners::CORNER_END_CASE_DIRECTION					},
325 		{ tcu::Vector<deInt64,2>(0,				halfPixel),		false,	DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER,		DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45,	DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER	},
326 		{ tcu::Vector<deInt64,2>(halfPixel,		0),				true,	DiamondCorners::CORNER_EDGE_CASE_HIT,					DiamondCorners::CORNER_START_CASE_OUTSIDE,			DiamondCorners::CORNER_END_CASE_NONE						},
327 	};
328 
329 	// Corner cases at the corners
330 	for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx)
331 	{
332 		const tcu::Vector<deInt64,2> p	= diamondCenter + corners[ndx].dp;
333 		const bool intersectsAtCorner	= LineRasterUtil::vertexOnLineSegment(p, line);
334 
335 		if (!intersectsAtCorner)
336 			continue;
337 
338 		// line segment body intersects with the corner
339 		if (p != line.m_v0 && p != line.m_v1)
340 		{
341 			if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT)
342 				return true;
343 
344 			// endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0
345 			if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER &&
346 				(line.direction().x() * line.direction().y()) <= 0)
347 				return true;
348 
349 			// endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0
350 			if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER &&
351 				(line.direction().x() * line.direction().y()) > 0)
352 				return true;
353 		}
354 
355 		// line exits the area at the corner
356 		if (lineInCornerAngleRange(line, corners[ndx].dp))
357 		{
358 			const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0;
359 			const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1;
360 
361 			// starting point is inside the region and end endpoint is outside
362 			if (startIsInside && endIsOutside)
363 				return true;
364 		}
365 
366 		// line end is at the corner
367 		if (p == line.m_v1)
368 		{
369 			if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION ||
370 				corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER ||
371 				corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER)
372 			{
373 				// did the line intersect the region
374 				if (lineInCornerAngleRange(line, corners[ndx].dp))
375 					return true;
376 			}
377 
378 			// due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair
379 			if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER &&
380 				line.direction().x() < 0 &&
381 				line.direction().y() > 0)
382 				return true;
383 			if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER &&
384 				line.direction().x() > 0 &&
385 				line.direction().y() > 0)
386 				return true;
387 		}
388 
389 		// line start is at the corner
390 		if (p == line.m_v0)
391 		{
392 			if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE)
393 			{
394 				// if the line is not going inside, it will exit
395 				if (lineInCornerOutsideAngleRange(line, corners[ndx].dp))
396 					return true;
397 			}
398 
399 			// exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side.
400 			if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 &&
401 				line.direction().x() > 0 &&
402 				line.direction().y() > 0 &&
403 				line.direction().y() <= line.direction().x())
404 				return true;
405 
406 			// exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side.
407 			if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 &&
408 				 line.direction().x() > 0 &&
409 				 line.direction().y() <= 0 &&
410 				-line.direction().y() <= line.direction().x())
411 				return true;
412 		}
413 	}
414 
415 	// Does the line intersect boundary at the left == exits the diamond
416 	for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx)
417 	{
418 		const bool startVertexInside =	LineRasterUtil::vertexOnLeftSideOfLine						(line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
419 										(bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine	(line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)));
420 		const bool endVertexInside =	LineRasterUtil::vertexOnLeftSideOfLine						(line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) ||
421 										(bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine	(line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)));
422 
423 		// start must be on inside this half space (left or at the inclusive boundary)
424 		if (!startVertexInside)
425 			continue;
426 
427 		// end must be outside of this half-space (right or at non-inclusive boundary)
428 		if (endVertexInside)
429 			continue;
430 
431 		// Does the line via v0 and v1 intersect the line segment p0-p1
432 		// <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line.
433 		// Corners are not allowed, they are checked already
434 		LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line);
435 		LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line);
436 
437 		if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT &&
438 			sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT &&
439 			sideP0 != sideP1)
440 			return true;
441 	}
442 
443 	return false;
444 }
445 
446 } // LineRasterUtil
447 
TriangleRasterizer(const tcu::IVec4 & viewport,const int numSamples,const RasterizationState & state)448 TriangleRasterizer::TriangleRasterizer (const tcu::IVec4& viewport, const int numSamples, const RasterizationState& state)
449 	: m_viewport				(viewport)
450 	, m_numSamples				(numSamples)
451 	, m_winding					(state.winding)
452 	, m_horizontalFill			(state.horizontalFill)
453 	, m_verticalFill			(state.verticalFill)
454 	, m_face					(FACETYPE_LAST)
455 	, m_viewportOrientation		(state.viewportOrientation)
456 {
457 }
458 
459 /*--------------------------------------------------------------------*//*!
460  * \brief Initialize triangle rasterization
461  * \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0.
462  * \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1.
463  * \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2.
464  *//*--------------------------------------------------------------------*/
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1,const tcu::Vec4 & v2)465 void TriangleRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2)
466 {
467 	m_v0 = v0;
468 	m_v1 = v1;
469 	m_v2 = v2;
470 
471 	// Positions in fixed-point coordinates.
472 	const deInt64	x0		= toSubpixelCoord(v0.x());
473 	const deInt64	y0		= toSubpixelCoord(v0.y());
474 	const deInt64	x1		= toSubpixelCoord(v1.x());
475 	const deInt64	y1		= toSubpixelCoord(v1.y());
476 	const deInt64	x2		= toSubpixelCoord(v2.x());
477 	const deInt64	y2		= toSubpixelCoord(v2.y());
478 
479 	// Initialize edge functions.
480 	if (m_winding == WINDING_CCW)
481 	{
482 		initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1);
483 		initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2);
484 		initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0);
485 	}
486 	else
487 	{
488 		// Reverse edges
489 		initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0);
490 		initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1);
491 		initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2);
492 	}
493 
494 	// Determine face.
495 	const deInt64	s				= evaluateEdge(m_edge01, x2, y2);
496 	const bool		positiveArea	= (m_winding == WINDING_CCW) ? (s > 0) : (s < 0);
497 
498 	if (m_viewportOrientation == VIEWPORTORIENTATION_UPPER_LEFT)
499 		m_face = positiveArea ? FACETYPE_BACK : FACETYPE_FRONT;
500 	else
501 		m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK;
502 
503 	if (!positiveArea)
504 	{
505 		// Reverse edges so that we can use CCW area tests & interpolation
506 		reverseEdge(m_edge01);
507 		reverseEdge(m_edge12);
508 		reverseEdge(m_edge20);
509 	}
510 
511 	// Bounding box
512 	const deInt64	xMin	= de::min(de::min(x0, x1), x2);
513 	const deInt64	xMax	= de::max(de::max(x0, x1), x2);
514 	const deInt64	yMin	= de::min(de::min(y0, y1), y2);
515 	const deInt64	yMax	= de::max(de::max(y0, y1), y2);
516 
517 	m_bboxMin.x() = floorSubpixelToPixelCoord	(xMin, m_horizontalFill	== FILL_LEFT);
518 	m_bboxMin.y() = floorSubpixelToPixelCoord	(yMin, m_verticalFill	== FILL_BOTTOM);
519 	m_bboxMax.x() = ceilSubpixelToPixelCoord	(xMax, m_horizontalFill	== FILL_RIGHT);
520 	m_bboxMax.y() = ceilSubpixelToPixelCoord	(yMax, m_verticalFill	== FILL_TOP);
521 
522 	// Clamp to viewport
523 	const int		wX0		= m_viewport.x();
524 	const int		wY0		= m_viewport.y();
525 	const int		wX1		= wX0 + m_viewport.z() - 1;
526 	const int		wY1		= wY0 + m_viewport.w() -1;
527 
528 	m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1);
529 	m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1);
530 	m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1);
531 	m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1);
532 
533 	m_curPos = m_bboxMin;
534 }
535 
rasterizeSingleSample(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)536 void TriangleRasterizer::rasterizeSingleSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
537 {
538 	DE_ASSERT(maxFragmentPackets > 0);
539 
540 	const deUint64	halfPixel	= 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
541 	int				packetNdx	= 0;
542 
543 	// For depth interpolation; given barycentrics A, B, C = (1 - A - B)
544 	// we can reformulate the usual z = z0*A + z1*B + z2*C into more
545 	// stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2.
546 	const float		za			= m_v0.z()-m_v2.z();
547 	const float		zb			= m_v1.z()-m_v2.z();
548 	const float		zc			= m_v2.z();
549 
550 	while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
551 	{
552 		const int		x0		= m_curPos.x();
553 		const int		y0		= m_curPos.y();
554 
555 		// Subpixel coords
556 		const deInt64	sx0		= toSubpixelCoord(x0)	+ halfPixel;
557 		const deInt64	sx1		= toSubpixelCoord(x0+1)	+ halfPixel;
558 		const deInt64	sy0		= toSubpixelCoord(y0)	+ halfPixel;
559 		const deInt64	sy1		= toSubpixelCoord(y0+1)	+ halfPixel;
560 
561 		const deInt64	sx[4]	= { sx0, sx1, sx0, sx1 };
562 		const deInt64	sy[4]	= { sy0, sy0, sy1, sy1 };
563 
564 		// Viewport test
565 		const bool		outX1	= x0+1 == m_viewport.x()+m_viewport.z();
566 		const bool		outY1	= y0+1 == m_viewport.y()+m_viewport.w();
567 
568 		DE_ASSERT(x0 < m_viewport.x()+m_viewport.z());
569 		DE_ASSERT(y0 < m_viewport.y()+m_viewport.w());
570 
571 		// Edge values
572 		tcu::Vector<deInt64, 4>	e01;
573 		tcu::Vector<deInt64, 4>	e12;
574 		tcu::Vector<deInt64, 4>	e20;
575 
576 		// Coverage
577 		deUint64		coverage	= 0;
578 
579 		// Evaluate edge values
580 		for (int i = 0; i < 4; i++)
581 		{
582 			e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]);
583 			e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]);
584 			e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]);
585 		}
586 
587 		// Compute coverage mask
588 		coverage = setCoverageValue(coverage, 1, 0, 0, 0,						isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) && isInsideCCW(m_edge20, e20[0]));
589 		coverage = setCoverageValue(coverage, 1, 1, 0, 0, !outX1 &&				isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) && isInsideCCW(m_edge20, e20[1]));
590 		coverage = setCoverageValue(coverage, 1, 0, 1, 0, !outY1 &&				isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) && isInsideCCW(m_edge20, e20[2]));
591 		coverage = setCoverageValue(coverage, 1, 1, 1, 0, !outX1 && !outY1 &&	isInsideCCW(m_edge01, e01[3]) && isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3]));
592 
593 		// Advance to next location
594 		m_curPos.x() += 2;
595 		if (m_curPos.x() > m_bboxMax.x())
596 		{
597 			m_curPos.y() += 2;
598 			m_curPos.x()  = m_bboxMin.x();
599 		}
600 
601 		if (coverage == 0)
602 			continue; // Discard.
603 
604 		// Floating-point edge values for barycentrics etc.
605 		const tcu::Vec4		e01f	= e01.asFloat();
606 		const tcu::Vec4		e12f	= e12.asFloat();
607 		const tcu::Vec4		e20f	= e20.asFloat();
608 
609 		// Compute depth values.
610 		if (depthValues)
611 		{
612 			const tcu::Vec4		edgeSum	= e01f + e12f + e20f;
613 			const tcu::Vec4		z0		= e12f / edgeSum;
614 			const tcu::Vec4		z1		= e20f / edgeSum;
615 
616 			depthValues[packetNdx*4+0] = z0[0]*za + z1[0]*zb + zc;
617 			depthValues[packetNdx*4+1] = z0[1]*za + z1[1]*zb + zc;
618 			depthValues[packetNdx*4+2] = z0[2]*za + z1[2]*zb + zc;
619 			depthValues[packetNdx*4+3] = z0[3]*za + z1[3]*zb + zc;
620 		}
621 
622 		// Compute barycentrics and write out fragment packet
623 		{
624 			FragmentPacket& packet = fragmentPackets[packetNdx];
625 
626 			const tcu::Vec4		b0		= e12f * m_v0.w();
627 			const tcu::Vec4		b1		= e20f * m_v1.w();
628 			const tcu::Vec4		b2		= e01f * m_v2.w();
629 			const tcu::Vec4		bSum	= b0 + b1 + b2;
630 
631 			packet.position			= tcu::IVec2(x0, y0);
632 			packet.coverage			= coverage;
633 			packet.barycentric[0]	= b0 / bSum;
634 			packet.barycentric[1]	= b1 / bSum;
635 			packet.barycentric[2]	= 1.0f - packet.barycentric[0] - packet.barycentric[1];
636 
637 			packetNdx += 1;
638 		}
639 	}
640 
641 	DE_ASSERT(packetNdx <= maxFragmentPackets);
642 	numPacketsRasterized = packetNdx;
643 }
644 
645 // Sample positions - ordered as (x, y) list.
646 
647 // \note Macros are used to eliminate function calls even in debug builds.
648 #define SAMPLE_POS_TO_SUBPIXEL_COORD(POS)	\
649 	(deInt64)((POS) * (1<<RASTERIZER_SUBPIXEL_BITS) + 0.5f)
650 
651 #define SAMPLE_POS(X, Y)	\
652 	SAMPLE_POS_TO_SUBPIXEL_COORD(X), SAMPLE_POS_TO_SUBPIXEL_COORD(Y)
653 
654 static const deInt64 s_samplePos2[] =
655 {
656 	SAMPLE_POS(0.3f, 0.3f),
657 	SAMPLE_POS(0.7f, 0.7f)
658 };
659 
660 static const deInt64 s_samplePos4[] =
661 {
662 	SAMPLE_POS(0.25f, 0.25f),
663 	SAMPLE_POS(0.75f, 0.25f),
664 	SAMPLE_POS(0.25f, 0.75f),
665 	SAMPLE_POS(0.75f, 0.75f)
666 };
667 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos4) == 4*2);
668 
669 static const deInt64 s_samplePos8[] =
670 {
671 	SAMPLE_POS( 7.f/16.f,  9.f/16.f),
672 	SAMPLE_POS( 9.f/16.f, 13.f/16.f),
673 	SAMPLE_POS(11.f/16.f,  3.f/16.f),
674 	SAMPLE_POS(13.f/16.f, 11.f/16.f),
675 	SAMPLE_POS( 1.f/16.f,  7.f/16.f),
676 	SAMPLE_POS( 5.f/16.f,  1.f/16.f),
677 	SAMPLE_POS(15.f/16.f,  5.f/16.f),
678 	SAMPLE_POS( 3.f/16.f, 15.f/16.f)
679 };
680 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos8) == 8*2);
681 
682 static const deInt64 s_samplePos16[] =
683 {
684 	SAMPLE_POS(1.f/8.f, 1.f/8.f),
685 	SAMPLE_POS(3.f/8.f, 1.f/8.f),
686 	SAMPLE_POS(5.f/8.f, 1.f/8.f),
687 	SAMPLE_POS(7.f/8.f, 1.f/8.f),
688 	SAMPLE_POS(1.f/8.f, 3.f/8.f),
689 	SAMPLE_POS(3.f/8.f, 3.f/8.f),
690 	SAMPLE_POS(5.f/8.f, 3.f/8.f),
691 	SAMPLE_POS(7.f/8.f, 3.f/8.f),
692 	SAMPLE_POS(1.f/8.f, 5.f/8.f),
693 	SAMPLE_POS(3.f/8.f, 5.f/8.f),
694 	SAMPLE_POS(5.f/8.f, 5.f/8.f),
695 	SAMPLE_POS(7.f/8.f, 5.f/8.f),
696 	SAMPLE_POS(1.f/8.f, 7.f/8.f),
697 	SAMPLE_POS(3.f/8.f, 7.f/8.f),
698 	SAMPLE_POS(5.f/8.f, 7.f/8.f),
699 	SAMPLE_POS(7.f/8.f, 7.f/8.f)
700 };
701 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos16) == 16*2);
702 
703 #undef SAMPLE_POS
704 #undef SAMPLE_POS_TO_SUBPIXEL_COORD
705 
706 template<int NumSamples>
rasterizeMultiSample(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)707 void TriangleRasterizer::rasterizeMultiSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
708 {
709 	DE_ASSERT(maxFragmentPackets > 0);
710 
711 	const deInt64*	samplePos	= DE_NULL;
712 	const deUint64	halfPixel	= 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
713 	int				packetNdx	= 0;
714 
715 	// For depth interpolation, see rasterizeSingleSample
716 	const float		za			= m_v0.z()-m_v2.z();
717 	const float		zb			= m_v1.z()-m_v2.z();
718 	const float		zc			= m_v2.z();
719 
720 	switch (NumSamples)
721 	{
722 		case 2:		samplePos = s_samplePos2;	break;
723 		case 4:		samplePos = s_samplePos4;	break;
724 		case 8:		samplePos = s_samplePos8;	break;
725 		case 16:	samplePos = s_samplePos16;	break;
726 		default:
727 			DE_ASSERT(false);
728 	}
729 
730 	while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
731 	{
732 		const int		x0		= m_curPos.x();
733 		const int		y0		= m_curPos.y();
734 
735 		// Base subpixel coords
736 		const deInt64	sx0		= toSubpixelCoord(x0);
737 		const deInt64	sx1		= toSubpixelCoord(x0+1);
738 		const deInt64	sy0		= toSubpixelCoord(y0);
739 		const deInt64	sy1		= toSubpixelCoord(y0+1);
740 
741 		const deInt64	sx[4]	= { sx0, sx1, sx0, sx1 };
742 		const deInt64	sy[4]	= { sy0, sy0, sy1, sy1 };
743 
744 		// Viewport test
745 		const bool		outX1	= x0+1 == m_viewport.x()+m_viewport.z();
746 		const bool		outY1	= y0+1 == m_viewport.y()+m_viewport.w();
747 
748 		DE_ASSERT(x0 < m_viewport.x()+m_viewport.z());
749 		DE_ASSERT(y0 < m_viewport.y()+m_viewport.w());
750 
751 		// Edge values
752 		tcu::Vector<deInt64, 4>	e01[NumSamples];
753 		tcu::Vector<deInt64, 4>	e12[NumSamples];
754 		tcu::Vector<deInt64, 4>	e20[NumSamples];
755 
756 		// Coverage
757 		deUint64		coverage	= 0;
758 
759 		// Evaluate edge values at sample positions
760 		for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
761 		{
762 			const deInt64 ox = samplePos[sampleNdx*2 + 0];
763 			const deInt64 oy = samplePos[sampleNdx*2 + 1];
764 
765 			for (int fragNdx = 0; fragNdx < 4; fragNdx++)
766 			{
767 				e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy);
768 				e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy);
769 				e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy);
770 			}
771 		}
772 
773 		// Compute coverage mask
774 		for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
775 		{
776 			coverage = setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx,						isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) && isInsideCCW(m_edge20, e20[sampleNdx][0]));
777 			coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx, !outX1 &&			isInsideCCW(m_edge01, e01[sampleNdx][1]) && isInsideCCW(m_edge12, e12[sampleNdx][1]) && isInsideCCW(m_edge20, e20[sampleNdx][1]));
778 			coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx, !outY1 &&			isInsideCCW(m_edge01, e01[sampleNdx][2]) && isInsideCCW(m_edge12, e12[sampleNdx][2]) && isInsideCCW(m_edge20, e20[sampleNdx][2]));
779 			coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx, !outX1 && !outY1 &&	isInsideCCW(m_edge01, e01[sampleNdx][3]) && isInsideCCW(m_edge12, e12[sampleNdx][3]) && isInsideCCW(m_edge20, e20[sampleNdx][3]));
780 		}
781 
782 		// Advance to next location
783 		m_curPos.x() += 2;
784 		if (m_curPos.x() > m_bboxMax.x())
785 		{
786 			m_curPos.y() += 2;
787 			m_curPos.x()  = m_bboxMin.x();
788 		}
789 
790 		if (coverage == 0)
791 			continue; // Discard.
792 
793 		// Compute depth values.
794 		if (depthValues)
795 		{
796 			for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++)
797 			{
798 				// Floating-point edge values at sample coordinates.
799 				const tcu::Vec4&	e01f	= e01[sampleNdx].asFloat();
800 				const tcu::Vec4&	e12f	= e12[sampleNdx].asFloat();
801 				const tcu::Vec4&	e20f	= e20[sampleNdx].asFloat();
802 
803 				const tcu::Vec4		edgeSum	= e01f + e12f + e20f;
804 				const tcu::Vec4		z0		= e12f / edgeSum;
805 				const tcu::Vec4		z1		= e20f / edgeSum;
806 
807 				depthValues[(packetNdx*4+0)*NumSamples + sampleNdx] = z0[0]*za + z1[0]*zb + zc;
808 				depthValues[(packetNdx*4+1)*NumSamples + sampleNdx] = z0[1]*za + z1[1]*zb + zc;
809 				depthValues[(packetNdx*4+2)*NumSamples + sampleNdx] = z0[2]*za + z1[2]*zb + zc;
810 				depthValues[(packetNdx*4+3)*NumSamples + sampleNdx] = z0[3]*za + z1[3]*zb + zc;
811 			}
812 		}
813 
814 		// Compute barycentrics and write out fragment packet
815 		{
816 			FragmentPacket& packet = fragmentPackets[packetNdx];
817 
818 			// Floating-point edge values at pixel center.
819 			tcu::Vec4			e01f;
820 			tcu::Vec4			e12f;
821 			tcu::Vec4			e20f;
822 
823 			for (int i = 0; i < 4; i++)
824 			{
825 				e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel));
826 				e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel));
827 				e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel));
828 			}
829 
830 			// Barycentrics & scale.
831 			const tcu::Vec4		b0		= e12f * m_v0.w();
832 			const tcu::Vec4		b1		= e20f * m_v1.w();
833 			const tcu::Vec4		b2		= e01f * m_v2.w();
834 			const tcu::Vec4		bSum	= b0 + b1 + b2;
835 
836 			packet.position			= tcu::IVec2(x0, y0);
837 			packet.coverage			= coverage;
838 			packet.barycentric[0]	= b0 / bSum;
839 			packet.barycentric[1]	= b1 / bSum;
840 			packet.barycentric[2]	= 1.0f - packet.barycentric[0] - packet.barycentric[1];
841 
842 			packetNdx += 1;
843 		}
844 	}
845 
846 	DE_ASSERT(packetNdx <= maxFragmentPackets);
847 	numPacketsRasterized = packetNdx;
848 }
849 
rasterize(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)850 void TriangleRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
851 {
852 	DE_ASSERT(maxFragmentPackets > 0);
853 
854 	switch (m_numSamples)
855 	{
856 		case 1:		rasterizeSingleSample		(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);	break;
857 		case 2:		rasterizeMultiSample<2>		(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);	break;
858 		case 4:		rasterizeMultiSample<4>		(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);	break;
859 		case 8:		rasterizeMultiSample<8>		(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);	break;
860 		case 16:	rasterizeMultiSample<16>	(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);	break;
861 		default:
862 			DE_ASSERT(DE_FALSE);
863 	}
864 }
865 
SingleSampleLineRasterizer(const tcu::IVec4 & viewport)866 SingleSampleLineRasterizer::SingleSampleLineRasterizer (const tcu::IVec4& viewport)
867 	: m_viewport		(viewport)
868 	, m_curRowFragment	(0)
869 	, m_lineWidth		(0.0f)
870 {
871 }
872 
~SingleSampleLineRasterizer(void)873 SingleSampleLineRasterizer::~SingleSampleLineRasterizer (void)
874 {
875 }
876 
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1,float lineWidth)877 void SingleSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth)
878 {
879 	const bool						isXMajor		= de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y());
880 
881 	// Bounding box \note: with wide lines, the line is actually moved as in the spec
882 	const deInt32					lineWidthPixels	= (lineWidth > 1.0f) ? (deInt32)floor(lineWidth + 0.5f) : 1;
883 
884 	const tcu::Vector<deInt64,2>	widthOffset		= (isXMajor ? tcu::Vector<deInt64,2>(0, -1) : tcu::Vector<deInt64,2>(-1, 0)) * (toSubpixelCoord(lineWidthPixels - 1) / 2);
885 
886 	const deInt64					x0				= toSubpixelCoord(v0.x()) + widthOffset.x();
887 	const deInt64					y0				= toSubpixelCoord(v0.y()) + widthOffset.y();
888 	const deInt64					x1				= toSubpixelCoord(v1.x()) + widthOffset.x();
889 	const deInt64					y1				= toSubpixelCoord(v1.y()) + widthOffset.y();
890 
891 	// line endpoints might be perturbed, add some margin
892 	const deInt64					xMin			= de::min(x0, x1) - toSubpixelCoord(1);
893 	const deInt64					xMax			= de::max(x0, x1) + toSubpixelCoord(1);
894 	const deInt64					yMin			= de::min(y0, y1) - toSubpixelCoord(1);
895 	const deInt64					yMax			= de::max(y0, y1) + toSubpixelCoord(1);
896 
897 	// Remove invisible area
898 
899 	if (isXMajor)
900 	{
901 		// clamp to viewport in major direction
902 		m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1);
903 		m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1);
904 
905 		// clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
906 		m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
907 		m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1);
908 	}
909 	else
910 	{
911 		// clamp to viewport in major direction
912 		m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1);
913 		m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1);
914 
915 		// clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction)
916 		m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
917 		m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1);
918 	}
919 
920 	m_lineWidth = lineWidth;
921 
922 	m_v0 = v0;
923 	m_v1 = v1;
924 
925 	m_curPos = m_bboxMin;
926 	m_curRowFragment = 0;
927 }
928 
rasterize(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)929 void SingleSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
930 {
931 	DE_ASSERT(maxFragmentPackets > 0);
932 
933 	const deInt64								halfPixel			= 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
934 	const deInt32								lineWidth			= (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1;
935 	const bool									isXMajor			= de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y());
936 	const tcu::IVec2							minorDirection		= (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0));
937 	const int									minViewportLimit	= (isXMajor) ? (m_viewport.y()) : (m_viewport.x());
938 	const int									maxViewportLimit	= (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z());
939 	const tcu::Vector<deInt64,2>				widthOffset			= -minorDirection.cast<deInt64>() * (toSubpixelCoord(lineWidth - 1) / 2);
940 	const tcu::Vector<deInt64,2>				pa					= LineRasterUtil::toSubpixelVector(m_v0.xy()) + widthOffset;
941 	const tcu::Vector<deInt64,2>				pb					= LineRasterUtil::toSubpixelVector(m_v1.xy()) + widthOffset;
942 	const LineRasterUtil::SubpixelLineSegment	line				= LineRasterUtil::SubpixelLineSegment(pa, pb);
943 
944 	int											packetNdx			= 0;
945 
946 	while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets)
947 	{
948 		const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel);
949 
950 		// Should current fragment be drawn? == does the segment exit this diamond?
951 		if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition))
952 		{
953 			const tcu::Vector<deInt64,2>	pr					= diamondPosition;
954 			const float						t					= tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat());
955 
956 			// Rasterize on only fragments that are would end up in the viewport (i.e. visible)
957 			const int						fragmentLocation	= (isXMajor) ? (m_curPos.y()) : (m_curPos.x());
958 			const int						rowFragBegin		= de::max(0, minViewportLimit - fragmentLocation);
959 			const int						rowFragEnd			= de::min(maxViewportLimit - fragmentLocation, lineWidth);
960 
961 			// Wide lines require multiple fragments.
962 			for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++)
963 			{
964 				const int			replicationId	= rowFragBegin + m_curRowFragment;
965 				const tcu::IVec2	fragmentPos		= m_curPos + minorDirection * replicationId;
966 
967 				// We only rasterize visible area
968 				DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport));
969 
970 				// Compute depth values.
971 				if (depthValues)
972 				{
973 					const float za = m_v0.z();
974 					const float zb = m_v1.z();
975 
976 					depthValues[packetNdx*4+0] = (1 - t) * za + t * zb;
977 					depthValues[packetNdx*4+1] = 0;
978 					depthValues[packetNdx*4+2] = 0;
979 					depthValues[packetNdx*4+3] = 0;
980 				}
981 
982 				{
983 					// output this fragment
984 					// \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates
985 					FragmentPacket& packet = fragmentPackets[packetNdx];
986 
987 					const tcu::Vec4		b0		= tcu::Vec4(1 - t);
988 					const tcu::Vec4		b1		= tcu::Vec4(t);
989 					const tcu::Vec4		ooSum	= 1.0f / (b0 + b1);
990 
991 					packet.position			= fragmentPos;
992 					packet.coverage			= getCoverageBit(1, 0, 0, 0);
993 					packet.barycentric[0]	= b0 * ooSum;
994 					packet.barycentric[1]	= b1 * ooSum;
995 					packet.barycentric[2]	= tcu::Vec4(0.0f);
996 
997 					packetNdx += 1;
998 				}
999 
1000 				if (packetNdx == maxFragmentPackets)
1001 				{
1002 					m_curRowFragment++; // don't redraw this fragment again next time
1003 					numPacketsRasterized = packetNdx;
1004 					return;
1005 				}
1006 			}
1007 
1008 			m_curRowFragment = 0;
1009 		}
1010 
1011 		++m_curPos.x();
1012 		if (m_curPos.x() > m_bboxMax.x())
1013 		{
1014 			++m_curPos.y();
1015 			m_curPos.x() = m_bboxMin.x();
1016 		}
1017 	}
1018 
1019 	DE_ASSERT(packetNdx <= maxFragmentPackets);
1020 	numPacketsRasterized = packetNdx;
1021 }
1022 
MultiSampleLineRasterizer(const int numSamples,const tcu::IVec4 & viewport)1023 MultiSampleLineRasterizer::MultiSampleLineRasterizer (const int numSamples, const tcu::IVec4& viewport)
1024 	: m_numSamples			(numSamples)
1025 	, m_triangleRasterizer0 (viewport, m_numSamples, RasterizationState())
1026 	, m_triangleRasterizer1 (viewport, m_numSamples, RasterizationState())
1027 {
1028 }
1029 
~MultiSampleLineRasterizer()1030 MultiSampleLineRasterizer::~MultiSampleLineRasterizer ()
1031 {
1032 }
1033 
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1,float lineWidth)1034 void MultiSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth)
1035 {
1036 	// allow creation of single sampled rasterizer objects but do not allow using them
1037 	DE_ASSERT(m_numSamples > 1);
1038 
1039 	const tcu::Vec2 lineVec		= tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy());
1040 	const tcu::Vec2 normal2		= tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0]));
1041 	const tcu::Vec4 normal4		= tcu::Vec4(normal2.x(), normal2.y(), 0, 0);
1042 	const float offset			= lineWidth / 2.0f;
1043 
1044 	const tcu::Vec4 p0 = v0 + normal4 * offset;
1045 	const tcu::Vec4 p1 = v0 - normal4 * offset;
1046 	const tcu::Vec4 p2 = v1 - normal4 * offset;
1047 	const tcu::Vec4 p3 = v1 + normal4 * offset;
1048 
1049 	// Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line
1050 	m_triangleRasterizer0.init(p0, p3, p2);
1051 	m_triangleRasterizer1.init(p2, p1, p0);
1052 }
1053 
rasterize(FragmentPacket * const fragmentPackets,float * const depthValues,const int maxFragmentPackets,int & numPacketsRasterized)1054 void MultiSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized)
1055 {
1056 	DE_ASSERT(maxFragmentPackets > 0);
1057 
1058 	m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized);
1059 
1060 	// Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2
1061 	for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx)
1062 	for (int fragNdx = 0; fragNdx < 4; fragNdx++)
1063 	{
1064 		float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx];
1065 		fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
1066 		fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
1067 	}
1068 
1069 	// rasterizer 0 filled the whole buffer?
1070 	if (numPacketsRasterized == maxFragmentPackets)
1071 		return;
1072 
1073 	{
1074 		FragmentPacket* const nextFragmentPackets	= fragmentPackets + numPacketsRasterized;
1075 		float* nextDepthValues						= (depthValues) ? (depthValues+4*numPacketsRasterized*m_numSamples) : (DE_NULL);
1076 		int numPacketsRasterized2					= 0;
1077 
1078 		m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized, numPacketsRasterized2);
1079 
1080 		numPacketsRasterized += numPacketsRasterized2;
1081 
1082 		// Fix swapped barycentrics in the second triangle
1083 		for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx)
1084 		for (int fragNdx = 0; fragNdx < 4; fragNdx++)
1085 		{
1086 			float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx];
1087 			nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f;
1088 			nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue;
1089 
1090 			// edge has reversed direction
1091 			std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx], nextFragmentPackets[packNdx].barycentric[1][fragNdx]);
1092 		}
1093 	}
1094 }
1095 
LineExitDiamondGenerator(void)1096 LineExitDiamondGenerator::LineExitDiamondGenerator (void)
1097 {
1098 }
1099 
~LineExitDiamondGenerator(void)1100 LineExitDiamondGenerator::~LineExitDiamondGenerator (void)
1101 {
1102 }
1103 
init(const tcu::Vec4 & v0,const tcu::Vec4 & v1)1104 void LineExitDiamondGenerator::init (const tcu::Vec4& v0, const tcu::Vec4& v1)
1105 {
1106 	const deInt64					x0				= toSubpixelCoord(v0.x());
1107 	const deInt64					y0				= toSubpixelCoord(v0.y());
1108 	const deInt64					x1				= toSubpixelCoord(v1.x());
1109 	const deInt64					y1				= toSubpixelCoord(v1.y());
1110 
1111 	// line endpoints might be perturbed, add some margin
1112 	const deInt64					xMin			= de::min(x0, x1) - toSubpixelCoord(1);
1113 	const deInt64					xMax			= de::max(x0, x1) + toSubpixelCoord(1);
1114 	const deInt64					yMin			= de::min(y0, y1) - toSubpixelCoord(1);
1115 	const deInt64					yMax			= de::max(y0, y1) + toSubpixelCoord(1);
1116 
1117 	m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, true);
1118 	m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, true);
1119 	m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, true);
1120 	m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, true);
1121 
1122 	m_v0 = v0;
1123 	m_v1 = v1;
1124 
1125 	m_curPos = m_bboxMin;
1126 }
1127 
rasterize(LineExitDiamond * const lineDiamonds,const int maxDiamonds,int & numWritten)1128 void LineExitDiamondGenerator::rasterize (LineExitDiamond* const lineDiamonds, const int maxDiamonds, int& numWritten)
1129 {
1130 	DE_ASSERT(maxDiamonds > 0);
1131 
1132 	const deInt64								halfPixel			= 1ll << (RASTERIZER_SUBPIXEL_BITS-1);
1133 	const tcu::Vector<deInt64,2>				pa					= LineRasterUtil::toSubpixelVector(m_v0.xy());
1134 	const tcu::Vector<deInt64,2>				pb					= LineRasterUtil::toSubpixelVector(m_v1.xy());
1135 	const LineRasterUtil::SubpixelLineSegment	line				= LineRasterUtil::SubpixelLineSegment(pa, pb);
1136 
1137 	int											diamondNdx			= 0;
1138 
1139 	while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds)
1140 	{
1141 		const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel);
1142 
1143 		if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition))
1144 		{
1145 			LineExitDiamond& packet = lineDiamonds[diamondNdx];
1146 			packet.position = m_curPos;
1147 			++diamondNdx;
1148 		}
1149 
1150 		++m_curPos.x();
1151 		if (m_curPos.x() > m_bboxMax.x())
1152 		{
1153 			++m_curPos.y();
1154 			m_curPos.x() = m_bboxMin.x();
1155 		}
1156 	}
1157 
1158 	DE_ASSERT(diamondNdx <= maxDiamonds);
1159 	numWritten = diamondNdx;
1160 }
1161 
1162 } // rr
1163