1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without modification, are
7 * permitted provided that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright notice, this list of
10 * conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
13 * of conditions and the following disclaimer in the documentation and/or other materials
14 * provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
19 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
21 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
24 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27 #ifndef _SLJIT_LIR_H_
28 #define _SLJIT_LIR_H_
29
30 /*
31 ------------------------------------------------------------------------
32 Stack-Less JIT compiler for multiple architectures (x86, ARM, PowerPC)
33 ------------------------------------------------------------------------
34
35 Short description
36 Advantages:
37 - The execution can be continued from any LIR instruction. In other
38 words, it is possible to jump to any label from anywhere, even from
39 a code fragment, which is compiled later, if both compiled code
40 shares the same context. See sljit_emit_enter for more details
41 - Supports self modifying code: target of (conditional) jump and call
42 instructions and some constant values can be dynamically modified
43 during runtime
44 - although it is not suggested to do it frequently
45 - can be used for inline caching: save an important value once
46 in the instruction stream
47 - since this feature limits the optimization possibilities, a
48 special flag must be passed at compile time when these
49 instructions are emitted
50 - A fixed stack space can be allocated for local variables
51 - The compiler is thread-safe
52 - The compiler is highly configurable through preprocessor macros.
53 You can disable unneeded features (multithreading in single
54 threaded applications), and you can use your own system functions
55 (including memory allocators). See sljitConfig.h
56 Disadvantages:
57 - No automatic register allocation, and temporary results are
58 not stored on the stack. (hence the name comes)
59 In practice:
60 - This approach is very effective for interpreters
61 - One of the saved registers typically points to a stack interface
62 - It can jump to any exception handler anytime (even if it belongs
63 to another function)
64 - Hot paths can be modified during runtime reflecting the changes
65 of the fastest execution path of the dynamic language
66 - SLJIT supports complex memory addressing modes
67 - mainly position and context independent code (except some cases)
68
69 For valgrind users:
70 - pass --smc-check=all argument to valgrind, since JIT is a "self-modifying code"
71 */
72
73 #if !(defined SLJIT_NO_DEFAULT_CONFIG && SLJIT_NO_DEFAULT_CONFIG)
74 #include "sljitConfig.h"
75 #endif
76
77 /* The following header file defines useful macros for fine tuning
78 sljit based code generators. They are listed in the beginning
79 of sljitConfigInternal.h */
80
81 #include "sljitConfigInternal.h"
82
83 /* --------------------------------------------------------------------- */
84 /* Error codes */
85 /* --------------------------------------------------------------------- */
86
87 /* Indicates no error. */
88 #define SLJIT_SUCCESS 0
89 /* After the call of sljit_generate_code(), the error code of the compiler
90 is set to this value to avoid future sljit calls (in debug mode at least).
91 The complier should be freed after sljit_generate_code(). */
92 #define SLJIT_ERR_COMPILED 1
93 /* Cannot allocate non executable memory. */
94 #define SLJIT_ERR_ALLOC_FAILED 2
95 /* Cannot allocate executable memory.
96 Only for sljit_generate_code() */
97 #define SLJIT_ERR_EX_ALLOC_FAILED 3
98 /* Return value for SLJIT_CONFIG_UNSUPPORTED placeholder architecture. */
99 #define SLJIT_ERR_UNSUPPORTED 4
100 /* An ivalid argument is passed to any SLJIT function. */
101 #define SLJIT_ERR_BAD_ARGUMENT 5
102 /* Dynamic code modification is not enabled. */
103 #define SLJIT_ERR_DYN_CODE_MOD 6
104
105 /* --------------------------------------------------------------------- */
106 /* Registers */
107 /* --------------------------------------------------------------------- */
108
109 /*
110 Scratch (R) registers: registers whose may not preserve their values
111 across function calls.
112
113 Saved (S) registers: registers whose preserve their values across
114 function calls.
115
116 The scratch and saved register sets are overlap. The last scratch register
117 is the first saved register, the one before the last is the second saved
118 register, and so on.
119
120 If an architecture provides two scratch and three saved registers,
121 its scratch and saved register sets are the following:
122
123 R0 | | R0 is always a scratch register
124 R1 | | R1 is always a scratch register
125 [R2] | S2 | R2 and S2 represent the same physical register
126 [R3] | S1 | R3 and S1 represent the same physical register
127 [R4] | S0 | R4 and S0 represent the same physical register
128
129 Note: SLJIT_NUMBER_OF_SCRATCH_REGISTERS would be 2 and
130 SLJIT_NUMBER_OF_SAVED_REGISTERS would be 3 for this architecture.
131
132 Note: On all supported architectures SLJIT_NUMBER_OF_REGISTERS >= 12
133 and SLJIT_NUMBER_OF_SAVED_REGISTERS >= 6. However, 6 registers
134 are virtual on x86-32. See below.
135
136 The purpose of this definition is convenience: saved registers can
137 be used as extra scratch registers. For example four registers can
138 be specified as scratch registers and the fifth one as saved register
139 on the CPU above and any user code which requires four scratch
140 registers can run unmodified. The SLJIT compiler automatically saves
141 the content of the two extra scratch register on the stack. Scratch
142 registers can also be preserved by saving their value on the stack
143 but this needs to be done manually.
144
145 Note: To emphasize that registers assigned to R2-R4 are saved
146 registers, they are enclosed by square brackets.
147
148 Note: sljit_emit_enter and sljit_set_context defines whether a register
149 is S or R register. E.g: when 3 scratches and 1 saved is mapped
150 by sljit_emit_enter, the allowed register set will be: R0-R2 and
151 S0. Although S2 is mapped to the same position as R2, it does not
152 available in the current configuration. Furthermore the S1 register
153 is not available at all.
154 */
155
156 /* When SLJIT_UNUSED is specified as the destination of sljit_emit_op1
157 or sljit_emit_op2 operations the result is discarded. If no status
158 flags are set, no instructions are emitted for these operations. Data
159 prefetch is a special exception, see SLJIT_MOV operation. Other SLJIT
160 operations do not support SLJIT_UNUSED as a destination operand. */
161 #define SLJIT_UNUSED 0
162
163 /* Scratch registers. */
164 #define SLJIT_R0 1
165 #define SLJIT_R1 2
166 #define SLJIT_R2 3
167 /* Note: on x86-32, R3 - R6 (same as S3 - S6) are emulated (they
168 are allocated on the stack). These registers are called virtual
169 and cannot be used for memory addressing (cannot be part of
170 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
171 limitation on other CPUs. See sljit_get_register_index(). */
172 #define SLJIT_R3 4
173 #define SLJIT_R4 5
174 #define SLJIT_R5 6
175 #define SLJIT_R6 7
176 #define SLJIT_R7 8
177 #define SLJIT_R8 9
178 #define SLJIT_R9 10
179 /* All R registers provided by the architecture can be accessed by SLJIT_R(i)
180 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_REGISTERS. */
181 #define SLJIT_R(i) (1 + (i))
182
183 /* Saved registers. */
184 #define SLJIT_S0 (SLJIT_NUMBER_OF_REGISTERS)
185 #define SLJIT_S1 (SLJIT_NUMBER_OF_REGISTERS - 1)
186 #define SLJIT_S2 (SLJIT_NUMBER_OF_REGISTERS - 2)
187 /* Note: on x86-32, S3 - S6 (same as R3 - R6) are emulated (they
188 are allocated on the stack). These registers are called virtual
189 and cannot be used for memory addressing (cannot be part of
190 any SLJIT_MEM1, SLJIT_MEM2 construct). There is no such
191 limitation on other CPUs. See sljit_get_register_index(). */
192 #define SLJIT_S3 (SLJIT_NUMBER_OF_REGISTERS - 3)
193 #define SLJIT_S4 (SLJIT_NUMBER_OF_REGISTERS - 4)
194 #define SLJIT_S5 (SLJIT_NUMBER_OF_REGISTERS - 5)
195 #define SLJIT_S6 (SLJIT_NUMBER_OF_REGISTERS - 6)
196 #define SLJIT_S7 (SLJIT_NUMBER_OF_REGISTERS - 7)
197 #define SLJIT_S8 (SLJIT_NUMBER_OF_REGISTERS - 8)
198 #define SLJIT_S9 (SLJIT_NUMBER_OF_REGISTERS - 9)
199 /* All S registers provided by the architecture can be accessed by SLJIT_S(i)
200 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_REGISTERS. */
201 #define SLJIT_S(i) (SLJIT_NUMBER_OF_REGISTERS - (i))
202
203 /* Registers >= SLJIT_FIRST_SAVED_REG are saved registers. */
204 #define SLJIT_FIRST_SAVED_REG (SLJIT_S0 - SLJIT_NUMBER_OF_SAVED_REGISTERS + 1)
205
206 /* The SLJIT_SP provides direct access to the linear stack space allocated by
207 sljit_emit_enter. It can only be used in the following form: SLJIT_MEM1(SLJIT_SP).
208 The immediate offset is extended by the relative stack offset automatically.
209 The sljit_get_local_base can be used to obtain the absolute offset. */
210 #define SLJIT_SP (SLJIT_NUMBER_OF_REGISTERS + 1)
211
212 /* Return with machine word. */
213
214 #define SLJIT_RETURN_REG SLJIT_R0
215
216 /* --------------------------------------------------------------------- */
217 /* Floating point registers */
218 /* --------------------------------------------------------------------- */
219
220 /* Each floating point register can store a 32 or a 64 bit precision
221 value. The FR and FS register sets are overlap in the same way as R
222 and S register sets. See above. */
223
224 /* Note: SLJIT_UNUSED as destination is not valid for floating point
225 operations, since they cannot be used for setting flags. */
226
227 /* Floating point scratch registers. */
228 #define SLJIT_FR0 1
229 #define SLJIT_FR1 2
230 #define SLJIT_FR2 3
231 #define SLJIT_FR3 4
232 #define SLJIT_FR4 5
233 #define SLJIT_FR5 6
234 /* All FR registers provided by the architecture can be accessed by SLJIT_FR(i)
235 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_FLOAT_REGISTERS. */
236 #define SLJIT_FR(i) (1 + (i))
237
238 /* Floating point saved registers. */
239 #define SLJIT_FS0 (SLJIT_NUMBER_OF_FLOAT_REGISTERS)
240 #define SLJIT_FS1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 1)
241 #define SLJIT_FS2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 2)
242 #define SLJIT_FS3 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 3)
243 #define SLJIT_FS4 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 4)
244 #define SLJIT_FS5 (SLJIT_NUMBER_OF_FLOAT_REGISTERS - 5)
245 /* All S registers provided by the architecture can be accessed by SLJIT_FS(i)
246 The i parameter must be >= 0 and < SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS. */
247 #define SLJIT_FS(i) (SLJIT_NUMBER_OF_FLOAT_REGISTERS - (i))
248
249 /* Float registers >= SLJIT_FIRST_SAVED_FLOAT_REG are saved registers. */
250 #define SLJIT_FIRST_SAVED_FLOAT_REG (SLJIT_FS0 - SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS + 1)
251
252 /* --------------------------------------------------------------------- */
253 /* Argument type definitions */
254 /* --------------------------------------------------------------------- */
255
256 /* Argument type definitions.
257 Used by SLJIT_[DEF_]ARGx and SLJIT_[DEF]_RET macros. */
258
259 #define SLJIT_ARG_TYPE_VOID 0
260 #define SLJIT_ARG_TYPE_SW 1
261 #define SLJIT_ARG_TYPE_UW 2
262 #define SLJIT_ARG_TYPE_S32 3
263 #define SLJIT_ARG_TYPE_U32 4
264 #define SLJIT_ARG_TYPE_F32 5
265 #define SLJIT_ARG_TYPE_F64 6
266
267 /* The following argument type definitions are used by sljit_emit_enter,
268 sljit_set_context, sljit_emit_call, and sljit_emit_icall functions.
269 The following return type definitions are used by sljit_emit_call
270 and sljit_emit_icall functions.
271
272 When a function is called, the first integer argument must be placed
273 in SLJIT_R0, the second in SLJIT_R1, and so on. Similarly the first
274 floating point argument must be placed in SLJIT_FR0, the second in
275 SLJIT_FR1, and so on.
276
277 Example function definition:
278 sljit_f32 SLJIT_FUNC example_c_callback(sljit_sw arg_a,
279 sljit_f64 arg_b, sljit_u32 arg_c, sljit_f32 arg_d);
280
281 Argument type definition:
282 SLJIT_DEF_RET(SLJIT_ARG_TYPE_F32)
283 | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F64)
284 | SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_U32) | SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_F32)
285
286 Short form of argument type definition:
287 SLJIT_RET(F32) | SLJIT_ARG1(SW) | SLJIT_ARG2(F64)
288 | SLJIT_ARG3(S32) | SLJIT_ARG4(F32)
289
290 Argument passing:
291 arg_a must be placed in SLJIT_R0
292 arg_c must be placed in SLJIT_R1
293 arg_b must be placed in SLJIT_FR0
294 arg_d must be placed in SLJIT_FR1
295
296 Note:
297 The SLJIT_ARG_TYPE_VOID type is only supported by
298 SLJIT_DEF_RET, and SLJIT_ARG_TYPE_VOID is also the
299 default value when SLJIT_DEF_RET is not specified. */
300 #define SLJIT_DEF_SHIFT 4
301 #define SLJIT_DEF_RET(type) (type)
302 #define SLJIT_DEF_ARG1(type) ((type) << SLJIT_DEF_SHIFT)
303 #define SLJIT_DEF_ARG2(type) ((type) << (2 * SLJIT_DEF_SHIFT))
304 #define SLJIT_DEF_ARG3(type) ((type) << (3 * SLJIT_DEF_SHIFT))
305 #define SLJIT_DEF_ARG4(type) ((type) << (4 * SLJIT_DEF_SHIFT))
306
307 /* Short form of the macros above.
308
309 For example the following definition:
310 SLJIT_DEF_RET(SLJIT_ARG_TYPE_SW) | SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_F32)
311
312 can be shortened to:
313 SLJIT_RET(SW) | SLJIT_ARG1(F32)
314
315 Note:
316 The VOID type is only supported by SLJIT_RET, and
317 VOID is also the default value when SLJIT_RET is
318 not specified. */
319 #define SLJIT_RET(type) SLJIT_DEF_RET(SLJIT_ARG_TYPE_ ## type)
320 #define SLJIT_ARG1(type) SLJIT_DEF_ARG1(SLJIT_ARG_TYPE_ ## type)
321 #define SLJIT_ARG2(type) SLJIT_DEF_ARG2(SLJIT_ARG_TYPE_ ## type)
322 #define SLJIT_ARG3(type) SLJIT_DEF_ARG3(SLJIT_ARG_TYPE_ ## type)
323 #define SLJIT_ARG4(type) SLJIT_DEF_ARG4(SLJIT_ARG_TYPE_ ## type)
324
325 /* --------------------------------------------------------------------- */
326 /* Main structures and functions */
327 /* --------------------------------------------------------------------- */
328
329 /*
330 The following structures are private, and can be changed in the
331 future. Keeping them here allows code inlining.
332 */
333
334 struct sljit_memory_fragment {
335 struct sljit_memory_fragment *next;
336 sljit_uw used_size;
337 /* Must be aligned to sljit_sw. */
338 sljit_u8 memory[1];
339 };
340
341 struct sljit_label {
342 struct sljit_label *next;
343 sljit_uw addr;
344 /* The maximum size difference. */
345 sljit_uw size;
346 };
347
348 struct sljit_jump {
349 struct sljit_jump *next;
350 sljit_uw addr;
351 sljit_sw flags;
352 union {
353 sljit_uw target;
354 struct sljit_label* label;
355 } u;
356 };
357
358 struct sljit_const {
359 struct sljit_const *next;
360 sljit_uw addr;
361 };
362
363 struct sljit_compiler {
364 sljit_s32 error;
365 sljit_s32 options;
366
367 struct sljit_label *labels;
368 struct sljit_jump *jumps;
369 struct sljit_const *consts;
370 struct sljit_label *last_label;
371 struct sljit_jump *last_jump;
372 struct sljit_const *last_const;
373
374 void *allocator_data;
375 struct sljit_memory_fragment *buf;
376 struct sljit_memory_fragment *abuf;
377
378 /* Used scratch registers. */
379 sljit_s32 scratches;
380 /* Used saved registers. */
381 sljit_s32 saveds;
382 /* Used float scratch registers. */
383 sljit_s32 fscratches;
384 /* Used float saved registers. */
385 sljit_s32 fsaveds;
386 /* Local stack size. */
387 sljit_s32 local_size;
388 /* Code size. */
389 sljit_uw size;
390 /* Relative offset of the executable mapping from the writable mapping. */
391 sljit_uw executable_offset;
392 /* Executable size for statistical purposes. */
393 sljit_uw executable_size;
394
395 #if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
396 sljit_s32 args;
397 sljit_s32 locals_offset;
398 sljit_s32 saveds_offset;
399 sljit_s32 stack_tmp_size;
400 #endif
401
402 #if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
403 sljit_s32 mode32;
404 #ifdef _WIN64
405 sljit_s32 locals_offset;
406 #endif
407 #endif
408
409 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5)
410 /* Constant pool handling. */
411 sljit_uw *cpool;
412 sljit_u8 *cpool_unique;
413 sljit_uw cpool_diff;
414 sljit_uw cpool_fill;
415 /* Other members. */
416 /* Contains pointer, "ldr pc, [...]" pairs. */
417 sljit_uw patches;
418 #endif
419
420 #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) || (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7)
421 /* Temporary fields. */
422 sljit_uw shift_imm;
423 #endif
424
425 #if (defined SLJIT_CONFIG_PPC && SLJIT_CONFIG_PPC)
426 sljit_sw imm;
427 #endif
428
429 #if (defined SLJIT_CONFIG_MIPS && SLJIT_CONFIG_MIPS)
430 sljit_s32 delay_slot;
431 sljit_s32 cache_arg;
432 sljit_sw cache_argw;
433 #endif
434
435 #if (defined SLJIT_CONFIG_SPARC_32 && SLJIT_CONFIG_SPARC_32)
436 sljit_s32 delay_slot;
437 sljit_s32 cache_arg;
438 sljit_sw cache_argw;
439 #endif
440
441 #if (defined SLJIT_CONFIG_TILEGX && SLJIT_CONFIG_TILEGX)
442 sljit_s32 cache_arg;
443 sljit_sw cache_argw;
444 #endif
445
446 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
447 FILE* verbose;
448 #endif
449
450 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
451 || (defined SLJIT_DEBUG && SLJIT_DEBUG)
452 /* Flags specified by the last arithmetic instruction.
453 It contains the type of the variable flag. */
454 sljit_s32 last_flags;
455 /* Local size passed to the functions. */
456 sljit_s32 logical_local_size;
457 #endif
458
459 #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) \
460 || (defined SLJIT_DEBUG && SLJIT_DEBUG) \
461 || (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
462 /* Trust arguments when the API function is called. */
463 sljit_s32 skip_checks;
464 #endif
465 };
466
467 /* --------------------------------------------------------------------- */
468 /* Main functions */
469 /* --------------------------------------------------------------------- */
470
471 /* Creates an sljit compiler. The allocator_data is required by some
472 custom memory managers. This pointer is passed to SLJIT_MALLOC
473 and SLJIT_FREE macros. Most allocators (including the default
474 one) ignores this value, and it is recommended to pass NULL
475 as a dummy value for allocator_data.
476
477 Returns NULL if failed. */
478 SLJIT_API_FUNC_ATTRIBUTE struct sljit_compiler* sljit_create_compiler(void *allocator_data);
479
480 /* Frees everything except the compiled machine code. */
481 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_compiler(struct sljit_compiler *compiler);
482
483 /* Returns the current error code. If an error is occurred, future sljit
484 calls which uses the same compiler argument returns early with the same
485 error code. Thus there is no need for checking the error after every
486 call, it is enough to do it before the code is compiled. Removing
487 these checks increases the performance of the compiling process. */
sljit_get_compiler_error(struct sljit_compiler * compiler)488 static SLJIT_INLINE sljit_s32 sljit_get_compiler_error(struct sljit_compiler *compiler) { return compiler->error; }
489
490 /* Sets the compiler error code to SLJIT_ERR_ALLOC_FAILED except
491 if an error was detected before. After the error code is set
492 the compiler behaves as if the allocation failure happened
493 during an sljit function call. This can greatly simplify error
494 checking, since only the compiler status needs to be checked
495 after the compilation. */
496 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_compiler_memory_error(struct sljit_compiler *compiler);
497
498 /*
499 Allocate a small amount of memory. The size must be <= 64 bytes on 32 bit,
500 and <= 128 bytes on 64 bit architectures. The memory area is owned by the
501 compiler, and freed by sljit_free_compiler. The returned pointer is
502 sizeof(sljit_sw) aligned. Excellent for allocating small blocks during
503 the compiling, and no need to worry about freeing them. The size is
504 enough to contain at most 16 pointers. If the size is outside of the range,
505 the function will return with NULL. However, this return value does not
506 indicate that there is no more memory (does not set the current error code
507 of the compiler to out-of-memory status).
508 */
509 SLJIT_API_FUNC_ATTRIBUTE void* sljit_alloc_memory(struct sljit_compiler *compiler, sljit_s32 size);
510
511 #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE)
512 /* Passing NULL disables verbose. */
513 SLJIT_API_FUNC_ATTRIBUTE void sljit_compiler_verbose(struct sljit_compiler *compiler, FILE* verbose);
514 #endif
515
516 /*
517 Create executable code from the sljit instruction stream. This is the final step
518 of the code generation so no more instructions can be added after this call.
519 */
520
521 SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler);
522
523 /* Free executable code. */
524
525 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_code(void* code);
526
527 /*
528 When the protected executable allocator is used the JIT code is mapped
529 twice. The first mapping has read/write and the second mapping has read/exec
530 permissions. This function returns with the relative offset of the executable
531 mapping using the writable mapping as the base after the machine code is
532 successfully generated. The returned value is always 0 for the normal executable
533 allocator, since it uses only one mapping with read/write/exec permissions.
534 Dynamic code modifications requires this value.
535
536 Before a successful code generation, this function returns with 0.
537 */
sljit_get_executable_offset(struct sljit_compiler * compiler)538 static SLJIT_INLINE sljit_sw sljit_get_executable_offset(struct sljit_compiler *compiler) { return compiler->executable_offset; }
539
540 /*
541 The executable memory consumption of the generated code can be retrieved by
542 this function. The returned value can be used for statistical purposes.
543
544 Before a successful code generation, this function returns with 0.
545 */
sljit_get_generated_code_size(struct sljit_compiler * compiler)546 static SLJIT_INLINE sljit_uw sljit_get_generated_code_size(struct sljit_compiler *compiler) { return compiler->executable_size; }
547
548 /* Returns with non-zero if the feature or limitation type passed as its
549 argument is present on the current CPU.
550
551 Some features (e.g. floating point operations) require hardware (CPU)
552 support while others (e.g. move with update) are emulated if not available.
553 However even if a feature is emulated, specialized code paths can be faster
554 than the emulation. Some limitations are emulated as well so their general
555 case is supported but it has extra performance costs. */
556
557 /* [Not emulated] Floating-point support is available. */
558 #define SLJIT_HAS_FPU 0
559 /* [Limitation] Some registers are virtual registers. */
560 #define SLJIT_HAS_VIRTUAL_REGISTERS 1
561 /* [Emulated] Count leading zero is supported. */
562 #define SLJIT_HAS_CLZ 2
563 /* [Emulated] Conditional move is supported. */
564 #define SLJIT_HAS_CMOV 3
565
566 #if (defined SLJIT_CONFIG_X86 && SLJIT_CONFIG_X86)
567 /* [Not emulated] SSE2 support is available on x86. */
568 #define SLJIT_HAS_SSE2 100
569 #endif
570
571 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type);
572
573 /* Instruction generation. Returns with any error code. If there is no
574 error, they return with SLJIT_SUCCESS. */
575
576 /*
577 The executable code is a function from the viewpoint of the C
578 language. The function calls must obey to the ABI (Application
579 Binary Interface) of the platform, which specify the purpose of
580 machine registers and stack handling among other things. The
581 sljit_emit_enter function emits the necessary instructions for
582 setting up a new context for the executable code and moves function
583 arguments to the saved registers. Furthermore the options argument
584 can be used to pass configuration options to the compiler. The
585 available options are listed before sljit_emit_enter.
586
587 The function argument list is the combination of SLJIT_ARGx
588 (SLJIT_DEF_ARG1) macros. Currently maximum 3 SW / UW
589 (SLJIT_ARG_TYPE_SW / LJIT_ARG_TYPE_UW) arguments are supported.
590 The first argument goes to SLJIT_S0, the second goes to SLJIT_S1
591 and so on. The register set used by the function must be declared
592 as well. The number of scratch and saved registers used by the
593 function must be passed to sljit_emit_enter. Only R registers
594 between R0 and "scratches" argument can be used later. E.g. if
595 "scratches" is set to 2, the scratch register set will be limited
596 to SLJIT_R0 and SLJIT_R1. The S registers and the floating point
597 registers ("fscratches" and "fsaveds") are specified in a similar
598 manner. The sljit_emit_enter is also capable of allocating a stack
599 space for local variables. The "local_size" argument contains the
600 size in bytes of this local area and its staring address is stored
601 in SLJIT_SP. The memory area between SLJIT_SP (inclusive) and
602 SLJIT_SP + local_size (exclusive) can be modified freely until
603 the function returns. The stack space is not initialized.
604
605 Note: the following conditions must met:
606 0 <= scratches <= SLJIT_NUMBER_OF_REGISTERS
607 0 <= saveds <= SLJIT_NUMBER_OF_REGISTERS
608 scratches + saveds <= SLJIT_NUMBER_OF_REGISTERS
609 0 <= fscratches <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
610 0 <= fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
611 fscratches + fsaveds <= SLJIT_NUMBER_OF_FLOAT_REGISTERS
612
613 Note: every call of sljit_emit_enter and sljit_set_context
614 overwrites the previous context.
615 */
616
617 /* The absolute address returned by sljit_get_local_base with
618 offset 0 is aligned to sljit_f64. Otherwise it is aligned to sljit_sw. */
619 #define SLJIT_F64_ALIGNMENT 0x00000001
620
621 /* The local_size must be >= 0 and <= SLJIT_MAX_LOCAL_SIZE. */
622 #define SLJIT_MAX_LOCAL_SIZE 65536
623
624 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
625 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
626 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
627
628 /* The machine code has a context (which contains the local stack space size,
629 number of used registers, etc.) which initialized by sljit_emit_enter. Several
630 functions (like sljit_emit_return) requres this context to be able to generate
631 the appropriate code. However, some code fragments (like inline cache) may have
632 no normal entry point so their context is unknown for the compiler. Their context
633 can be provided to the compiler by the sljit_set_context function.
634
635 Note: every call of sljit_emit_enter and sljit_set_context overwrites
636 the previous context. */
637
638 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
639 sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds,
640 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size);
641
642 /* Return from machine code. The op argument can be SLJIT_UNUSED which means the
643 function does not return with anything or any opcode between SLJIT_MOV and
644 SLJIT_MOV_P (see sljit_emit_op1). As for src and srcw they must be 0 if op
645 is SLJIT_UNUSED, otherwise see below the description about source and
646 destination arguments. */
647
648 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op,
649 sljit_s32 src, sljit_sw srcw);
650
651 /* Generating entry and exit points for fast call functions (see SLJIT_FAST_CALL).
652 Both sljit_emit_fast_enter and sljit_emit_fast_return functions preserve the
653 values of all registers and stack frame. The return address is stored in the
654 dst argument of sljit_emit_fast_enter, and this return address can be passed
655 to sljit_emit_fast_return to continue the execution after the fast call.
656
657 Fast calls are cheap operations (usually only a single call instruction is
658 emitted) but they do not preserve any registers. However the callee function
659 can freely use / update any registers and stack values which can be
660 efficiently exploited by various optimizations. Registers can be saved
661 manually by the callee function if needed.
662
663 Although returning to different address by sljit_emit_fast_return is possible,
664 this address usually cannot be predicted by the return address predictor of
665 modern CPUs which may reduce performance. Furthermore using sljit_emit_ijump
666 to return is also inefficient since return address prediction is usually
667 triggered by a specific form of ijump.
668
669 Flags: - (does not modify flags). */
670
671 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw);
672 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw);
673
674 /*
675 Source and destination operands for arithmetical instructions
676 imm - a simple immediate value (cannot be used as a destination)
677 reg - any of the registers (immediate argument must be 0)
678 [imm] - absolute immediate memory address
679 [reg+imm] - indirect memory address
680 [reg+(reg<<imm)] - indirect indexed memory address (shift must be between 0 and 3)
681 useful for (byte, half, int, sljit_sw) array access
682 (fully supported by both x86 and ARM architectures, and cheap operation on others)
683 */
684
685 /*
686 IMPORATNT NOTE: memory access MUST be naturally aligned except
687 SLJIT_UNALIGNED macro is defined and its value is 1.
688
689 length | alignment
690 ---------+-----------
691 byte | 1 byte (any physical_address is accepted)
692 half | 2 byte (physical_address & 0x1 == 0)
693 int | 4 byte (physical_address & 0x3 == 0)
694 word | 4 byte if SLJIT_32BIT_ARCHITECTURE is defined and its value is 1
695 | 8 byte if SLJIT_64BIT_ARCHITECTURE is defined and its value is 1
696 pointer | size of sljit_p type (4 byte on 32 bit machines, 4 or 8 byte
697 | on 64 bit machines)
698
699 Note: Different architectures have different addressing limitations.
700 A single instruction is enough for the following addressing
701 modes. Other adrressing modes are emulated by instruction
702 sequences. This information could help to improve those code
703 generators which focuses only a few architectures.
704
705 x86: [reg+imm], -2^32+1 <= imm <= 2^32-1 (full address space on x86-32)
706 [reg+(reg<<imm)] is supported
707 [imm], -2^32+1 <= imm <= 2^32-1 is supported
708 Write-back is not supported
709 arm: [reg+imm], -4095 <= imm <= 4095 or -255 <= imm <= 255 for signed
710 bytes, any halfs or floating point values)
711 [reg+(reg<<imm)] is supported
712 Write-back is supported
713 arm-t2: [reg+imm], -255 <= imm <= 4095
714 [reg+(reg<<imm)] is supported
715 Write back is supported only for [reg+imm], where -255 <= imm <= 255
716 arm64: [reg+imm], -256 <= imm <= 255, 0 <= aligned imm <= 4095 * alignment
717 [reg+(reg<<imm)] is supported
718 Write back is supported only for [reg+imm], where -256 <= imm <= 255
719 ppc: [reg+imm], -65536 <= imm <= 65535. 64 bit loads/stores and 32 bit
720 signed load on 64 bit requires immediates divisible by 4.
721 [reg+imm] is not supported for signed 8 bit values.
722 [reg+reg] is supported
723 Write-back is supported except for one instruction: 32 bit signed
724 load with [reg+imm] addressing mode on 64 bit.
725 mips: [reg+imm], -65536 <= imm <= 65535
726 sparc: [reg+imm], -4096 <= imm <= 4095
727 [reg+reg] is supported
728 */
729
730 /* Macros for specifying operand types. */
731 #define SLJIT_MEM 0x80
732 #define SLJIT_MEM0() (SLJIT_MEM)
733 #define SLJIT_MEM1(r1) (SLJIT_MEM | (r1))
734 #define SLJIT_MEM2(r1, r2) (SLJIT_MEM | (r1) | ((r2) << 8))
735 #define SLJIT_IMM 0x40
736
737 /* Set 32 bit operation mode (I) on 64 bit CPUs. This option is ignored on
738 32 bit CPUs. When this option is set for an arithmetic operation, only
739 the lower 32 bit of the input registers are used, and the CPU status
740 flags are set according to the 32 bit result. Although the higher 32 bit
741 of the input and the result registers are not defined by SLJIT, it might
742 be defined by the CPU architecture (e.g. MIPS). To satisfy these CPU
743 requirements all source registers must be the result of those operations
744 where this option was also set. Memory loads read 32 bit values rather
745 than 64 bit ones. In other words 32 bit and 64 bit operations cannot
746 be mixed. The only exception is SLJIT_MOV32 and SLJIT_MOVU32 whose source
747 register can hold any 32 or 64 bit value, and it is converted to a 32 bit
748 compatible format first. This conversion is free (no instructions are
749 emitted) on most CPUs. A 32 bit value can also be converted to a 64 bit
750 value by SLJIT_MOV_S32 (sign extension) or SLJIT_MOV_U32 (zero extension).
751
752 Note: memory addressing always uses 64 bit values on 64 bit systems so
753 the result of a 32 bit operation must not be used with SLJIT_MEMx
754 macros.
755
756 This option is part of the instruction name, so there is no need to
757 manually set it. E.g:
758
759 SLJIT_ADD32 == (SLJIT_ADD | SLJIT_I32_OP) */
760 #define SLJIT_I32_OP 0x100
761
762 /* Set F32 (single) precision mode for floating-point computation. This
763 option is similar to SLJIT_I32_OP, it just applies to floating point
764 registers. When this option is passed, the CPU performs 32 bit floating
765 point operations, rather than 64 bit one. Similar to SLJIT_I32_OP, all
766 register arguments must be the result of those operations where this
767 option was also set.
768
769 This option is part of the instruction name, so there is no need to
770 manually set it. E.g:
771
772 SLJIT_MOV_F32 = (SLJIT_MOV_F64 | SLJIT_F32_OP)
773 */
774 #define SLJIT_F32_OP SLJIT_I32_OP
775
776 /* Many CPUs (x86, ARM, PPC) have status flags which can be set according
777 to the result of an operation. Other CPUs (MIPS) do not have status
778 flags, and results must be stored in registers. To cover both architecture
779 types efficiently only two flags are defined by SLJIT:
780
781 * Zero (equal) flag: it is set if the result is zero
782 * Variable flag: its value is defined by the last arithmetic operation
783
784 SLJIT instructions can set any or both of these flags. The value of
785 these flags is undefined if the instruction does not specify their value.
786 The description of each instruction contains the list of allowed flag
787 types.
788
789 Example: SLJIT_ADD can set the Z, OVERFLOW, CARRY flags hence
790
791 sljit_op2(..., SLJIT_ADD, ...)
792 Both the zero and variable flags are undefined so they can
793 have any value after the operation is completed.
794
795 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z, ...)
796 Sets the zero flag if the result is zero, clears it otherwise.
797 The variable flag is undefined.
798
799 sljit_op2(..., SLJIT_ADD | SLJIT_SET_OVERFLOW, ...)
800 Sets the variable flag if an integer overflow occurs, clears
801 it otherwise. The zero flag is undefined.
802
803 sljit_op2(..., SLJIT_ADD | SLJIT_SET_Z | SLJIT_SET_CARRY, ...)
804 Sets the zero flag if the result is zero, clears it otherwise.
805 Sets the variable flag if unsigned overflow (carry) occurs,
806 clears it otherwise.
807
808 If an instruction (e.g. SLJIT_MOV) does not modify flags the flags are
809 unchanged.
810
811 Using these flags can reduce the number of emitted instructions. E.g. a
812 fast loop can be implemented by decreasing a counter register and set the
813 zero flag to jump back if the counter register has not reached zero.
814
815 Motivation: although CPUs can set a large number of flags, usually their
816 values are ignored or only one of them is used. Emulating a large number
817 of flags on systems without flag register is complicated so SLJIT
818 instructions must specify the flag they want to use and only that flag
819 will be emulated. The last arithmetic instruction can be repeated if
820 multiple flags need to be checked.
821 */
822
823 /* Set Zero status flag. */
824 #define SLJIT_SET_Z 0x0200
825 /* Set the variable status flag if condition is true.
826 See comparison types. */
827 #define SLJIT_SET(condition) ((condition) << 10)
828
829 /* Notes:
830 - you cannot postpone conditional jump instructions except if noted that
831 the instruction does not set flags (See: SLJIT_KEEP_FLAGS).
832 - flag combinations: '|' means 'logical or'. */
833
834 /* Starting index of opcodes for sljit_emit_op0. */
835 #define SLJIT_OP0_BASE 0
836
837 /* Flags: - (does not modify flags)
838 Note: breakpoint instruction is not supported by all architectures (e.g. ppc)
839 It falls back to SLJIT_NOP in those cases. */
840 #define SLJIT_BREAKPOINT (SLJIT_OP0_BASE + 0)
841 /* Flags: - (does not modify flags)
842 Note: may or may not cause an extra cycle wait
843 it can even decrease the runtime in a few cases. */
844 #define SLJIT_NOP (SLJIT_OP0_BASE + 1)
845 /* Flags: - (may destroy flags)
846 Unsigned multiplication of SLJIT_R0 and SLJIT_R1.
847 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
848 #define SLJIT_LMUL_UW (SLJIT_OP0_BASE + 2)
849 /* Flags: - (may destroy flags)
850 Signed multiplication of SLJIT_R0 and SLJIT_R1.
851 Result is placed into SLJIT_R1:SLJIT_R0 (high:low) word */
852 #define SLJIT_LMUL_SW (SLJIT_OP0_BASE + 3)
853 /* Flags: - (may destroy flags)
854 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
855 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
856 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
857 #define SLJIT_DIVMOD_UW (SLJIT_OP0_BASE + 4)
858 #define SLJIT_DIVMOD_U32 (SLJIT_DIVMOD_UW | SLJIT_I32_OP)
859 /* Flags: - (may destroy flags)
860 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
861 The result is placed into SLJIT_R0 and the remainder into SLJIT_R1.
862 Note: if SLJIT_R1 is 0, the behaviour is undefined.
863 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
864 the behaviour is undefined. */
865 #define SLJIT_DIVMOD_SW (SLJIT_OP0_BASE + 5)
866 #define SLJIT_DIVMOD_S32 (SLJIT_DIVMOD_SW | SLJIT_I32_OP)
867 /* Flags: - (may destroy flags)
868 Unsigned divide of the value in SLJIT_R0 by the value in SLJIT_R1.
869 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
870 Note: if SLJIT_R1 is 0, the behaviour is undefined. */
871 #define SLJIT_DIV_UW (SLJIT_OP0_BASE + 6)
872 #define SLJIT_DIV_U32 (SLJIT_DIV_UW | SLJIT_I32_OP)
873 /* Flags: - (may destroy flags)
874 Signed divide of the value in SLJIT_R0 by the value in SLJIT_R1.
875 The result is placed into SLJIT_R0. SLJIT_R1 preserves its value.
876 Note: if SLJIT_R1 is 0, the behaviour is undefined.
877 Note: if SLJIT_R1 is -1 and SLJIT_R0 is integer min (0x800..00),
878 the behaviour is undefined. */
879 #define SLJIT_DIV_SW (SLJIT_OP0_BASE + 7)
880 #define SLJIT_DIV_S32 (SLJIT_DIV_SW | SLJIT_I32_OP)
881
882 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op);
883
884 /* Starting index of opcodes for sljit_emit_op1. */
885 #define SLJIT_OP1_BASE 32
886
887 /* The MOV instruction transfers data from source to destination.
888
889 MOV instruction suffixes:
890
891 U8 - unsigned 8 bit data transfer
892 S8 - signed 8 bit data transfer
893 U16 - unsigned 16 bit data transfer
894 S16 - signed 16 bit data transfer
895 U32 - unsigned int (32 bit) data transfer
896 S32 - signed int (32 bit) data transfer
897 P - pointer (sljit_p) data transfer
898
899 If the destination of a MOV instruction is SLJIT_UNUSED and the source
900 operand is a memory address the compiler emits a prefetch instruction
901 if this instruction is supported by the current CPU. Higher data sizes
902 bring the data closer to the core: a MOV with word size loads the data
903 into a higher level cache than a byte size. Otherwise the type does not
904 affect the prefetch instruction. Furthermore a prefetch instruction
905 never fails, so it can be used to prefetch a data from an address and
906 check whether that address is NULL afterwards.
907 */
908
909 /* Flags: - (does not modify flags) */
910 #define SLJIT_MOV (SLJIT_OP1_BASE + 0)
911 /* Flags: - (does not modify flags) */
912 #define SLJIT_MOV_U8 (SLJIT_OP1_BASE + 1)
913 #define SLJIT_MOV32_U8 (SLJIT_MOV_U8 | SLJIT_I32_OP)
914 /* Flags: - (does not modify flags) */
915 #define SLJIT_MOV_S8 (SLJIT_OP1_BASE + 2)
916 #define SLJIT_MOV32_S8 (SLJIT_MOV_S8 | SLJIT_I32_OP)
917 /* Flags: - (does not modify flags) */
918 #define SLJIT_MOV_U16 (SLJIT_OP1_BASE + 3)
919 #define SLJIT_MOV32_U16 (SLJIT_MOV_U16 | SLJIT_I32_OP)
920 /* Flags: - (does not modify flags) */
921 #define SLJIT_MOV_S16 (SLJIT_OP1_BASE + 4)
922 #define SLJIT_MOV32_S16 (SLJIT_MOV_S16 | SLJIT_I32_OP)
923 /* Flags: - (does not modify flags)
924 Note: no SLJIT_MOV32_U32 form, since it is the same as SLJIT_MOV32 */
925 #define SLJIT_MOV_U32 (SLJIT_OP1_BASE + 5)
926 /* Flags: - (does not modify flags)
927 Note: no SLJIT_MOV32_S32 form, since it is the same as SLJIT_MOV32 */
928 #define SLJIT_MOV_S32 (SLJIT_OP1_BASE + 6)
929 /* Flags: - (does not modify flags) */
930 #define SLJIT_MOV32 (SLJIT_MOV_S32 | SLJIT_I32_OP)
931 /* Flags: - (does not modify flags)
932 Note: load a pointer sized data, useful on x32 (a 32 bit mode on x86-64
933 where all x64 features are available, e.g. 16 register) or similar
934 compiling modes */
935 #define SLJIT_MOV_P (SLJIT_OP1_BASE + 7)
936 /* Flags: Z
937 Note: immediate source argument is not supported */
938 #define SLJIT_NOT (SLJIT_OP1_BASE + 8)
939 #define SLJIT_NOT32 (SLJIT_NOT | SLJIT_I32_OP)
940 /* Flags: Z | OVERFLOW
941 Note: immediate source argument is not supported */
942 #define SLJIT_NEG (SLJIT_OP1_BASE + 9)
943 #define SLJIT_NEG32 (SLJIT_NEG | SLJIT_I32_OP)
944 /* Count leading zeroes
945 Flags: - (may destroy flags)
946 Note: immediate source argument is not supported */
947 #define SLJIT_CLZ (SLJIT_OP1_BASE + 10)
948 #define SLJIT_CLZ32 (SLJIT_CLZ | SLJIT_I32_OP)
949
950 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
951 sljit_s32 dst, sljit_sw dstw,
952 sljit_s32 src, sljit_sw srcw);
953
954 /* Starting index of opcodes for sljit_emit_op2. */
955 #define SLJIT_OP2_BASE 96
956
957 /* Flags: Z | OVERFLOW | CARRY */
958 #define SLJIT_ADD (SLJIT_OP2_BASE + 0)
959 #define SLJIT_ADD32 (SLJIT_ADD | SLJIT_I32_OP)
960 /* Flags: CARRY */
961 #define SLJIT_ADDC (SLJIT_OP2_BASE + 1)
962 #define SLJIT_ADDC32 (SLJIT_ADDC | SLJIT_I32_OP)
963 /* Flags: Z | LESS | GREATER_EQUAL | GREATER | LESS_EQUAL
964 SIG_LESS | SIG_GREATER_EQUAL | SIG_GREATER
965 SIG_LESS_EQUAL | CARRY */
966 #define SLJIT_SUB (SLJIT_OP2_BASE + 2)
967 #define SLJIT_SUB32 (SLJIT_SUB | SLJIT_I32_OP)
968 /* Flags: CARRY */
969 #define SLJIT_SUBC (SLJIT_OP2_BASE + 3)
970 #define SLJIT_SUBC32 (SLJIT_SUBC | SLJIT_I32_OP)
971 /* Note: integer mul
972 Flags: MUL_OVERFLOW */
973 #define SLJIT_MUL (SLJIT_OP2_BASE + 4)
974 #define SLJIT_MUL32 (SLJIT_MUL | SLJIT_I32_OP)
975 /* Flags: Z */
976 #define SLJIT_AND (SLJIT_OP2_BASE + 5)
977 #define SLJIT_AND32 (SLJIT_AND | SLJIT_I32_OP)
978 /* Flags: Z */
979 #define SLJIT_OR (SLJIT_OP2_BASE + 6)
980 #define SLJIT_OR32 (SLJIT_OR | SLJIT_I32_OP)
981 /* Flags: Z */
982 #define SLJIT_XOR (SLJIT_OP2_BASE + 7)
983 #define SLJIT_XOR32 (SLJIT_XOR | SLJIT_I32_OP)
984 /* Flags: Z
985 Let bit_length be the length of the shift operation: 32 or 64.
986 If src2 is immediate, src2w is masked by (bit_length - 1).
987 Otherwise, if the content of src2 is outside the range from 0
988 to bit_length - 1, the result is undefined. */
989 #define SLJIT_SHL (SLJIT_OP2_BASE + 8)
990 #define SLJIT_SHL32 (SLJIT_SHL | SLJIT_I32_OP)
991 /* Flags: Z
992 Let bit_length be the length of the shift operation: 32 or 64.
993 If src2 is immediate, src2w is masked by (bit_length - 1).
994 Otherwise, if the content of src2 is outside the range from 0
995 to bit_length - 1, the result is undefined. */
996 #define SLJIT_LSHR (SLJIT_OP2_BASE + 9)
997 #define SLJIT_LSHR32 (SLJIT_LSHR | SLJIT_I32_OP)
998 /* Flags: Z
999 Let bit_length be the length of the shift operation: 32 or 64.
1000 If src2 is immediate, src2w is masked by (bit_length - 1).
1001 Otherwise, if the content of src2 is outside the range from 0
1002 to bit_length - 1, the result is undefined. */
1003 #define SLJIT_ASHR (SLJIT_OP2_BASE + 10)
1004 #define SLJIT_ASHR32 (SLJIT_ASHR | SLJIT_I32_OP)
1005
1006 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
1007 sljit_s32 dst, sljit_sw dstw,
1008 sljit_s32 src1, sljit_sw src1w,
1009 sljit_s32 src2, sljit_sw src2w);
1010
1011 /* Starting index of opcodes for sljit_emit_fop1. */
1012 #define SLJIT_FOP1_BASE 128
1013
1014 /* Flags: - (does not modify flags) */
1015 #define SLJIT_MOV_F64 (SLJIT_FOP1_BASE + 0)
1016 #define SLJIT_MOV_F32 (SLJIT_MOV_F64 | SLJIT_F32_OP)
1017 /* Convert opcodes: CONV[DST_TYPE].FROM[SRC_TYPE]
1018 SRC/DST TYPE can be: D - double, S - single, W - signed word, I - signed int
1019 Rounding mode when the destination is W or I: round towards zero. */
1020 /* Flags: - (does not modify flags) */
1021 #define SLJIT_CONV_F64_FROM_F32 (SLJIT_FOP1_BASE + 1)
1022 #define SLJIT_CONV_F32_FROM_F64 (SLJIT_CONV_F64_FROM_F32 | SLJIT_F32_OP)
1023 /* Flags: - (does not modify flags) */
1024 #define SLJIT_CONV_SW_FROM_F64 (SLJIT_FOP1_BASE + 2)
1025 #define SLJIT_CONV_SW_FROM_F32 (SLJIT_CONV_SW_FROM_F64 | SLJIT_F32_OP)
1026 /* Flags: - (does not modify flags) */
1027 #define SLJIT_CONV_S32_FROM_F64 (SLJIT_FOP1_BASE + 3)
1028 #define SLJIT_CONV_S32_FROM_F32 (SLJIT_CONV_S32_FROM_F64 | SLJIT_F32_OP)
1029 /* Flags: - (does not modify flags) */
1030 #define SLJIT_CONV_F64_FROM_SW (SLJIT_FOP1_BASE + 4)
1031 #define SLJIT_CONV_F32_FROM_SW (SLJIT_CONV_F64_FROM_SW | SLJIT_F32_OP)
1032 /* Flags: - (does not modify flags) */
1033 #define SLJIT_CONV_F64_FROM_S32 (SLJIT_FOP1_BASE + 5)
1034 #define SLJIT_CONV_F32_FROM_S32 (SLJIT_CONV_F64_FROM_S32 | SLJIT_F32_OP)
1035 /* Note: dst is the left and src is the right operand for SLJIT_CMPD.
1036 Flags: EQUAL_F | LESS_F | GREATER_EQUAL_F | GREATER_F | LESS_EQUAL_F */
1037 #define SLJIT_CMP_F64 (SLJIT_FOP1_BASE + 6)
1038 #define SLJIT_CMP_F32 (SLJIT_CMP_F64 | SLJIT_F32_OP)
1039 /* Flags: - (does not modify flags) */
1040 #define SLJIT_NEG_F64 (SLJIT_FOP1_BASE + 7)
1041 #define SLJIT_NEG_F32 (SLJIT_NEG_F64 | SLJIT_F32_OP)
1042 /* Flags: - (does not modify flags) */
1043 #define SLJIT_ABS_F64 (SLJIT_FOP1_BASE + 8)
1044 #define SLJIT_ABS_F32 (SLJIT_ABS_F64 | SLJIT_F32_OP)
1045
1046 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
1047 sljit_s32 dst, sljit_sw dstw,
1048 sljit_s32 src, sljit_sw srcw);
1049
1050 /* Starting index of opcodes for sljit_emit_fop2. */
1051 #define SLJIT_FOP2_BASE 160
1052
1053 /* Flags: - (does not modify flags) */
1054 #define SLJIT_ADD_F64 (SLJIT_FOP2_BASE + 0)
1055 #define SLJIT_ADD_F32 (SLJIT_ADD_F64 | SLJIT_F32_OP)
1056 /* Flags: - (does not modify flags) */
1057 #define SLJIT_SUB_F64 (SLJIT_FOP2_BASE + 1)
1058 #define SLJIT_SUB_F32 (SLJIT_SUB_F64 | SLJIT_F32_OP)
1059 /* Flags: - (does not modify flags) */
1060 #define SLJIT_MUL_F64 (SLJIT_FOP2_BASE + 2)
1061 #define SLJIT_MUL_F32 (SLJIT_MUL_F64 | SLJIT_F32_OP)
1062 /* Flags: - (does not modify flags) */
1063 #define SLJIT_DIV_F64 (SLJIT_FOP2_BASE + 3)
1064 #define SLJIT_DIV_F32 (SLJIT_DIV_F64 | SLJIT_F32_OP)
1065
1066 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
1067 sljit_s32 dst, sljit_sw dstw,
1068 sljit_s32 src1, sljit_sw src1w,
1069 sljit_s32 src2, sljit_sw src2w);
1070
1071 /* Label and jump instructions. */
1072
1073 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler);
1074
1075 /* Invert (negate) conditional type: xor (^) with 0x1 */
1076
1077 /* Integer comparison types. */
1078 #define SLJIT_EQUAL 0
1079 #define SLJIT_EQUAL32 (SLJIT_EQUAL | SLJIT_I32_OP)
1080 #define SLJIT_ZERO 0
1081 #define SLJIT_ZERO32 (SLJIT_ZERO | SLJIT_I32_OP)
1082 #define SLJIT_NOT_EQUAL 1
1083 #define SLJIT_NOT_EQUAL32 (SLJIT_NOT_EQUAL | SLJIT_I32_OP)
1084 #define SLJIT_NOT_ZERO 1
1085 #define SLJIT_NOT_ZERO32 (SLJIT_NOT_ZERO | SLJIT_I32_OP)
1086
1087 #define SLJIT_LESS 2
1088 #define SLJIT_LESS32 (SLJIT_LESS | SLJIT_I32_OP)
1089 #define SLJIT_SET_LESS SLJIT_SET(SLJIT_LESS)
1090 #define SLJIT_GREATER_EQUAL 3
1091 #define SLJIT_GREATER_EQUAL32 (SLJIT_GREATER_EQUAL | SLJIT_I32_OP)
1092 #define SLJIT_SET_GREATER_EQUAL SLJIT_SET(SLJIT_GREATER_EQUAL)
1093 #define SLJIT_GREATER 4
1094 #define SLJIT_GREATER32 (SLJIT_GREATER | SLJIT_I32_OP)
1095 #define SLJIT_SET_GREATER SLJIT_SET(SLJIT_GREATER)
1096 #define SLJIT_LESS_EQUAL 5
1097 #define SLJIT_LESS_EQUAL32 (SLJIT_LESS_EQUAL | SLJIT_I32_OP)
1098 #define SLJIT_SET_LESS_EQUAL SLJIT_SET(SLJIT_LESS_EQUAL)
1099 #define SLJIT_SIG_LESS 6
1100 #define SLJIT_SIG_LESS32 (SLJIT_SIG_LESS | SLJIT_I32_OP)
1101 #define SLJIT_SET_SIG_LESS SLJIT_SET(SLJIT_SIG_LESS)
1102 #define SLJIT_SIG_GREATER_EQUAL 7
1103 #define SLJIT_SIG_GREATER_EQUAL32 (SLJIT_SIG_GREATER_EQUAL | SLJIT_I32_OP)
1104 #define SLJIT_SET_SIG_GREATER_EQUAL SLJIT_SET(SLJIT_SIG_GREATER_EQUAL)
1105 #define SLJIT_SIG_GREATER 8
1106 #define SLJIT_SIG_GREATER32 (SLJIT_SIG_GREATER | SLJIT_I32_OP)
1107 #define SLJIT_SET_SIG_GREATER SLJIT_SET(SLJIT_SIG_GREATER)
1108 #define SLJIT_SIG_LESS_EQUAL 9
1109 #define SLJIT_SIG_LESS_EQUAL32 (SLJIT_SIG_LESS_EQUAL | SLJIT_I32_OP)
1110 #define SLJIT_SET_SIG_LESS_EQUAL SLJIT_SET(SLJIT_SIG_LESS_EQUAL)
1111
1112 #define SLJIT_OVERFLOW 10
1113 #define SLJIT_OVERFLOW32 (SLJIT_OVERFLOW | SLJIT_I32_OP)
1114 #define SLJIT_SET_OVERFLOW SLJIT_SET(SLJIT_OVERFLOW)
1115 #define SLJIT_NOT_OVERFLOW 11
1116 #define SLJIT_NOT_OVERFLOW32 (SLJIT_NOT_OVERFLOW | SLJIT_I32_OP)
1117
1118 #define SLJIT_MUL_OVERFLOW 12
1119 #define SLJIT_MUL_OVERFLOW32 (SLJIT_MUL_OVERFLOW | SLJIT_I32_OP)
1120 #define SLJIT_SET_MUL_OVERFLOW SLJIT_SET(SLJIT_MUL_OVERFLOW)
1121 #define SLJIT_MUL_NOT_OVERFLOW 13
1122 #define SLJIT_MUL_NOT_OVERFLOW32 (SLJIT_MUL_NOT_OVERFLOW | SLJIT_I32_OP)
1123
1124 /* There is no SLJIT_CARRY or SLJIT_NOT_CARRY. */
1125 #define SLJIT_SET_CARRY SLJIT_SET(14)
1126
1127 /* Floating point comparison types. */
1128 #define SLJIT_EQUAL_F64 16
1129 #define SLJIT_EQUAL_F32 (SLJIT_EQUAL_F64 | SLJIT_F32_OP)
1130 #define SLJIT_SET_EQUAL_F SLJIT_SET(SLJIT_EQUAL_F64)
1131 #define SLJIT_NOT_EQUAL_F64 17
1132 #define SLJIT_NOT_EQUAL_F32 (SLJIT_NOT_EQUAL_F64 | SLJIT_F32_OP)
1133 #define SLJIT_SET_NOT_EQUAL_F SLJIT_SET(SLJIT_NOT_EQUAL_F64)
1134 #define SLJIT_LESS_F64 18
1135 #define SLJIT_LESS_F32 (SLJIT_LESS_F64 | SLJIT_F32_OP)
1136 #define SLJIT_SET_LESS_F SLJIT_SET(SLJIT_LESS_F64)
1137 #define SLJIT_GREATER_EQUAL_F64 19
1138 #define SLJIT_GREATER_EQUAL_F32 (SLJIT_GREATER_EQUAL_F64 | SLJIT_F32_OP)
1139 #define SLJIT_SET_GREATER_EQUAL_F SLJIT_SET(SLJIT_GREATER_EQUAL_F64)
1140 #define SLJIT_GREATER_F64 20
1141 #define SLJIT_GREATER_F32 (SLJIT_GREATER_F64 | SLJIT_F32_OP)
1142 #define SLJIT_SET_GREATER_F SLJIT_SET(SLJIT_GREATER_F64)
1143 #define SLJIT_LESS_EQUAL_F64 21
1144 #define SLJIT_LESS_EQUAL_F32 (SLJIT_LESS_EQUAL_F64 | SLJIT_F32_OP)
1145 #define SLJIT_SET_LESS_EQUAL_F SLJIT_SET(SLJIT_LESS_EQUAL_F64)
1146 #define SLJIT_UNORDERED_F64 22
1147 #define SLJIT_UNORDERED_F32 (SLJIT_UNORDERED_F64 | SLJIT_F32_OP)
1148 #define SLJIT_SET_UNORDERED_F SLJIT_SET(SLJIT_UNORDERED_F64)
1149 #define SLJIT_ORDERED_F64 23
1150 #define SLJIT_ORDERED_F32 (SLJIT_ORDERED_F64 | SLJIT_F32_OP)
1151 #define SLJIT_SET_ORDERED_F SLJIT_SET(SLJIT_ORDERED_F64)
1152
1153 /* Unconditional jump types. */
1154 #define SLJIT_JUMP 24
1155 /* Fast calling method. See sljit_emit_fast_enter / sljit_emit_fast_return. */
1156 #define SLJIT_FAST_CALL 25
1157 /* Called function must be declared with the SLJIT_FUNC attribute. */
1158 #define SLJIT_CALL 26
1159 /* Called function must be declared with cdecl attribute.
1160 This is the default attribute for C functions. */
1161 #define SLJIT_CALL_CDECL 27
1162
1163 /* The target can be changed during runtime (see: sljit_set_jump_addr). */
1164 #define SLJIT_REWRITABLE_JUMP 0x1000
1165
1166 /* Emit a jump instruction. The destination is not set, only the type of the jump.
1167 type must be between SLJIT_EQUAL and SLJIT_FAST_CALL
1168 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1169
1170 Flags: does not modify flags. */
1171 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type);
1172
1173 /* Emit a C compiler (ABI) compatible function call.
1174 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1175 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1176 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1177
1178 Flags: destroy all flags. */
1179 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types);
1180
1181 /* Basic arithmetic comparison. In most architectures it is implemented as
1182 an SLJIT_SUB operation (with SLJIT_UNUSED destination and setting
1183 appropriate flags) followed by a sljit_emit_jump. However some
1184 architectures (i.e: ARM64 or MIPS) may employ special optimizations here.
1185 It is suggested to use this comparison form when appropriate.
1186 type must be between SLJIT_EQUAL and SLJIT_I_SIG_LESS_EQUAL
1187 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1188
1189 Flags: may destroy flags. */
1190 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
1191 sljit_s32 src1, sljit_sw src1w,
1192 sljit_s32 src2, sljit_sw src2w);
1193
1194 /* Basic floating point comparison. In most architectures it is implemented as
1195 an SLJIT_FCMP operation (setting appropriate flags) followed by a
1196 sljit_emit_jump. However some architectures (i.e: MIPS) may employ
1197 special optimizations here. It is suggested to use this comparison form
1198 when appropriate.
1199 type must be between SLJIT_EQUAL_F64 and SLJIT_ORDERED_F32
1200 type can be combined (or'ed) with SLJIT_REWRITABLE_JUMP
1201 Flags: destroy flags.
1202 Note: if either operand is NaN, the behaviour is undefined for
1203 types up to SLJIT_S_LESS_EQUAL. */
1204 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_s32 type,
1205 sljit_s32 src1, sljit_sw src1w,
1206 sljit_s32 src2, sljit_sw src2w);
1207
1208 /* Set the destination of the jump to this label. */
1209 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_label(struct sljit_jump *jump, struct sljit_label* label);
1210 /* Set the destination address of the jump to this label. */
1211 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_target(struct sljit_jump *jump, sljit_uw target);
1212
1213 /* Emit an indirect jump or fast call.
1214 Direct form: set src to SLJIT_IMM() and srcw to the address
1215 Indirect form: any other valid addressing mode
1216 type must be between SLJIT_JUMP and SLJIT_FAST_CALL
1217
1218 Flags: does not modify flags. */
1219 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw);
1220
1221 /* Emit a C compiler (ABI) compatible function call.
1222 Direct form: set src to SLJIT_IMM() and srcw to the address
1223 Indirect form: any other valid addressing mode
1224 type must be SLJIT_CALL or SLJIT_CALL_CDECL
1225 arg_types is the combination of SLJIT_RET / SLJIT_ARGx (SLJIT_DEF_RET / SLJIT_DEF_ARGx) macros
1226
1227 Flags: destroy all flags. */
1228 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw);
1229
1230 /* Perform the operation using the conditional flags as the second argument.
1231 Type must always be between SLJIT_EQUAL and SLJIT_ORDERED_F64. The value
1232 represented by the type is 1, if the condition represented by the type
1233 is fulfilled, and 0 otherwise.
1234
1235 If op == SLJIT_MOV, SLJIT_MOV32:
1236 Set dst to the value represented by the type (0 or 1).
1237 Flags: - (does not modify flags)
1238 If op == SLJIT_OR, op == SLJIT_AND, op == SLJIT_XOR
1239 Performs the binary operation using dst as the first, and the value
1240 represented by type as the second argument. Result is written into dst.
1241 Flags: Z (may destroy flags) */
1242 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
1243 sljit_s32 dst, sljit_sw dstw,
1244 sljit_s32 type);
1245
1246 /* Emit a conditional mov instruction which moves source to destination,
1247 if the condition is satisfied. Unlike other arithmetic operations this
1248 instruction does not support memory access.
1249
1250 type must be between SLJIT_EQUAL and SLJIT_ORDERED_F64
1251 dst_reg must be a valid register and it can be combined
1252 with SLJIT_I32_OP to perform a 32 bit arithmetic operation
1253 src must be register or immediate (SLJIT_IMM)
1254
1255 Flags: - (does not modify flags) */
1256 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type,
1257 sljit_s32 dst_reg,
1258 sljit_s32 src, sljit_sw srcw);
1259
1260 /* The following flags are used by sljit_emit_mem() and sljit_emit_fmem(). */
1261
1262 /* When SLJIT_MEM_SUPP is passed, no instructions are emitted.
1263 Instead the function returns with SLJIT_SUCCESS if the instruction
1264 form is supported and SLJIT_ERR_UNSUPPORTED otherwise. This flag
1265 allows runtime checking of available instruction forms. */
1266 #define SLJIT_MEM_SUPP 0x0200
1267 /* Memory load operation. This is the default. */
1268 #define SLJIT_MEM_LOAD 0x0000
1269 /* Memory store operation. */
1270 #define SLJIT_MEM_STORE 0x0400
1271 /* Base register is updated before the memory access. */
1272 #define SLJIT_MEM_PRE 0x0800
1273 /* Base register is updated after the memory access. */
1274 #define SLJIT_MEM_POST 0x1000
1275
1276 /* Emit a single memory load or store with update instruction. When the
1277 requested instruction form is not supported by the CPU, it returns
1278 with SLJIT_ERR_UNSUPPORTED instead of emulating the instruction. This
1279 allows specializing tight loops based on the supported instruction
1280 forms (see SLJIT_MEM_SUPP flag).
1281
1282 type must be between SLJIT_MOV and SLJIT_MOV_P and can be
1283 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1284 or SLJIT_MEM_POST must be specified.
1285 reg is the source or destination register, and must be
1286 different from the base register of the mem operand
1287 mem must be a SLJIT_MEM1() or SLJIT_MEM2() operand
1288
1289 Flags: - (does not modify flags) */
1290 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
1291 sljit_s32 reg,
1292 sljit_s32 mem, sljit_sw memw);
1293
1294 /* Same as sljit_emit_mem except the followings:
1295
1296 type must be SLJIT_MOV_F64 or SLJIT_MOV_F32 and can be
1297 combined with SLJIT_MEM_* flags. Either SLJIT_MEM_PRE
1298 or SLJIT_MEM_POST must be specified.
1299 freg is the source or destination floating point register */
1300
1301 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type,
1302 sljit_s32 freg,
1303 sljit_s32 mem, sljit_sw memw);
1304
1305 /* Copies the base address of SLJIT_SP + offset to dst. The offset can be
1306 anything to negate the effect of relative addressing. For example if an
1307 array of sljit_sw values is stored on the stack from offset 0x40, and R0
1308 contains the offset of an array item plus 0x120, this item can be
1309 overwritten by two SLJIT instructions:
1310
1311 sljit_get_local_base(compiler, SLJIT_R1, 0, 0x40 - 0x120);
1312 sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_MEM2(SLJIT_R1, SLJIT_R0), 0, SLJIT_IMM, 0x5);
1313
1314 Flags: - (may destroy flags) */
1315 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset);
1316
1317 /* The constant can be changed runtime (see: sljit_set_const)
1318 Flags: - (does not modify flags) */
1319 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value);
1320
1321 /* After the code generation the address for label, jump and const instructions
1322 are computed. Since these structures are freed by sljit_free_compiler, the
1323 addresses must be preserved by the user program elsewere. */
sljit_get_label_addr(struct sljit_label * label)1324 static SLJIT_INLINE sljit_uw sljit_get_label_addr(struct sljit_label *label) { return label->addr; }
sljit_get_jump_addr(struct sljit_jump * jump)1325 static SLJIT_INLINE sljit_uw sljit_get_jump_addr(struct sljit_jump *jump) { return jump->addr; }
sljit_get_const_addr(struct sljit_const * const_)1326 static SLJIT_INLINE sljit_uw sljit_get_const_addr(struct sljit_const *const_) { return const_->addr; }
1327
1328 /* Only the address and executable offset are required to perform dynamic
1329 code modifications. See sljit_get_executable_offset function. */
1330 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset);
1331 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset);
1332
1333 /* --------------------------------------------------------------------- */
1334 /* Miscellaneous utility functions */
1335 /* --------------------------------------------------------------------- */
1336
1337 #define SLJIT_MAJOR_VERSION 0
1338 #define SLJIT_MINOR_VERSION 94
1339
1340 /* Get the human readable name of the platform. Can be useful on platforms
1341 like ARM, where ARM and Thumb2 functions can be mixed, and
1342 it is useful to know the type of the code generator. */
1343 SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void);
1344
1345 /* Portable helper function to get an offset of a member. */
1346 #define SLJIT_OFFSETOF(base, member) ((sljit_sw)(&((base*)0x10)->member) - 0x10)
1347
1348 #if (defined SLJIT_UTIL_GLOBAL_LOCK && SLJIT_UTIL_GLOBAL_LOCK)
1349 /* This global lock is useful to compile common functions. */
1350 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_grab_lock(void);
1351 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_release_lock(void);
1352 #endif
1353
1354 #if (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK)
1355
1356 /* The sljit_stack structure and its manipulation functions provides
1357 an implementation for a top-down stack. The stack top is stored
1358 in the end field of the sljit_stack structure and the stack goes
1359 down to the min_start field, so the memory region reserved for
1360 this stack is between min_start (inclusive) and end (exclusive)
1361 fields. However the application can only use the region between
1362 start (inclusive) and end (exclusive) fields. The sljit_stack_resize
1363 function can be used to extend this region up to min_start.
1364
1365 This feature uses the "address space reserve" feature of modern
1366 operating systems. Instead of allocating a large memory block
1367 applications can allocate a small memory region and extend it
1368 later without moving the content of the memory area. Therefore
1369 after a successful resize by sljit_stack_resize all pointers into
1370 this region are still valid.
1371
1372 Note:
1373 this structure may not be supported by all operating systems.
1374 end and max_limit fields are aligned to PAGE_SIZE bytes (usually
1375 4 Kbyte or more).
1376 stack should grow in larger steps, e.g. 4Kbyte, 16Kbyte or more. */
1377
1378 struct sljit_stack {
1379 /* User data, anything can be stored here.
1380 Initialized to the same value as the end field. */
1381 sljit_u8 *top;
1382 /* These members are read only. */
1383 /* End address of the stack */
1384 sljit_u8 *end;
1385 /* Current start address of the stack. */
1386 sljit_u8 *start;
1387 /* Lowest start address of the stack. */
1388 sljit_u8 *min_start;
1389 };
1390
1391 /* Allocates a new stack. Returns NULL if unsuccessful.
1392 Note: see sljit_create_compiler for the explanation of allocator_data. */
1393 SLJIT_API_FUNC_ATTRIBUTE struct sljit_stack* SLJIT_FUNC sljit_allocate_stack(sljit_uw start_size, sljit_uw max_size, void *allocator_data);
1394 SLJIT_API_FUNC_ATTRIBUTE void SLJIT_FUNC sljit_free_stack(struct sljit_stack *stack, void *allocator_data);
1395
1396 /* Can be used to increase (extend) or decrease (shrink) the stack
1397 memory area. Returns with new_start if successful and NULL otherwise.
1398 It always fails if new_start is less than min_start or greater or equal
1399 than end fields. The fields of the stack are not changed if the returned
1400 value is NULL (the current memory content is never lost). */
1401 SLJIT_API_FUNC_ATTRIBUTE sljit_u8 *SLJIT_FUNC sljit_stack_resize(struct sljit_stack *stack, sljit_u8 *new_start);
1402
1403 #endif /* (defined SLJIT_UTIL_STACK && SLJIT_UTIL_STACK) */
1404
1405 #if !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL)
1406
1407 /* Get the entry address of a given function. */
1408 #define SLJIT_FUNC_OFFSET(func_name) ((sljit_sw)func_name)
1409
1410 #else /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1411
1412 /* All JIT related code should be placed in the same context (library, binary, etc.). */
1413
1414 #define SLJIT_FUNC_OFFSET(func_name) (*(sljit_sw*)(void*)func_name)
1415
1416 /* For powerpc64, the function pointers point to a context descriptor. */
1417 struct sljit_function_context {
1418 sljit_sw addr;
1419 sljit_sw r2;
1420 sljit_sw r11;
1421 };
1422
1423 /* Fill the context arguments using the addr and the function.
1424 If func_ptr is NULL, it will not be set to the address of context
1425 If addr is NULL, the function address also comes from the func pointer. */
1426 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_function_context(void** func_ptr, struct sljit_function_context* context, sljit_sw addr, void* func);
1427
1428 #endif /* !(defined SLJIT_INDIRECT_CALL && SLJIT_INDIRECT_CALL) */
1429
1430 #if (defined SLJIT_EXECUTABLE_ALLOCATOR && SLJIT_EXECUTABLE_ALLOCATOR)
1431 /* Free unused executable memory. The allocator keeps some free memory
1432 around to reduce the number of OS executable memory allocations.
1433 This improves performance since these calls are costly. However
1434 it is sometimes desired to free all unused memory regions, e.g.
1435 before the application terminates. */
1436 SLJIT_API_FUNC_ATTRIBUTE void sljit_free_unused_memory_exec(void);
1437 #endif
1438
1439 /* --------------------------------------------------------------------- */
1440 /* CPU specific functions */
1441 /* --------------------------------------------------------------------- */
1442
1443 /* The following function is a helper function for sljit_emit_op_custom.
1444 It returns with the real machine register index ( >=0 ) of any SLJIT_R,
1445 SLJIT_S and SLJIT_SP registers.
1446
1447 Note: it returns with -1 for virtual registers (only on x86-32). */
1448
1449 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg);
1450
1451 /* The following function is a helper function for sljit_emit_op_custom.
1452 It returns with the real machine register index of any SLJIT_FLOAT register.
1453
1454 Note: the index is always an even number on ARM (except ARM-64), MIPS, and SPARC. */
1455
1456 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg);
1457
1458 /* Any instruction can be inserted into the instruction stream by
1459 sljit_emit_op_custom. It has a similar purpose as inline assembly.
1460 The size parameter must match to the instruction size of the target
1461 architecture:
1462
1463 x86: 0 < size <= 15. The instruction argument can be byte aligned.
1464 Thumb2: if size == 2, the instruction argument must be 2 byte aligned.
1465 if size == 4, the instruction argument must be 4 byte aligned.
1466 Otherwise: size must be 4 and instruction argument must be 4 byte aligned. */
1467
1468 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
1469 void *instruction, sljit_s32 size);
1470
1471 /* Define the currently available CPU status flags. It is usually used after an
1472 sljit_emit_op_custom call to define which flags are set. */
1473
1474 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_current_flags(struct sljit_compiler *compiler,
1475 sljit_s32 current_flags);
1476
1477 #endif /* _SLJIT_LIR_H_ */
1478