1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines an instruction selector for the Hexagon target.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "Hexagon.h"
15 #include "HexagonISelDAGToDAG.h"
16 #include "HexagonISelLowering.h"
17 #include "HexagonMachineFunctionInfo.h"
18 #include "HexagonTargetMachine.h"
19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 using namespace llvm;
26
27 #define DEBUG_TYPE "hexagon-isel"
28
29 static
30 cl::opt<bool>
31 EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true),
32 cl::desc("Rebalance address calculation trees to improve "
33 "instruction selection"));
34
35 // Rebalance only if this allows e.g. combining a GA with an offset or
36 // factoring out a shift.
37 static
38 cl::opt<bool>
39 RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false),
40 cl::desc("Rebalance address tree only if this allows optimizations"));
41
42 static
43 cl::opt<bool>
44 RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden,
45 cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced"));
46
47 static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden,
48 cl::init(true), cl::desc("Enable checking of SDNode's single-use status"));
49
50 //===----------------------------------------------------------------------===//
51 // Instruction Selector Implementation
52 //===----------------------------------------------------------------------===//
53
54 #define GET_DAGISEL_BODY HexagonDAGToDAGISel
55 #include "HexagonGenDAGISel.inc"
56
57 /// createHexagonISelDag - This pass converts a legalized DAG into a
58 /// Hexagon-specific DAG, ready for instruction scheduling.
59 ///
60 namespace llvm {
createHexagonISelDag(HexagonTargetMachine & TM,CodeGenOpt::Level OptLevel)61 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
62 CodeGenOpt::Level OptLevel) {
63 return new HexagonDAGToDAGISel(TM, OptLevel);
64 }
65 }
66
SelectIndexedLoad(LoadSDNode * LD,const SDLoc & dl)67 void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) {
68 SDValue Chain = LD->getChain();
69 SDValue Base = LD->getBasePtr();
70 SDValue Offset = LD->getOffset();
71 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
72 EVT LoadedVT = LD->getMemoryVT();
73 unsigned Opcode = 0;
74
75 // Check for zero extended loads. Treat any-extend loads as zero extended
76 // loads.
77 ISD::LoadExtType ExtType = LD->getExtensionType();
78 bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
79 bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc);
80
81 assert(LoadedVT.isSimple());
82 switch (LoadedVT.getSimpleVT().SimpleTy) {
83 case MVT::i8:
84 if (IsZeroExt)
85 Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io;
86 else
87 Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io;
88 break;
89 case MVT::i16:
90 if (IsZeroExt)
91 Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io;
92 else
93 Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io;
94 break;
95 case MVT::i32:
96 case MVT::f32:
97 case MVT::v2i16:
98 case MVT::v4i8:
99 Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io;
100 break;
101 case MVT::i64:
102 case MVT::f64:
103 case MVT::v2i32:
104 case MVT::v4i16:
105 case MVT::v8i8:
106 Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io;
107 break;
108 case MVT::v64i8:
109 case MVT::v32i16:
110 case MVT::v16i32:
111 case MVT::v8i64:
112 case MVT::v128i8:
113 case MVT::v64i16:
114 case MVT::v32i32:
115 case MVT::v16i64:
116 if (isAlignedMemNode(LD)) {
117 if (LD->isNonTemporal())
118 Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai;
119 else
120 Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai;
121 } else {
122 Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai;
123 }
124 break;
125 default:
126 llvm_unreachable("Unexpected memory type in indexed load");
127 }
128
129 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
130 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
131 MemOp[0] = LD->getMemOperand();
132
133 auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl)
134 -> MachineSDNode* {
135 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) {
136 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
137 return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64,
138 Zero, SDValue(N, 0));
139 }
140 if (ExtType == ISD::SEXTLOAD)
141 return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
142 SDValue(N, 0));
143 return N;
144 };
145
146 // Loaded value Next address Chain
147 SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) };
148 SDValue To[3];
149
150 EVT ValueVT = LD->getValueType(0);
151 if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) {
152 // A load extending to i64 will actually produce i32, which will then
153 // need to be extended to i64.
154 assert(LoadedVT.getSizeInBits() <= 32);
155 ValueVT = MVT::i32;
156 }
157
158 if (IsValidInc) {
159 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT,
160 MVT::i32, MVT::Other, Base,
161 IncV, Chain);
162 L->setMemRefs(MemOp, MemOp+1);
163 To[1] = SDValue(L, 1); // Next address.
164 To[2] = SDValue(L, 2); // Chain.
165 // Handle special case for extension to i64.
166 if (LD->getValueType(0) == MVT::i64)
167 L = getExt64(L, dl);
168 To[0] = SDValue(L, 0); // Loaded (extended) value.
169 } else {
170 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
171 MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other,
172 Base, Zero, Chain);
173 L->setMemRefs(MemOp, MemOp+1);
174 To[2] = SDValue(L, 1); // Chain.
175 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
176 Base, IncV);
177 To[1] = SDValue(A, 0); // Next address.
178 // Handle special case for extension to i64.
179 if (LD->getValueType(0) == MVT::i64)
180 L = getExt64(L, dl);
181 To[0] = SDValue(L, 0); // Loaded (extended) value.
182 }
183 ReplaceUses(From, To, 3);
184 CurDAG->RemoveDeadNode(LD);
185 }
186
LoadInstrForLoadIntrinsic(SDNode * IntN)187 MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) {
188 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
189 return nullptr;
190
191 SDLoc dl(IntN);
192 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
193
194 static std::map<unsigned,unsigned> LoadPciMap = {
195 { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci },
196 { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci },
197 { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci },
198 { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci },
199 { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci },
200 { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci },
201 };
202 auto FLC = LoadPciMap.find(IntNo);
203 if (FLC != LoadPciMap.end()) {
204 EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32;
205 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
206 // Operands: { Base, Increment, Modifier, Chain }
207 auto Inc = cast<ConstantSDNode>(IntN->getOperand(5));
208 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32);
209 MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys,
210 { IntN->getOperand(2), I, IntN->getOperand(4),
211 IntN->getOperand(0) });
212 return Res;
213 }
214
215 return nullptr;
216 }
217
StoreInstrForLoadIntrinsic(MachineSDNode * LoadN,SDNode * IntN)218 SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN,
219 SDNode *IntN) {
220 // The "LoadN" is just a machine load instruction. The intrinsic also
221 // involves storing it. Generate an appropriate store to the location
222 // given in the intrinsic's operand(3).
223 uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags;
224 unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) &
225 HexagonII::MemAccesSizeMask;
226 unsigned Size = 1U << (SizeBits-1);
227
228 SDLoc dl(IntN);
229 MachinePointerInfo PI;
230 SDValue TS;
231 SDValue Loc = IntN->getOperand(3);
232
233 if (Size >= 4)
234 TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI,
235 Size);
236 else
237 TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc,
238 PI, MVT::getIntegerVT(Size * 8), Size);
239
240 SDNode *StoreN;
241 {
242 HandleSDNode Handle(TS);
243 SelectStore(TS.getNode());
244 StoreN = Handle.getValue().getNode();
245 }
246
247 // Load's results are { Loaded value, Updated pointer, Chain }
248 ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1));
249 ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0));
250 return StoreN;
251 }
252
tryLoadOfLoadIntrinsic(LoadSDNode * N)253 bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) {
254 // The intrinsics for load circ/brev perform two operations:
255 // 1. Load a value V from the specified location, using the addressing
256 // mode corresponding to the intrinsic.
257 // 2. Store V into a specified location. This location is typically a
258 // local, temporary object.
259 // In many cases, the program using these intrinsics will immediately
260 // load V again from the local object. In those cases, when certain
261 // conditions are met, the last load can be removed.
262 // This function identifies and optimizes this pattern. If the pattern
263 // cannot be optimized, it returns nullptr, which will cause the load
264 // to be selected separately from the intrinsic (which will be handled
265 // in SelectIntrinsicWChain).
266
267 SDValue Ch = N->getOperand(0);
268 SDValue Loc = N->getOperand(1);
269
270 // Assume that the load and the intrinsic are connected directly with a
271 // chain:
272 // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C
273 // t2: i32,ch = load t1:1, Loc, ...
274 SDNode *C = Ch.getNode();
275
276 if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN)
277 return false;
278
279 // The second load can only be eliminated if its extension type matches
280 // that of the load instruction corresponding to the intrinsic. The user
281 // can provide an address of an unsigned variable to store the result of
282 // a sign-extending intrinsic into (or the other way around).
283 ISD::LoadExtType IntExt;
284 switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) {
285 case Intrinsic::hexagon_circ_ldub:
286 case Intrinsic::hexagon_circ_lduh:
287 IntExt = ISD::ZEXTLOAD;
288 break;
289 case Intrinsic::hexagon_circ_ldw:
290 case Intrinsic::hexagon_circ_ldd:
291 IntExt = ISD::NON_EXTLOAD;
292 break;
293 default:
294 IntExt = ISD::SEXTLOAD;
295 break;
296 }
297 if (N->getExtensionType() != IntExt)
298 return false;
299
300 // Make sure the target location for the loaded value in the load intrinsic
301 // is the location from which LD (or N) is loading.
302 if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode())
303 return false;
304
305 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) {
306 SDNode *S = StoreInstrForLoadIntrinsic(L, C);
307 SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) };
308 SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) };
309 ReplaceUses(F, T, array_lengthof(T));
310 // This transformation will leave the intrinsic dead. If it remains in
311 // the DAG, the selection code will see it again, but without the load,
312 // and it will generate a store that is normally required for it.
313 CurDAG->RemoveDeadNode(C);
314 return true;
315 }
316 return false;
317 }
318
319 // Convert the bit-reverse load intrinsic to appropriate target instruction.
SelectBrevLdIntrinsic(SDNode * IntN)320 bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) {
321 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
322 return false;
323
324 const SDLoc &dl(IntN);
325 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
326
327 static const std::map<unsigned, unsigned> LoadBrevMap = {
328 { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr },
329 { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr },
330 { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr },
331 { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr },
332 { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr },
333 { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr }
334 };
335 auto FLI = LoadBrevMap.find(IntNo);
336 if (FLI != LoadBrevMap.end()) {
337 EVT ValTy =
338 (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32;
339 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
340 // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr,
341 // modifier}.
342 // Operands of target instruction: { Base, Modifier, Chain }.
343 MachineSDNode *Res = CurDAG->getMachineNode(
344 FLI->second, dl, RTys,
345 {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)});
346
347 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
348 MemOp[0] = cast<MemIntrinsicSDNode>(IntN)->getMemOperand();
349 Res->setMemRefs(MemOp, MemOp + 1);
350
351 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
352 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
353 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
354 CurDAG->RemoveDeadNode(IntN);
355 return true;
356 }
357 return false;
358 }
359
360 /// Generate a machine instruction node for the new circlar buffer intrinsics.
361 /// The new versions use a CSx register instead of the K field.
SelectNewCircIntrinsic(SDNode * IntN)362 bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) {
363 if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN)
364 return false;
365
366 SDLoc DL(IntN);
367 unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue();
368 SmallVector<SDValue, 7> Ops;
369
370 static std::map<unsigned,unsigned> LoadNPcMap = {
371 { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci },
372 { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci },
373 { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci },
374 { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci },
375 { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci },
376 { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci },
377 { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr },
378 { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr },
379 { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr },
380 { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr },
381 { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr },
382 { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr }
383 };
384 auto FLI = LoadNPcMap.find (IntNo);
385 if (FLI != LoadNPcMap.end()) {
386 EVT ValTy = MVT::i32;
387 if (IntNo == Intrinsic::hexagon_L2_loadrd_pci ||
388 IntNo == Intrinsic::hexagon_L2_loadrd_pcr)
389 ValTy = MVT::i64;
390 EVT RTys[] = { ValTy, MVT::i32, MVT::Other };
391 // Handle load.*_pci case which has 6 operands.
392 if (IntN->getNumOperands() == 6) {
393 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
394 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
395 // Operands: { Base, Increment, Modifier, Start, Chain }.
396 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
397 IntN->getOperand(0) };
398 } else
399 // Handle load.*_pcr case which has 5 operands.
400 // Operands: { Base, Modifier, Start, Chain }.
401 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
402 IntN->getOperand(0) };
403 MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops);
404 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
405 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
406 ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2));
407 CurDAG->RemoveDeadNode(IntN);
408 return true;
409 }
410
411 static std::map<unsigned,unsigned> StoreNPcMap = {
412 { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci },
413 { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci },
414 { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci },
415 { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci },
416 { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci },
417 { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr },
418 { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr },
419 { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr },
420 { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr },
421 { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr }
422 };
423 auto FSI = StoreNPcMap.find (IntNo);
424 if (FSI != StoreNPcMap.end()) {
425 EVT RTys[] = { MVT::i32, MVT::Other };
426 // Handle store.*_pci case which has 7 operands.
427 if (IntN->getNumOperands() == 7) {
428 auto Inc = cast<ConstantSDNode>(IntN->getOperand(3));
429 SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32);
430 // Operands: { Base, Increment, Modifier, Value, Start, Chain }.
431 Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5),
432 IntN->getOperand(6), IntN->getOperand(0) };
433 } else
434 // Handle store.*_pcr case which has 6 operands.
435 // Operands: { Base, Modifier, Value, Start, Chain }.
436 Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4),
437 IntN->getOperand(5), IntN->getOperand(0) };
438 MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops);
439 ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0));
440 ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1));
441 CurDAG->RemoveDeadNode(IntN);
442 return true;
443 }
444
445 return false;
446 }
447
SelectLoad(SDNode * N)448 void HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
449 SDLoc dl(N);
450 LoadSDNode *LD = cast<LoadSDNode>(N);
451
452 // Handle indexed loads.
453 ISD::MemIndexedMode AM = LD->getAddressingMode();
454 if (AM != ISD::UNINDEXED) {
455 SelectIndexedLoad(LD, dl);
456 return;
457 }
458
459 // Handle patterns using circ/brev load intrinsics.
460 if (tryLoadOfLoadIntrinsic(LD))
461 return;
462
463 SelectCode(LD);
464 }
465
SelectIndexedStore(StoreSDNode * ST,const SDLoc & dl)466 void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) {
467 SDValue Chain = ST->getChain();
468 SDValue Base = ST->getBasePtr();
469 SDValue Offset = ST->getOffset();
470 SDValue Value = ST->getValue();
471 // Get the constant value.
472 int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
473 EVT StoredVT = ST->getMemoryVT();
474 EVT ValueVT = Value.getValueType();
475
476 bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc);
477 unsigned Opcode = 0;
478
479 assert(StoredVT.isSimple());
480 switch (StoredVT.getSimpleVT().SimpleTy) {
481 case MVT::i8:
482 Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io;
483 break;
484 case MVT::i16:
485 Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io;
486 break;
487 case MVT::i32:
488 case MVT::f32:
489 case MVT::v2i16:
490 case MVT::v4i8:
491 Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io;
492 break;
493 case MVT::i64:
494 case MVT::f64:
495 case MVT::v2i32:
496 case MVT::v4i16:
497 case MVT::v8i8:
498 Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io;
499 break;
500 case MVT::v64i8:
501 case MVT::v32i16:
502 case MVT::v16i32:
503 case MVT::v8i64:
504 case MVT::v128i8:
505 case MVT::v64i16:
506 case MVT::v32i32:
507 case MVT::v16i64:
508 if (isAlignedMemNode(ST)) {
509 if (ST->isNonTemporal())
510 Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai;
511 else
512 Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai;
513 } else {
514 Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai;
515 }
516 break;
517 default:
518 llvm_unreachable("Unexpected memory type in indexed store");
519 }
520
521 if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
522 assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
523 Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo,
524 dl, MVT::i32, Value);
525 }
526
527 SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32);
528 MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
529 MemOp[0] = ST->getMemOperand();
530
531 // Next address Chain
532 SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) };
533 SDValue To[2];
534
535 if (IsValidInc) {
536 // Build post increment store.
537 SDValue Ops[] = { Base, IncV, Value, Chain };
538 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
539 Ops);
540 S->setMemRefs(MemOp, MemOp + 1);
541 To[0] = SDValue(S, 0);
542 To[1] = SDValue(S, 1);
543 } else {
544 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
545 SDValue Ops[] = { Base, Zero, Value, Chain };
546 MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
547 S->setMemRefs(MemOp, MemOp + 1);
548 To[1] = SDValue(S, 0);
549 MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
550 Base, IncV);
551 To[0] = SDValue(A, 0);
552 }
553
554 ReplaceUses(From, To, 2);
555 CurDAG->RemoveDeadNode(ST);
556 }
557
SelectStore(SDNode * N)558 void HexagonDAGToDAGISel::SelectStore(SDNode *N) {
559 SDLoc dl(N);
560 StoreSDNode *ST = cast<StoreSDNode>(N);
561
562 // Handle indexed stores.
563 ISD::MemIndexedMode AM = ST->getAddressingMode();
564 if (AM != ISD::UNINDEXED) {
565 SelectIndexedStore(ST, dl);
566 return;
567 }
568
569 SelectCode(ST);
570 }
571
SelectSHL(SDNode * N)572 void HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
573 SDLoc dl(N);
574 SDValue Shl_0 = N->getOperand(0);
575 SDValue Shl_1 = N->getOperand(1);
576
577 auto Default = [this,N] () -> void { SelectCode(N); };
578
579 if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant)
580 return Default();
581
582 // RHS is const.
583 int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue();
584
585 if (Shl_0.getOpcode() == ISD::MUL) {
586 SDValue Mul_0 = Shl_0.getOperand(0); // Val
587 SDValue Mul_1 = Shl_0.getOperand(1); // Const
588 // RHS of mul is const.
589 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) {
590 int32_t ValConst = C->getSExtValue() << ShlConst;
591 if (isInt<9>(ValConst)) {
592 SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32);
593 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
594 MVT::i32, Mul_0, Val);
595 ReplaceNode(N, Result);
596 return;
597 }
598 }
599 return Default();
600 }
601
602 if (Shl_0.getOpcode() == ISD::SUB) {
603 SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
604 SDValue Sub_1 = Shl_0.getOperand(1); // Val
605 if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) {
606 if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL)
607 return Default();
608 SDValue Shl2_0 = Sub_1.getOperand(0); // Val
609 SDValue Shl2_1 = Sub_1.getOperand(1); // Const
610 if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) {
611 int32_t ValConst = 1 << (ShlConst + C2->getSExtValue());
612 if (isInt<9>(-ValConst)) {
613 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32);
614 SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
615 MVT::i32, Shl2_0, Val);
616 ReplaceNode(N, Result);
617 return;
618 }
619 }
620 }
621 }
622
623 return Default();
624 }
625
626 //
627 // Handling intrinsics for circular load and bitreverse load.
628 //
SelectIntrinsicWChain(SDNode * N)629 void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
630 if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) {
631 StoreInstrForLoadIntrinsic(L, N);
632 CurDAG->RemoveDeadNode(N);
633 return;
634 }
635
636 // Handle bit-reverse load intrinsics.
637 if (SelectBrevLdIntrinsic(N))
638 return;
639
640 if (SelectNewCircIntrinsic(N))
641 return;
642
643 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
644 if (IntNo == Intrinsic::hexagon_V6_vgathermw ||
645 IntNo == Intrinsic::hexagon_V6_vgathermw_128B ||
646 IntNo == Intrinsic::hexagon_V6_vgathermh ||
647 IntNo == Intrinsic::hexagon_V6_vgathermh_128B ||
648 IntNo == Intrinsic::hexagon_V6_vgathermhw ||
649 IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) {
650 SelectV65Gather(N);
651 return;
652 }
653 if (IntNo == Intrinsic::hexagon_V6_vgathermwq ||
654 IntNo == Intrinsic::hexagon_V6_vgathermwq_128B ||
655 IntNo == Intrinsic::hexagon_V6_vgathermhq ||
656 IntNo == Intrinsic::hexagon_V6_vgathermhq_128B ||
657 IntNo == Intrinsic::hexagon_V6_vgathermhwq ||
658 IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) {
659 SelectV65GatherPred(N);
660 return;
661 }
662
663 SelectCode(N);
664 }
665
SelectIntrinsicWOChain(SDNode * N)666 void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
667 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
668 unsigned Bits;
669 switch (IID) {
670 case Intrinsic::hexagon_S2_vsplatrb:
671 Bits = 8;
672 break;
673 case Intrinsic::hexagon_S2_vsplatrh:
674 Bits = 16;
675 break;
676 case Intrinsic::hexagon_V6_vaddcarry:
677 case Intrinsic::hexagon_V6_vaddcarry_128B:
678 case Intrinsic::hexagon_V6_vsubcarry:
679 case Intrinsic::hexagon_V6_vsubcarry_128B:
680 SelectHVXDualOutput(N);
681 return;
682 default:
683 SelectCode(N);
684 return;
685 }
686
687 SDValue V = N->getOperand(1);
688 SDValue U;
689 if (keepsLowBits(V, Bits, U)) {
690 SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
691 N->getOperand(0), U);
692 ReplaceNode(N, R.getNode());
693 SelectCode(R.getNode());
694 return;
695 }
696 SelectCode(N);
697 }
698
699 //
700 // Map floating point constant values.
701 //
SelectConstantFP(SDNode * N)702 void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
703 SDLoc dl(N);
704 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
705 APInt A = CN->getValueAPF().bitcastToAPInt();
706 if (N->getValueType(0) == MVT::f32) {
707 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32);
708 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V));
709 return;
710 }
711 if (N->getValueType(0) == MVT::f64) {
712 SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64);
713 ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V));
714 return;
715 }
716
717 SelectCode(N);
718 }
719
720 //
721 // Map boolean values.
722 //
SelectConstant(SDNode * N)723 void HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
724 if (N->getValueType(0) == MVT::i1) {
725 assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1));
726 unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0)
727 ? Hexagon::PS_true
728 : Hexagon::PS_false;
729 ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1));
730 return;
731 }
732
733 SelectCode(N);
734 }
735
SelectFrameIndex(SDNode * N)736 void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
737 MachineFrameInfo &MFI = MF->getFrameInfo();
738 const HexagonFrameLowering *HFI = HST->getFrameLowering();
739 int FX = cast<FrameIndexSDNode>(N)->getIndex();
740 unsigned StkA = HFI->getStackAlignment();
741 unsigned MaxA = MFI.getMaxAlignment();
742 SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
743 SDLoc DL(N);
744 SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
745 SDNode *R = nullptr;
746
747 // Use PS_fi when:
748 // - the object is fixed, or
749 // - there are no objects with higher-than-default alignment, or
750 // - there are no dynamically allocated objects.
751 // Otherwise, use PS_fia.
752 if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) {
753 R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero);
754 } else {
755 auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
756 unsigned AR = HMFI.getStackAlignBaseVReg();
757 SDValue CH = CurDAG->getEntryNode();
758 SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
759 R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops);
760 }
761
762 ReplaceNode(N, R);
763 }
764
SelectAddSubCarry(SDNode * N)765 void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) {
766 unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c
767 : Hexagon::A4_subp_c;
768 SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(),
769 { N->getOperand(0), N->getOperand(1),
770 N->getOperand(2) });
771 ReplaceNode(N, C);
772 }
773
SelectVAlign(SDNode * N)774 void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) {
775 MVT ResTy = N->getValueType(0).getSimpleVT();
776 if (HST->isHVXVectorType(ResTy, true))
777 return SelectHvxVAlign(N);
778
779 const SDLoc &dl(N);
780 unsigned VecLen = ResTy.getSizeInBits();
781 if (VecLen == 32) {
782 SDValue Ops[] = {
783 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
784 N->getOperand(0),
785 CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
786 N->getOperand(1),
787 CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
788 };
789 SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
790 MVT::i64, Ops);
791
792 // Shift right by "(Addr & 0x3) * 8" bytes.
793 SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32);
794 SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32);
795 SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32,
796 M0, N->getOperand(2), M1);
797 SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64,
798 SDValue(R, 0), SDValue(C, 0));
799 SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy,
800 SDValue(S, 0));
801 ReplaceNode(N, E.getNode());
802 } else {
803 assert(VecLen == 64);
804 SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1,
805 N->getOperand(2));
806 SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy,
807 N->getOperand(0), N->getOperand(1),
808 SDValue(Pu,0));
809 ReplaceNode(N, VA);
810 }
811 }
812
SelectVAlignAddr(SDNode * N)813 void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) {
814 const SDLoc &dl(N);
815 SDValue A = N->getOperand(1);
816 int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue();
817 assert(isPowerOf2_32(-Mask));
818
819 SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32);
820 SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32,
821 N->getOperand(0), M);
822 ReplaceNode(N, AA);
823 }
824
825 // Handle these nodes here to avoid having to write patterns for all
826 // combinations of input/output types. In all cases, the resulting
827 // instruction is the same.
SelectTypecast(SDNode * N)828 void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) {
829 SDValue Op = N->getOperand(0);
830 MVT OpTy = Op.getValueType().getSimpleVT();
831 SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(),
832 CurDAG->getVTList(OpTy), {Op});
833 ReplaceNode(T, Op.getNode());
834 }
835
SelectP2D(SDNode * N)836 void HexagonDAGToDAGISel::SelectP2D(SDNode *N) {
837 MVT ResTy = N->getValueType(0).getSimpleVT();
838 SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy,
839 N->getOperand(0));
840 ReplaceNode(N, T);
841 }
842
SelectD2P(SDNode * N)843 void HexagonDAGToDAGISel::SelectD2P(SDNode *N) {
844 const SDLoc &dl(N);
845 MVT ResTy = N->getValueType(0).getSimpleVT();
846 SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32);
847 SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy,
848 N->getOperand(0), Zero);
849 ReplaceNode(N, T);
850 }
851
SelectV2Q(SDNode * N)852 void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) {
853 const SDLoc &dl(N);
854 MVT ResTy = N->getValueType(0).getSimpleVT();
855
856 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
857 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
858 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy,
859 N->getOperand(0), SDValue(R,0));
860 ReplaceNode(N, T);
861 }
862
SelectQ2V(SDNode * N)863 void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) {
864 const SDLoc &dl(N);
865 MVT ResTy = N->getValueType(0).getSimpleVT();
866
867 SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32);
868 SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C);
869 SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy,
870 N->getOperand(0), SDValue(R,0));
871 ReplaceNode(N, T);
872 }
873
Select(SDNode * N)874 void HexagonDAGToDAGISel::Select(SDNode *N) {
875 if (N->isMachineOpcode())
876 return N->setNodeId(-1); // Already selected.
877
878 switch (N->getOpcode()) {
879 case ISD::Constant: return SelectConstant(N);
880 case ISD::ConstantFP: return SelectConstantFP(N);
881 case ISD::FrameIndex: return SelectFrameIndex(N);
882 case ISD::SHL: return SelectSHL(N);
883 case ISD::LOAD: return SelectLoad(N);
884 case ISD::STORE: return SelectStore(N);
885 case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N);
886 case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N);
887
888 case HexagonISD::ADDC:
889 case HexagonISD::SUBC: return SelectAddSubCarry(N);
890 case HexagonISD::VALIGN: return SelectVAlign(N);
891 case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N);
892 case HexagonISD::TYPECAST: return SelectTypecast(N);
893 case HexagonISD::P2D: return SelectP2D(N);
894 case HexagonISD::D2P: return SelectD2P(N);
895 case HexagonISD::Q2V: return SelectQ2V(N);
896 case HexagonISD::V2Q: return SelectV2Q(N);
897 }
898
899 if (HST->useHVXOps()) {
900 switch (N->getOpcode()) {
901 case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N);
902 case HexagonISD::VROR: return SelectHvxRor(N);
903 }
904 }
905
906 SelectCode(N);
907 }
908
909 bool HexagonDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue & Op,unsigned ConstraintID,std::vector<SDValue> & OutOps)910 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
911 std::vector<SDValue> &OutOps) {
912 SDValue Inp = Op, Res;
913
914 switch (ConstraintID) {
915 default:
916 return true;
917 case InlineAsm::Constraint_i:
918 case InlineAsm::Constraint_o: // Offsetable.
919 case InlineAsm::Constraint_v: // Not offsetable.
920 case InlineAsm::Constraint_m: // Memory.
921 if (SelectAddrFI(Inp, Res))
922 OutOps.push_back(Res);
923 else
924 OutOps.push_back(Inp);
925 break;
926 }
927
928 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
929 return false;
930 }
931
932
isMemOPCandidate(SDNode * I,SDNode * U)933 static bool isMemOPCandidate(SDNode *I, SDNode *U) {
934 // I is an operand of U. Check if U is an arithmetic (binary) operation
935 // usable in a memop, where the other operand is a loaded value, and the
936 // result of U is stored in the same location.
937
938 if (!U->hasOneUse())
939 return false;
940 unsigned Opc = U->getOpcode();
941 switch (Opc) {
942 case ISD::ADD:
943 case ISD::SUB:
944 case ISD::AND:
945 case ISD::OR:
946 break;
947 default:
948 return false;
949 }
950
951 SDValue S0 = U->getOperand(0);
952 SDValue S1 = U->getOperand(1);
953 SDValue SY = (S0.getNode() == I) ? S1 : S0;
954
955 SDNode *UUse = *U->use_begin();
956 if (UUse->getNumValues() != 1)
957 return false;
958
959 // Check if one of the inputs to U is a load instruction and the output
960 // is used by a store instruction. If so and they also have the same
961 // base pointer, then don't preoprocess this node sequence as it
962 // can be matched to a memop.
963 SDNode *SYNode = SY.getNode();
964 if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) {
965 SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr();
966 SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr();
967 if (LDBasePtr == STBasePtr)
968 return true;
969 }
970 return false;
971 }
972
973
974 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
975 // (or (select c 0 y) z) -> (select c z (or y z))
ppSimplifyOrSelect0(std::vector<SDNode * > && Nodes)976 void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) {
977 SelectionDAG &DAG = *CurDAG;
978
979 for (auto I : Nodes) {
980 if (I->getOpcode() != ISD::OR)
981 continue;
982
983 auto IsZero = [] (const SDValue &V) -> bool {
984 if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
985 return SC->isNullValue();
986 return false;
987 };
988 auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
989 if (Op.getOpcode() != ISD::SELECT)
990 return false;
991 return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
992 };
993
994 SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
995 EVT VT = I->getValueType(0);
996 bool SelN0 = IsSelect0(N0);
997 SDValue SOp = SelN0 ? N0 : N1;
998 SDValue VOp = SelN0 ? N1 : N0;
999
1000 if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
1001 SDValue SC = SOp.getOperand(0);
1002 SDValue SX = SOp.getOperand(1);
1003 SDValue SY = SOp.getOperand(2);
1004 SDLoc DLS = SOp;
1005 if (IsZero(SY)) {
1006 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
1007 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
1008 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1009 } else if (IsZero(SX)) {
1010 SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
1011 SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
1012 DAG.ReplaceAllUsesWith(I, NewSel.getNode());
1013 }
1014 }
1015 }
1016 }
1017
1018 // Transform: (store ch val (add x (add (shl y c) e)))
1019 // to: (store ch val (add x (shl (add y d) c))),
1020 // where e = (shl d c) for some integer d.
1021 // The purpose of this is to enable generation of loads/stores with
1022 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1023 // value c must be 0, 1 or 2.
ppAddrReorderAddShl(std::vector<SDNode * > && Nodes)1024 void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) {
1025 SelectionDAG &DAG = *CurDAG;
1026
1027 for (auto I : Nodes) {
1028 if (I->getOpcode() != ISD::STORE)
1029 continue;
1030
1031 // I matched: (store ch val Off)
1032 SDValue Off = I->getOperand(2);
1033 // Off needs to match: (add x (add (shl y c) (shl d c))))
1034 if (Off.getOpcode() != ISD::ADD)
1035 continue;
1036 // Off matched: (add x T0)
1037 SDValue T0 = Off.getOperand(1);
1038 // T0 needs to match: (add T1 T2):
1039 if (T0.getOpcode() != ISD::ADD)
1040 continue;
1041 // T0 matched: (add T1 T2)
1042 SDValue T1 = T0.getOperand(0);
1043 SDValue T2 = T0.getOperand(1);
1044 // T1 needs to match: (shl y c)
1045 if (T1.getOpcode() != ISD::SHL)
1046 continue;
1047 SDValue C = T1.getOperand(1);
1048 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode());
1049 if (CN == nullptr)
1050 continue;
1051 unsigned CV = CN->getZExtValue();
1052 if (CV > 2)
1053 continue;
1054 // T2 needs to match e, where e = (shl d c) for some d.
1055 ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode());
1056 if (EN == nullptr)
1057 continue;
1058 unsigned EV = EN->getZExtValue();
1059 if (EV % (1 << CV) != 0)
1060 continue;
1061 unsigned DV = EV / (1 << CV);
1062
1063 // Replace T0 with: (shl (add y d) c)
1064 SDLoc DL = SDLoc(I);
1065 EVT VT = T0.getValueType();
1066 SDValue D = DAG.getConstant(DV, DL, VT);
1067 // NewAdd = (add y d)
1068 SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D);
1069 // NewShl = (shl NewAdd c)
1070 SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C);
1071 ReplaceNode(T0.getNode(), NewShl.getNode());
1072 }
1073 }
1074
1075 // Transform: (load ch (add x (and (srl y c) Mask)))
1076 // to: (load ch (add x (shl (srl y d) d-c)))
1077 // where
1078 // Mask = 00..0 111..1 0.0
1079 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1080 // | +-------- 1s
1081 // +-------------- at most c 0s
1082 // Motivating example:
1083 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1084 // to (add x (and (srl y 3) 1FFFFFFC))
1085 // which results in a constant-extended and(##...,lsr). This transformation
1086 // undoes this simplification for cases where the shl can be folded into
1087 // an addressing mode.
ppAddrRewriteAndSrl(std::vector<SDNode * > && Nodes)1088 void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) {
1089 SelectionDAG &DAG = *CurDAG;
1090
1091 for (SDNode *N : Nodes) {
1092 unsigned Opc = N->getOpcode();
1093 if (Opc != ISD::LOAD && Opc != ISD::STORE)
1094 continue;
1095 SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2);
1096 // Addr must match: (add x T0)
1097 if (Addr.getOpcode() != ISD::ADD)
1098 continue;
1099 SDValue T0 = Addr.getOperand(1);
1100 // T0 must match: (and T1 Mask)
1101 if (T0.getOpcode() != ISD::AND)
1102 continue;
1103
1104 // We have an AND.
1105 //
1106 // Check the first operand. It must be: (srl y c).
1107 SDValue S = T0.getOperand(0);
1108 if (S.getOpcode() != ISD::SRL)
1109 continue;
1110 ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode());
1111 if (SN == nullptr)
1112 continue;
1113 if (SN->getAPIntValue().getBitWidth() != 32)
1114 continue;
1115 uint32_t CV = SN->getZExtValue();
1116
1117 // Check the second operand: the supposed mask.
1118 ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode());
1119 if (MN == nullptr)
1120 continue;
1121 if (MN->getAPIntValue().getBitWidth() != 32)
1122 continue;
1123 uint32_t Mask = MN->getZExtValue();
1124 // Examine the mask.
1125 uint32_t TZ = countTrailingZeros(Mask);
1126 uint32_t M1 = countTrailingOnes(Mask >> TZ);
1127 uint32_t LZ = countLeadingZeros(Mask);
1128 // Trailing zeros + middle ones + leading zeros must equal the width.
1129 if (TZ + M1 + LZ != 32)
1130 continue;
1131 // The number of trailing zeros will be encoded in the addressing mode.
1132 if (TZ > 2)
1133 continue;
1134 // The number of leading zeros must be at most c.
1135 if (LZ > CV)
1136 continue;
1137
1138 // All looks good.
1139 SDValue Y = S.getOperand(0);
1140 EVT VT = Addr.getValueType();
1141 SDLoc dl(S);
1142 // TZ = D-C, so D = TZ+C.
1143 SDValue D = DAG.getConstant(TZ+CV, dl, VT);
1144 SDValue DC = DAG.getConstant(TZ, dl, VT);
1145 SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D);
1146 SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC);
1147 ReplaceNode(T0.getNode(), NewShl.getNode());
1148 }
1149 }
1150
1151 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1152 // (op ... 1 ...))
ppHoistZextI1(std::vector<SDNode * > && Nodes)1153 void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) {
1154 SelectionDAG &DAG = *CurDAG;
1155
1156 for (SDNode *N : Nodes) {
1157 unsigned Opc = N->getOpcode();
1158 if (Opc != ISD::ZERO_EXTEND)
1159 continue;
1160 SDValue OpI1 = N->getOperand(0);
1161 EVT OpVT = OpI1.getValueType();
1162 if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1)
1163 continue;
1164 for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1165 SDNode *U = *I;
1166 if (U->getNumValues() != 1)
1167 continue;
1168 EVT UVT = U->getValueType(0);
1169 if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1)
1170 continue;
1171 if (isMemOPCandidate(N, U))
1172 continue;
1173
1174 // Potentially simplifiable operation.
1175 unsigned I1N = I.getOperandNo();
1176 SmallVector<SDValue,2> Ops(U->getNumOperands());
1177 for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i)
1178 Ops[i] = U->getOperand(i);
1179 EVT BVT = Ops[I1N].getValueType();
1180
1181 SDLoc dl(U);
1182 SDValue C0 = DAG.getConstant(0, dl, BVT);
1183 SDValue C1 = DAG.getConstant(1, dl, BVT);
1184 SDValue If0, If1;
1185
1186 if (isa<MachineSDNode>(U)) {
1187 unsigned UseOpc = U->getMachineOpcode();
1188 Ops[I1N] = C0;
1189 If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1190 Ops[I1N] = C1;
1191 If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0);
1192 } else {
1193 unsigned UseOpc = U->getOpcode();
1194 Ops[I1N] = C0;
1195 If0 = DAG.getNode(UseOpc, dl, UVT, Ops);
1196 Ops[I1N] = C1;
1197 If1 = DAG.getNode(UseOpc, dl, UVT, Ops);
1198 }
1199 SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0);
1200 DAG.ReplaceAllUsesWith(U, Sel.getNode());
1201 }
1202 }
1203 }
1204
PreprocessISelDAG()1205 void HexagonDAGToDAGISel::PreprocessISelDAG() {
1206 // Repack all nodes before calling each preprocessing function,
1207 // because each of them can modify the set of nodes.
1208 auto getNodes = [this] () -> std::vector<SDNode*> {
1209 std::vector<SDNode*> T;
1210 T.reserve(CurDAG->allnodes_size());
1211 for (SDNode &N : CurDAG->allnodes())
1212 T.push_back(&N);
1213 return T;
1214 };
1215
1216 // Transform: (or (select c x 0) z) -> (select c (or x z) z)
1217 // (or (select c 0 y) z) -> (select c z (or y z))
1218 ppSimplifyOrSelect0(getNodes());
1219
1220 // Transform: (store ch val (add x (add (shl y c) e)))
1221 // to: (store ch val (add x (shl (add y d) c))),
1222 // where e = (shl d c) for some integer d.
1223 // The purpose of this is to enable generation of loads/stores with
1224 // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift
1225 // value c must be 0, 1 or 2.
1226 ppAddrReorderAddShl(getNodes());
1227
1228 // Transform: (load ch (add x (and (srl y c) Mask)))
1229 // to: (load ch (add x (shl (srl y d) d-c)))
1230 // where
1231 // Mask = 00..0 111..1 0.0
1232 // | | +-- d-c 0s, and d-c is 0, 1 or 2.
1233 // | +-------- 1s
1234 // +-------------- at most c 0s
1235 // Motivating example:
1236 // DAG combiner optimizes (add x (shl (srl y 5) 2))
1237 // to (add x (and (srl y 3) 1FFFFFFC))
1238 // which results in a constant-extended and(##...,lsr). This transformation
1239 // undoes this simplification for cases where the shl can be folded into
1240 // an addressing mode.
1241 ppAddrRewriteAndSrl(getNodes());
1242
1243 // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...)
1244 // (op ... 1 ...))
1245 ppHoistZextI1(getNodes());
1246
1247 DEBUG_WITH_TYPE("isel", {
1248 dbgs() << "Preprocessed (Hexagon) selection DAG:";
1249 CurDAG->dump();
1250 });
1251
1252 if (EnableAddressRebalancing) {
1253 rebalanceAddressTrees();
1254
1255 DEBUG_WITH_TYPE("isel", {
1256 dbgs() << "Address tree balanced selection DAG:";
1257 CurDAG->dump();
1258 });
1259 }
1260 }
1261
EmitFunctionEntryCode()1262 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
1263 auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
1264 auto &HFI = *HST.getFrameLowering();
1265 if (!HFI.needsAligna(*MF))
1266 return;
1267
1268 MachineFrameInfo &MFI = MF->getFrameInfo();
1269 MachineBasicBlock *EntryBB = &MF->front();
1270 unsigned AR = FuncInfo->CreateReg(MVT::i32);
1271 unsigned MaxA = MFI.getMaxAlignment();
1272 BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR)
1273 .addImm(MaxA);
1274 MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
1275 }
1276
1277 // Match a frame index that can be used in an addressing mode.
SelectAddrFI(SDValue & N,SDValue & R)1278 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) {
1279 if (N.getOpcode() != ISD::FrameIndex)
1280 return false;
1281 auto &HFI = *HST->getFrameLowering();
1282 MachineFrameInfo &MFI = MF->getFrameInfo();
1283 int FX = cast<FrameIndexSDNode>(N)->getIndex();
1284 if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
1285 return false;
1286 R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
1287 return true;
1288 }
1289
SelectAddrGA(SDValue & N,SDValue & R)1290 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
1291 return SelectGlobalAddress(N, R, false, 0);
1292 }
1293
SelectAddrGP(SDValue & N,SDValue & R)1294 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
1295 return SelectGlobalAddress(N, R, true, 0);
1296 }
1297
SelectAnyImm(SDValue & N,SDValue & R)1298 inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) {
1299 return SelectAnyImmediate(N, R, 0);
1300 }
1301
SelectAnyImm0(SDValue & N,SDValue & R)1302 inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) {
1303 return SelectAnyImmediate(N, R, 0);
1304 }
SelectAnyImm1(SDValue & N,SDValue & R)1305 inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) {
1306 return SelectAnyImmediate(N, R, 1);
1307 }
SelectAnyImm2(SDValue & N,SDValue & R)1308 inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) {
1309 return SelectAnyImmediate(N, R, 2);
1310 }
SelectAnyImm3(SDValue & N,SDValue & R)1311 inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) {
1312 return SelectAnyImmediate(N, R, 3);
1313 }
1314
SelectAnyInt(SDValue & N,SDValue & R)1315 inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) {
1316 EVT T = N.getValueType();
1317 if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N))
1318 return false;
1319 R = N;
1320 return true;
1321 }
1322
SelectAnyImmediate(SDValue & N,SDValue & R,uint32_t LogAlign)1323 bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R,
1324 uint32_t LogAlign) {
1325 auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1326 return alignTo(V, (uint64_t)1 << LogAlign) == V;
1327 };
1328
1329 switch (N.getOpcode()) {
1330 case ISD::Constant: {
1331 if (N.getValueType() != MVT::i32)
1332 return false;
1333 int32_t V = cast<const ConstantSDNode>(N)->getZExtValue();
1334 if (!IsAligned(V))
1335 return false;
1336 R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType());
1337 return true;
1338 }
1339 case HexagonISD::JT:
1340 case HexagonISD::CP:
1341 // These are assumed to always be aligned at least 8-byte boundary.
1342 if (LogAlign > 3)
1343 return false;
1344 R = N.getOperand(0);
1345 return true;
1346 case ISD::ExternalSymbol:
1347 // Symbols may be aligned at any boundary.
1348 if (LogAlign > 0)
1349 return false;
1350 R = N;
1351 return true;
1352 case ISD::BlockAddress:
1353 // Block address is always aligned at least 4-byte boundary.
1354 if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset()))
1355 return false;
1356 R = N;
1357 return true;
1358 }
1359
1360 if (SelectGlobalAddress(N, R, false, LogAlign) ||
1361 SelectGlobalAddress(N, R, true, LogAlign))
1362 return true;
1363
1364 return false;
1365 }
1366
SelectGlobalAddress(SDValue & N,SDValue & R,bool UseGP,uint32_t LogAlign)1367 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
1368 bool UseGP, uint32_t LogAlign) {
1369 auto IsAligned = [LogAlign] (uint64_t V) -> bool {
1370 return alignTo(V, (uint64_t)1 << LogAlign) == V;
1371 };
1372
1373 switch (N.getOpcode()) {
1374 case ISD::ADD: {
1375 SDValue N0 = N.getOperand(0);
1376 SDValue N1 = N.getOperand(1);
1377 unsigned GAOpc = N0.getOpcode();
1378 if (UseGP && GAOpc != HexagonISD::CONST32_GP)
1379 return false;
1380 if (!UseGP && GAOpc != HexagonISD::CONST32)
1381 return false;
1382 if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
1383 SDValue Addr = N0.getOperand(0);
1384 // For the purpose of alignment, sextvalue and zextvalue are the same.
1385 if (!IsAligned(Const->getZExtValue()))
1386 return false;
1387 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
1388 if (GA->getOpcode() == ISD::TargetGlobalAddress) {
1389 uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
1390 R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
1391 N.getValueType(), NewOff);
1392 return true;
1393 }
1394 }
1395 }
1396 break;
1397 }
1398 case HexagonISD::CP:
1399 case HexagonISD::JT:
1400 case HexagonISD::CONST32:
1401 // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
1402 // want in the instruction.
1403 if (!UseGP)
1404 R = N.getOperand(0);
1405 return !UseGP;
1406 case HexagonISD::CONST32_GP:
1407 if (UseGP)
1408 R = N.getOperand(0);
1409 return UseGP;
1410 default:
1411 return false;
1412 }
1413
1414 return false;
1415 }
1416
DetectUseSxtw(SDValue & N,SDValue & R)1417 bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) {
1418 // This (complex pattern) function is meant to detect a sign-extension
1419 // i32->i64 on a per-operand basis. This would allow writing single
1420 // patterns that would cover a number of combinations of different ways
1421 // a sign-extensions could be written. For example:
1422 // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y)
1423 // could match either one of these:
1424 // (mul (sext x) (sext_inreg y))
1425 // (mul (sext-load *p) (sext_inreg y))
1426 // (mul (sext_inreg x) (sext y))
1427 // etc.
1428 //
1429 // The returned value will have type i64 and its low word will
1430 // contain the value being extended. The high bits are not specified.
1431 // The returned type is i64 because the original type of N was i64,
1432 // but the users of this function should only use the low-word of the
1433 // result, e.g.
1434 // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y))
1435
1436 if (N.getValueType() != MVT::i64)
1437 return false;
1438 unsigned Opc = N.getOpcode();
1439 switch (Opc) {
1440 case ISD::SIGN_EXTEND:
1441 case ISD::SIGN_EXTEND_INREG: {
1442 // sext_inreg has the source type as a separate operand.
1443 EVT T = Opc == ISD::SIGN_EXTEND
1444 ? N.getOperand(0).getValueType()
1445 : cast<VTSDNode>(N.getOperand(1))->getVT();
1446 unsigned SW = T.getSizeInBits();
1447 if (SW == 32)
1448 R = N.getOperand(0);
1449 else if (SW < 32)
1450 R = N;
1451 else
1452 return false;
1453 break;
1454 }
1455 case ISD::LOAD: {
1456 LoadSDNode *L = cast<LoadSDNode>(N);
1457 if (L->getExtensionType() != ISD::SEXTLOAD)
1458 return false;
1459 // All extending loads extend to i32, so even if the value in
1460 // memory is shorter than 32 bits, it will be i32 after the load.
1461 if (L->getMemoryVT().getSizeInBits() > 32)
1462 return false;
1463 R = N;
1464 break;
1465 }
1466 case ISD::SRA: {
1467 auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1));
1468 if (!S || S->getZExtValue() != 32)
1469 return false;
1470 R = N;
1471 break;
1472 }
1473 default:
1474 return false;
1475 }
1476 EVT RT = R.getValueType();
1477 if (RT == MVT::i64)
1478 return true;
1479 assert(RT == MVT::i32);
1480 // This is only to produce a value of type i64. Do not rely on the
1481 // high bits produced by this.
1482 const SDLoc &dl(N);
1483 SDValue Ops[] = {
1484 CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32),
1485 R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32),
1486 R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32)
1487 };
1488 SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl,
1489 MVT::i64, Ops);
1490 R = SDValue(T, 0);
1491 return true;
1492 }
1493
keepsLowBits(const SDValue & Val,unsigned NumBits,SDValue & Src)1494 bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits,
1495 SDValue &Src) {
1496 unsigned Opc = Val.getOpcode();
1497 switch (Opc) {
1498 case ISD::SIGN_EXTEND:
1499 case ISD::ZERO_EXTEND:
1500 case ISD::ANY_EXTEND: {
1501 const SDValue &Op0 = Val.getOperand(0);
1502 EVT T = Op0.getValueType();
1503 if (T.isInteger() && T.getSizeInBits() == NumBits) {
1504 Src = Op0;
1505 return true;
1506 }
1507 break;
1508 }
1509 case ISD::SIGN_EXTEND_INREG:
1510 case ISD::AssertSext:
1511 case ISD::AssertZext:
1512 if (Val.getOperand(0).getValueType().isInteger()) {
1513 VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
1514 if (T->getVT().getSizeInBits() == NumBits) {
1515 Src = Val.getOperand(0);
1516 return true;
1517 }
1518 }
1519 break;
1520 case ISD::AND: {
1521 // Check if this is an AND with NumBits of lower bits set to 1.
1522 uint64_t Mask = (1 << NumBits) - 1;
1523 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1524 if (C->getZExtValue() == Mask) {
1525 Src = Val.getOperand(1);
1526 return true;
1527 }
1528 }
1529 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1530 if (C->getZExtValue() == Mask) {
1531 Src = Val.getOperand(0);
1532 return true;
1533 }
1534 }
1535 break;
1536 }
1537 case ISD::OR:
1538 case ISD::XOR: {
1539 // OR/XOR with the lower NumBits bits set to 0.
1540 uint64_t Mask = (1 << NumBits) - 1;
1541 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
1542 if ((C->getZExtValue() & Mask) == 0) {
1543 Src = Val.getOperand(1);
1544 return true;
1545 }
1546 }
1547 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
1548 if ((C->getZExtValue() & Mask) == 0) {
1549 Src = Val.getOperand(0);
1550 return true;
1551 }
1552 }
1553 break;
1554 }
1555 default:
1556 break;
1557 }
1558 return false;
1559 }
1560
isAlignedMemNode(const MemSDNode * N) const1561 bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const {
1562 return N->getAlignment() >= N->getMemoryVT().getStoreSize();
1563 }
1564
isSmallStackStore(const StoreSDNode * N) const1565 bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const {
1566 unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF);
1567 switch (N->getMemoryVT().getStoreSize()) {
1568 case 1:
1569 return StackSize <= 56; // 1*2^6 - 8
1570 case 2:
1571 return StackSize <= 120; // 2*2^6 - 8
1572 case 4:
1573 return StackSize <= 248; // 4*2^6 - 8
1574 default:
1575 return false;
1576 }
1577 }
1578
1579 // Return true when the given node fits in a positive half word.
isPositiveHalfWord(const SDNode * N) const1580 bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const {
1581 if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) {
1582 int64_t V = CN->getSExtValue();
1583 return V > 0 && isInt<16>(V);
1584 }
1585 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
1586 const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1));
1587 return VN->getVT().getSizeInBits() <= 16;
1588 }
1589 return false;
1590 }
1591
hasOneUse(const SDNode * N) const1592 bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const {
1593 return !CheckSingleUse || N->hasOneUse();
1594 }
1595
1596 ////////////////////////////////////////////////////////////////////////////////
1597 // Rebalancing of address calculation trees
1598
isOpcodeHandled(const SDNode * N)1599 static bool isOpcodeHandled(const SDNode *N) {
1600 switch (N->getOpcode()) {
1601 case ISD::ADD:
1602 case ISD::MUL:
1603 return true;
1604 case ISD::SHL:
1605 // We only handle constant shifts because these can be easily flattened
1606 // into multiplications by 2^Op1.
1607 return isa<ConstantSDNode>(N->getOperand(1).getNode());
1608 default:
1609 return false;
1610 }
1611 }
1612
1613 /// Return the weight of an SDNode
getWeight(SDNode * N)1614 int HexagonDAGToDAGISel::getWeight(SDNode *N) {
1615 if (!isOpcodeHandled(N))
1616 return 1;
1617 assert(RootWeights.count(N) && "Cannot get weight of unseen root!");
1618 assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!");
1619 assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!");
1620 return RootWeights[N];
1621 }
1622
getHeight(SDNode * N)1623 int HexagonDAGToDAGISel::getHeight(SDNode *N) {
1624 if (!isOpcodeHandled(N))
1625 return 0;
1626 assert(RootWeights.count(N) && RootWeights[N] >= 0 &&
1627 "Cannot query height of unvisited/RAUW'd node!");
1628 return RootHeights[N];
1629 }
1630
1631 namespace {
1632 struct WeightedLeaf {
1633 SDValue Value;
1634 int Weight;
1635 int InsertionOrder;
1636
WeightedLeaf__anon24b34d940811::WeightedLeaf1637 WeightedLeaf() : Value(SDValue()) { }
1638
WeightedLeaf__anon24b34d940811::WeightedLeaf1639 WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) :
1640 Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) {
1641 assert(Weight >= 0 && "Weight must be >= 0");
1642 }
1643
Compare__anon24b34d940811::WeightedLeaf1644 static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) {
1645 assert(A.Value.getNode() && B.Value.getNode());
1646 return A.Weight == B.Weight ?
1647 (A.InsertionOrder > B.InsertionOrder) :
1648 (A.Weight > B.Weight);
1649 }
1650 };
1651
1652 /// A specialized priority queue for WeigthedLeaves. It automatically folds
1653 /// constants and allows removal of non-top elements while maintaining the
1654 /// priority order.
1655 class LeafPrioQueue {
1656 SmallVector<WeightedLeaf, 8> Q;
1657 bool HaveConst;
1658 WeightedLeaf ConstElt;
1659 unsigned Opcode;
1660
1661 public:
empty()1662 bool empty() {
1663 return (!HaveConst && Q.empty());
1664 }
1665
size()1666 size_t size() {
1667 return Q.size() + HaveConst;
1668 }
1669
hasConst()1670 bool hasConst() {
1671 return HaveConst;
1672 }
1673
top()1674 const WeightedLeaf &top() {
1675 if (HaveConst)
1676 return ConstElt;
1677 return Q.front();
1678 }
1679
pop()1680 WeightedLeaf pop() {
1681 if (HaveConst) {
1682 HaveConst = false;
1683 return ConstElt;
1684 }
1685 std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1686 return Q.pop_back_val();
1687 }
1688
push(WeightedLeaf L,bool SeparateConst=true)1689 void push(WeightedLeaf L, bool SeparateConst=true) {
1690 if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) {
1691 if (Opcode == ISD::MUL &&
1692 cast<ConstantSDNode>(L.Value)->getSExtValue() == 1)
1693 return;
1694 if (Opcode == ISD::ADD &&
1695 cast<ConstantSDNode>(L.Value)->getSExtValue() == 0)
1696 return;
1697
1698 HaveConst = true;
1699 ConstElt = L;
1700 } else {
1701 Q.push_back(L);
1702 std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1703 }
1704 }
1705
1706 /// Push L to the bottom of the queue regardless of its weight. If L is
1707 /// constant, it will not be folded with other constants in the queue.
pushToBottom(WeightedLeaf L)1708 void pushToBottom(WeightedLeaf L) {
1709 L.Weight = 1000;
1710 push(L, false);
1711 }
1712
1713 /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of
1714 /// lowest weight and remove it from the queue.
1715 WeightedLeaf findSHL(uint64_t MaxAmount);
1716
1717 WeightedLeaf findMULbyConst();
1718
LeafPrioQueue(unsigned Opcode)1719 LeafPrioQueue(unsigned Opcode) :
1720 HaveConst(false), Opcode(Opcode) { }
1721 };
1722 } // end anonymous namespace
1723
findSHL(uint64_t MaxAmount)1724 WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) {
1725 int ResultPos;
1726 WeightedLeaf Result;
1727
1728 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1729 const WeightedLeaf &L = Q[Pos];
1730 const SDValue &Val = L.Value;
1731 if (Val.getOpcode() != ISD::SHL ||
1732 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1733 Val.getConstantOperandVal(1) > MaxAmount)
1734 continue;
1735 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1736 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1737 {
1738 Result = L;
1739 ResultPos = Pos;
1740 }
1741 }
1742
1743 if (Result.Value.getNode()) {
1744 Q.erase(&Q[ResultPos]);
1745 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1746 }
1747
1748 return Result;
1749 }
1750
findMULbyConst()1751 WeightedLeaf LeafPrioQueue::findMULbyConst() {
1752 int ResultPos;
1753 WeightedLeaf Result;
1754
1755 for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) {
1756 const WeightedLeaf &L = Q[Pos];
1757 const SDValue &Val = L.Value;
1758 if (Val.getOpcode() != ISD::MUL ||
1759 !isa<ConstantSDNode>(Val.getOperand(1)) ||
1760 Val.getConstantOperandVal(1) > 127)
1761 continue;
1762 if (!Result.Value.getNode() || Result.Weight > L.Weight ||
1763 (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder))
1764 {
1765 Result = L;
1766 ResultPos = Pos;
1767 }
1768 }
1769
1770 if (Result.Value.getNode()) {
1771 Q.erase(&Q[ResultPos]);
1772 std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare);
1773 }
1774
1775 return Result;
1776 }
1777
getMultiplierForSHL(SDNode * N)1778 SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) {
1779 uint64_t MulFactor = 1ull << N->getConstantOperandVal(1);
1780 return CurDAG->getConstant(MulFactor, SDLoc(N),
1781 N->getOperand(1).getValueType());
1782 }
1783
1784 /// @returns the value x for which 2^x is a factor of Val
getPowerOf2Factor(SDValue Val)1785 static unsigned getPowerOf2Factor(SDValue Val) {
1786 if (Val.getOpcode() == ISD::MUL) {
1787 unsigned MaxFactor = 0;
1788 for (int i = 0; i < 2; ++i) {
1789 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i));
1790 if (!C)
1791 continue;
1792 const APInt &CInt = C->getAPIntValue();
1793 if (CInt.getBoolValue())
1794 MaxFactor = CInt.countTrailingZeros();
1795 }
1796 return MaxFactor;
1797 }
1798 if (Val.getOpcode() == ISD::SHL) {
1799 if (!isa<ConstantSDNode>(Val.getOperand(1).getNode()))
1800 return 0;
1801 return (unsigned) Val.getConstantOperandVal(1);
1802 }
1803
1804 return 0;
1805 }
1806
1807 /// @returns true if V>>Amount will eliminate V's operation on its child
willShiftRightEliminate(SDValue V,unsigned Amount)1808 static bool willShiftRightEliminate(SDValue V, unsigned Amount) {
1809 if (V.getOpcode() == ISD::MUL) {
1810 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1811 for (int i = 0; i < 2; ++i)
1812 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1813 V.getConstantOperandVal(i) % (1ULL << Amount) == 0) {
1814 uint64_t NewConst = V.getConstantOperandVal(i) >> Amount;
1815 return (NewConst == 1);
1816 }
1817 } else if (V.getOpcode() == ISD::SHL) {
1818 return (Amount == V.getConstantOperandVal(1));
1819 }
1820
1821 return false;
1822 }
1823
factorOutPowerOf2(SDValue V,unsigned Power)1824 SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) {
1825 SDValue Ops[] = { V.getOperand(0), V.getOperand(1) };
1826 if (V.getOpcode() == ISD::MUL) {
1827 for (int i=0; i < 2; ++i) {
1828 if (isa<ConstantSDNode>(Ops[i].getNode()) &&
1829 V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) {
1830 uint64_t NewConst = V.getConstantOperandVal(i) >> Power;
1831 if (NewConst == 1)
1832 return Ops[!i];
1833 Ops[i] = CurDAG->getConstant(NewConst,
1834 SDLoc(V), V.getValueType());
1835 break;
1836 }
1837 }
1838 } else if (V.getOpcode() == ISD::SHL) {
1839 uint64_t ShiftAmount = V.getConstantOperandVal(1);
1840 if (ShiftAmount == Power)
1841 return Ops[0];
1842 Ops[1] = CurDAG->getConstant(ShiftAmount - Power,
1843 SDLoc(V), V.getValueType());
1844 }
1845
1846 return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops);
1847 }
1848
isTargetConstant(const SDValue & V)1849 static bool isTargetConstant(const SDValue &V) {
1850 return V.getOpcode() == HexagonISD::CONST32 ||
1851 V.getOpcode() == HexagonISD::CONST32_GP;
1852 }
1853
getUsesInFunction(const Value * V)1854 unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) {
1855 if (GAUsesInFunction.count(V))
1856 return GAUsesInFunction[V];
1857
1858 unsigned Result = 0;
1859 const Function &CurF = CurDAG->getMachineFunction().getFunction();
1860 for (const User *U : V->users()) {
1861 if (isa<Instruction>(U) &&
1862 cast<Instruction>(U)->getParent()->getParent() == &CurF)
1863 ++Result;
1864 }
1865
1866 GAUsesInFunction[V] = Result;
1867
1868 return Result;
1869 }
1870
1871 /// Note - After calling this, N may be dead. It may have been replaced by a
1872 /// new node, so always use the returned value in place of N.
1873 ///
1874 /// @returns The SDValue taking the place of N (which could be N if it is
1875 /// unchanged)
balanceSubTree(SDNode * N,bool TopLevel)1876 SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) {
1877 assert(RootWeights.count(N) && "Cannot balance non-root node.");
1878 assert(RootWeights[N] != -2 && "This node was RAUW'd!");
1879 assert(!TopLevel || N->getOpcode() == ISD::ADD);
1880
1881 // Return early if this node was already visited
1882 if (RootWeights[N] != -1)
1883 return SDValue(N, 0);
1884
1885 assert(isOpcodeHandled(N));
1886
1887 SDValue Op0 = N->getOperand(0);
1888 SDValue Op1 = N->getOperand(1);
1889
1890 // Return early if the operands will remain unchanged or are all roots
1891 if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) &&
1892 (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) {
1893 SDNode *Op0N = Op0.getNode();
1894 int Weight;
1895 if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) {
1896 Weight = getWeight(balanceSubTree(Op0N).getNode());
1897 // Weight = calculateWeight(Op0N);
1898 } else
1899 Weight = getWeight(Op0N);
1900
1901 SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd
1902 if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) {
1903 Weight += getWeight(balanceSubTree(Op1N).getNode());
1904 // Weight += calculateWeight(Op1N);
1905 } else
1906 Weight += getWeight(Op1N);
1907
1908 RootWeights[N] = Weight;
1909 RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()),
1910 getHeight(N->getOperand(1).getNode())) + 1;
1911
1912 LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight
1913 << " Height=" << RootHeights[N] << "): ");
1914 LLVM_DEBUG(N->dump(CurDAG));
1915
1916 return SDValue(N, 0);
1917 }
1918
1919 LLVM_DEBUG(dbgs() << "** Balancing root node: ");
1920 LLVM_DEBUG(N->dump(CurDAG));
1921
1922 unsigned NOpcode = N->getOpcode();
1923
1924 LeafPrioQueue Leaves(NOpcode);
1925 SmallVector<SDValue, 4> Worklist;
1926 Worklist.push_back(SDValue(N, 0));
1927
1928 // SHL nodes will be converted to MUL nodes
1929 if (NOpcode == ISD::SHL)
1930 NOpcode = ISD::MUL;
1931
1932 bool CanFactorize = false;
1933 WeightedLeaf Mul1, Mul2;
1934 unsigned MaxPowerOf2 = 0;
1935 WeightedLeaf GA;
1936
1937 // Do not try to factor out a shift if there is already a shift at the tip of
1938 // the tree.
1939 bool HaveTopLevelShift = false;
1940 if (TopLevel &&
1941 ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL &&
1942 Op0.getConstantOperandVal(1) < 4) ||
1943 (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL &&
1944 Op1.getConstantOperandVal(1) < 4)))
1945 HaveTopLevelShift = true;
1946
1947 // Flatten the subtree into an ordered list of leaves; at the same time
1948 // determine whether the tree is already balanced.
1949 int InsertionOrder = 0;
1950 SmallDenseMap<SDValue, int> NodeHeights;
1951 bool Imbalanced = false;
1952 int CurrentWeight = 0;
1953 while (!Worklist.empty()) {
1954 SDValue Child = Worklist.pop_back_val();
1955
1956 if (Child.getNode() != N && RootWeights.count(Child.getNode())) {
1957 // CASE 1: Child is a root note
1958
1959 int Weight = RootWeights[Child.getNode()];
1960 if (Weight == -1) {
1961 Child = balanceSubTree(Child.getNode());
1962 // calculateWeight(Child.getNode());
1963 Weight = getWeight(Child.getNode());
1964 } else if (Weight == -2) {
1965 // Whoops, this node was RAUWd by one of the balanceSubTree calls we
1966 // made. Our worklist isn't up to date anymore.
1967 // Restart the whole process.
1968 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
1969 return balanceSubTree(N, TopLevel);
1970 }
1971
1972 NodeHeights[Child] = 1;
1973 CurrentWeight += Weight;
1974
1975 unsigned PowerOf2;
1976 if (TopLevel && !CanFactorize && !HaveTopLevelShift &&
1977 (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) &&
1978 Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) {
1979 // Try to identify two factorizable MUL/SHL children greedily. Leave
1980 // them out of the priority queue for now so we can deal with them
1981 // after.
1982 if (!Mul1.Value.getNode()) {
1983 Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++);
1984 MaxPowerOf2 = PowerOf2;
1985 } else {
1986 Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++);
1987 MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2);
1988
1989 // Our addressing modes can only shift by a maximum of 3
1990 if (MaxPowerOf2 > 3)
1991 MaxPowerOf2 = 3;
1992
1993 CanFactorize = true;
1994 }
1995 } else
1996 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
1997 } else if (!isOpcodeHandled(Child.getNode())) {
1998 // CASE 2: Child is an unhandled kind of node (e.g. constant)
1999 int Weight = getWeight(Child.getNode());
2000
2001 NodeHeights[Child] = getHeight(Child.getNode());
2002 CurrentWeight += Weight;
2003
2004 if (isTargetConstant(Child) && !GA.Value.getNode())
2005 GA = WeightedLeaf(Child, Weight, InsertionOrder++);
2006 else
2007 Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++));
2008 } else {
2009 // CASE 3: Child is a subtree of same opcode
2010 // Visit children first, then flatten.
2011 unsigned ChildOpcode = Child.getOpcode();
2012 assert(ChildOpcode == NOpcode ||
2013 (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL));
2014
2015 // Convert SHL to MUL
2016 SDValue Op1;
2017 if (ChildOpcode == ISD::SHL)
2018 Op1 = getMultiplierForSHL(Child.getNode());
2019 else
2020 Op1 = Child->getOperand(1);
2021
2022 if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) {
2023 assert(!NodeHeights.count(Child) && "Parent visited before children?");
2024 // Visit children first, then re-visit this node
2025 Worklist.push_back(Child);
2026 Worklist.push_back(Op1);
2027 Worklist.push_back(Child->getOperand(0));
2028 } else {
2029 // Back at this node after visiting the children
2030 if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1)
2031 Imbalanced = true;
2032
2033 NodeHeights[Child] = std::max(NodeHeights[Op1],
2034 NodeHeights[Child->getOperand(0)]) + 1;
2035 }
2036 }
2037 }
2038
2039 LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)]
2040 << " weight=" << CurrentWeight
2041 << " imbalanced=" << Imbalanced << "\n");
2042
2043 // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y)
2044 // This factors out a shift in order to match memw(a<<Y+b).
2045 if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) ||
2046 willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) {
2047 LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n");
2048 int Weight = Mul1.Weight + Mul2.Weight;
2049 int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1;
2050 SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2);
2051 SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2);
2052 SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(),
2053 Mul1Factored, Mul2Factored);
2054 SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N),
2055 Mul1.Value.getValueType());
2056 SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(),
2057 Sum, Const);
2058 NodeHeights[New] = Height;
2059 Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder));
2060 } else if (Mul1.Value.getNode()) {
2061 // We failed to factorize two MULs, so now the Muls are left outside the
2062 // queue... add them back.
2063 Leaves.push(Mul1);
2064 if (Mul2.Value.getNode())
2065 Leaves.push(Mul2);
2066 CanFactorize = false;
2067 }
2068
2069 // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere
2070 // and the root node itself is not used more than twice. This reduces the
2071 // amount of additional constant extenders introduced by this optimization.
2072 bool CombinedGA = false;
2073 if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() &&
2074 GA.Value.hasOneUse() && N->use_size() < 3) {
2075 GlobalAddressSDNode *GANode =
2076 cast<GlobalAddressSDNode>(GA.Value.getOperand(0));
2077 ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value);
2078
2079 if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() &&
2080 getTargetLowering()->isOffsetFoldingLegal(GANode)) {
2081 LLVM_DEBUG(dbgs() << "--> Combining GA and offset ("
2082 << Offset->getSExtValue() << "): ");
2083 LLVM_DEBUG(GANode->dump(CurDAG));
2084
2085 SDValue NewTGA =
2086 CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value),
2087 GANode->getValueType(0),
2088 GANode->getOffset() + (uint64_t)Offset->getSExtValue());
2089 GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value),
2090 GA.Value.getValueType(), NewTGA);
2091 GA.Weight += Leaves.top().Weight;
2092
2093 NodeHeights[GA.Value] = getHeight(GA.Value.getNode());
2094 CombinedGA = true;
2095
2096 Leaves.pop(); // Remove the offset constant from the queue
2097 }
2098 }
2099
2100 if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) ||
2101 (RebalanceOnlyImbalancedTrees && !Imbalanced)) {
2102 RootWeights[N] = CurrentWeight;
2103 RootHeights[N] = NodeHeights[SDValue(N, 0)];
2104
2105 return SDValue(N, 0);
2106 }
2107
2108 // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5))
2109 if (NOpcode == ISD::ADD && GA.Value.getNode()) {
2110 WeightedLeaf SHL = Leaves.findSHL(31);
2111 if (SHL.Value.getNode()) {
2112 int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1;
2113 GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value),
2114 GA.Value.getValueType(),
2115 GA.Value, SHL.Value);
2116 GA.Weight = SHL.Weight; // Specifically ignore the GA weight here
2117 NodeHeights[GA.Value] = Height;
2118 }
2119 }
2120
2121 if (GA.Value.getNode())
2122 Leaves.push(GA);
2123
2124 // If this is the top level and we haven't factored out a shift, we should try
2125 // to move a constant to the bottom to match addressing modes like memw(rX+C)
2126 if (TopLevel && !CanFactorize && Leaves.hasConst()) {
2127 LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree.");
2128 Leaves.pushToBottom(Leaves.pop());
2129 }
2130
2131 const DataLayout &DL = CurDAG->getDataLayout();
2132 const TargetLowering &TLI = *getTargetLowering();
2133
2134 // Rebuild the tree using Huffman's algorithm
2135 while (Leaves.size() > 1) {
2136 WeightedLeaf L0 = Leaves.pop();
2137
2138 // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)),
2139 // otherwise just get the next leaf
2140 WeightedLeaf L1 = Leaves.findMULbyConst();
2141 if (!L1.Value.getNode())
2142 L1 = Leaves.pop();
2143
2144 assert(L0.Weight <= L1.Weight && "Priority queue is broken!");
2145
2146 SDValue V0 = L0.Value;
2147 int V0Weight = L0.Weight;
2148 SDValue V1 = L1.Value;
2149 int V1Weight = L1.Weight;
2150
2151 // Make sure that none of these nodes have been RAUW'd
2152 if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) ||
2153 (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) {
2154 LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n");
2155 return balanceSubTree(N, TopLevel);
2156 }
2157
2158 ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0);
2159 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1);
2160 EVT VT = N->getValueType(0);
2161 SDValue NewNode;
2162
2163 if (V0C && !V1C) {
2164 std::swap(V0, V1);
2165 std::swap(V0C, V1C);
2166 }
2167
2168 // Calculate height of this node
2169 assert(NodeHeights.count(V0) && NodeHeights.count(V1) &&
2170 "Children must have been visited before re-combining them!");
2171 int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1;
2172
2173 // Rebuild this node (and restore SHL from MUL if needed)
2174 if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2())
2175 NewNode = CurDAG->getNode(
2176 ISD::SHL, SDLoc(V0), VT, V0,
2177 CurDAG->getConstant(
2178 V1C->getAPIntValue().logBase2(), SDLoc(N),
2179 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2180 else
2181 NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1);
2182
2183 NodeHeights[NewNode] = Height;
2184
2185 int Weight = V0Weight + V1Weight;
2186 Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder));
2187
2188 LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight
2189 << ",Height=" << Height << "):\n");
2190 LLVM_DEBUG(NewNode.dump());
2191 }
2192
2193 assert(Leaves.size() == 1);
2194 SDValue NewRoot = Leaves.top().Value;
2195
2196 assert(NodeHeights.count(NewRoot));
2197 int Height = NodeHeights[NewRoot];
2198
2199 // Restore SHL if we earlier converted it to a MUL
2200 if (NewRoot.getOpcode() == ISD::MUL) {
2201 ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1));
2202 if (V1C && V1C->getAPIntValue().isPowerOf2()) {
2203 EVT VT = NewRoot.getValueType();
2204 SDValue V0 = NewRoot.getOperand(0);
2205 NewRoot = CurDAG->getNode(
2206 ISD::SHL, SDLoc(NewRoot), VT, V0,
2207 CurDAG->getConstant(
2208 V1C->getAPIntValue().logBase2(), SDLoc(NewRoot),
2209 TLI.getScalarShiftAmountTy(DL, V0.getValueType())));
2210 }
2211 }
2212
2213 if (N != NewRoot.getNode()) {
2214 LLVM_DEBUG(dbgs() << "--> Root is now: ");
2215 LLVM_DEBUG(NewRoot.dump());
2216
2217 // Replace all uses of old root by new root
2218 CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode());
2219 // Mark that we have RAUW'd N
2220 RootWeights[N] = -2;
2221 } else {
2222 LLVM_DEBUG(dbgs() << "--> Root unchanged.\n");
2223 }
2224
2225 RootWeights[NewRoot.getNode()] = Leaves.top().Weight;
2226 RootHeights[NewRoot.getNode()] = Height;
2227
2228 return NewRoot;
2229 }
2230
rebalanceAddressTrees()2231 void HexagonDAGToDAGISel::rebalanceAddressTrees() {
2232 for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) {
2233 SDNode *N = &*I++;
2234 if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE)
2235 continue;
2236
2237 SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr();
2238 if (BasePtr.getOpcode() != ISD::ADD)
2239 continue;
2240
2241 // We've already processed this node
2242 if (RootWeights.count(BasePtr.getNode()))
2243 continue;
2244
2245 LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: ");
2246 LLVM_DEBUG(N->dump(CurDAG));
2247
2248 // FindRoots
2249 SmallVector<SDNode *, 4> Worklist;
2250
2251 Worklist.push_back(BasePtr.getOperand(0).getNode());
2252 Worklist.push_back(BasePtr.getOperand(1).getNode());
2253
2254 while (!Worklist.empty()) {
2255 SDNode *N = Worklist.pop_back_val();
2256 unsigned Opcode = N->getOpcode();
2257
2258 if (!isOpcodeHandled(N))
2259 continue;
2260
2261 Worklist.push_back(N->getOperand(0).getNode());
2262 Worklist.push_back(N->getOperand(1).getNode());
2263
2264 // Not a root if it has only one use and same opcode as its parent
2265 if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode())
2266 continue;
2267
2268 // This root node has already been processed
2269 if (RootWeights.count(N))
2270 continue;
2271
2272 RootWeights[N] = -1;
2273 }
2274
2275 // Balance node itself
2276 RootWeights[BasePtr.getNode()] = -1;
2277 SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true);
2278
2279 if (N->getOpcode() == ISD::LOAD)
2280 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0),
2281 NewBasePtr, N->getOperand(2));
2282 else
2283 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1),
2284 NewBasePtr, N->getOperand(3));
2285
2286 LLVM_DEBUG(dbgs() << "--> Final node: ");
2287 LLVM_DEBUG(N->dump(CurDAG));
2288 }
2289
2290 CurDAG->RemoveDeadNodes();
2291 GAUsesInFunction.clear();
2292 RootHeights.clear();
2293 RootWeights.clear();
2294 }
2295