1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_builder.h"
18
19 #include "art_method-inl.h"
20 #include "base/arena_bit_vector.h"
21 #include "base/bit_vector-inl.h"
22 #include "base/logging.h"
23 #include "block_builder.h"
24 #include "class_linker-inl.h"
25 #include "code_generator.h"
26 #include "data_type-inl.h"
27 #include "dex/bytecode_utils.h"
28 #include "dex/dex_instruction-inl.h"
29 #include "driver/dex_compilation_unit.h"
30 #include "driver/compiler_options.h"
31 #include "imtable-inl.h"
32 #include "mirror/dex_cache.h"
33 #include "oat_file.h"
34 #include "optimizing_compiler_stats.h"
35 #include "quicken_info.h"
36 #include "scoped_thread_state_change-inl.h"
37 #include "sharpening.h"
38 #include "ssa_builder.h"
39 #include "well_known_classes.h"
40
41 namespace art {
42
HInstructionBuilder(HGraph * graph,HBasicBlockBuilder * block_builder,SsaBuilder * ssa_builder,const DexFile * dex_file,const CodeItemDebugInfoAccessor & accessor,DataType::Type return_type,const DexCompilationUnit * dex_compilation_unit,const DexCompilationUnit * outer_compilation_unit,CodeGenerator * code_generator,ArrayRef<const uint8_t> interpreter_metadata,OptimizingCompilerStats * compiler_stats,VariableSizedHandleScope * handles,ScopedArenaAllocator * local_allocator)43 HInstructionBuilder::HInstructionBuilder(HGraph* graph,
44 HBasicBlockBuilder* block_builder,
45 SsaBuilder* ssa_builder,
46 const DexFile* dex_file,
47 const CodeItemDebugInfoAccessor& accessor,
48 DataType::Type return_type,
49 const DexCompilationUnit* dex_compilation_unit,
50 const DexCompilationUnit* outer_compilation_unit,
51 CodeGenerator* code_generator,
52 ArrayRef<const uint8_t> interpreter_metadata,
53 OptimizingCompilerStats* compiler_stats,
54 VariableSizedHandleScope* handles,
55 ScopedArenaAllocator* local_allocator)
56 : allocator_(graph->GetAllocator()),
57 graph_(graph),
58 handles_(handles),
59 dex_file_(dex_file),
60 code_item_accessor_(accessor),
61 return_type_(return_type),
62 block_builder_(block_builder),
63 ssa_builder_(ssa_builder),
64 code_generator_(code_generator),
65 dex_compilation_unit_(dex_compilation_unit),
66 outer_compilation_unit_(outer_compilation_unit),
67 quicken_info_(interpreter_metadata),
68 compilation_stats_(compiler_stats),
69 local_allocator_(local_allocator),
70 locals_for_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
71 current_block_(nullptr),
72 current_locals_(nullptr),
73 latest_result_(nullptr),
74 current_this_parameter_(nullptr),
75 loop_headers_(local_allocator->Adapter(kArenaAllocGraphBuilder)),
76 class_cache_(std::less<dex::TypeIndex>(), local_allocator->Adapter(kArenaAllocGraphBuilder)) {
77 loop_headers_.reserve(kDefaultNumberOfLoops);
78 }
79
FindBlockStartingAt(uint32_t dex_pc) const80 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
81 return block_builder_->GetBlockAt(dex_pc);
82 }
83
GetLocalsFor(HBasicBlock * block)84 inline ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
85 ScopedArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
86 const size_t vregs = graph_->GetNumberOfVRegs();
87 if (locals->size() == vregs) {
88 return locals;
89 }
90 return GetLocalsForWithAllocation(block, locals, vregs);
91 }
92
GetLocalsForWithAllocation(HBasicBlock * block,ScopedArenaVector<HInstruction * > * locals,const size_t vregs)93 ScopedArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation(
94 HBasicBlock* block,
95 ScopedArenaVector<HInstruction*>* locals,
96 const size_t vregs) {
97 DCHECK_NE(locals->size(), vregs);
98 locals->resize(vregs, nullptr);
99 if (block->IsCatchBlock()) {
100 // We record incoming inputs of catch phis at throwing instructions and
101 // must therefore eagerly create the phis. Phis for undefined vregs will
102 // be deleted when the first throwing instruction with the vreg undefined
103 // is encountered. Unused phis will be removed by dead phi analysis.
104 for (size_t i = 0; i < vregs; ++i) {
105 // No point in creating the catch phi if it is already undefined at
106 // the first throwing instruction.
107 HInstruction* current_local_value = (*current_locals_)[i];
108 if (current_local_value != nullptr) {
109 HPhi* phi = new (allocator_) HPhi(
110 allocator_,
111 i,
112 0,
113 current_local_value->GetType());
114 block->AddPhi(phi);
115 (*locals)[i] = phi;
116 }
117 }
118 }
119 return locals;
120 }
121
ValueOfLocalAt(HBasicBlock * block,size_t local)122 inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
123 ScopedArenaVector<HInstruction*>* locals = GetLocalsFor(block);
124 return (*locals)[local];
125 }
126
InitializeBlockLocals()127 void HInstructionBuilder::InitializeBlockLocals() {
128 current_locals_ = GetLocalsFor(current_block_);
129
130 if (current_block_->IsCatchBlock()) {
131 // Catch phis were already created and inputs collected from throwing sites.
132 if (kIsDebugBuild) {
133 // Make sure there was at least one throwing instruction which initialized
134 // locals (guaranteed by HGraphBuilder) and that all try blocks have been
135 // visited already (from HTryBoundary scoping and reverse post order).
136 bool catch_block_visited = false;
137 for (HBasicBlock* current : graph_->GetReversePostOrder()) {
138 if (current == current_block_) {
139 catch_block_visited = true;
140 } else if (current->IsTryBlock()) {
141 const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
142 if (try_entry.HasExceptionHandler(*current_block_)) {
143 DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
144 }
145 }
146 }
147 DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
148 << "No instructions throwing into a live catch block.";
149 }
150 } else if (current_block_->IsLoopHeader()) {
151 // If the block is a loop header, we know we only have visited the pre header
152 // because we are visiting in reverse post order. We create phis for all initialized
153 // locals from the pre header. Their inputs will be populated at the end of
154 // the analysis.
155 for (size_t local = 0; local < current_locals_->size(); ++local) {
156 HInstruction* incoming =
157 ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
158 if (incoming != nullptr) {
159 HPhi* phi = new (allocator_) HPhi(
160 allocator_,
161 local,
162 0,
163 incoming->GetType());
164 current_block_->AddPhi(phi);
165 (*current_locals_)[local] = phi;
166 }
167 }
168
169 // Save the loop header so that the last phase of the analysis knows which
170 // blocks need to be updated.
171 loop_headers_.push_back(current_block_);
172 } else if (current_block_->GetPredecessors().size() > 0) {
173 // All predecessors have already been visited because we are visiting in reverse post order.
174 // We merge the values of all locals, creating phis if those values differ.
175 for (size_t local = 0; local < current_locals_->size(); ++local) {
176 bool one_predecessor_has_no_value = false;
177 bool is_different = false;
178 HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
179
180 for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
181 HInstruction* current = ValueOfLocalAt(predecessor, local);
182 if (current == nullptr) {
183 one_predecessor_has_no_value = true;
184 break;
185 } else if (current != value) {
186 is_different = true;
187 }
188 }
189
190 if (one_predecessor_has_no_value) {
191 // If one predecessor has no value for this local, we trust the verifier has
192 // successfully checked that there is a store dominating any read after this block.
193 continue;
194 }
195
196 if (is_different) {
197 HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
198 HPhi* phi = new (allocator_) HPhi(
199 allocator_,
200 local,
201 current_block_->GetPredecessors().size(),
202 first_input->GetType());
203 for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
204 HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
205 phi->SetRawInputAt(i, pred_value);
206 }
207 current_block_->AddPhi(phi);
208 value = phi;
209 }
210 (*current_locals_)[local] = value;
211 }
212 }
213 }
214
PropagateLocalsToCatchBlocks()215 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
216 const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
217 for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
218 ScopedArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
219 DCHECK_EQ(handler_locals->size(), current_locals_->size());
220 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
221 HInstruction* handler_value = (*handler_locals)[vreg];
222 if (handler_value == nullptr) {
223 // Vreg was undefined at a previously encountered throwing instruction
224 // and the catch phi was deleted. Do not record the local value.
225 continue;
226 }
227 DCHECK(handler_value->IsPhi());
228
229 HInstruction* local_value = (*current_locals_)[vreg];
230 if (local_value == nullptr) {
231 // This is the first instruction throwing into `catch_block` where
232 // `vreg` is undefined. Delete the catch phi.
233 catch_block->RemovePhi(handler_value->AsPhi());
234 (*handler_locals)[vreg] = nullptr;
235 } else {
236 // Vreg has been defined at all instructions throwing into `catch_block`
237 // encountered so far. Record the local value in the catch phi.
238 handler_value->AsPhi()->AddInput(local_value);
239 }
240 }
241 }
242 }
243
AppendInstruction(HInstruction * instruction)244 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
245 current_block_->AddInstruction(instruction);
246 InitializeInstruction(instruction);
247 }
248
InsertInstructionAtTop(HInstruction * instruction)249 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
250 if (current_block_->GetInstructions().IsEmpty()) {
251 current_block_->AddInstruction(instruction);
252 } else {
253 current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
254 }
255 InitializeInstruction(instruction);
256 }
257
InitializeInstruction(HInstruction * instruction)258 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
259 if (instruction->NeedsEnvironment()) {
260 HEnvironment* environment = new (allocator_) HEnvironment(
261 allocator_,
262 current_locals_->size(),
263 graph_->GetArtMethod(),
264 instruction->GetDexPc(),
265 instruction);
266 environment->CopyFrom(ArrayRef<HInstruction* const>(*current_locals_));
267 instruction->SetRawEnvironment(environment);
268 }
269 }
270
LoadNullCheckedLocal(uint32_t register_index,uint32_t dex_pc)271 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
272 HInstruction* ref = LoadLocal(register_index, DataType::Type::kReference);
273 if (!ref->CanBeNull()) {
274 return ref;
275 }
276
277 HNullCheck* null_check = new (allocator_) HNullCheck(ref, dex_pc);
278 AppendInstruction(null_check);
279 return null_check;
280 }
281
SetLoopHeaderPhiInputs()282 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
283 for (size_t i = loop_headers_.size(); i > 0; --i) {
284 HBasicBlock* block = loop_headers_[i - 1];
285 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
286 HPhi* phi = it.Current()->AsPhi();
287 size_t vreg = phi->GetRegNumber();
288 for (HBasicBlock* predecessor : block->GetPredecessors()) {
289 HInstruction* value = ValueOfLocalAt(predecessor, vreg);
290 if (value == nullptr) {
291 // Vreg is undefined at this predecessor. Mark it dead and leave with
292 // fewer inputs than predecessors. SsaChecker will fail if not removed.
293 phi->SetDead();
294 break;
295 } else {
296 phi->AddInput(value);
297 }
298 }
299 }
300 }
301 }
302
IsBlockPopulated(HBasicBlock * block)303 static bool IsBlockPopulated(HBasicBlock* block) {
304 if (block->IsLoopHeader()) {
305 // Suspend checks were inserted into loop headers during building of dominator tree.
306 DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
307 return block->GetFirstInstruction() != block->GetLastInstruction();
308 } else {
309 return !block->GetInstructions().IsEmpty();
310 }
311 }
312
Build()313 bool HInstructionBuilder::Build() {
314 DCHECK(code_item_accessor_.HasCodeItem());
315 locals_for_.resize(
316 graph_->GetBlocks().size(),
317 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
318
319 // Find locations where we want to generate extra stackmaps for native debugging.
320 // This allows us to generate the info only at interesting points (for example,
321 // at start of java statement) rather than before every dex instruction.
322 const bool native_debuggable = code_generator_ != nullptr &&
323 code_generator_->GetCompilerOptions().GetNativeDebuggable();
324 ArenaBitVector* native_debug_info_locations = nullptr;
325 if (native_debuggable) {
326 native_debug_info_locations = FindNativeDebugInfoLocations();
327 }
328
329 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
330 current_block_ = block;
331 uint32_t block_dex_pc = current_block_->GetDexPc();
332
333 InitializeBlockLocals();
334
335 if (current_block_->IsEntryBlock()) {
336 InitializeParameters();
337 AppendInstruction(new (allocator_) HSuspendCheck(0u));
338 AppendInstruction(new (allocator_) HGoto(0u));
339 continue;
340 } else if (current_block_->IsExitBlock()) {
341 AppendInstruction(new (allocator_) HExit());
342 continue;
343 } else if (current_block_->IsLoopHeader()) {
344 HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(current_block_->GetDexPc());
345 current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
346 // This is slightly odd because the loop header might not be empty (TryBoundary).
347 // But we're still creating the environment with locals from the top of the block.
348 InsertInstructionAtTop(suspend_check);
349 }
350
351 if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
352 // Synthetic block that does not need to be populated.
353 DCHECK(IsBlockPopulated(current_block_));
354 continue;
355 }
356
357 DCHECK(!IsBlockPopulated(current_block_));
358
359 uint32_t quicken_index = 0;
360 if (CanDecodeQuickenedInfo()) {
361 quicken_index = block_builder_->GetQuickenIndex(block_dex_pc);
362 }
363
364 for (const DexInstructionPcPair& pair : code_item_accessor_.InstructionsFrom(block_dex_pc)) {
365 if (current_block_ == nullptr) {
366 // The previous instruction ended this block.
367 break;
368 }
369
370 const uint32_t dex_pc = pair.DexPc();
371 if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
372 // This dex_pc starts a new basic block.
373 break;
374 }
375
376 if (current_block_->IsTryBlock() && IsThrowingDexInstruction(pair.Inst())) {
377 PropagateLocalsToCatchBlocks();
378 }
379
380 if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
381 AppendInstruction(new (allocator_) HNativeDebugInfo(dex_pc));
382 }
383
384 if (!ProcessDexInstruction(pair.Inst(), dex_pc, quicken_index)) {
385 return false;
386 }
387
388 if (QuickenInfoTable::NeedsIndexForInstruction(&pair.Inst())) {
389 ++quicken_index;
390 }
391 }
392
393 if (current_block_ != nullptr) {
394 // Branching instructions clear current_block, so we know the last
395 // instruction of the current block is not a branching instruction.
396 // We add an unconditional Goto to the next block.
397 DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
398 AppendInstruction(new (allocator_) HGoto());
399 }
400 }
401
402 SetLoopHeaderPhiInputs();
403
404 return true;
405 }
406
BuildIntrinsic(ArtMethod * method)407 void HInstructionBuilder::BuildIntrinsic(ArtMethod* method) {
408 DCHECK(!code_item_accessor_.HasCodeItem());
409 DCHECK(method->IsIntrinsic());
410
411 locals_for_.resize(
412 graph_->GetBlocks().size(),
413 ScopedArenaVector<HInstruction*>(local_allocator_->Adapter(kArenaAllocGraphBuilder)));
414
415 // Fill the entry block. Do not add suspend check, we do not want a suspend
416 // check in intrinsics; intrinsic methods are supposed to be fast.
417 current_block_ = graph_->GetEntryBlock();
418 InitializeBlockLocals();
419 InitializeParameters();
420 AppendInstruction(new (allocator_) HGoto(0u));
421
422 // Fill the body.
423 current_block_ = current_block_->GetSingleSuccessor();
424 InitializeBlockLocals();
425 DCHECK(!IsBlockPopulated(current_block_));
426
427 // Add the invoke and return instruction. Use HInvokeStaticOrDirect even
428 // for methods that would normally use an HInvokeVirtual (sharpen the call).
429 size_t in_vregs = graph_->GetNumberOfInVRegs();
430 size_t number_of_arguments =
431 in_vregs - std::count(current_locals_->end() - in_vregs, current_locals_->end(), nullptr);
432 uint32_t method_idx = dex_compilation_unit_->GetDexMethodIndex();
433 MethodReference target_method(dex_file_, method_idx);
434 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
435 HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall,
436 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
437 /* method_load_data= */ 0u
438 };
439 InvokeType invoke_type = dex_compilation_unit_->IsStatic() ? kStatic : kDirect;
440 HInvokeStaticOrDirect* invoke = new (allocator_) HInvokeStaticOrDirect(
441 allocator_,
442 number_of_arguments,
443 return_type_,
444 kNoDexPc,
445 method_idx,
446 method,
447 dispatch_info,
448 invoke_type,
449 target_method,
450 HInvokeStaticOrDirect::ClinitCheckRequirement::kNone);
451 RangeInstructionOperands operands(graph_->GetNumberOfVRegs() - in_vregs, in_vregs);
452 HandleInvoke(invoke, operands, dex_file_->GetMethodShorty(method_idx), /* is_unresolved= */ false);
453
454 // Add the return instruction.
455 if (return_type_ == DataType::Type::kVoid) {
456 AppendInstruction(new (allocator_) HReturnVoid());
457 } else {
458 AppendInstruction(new (allocator_) HReturn(invoke));
459 }
460
461 // Fill the exit block.
462 DCHECK_EQ(current_block_->GetSingleSuccessor(), graph_->GetExitBlock());
463 current_block_ = graph_->GetExitBlock();
464 InitializeBlockLocals();
465 AppendInstruction(new (allocator_) HExit());
466 }
467
FindNativeDebugInfoLocations()468 ArenaBitVector* HInstructionBuilder::FindNativeDebugInfoLocations() {
469 ArenaBitVector* locations = ArenaBitVector::Create(local_allocator_,
470 code_item_accessor_.InsnsSizeInCodeUnits(),
471 /* expandable= */ false,
472 kArenaAllocGraphBuilder);
473 locations->ClearAllBits();
474 // The visitor gets called when the line number changes.
475 // In other words, it marks the start of new java statement.
476 code_item_accessor_.DecodeDebugPositionInfo([&](const DexFile::PositionInfo& entry) {
477 locations->SetBit(entry.address_);
478 return false;
479 });
480 // Instruction-specific tweaks.
481 for (const DexInstructionPcPair& inst : code_item_accessor_) {
482 switch (inst->Opcode()) {
483 case Instruction::MOVE_EXCEPTION: {
484 // Stop in native debugger after the exception has been moved.
485 // The compiler also expects the move at the start of basic block so
486 // we do not want to interfere by inserting native-debug-info before it.
487 locations->ClearBit(inst.DexPc());
488 DexInstructionIterator next = std::next(DexInstructionIterator(inst));
489 DCHECK(next.DexPc() != inst.DexPc());
490 if (next != code_item_accessor_.end()) {
491 locations->SetBit(next.DexPc());
492 }
493 break;
494 }
495 default:
496 break;
497 }
498 }
499 return locations;
500 }
501
LoadLocal(uint32_t reg_number,DataType::Type type) const502 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, DataType::Type type) const {
503 HInstruction* value = (*current_locals_)[reg_number];
504 DCHECK(value != nullptr);
505
506 // If the operation requests a specific type, we make sure its input is of that type.
507 if (type != value->GetType()) {
508 if (DataType::IsFloatingPointType(type)) {
509 value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
510 } else if (type == DataType::Type::kReference) {
511 value = ssa_builder_->GetReferenceTypeEquivalent(value);
512 }
513 DCHECK(value != nullptr);
514 }
515
516 return value;
517 }
518
UpdateLocal(uint32_t reg_number,HInstruction * stored_value)519 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
520 DataType::Type stored_type = stored_value->GetType();
521 DCHECK_NE(stored_type, DataType::Type::kVoid);
522
523 // Storing into vreg `reg_number` may implicitly invalidate the surrounding
524 // registers. Consider the following cases:
525 // (1) Storing a wide value must overwrite previous values in both `reg_number`
526 // and `reg_number+1`. We store `nullptr` in `reg_number+1`.
527 // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
528 // must invalidate it. We store `nullptr` in `reg_number-1`.
529 // Consequently, storing a wide value into the high vreg of another wide value
530 // will invalidate both `reg_number-1` and `reg_number+1`.
531
532 if (reg_number != 0) {
533 HInstruction* local_low = (*current_locals_)[reg_number - 1];
534 if (local_low != nullptr && DataType::Is64BitType(local_low->GetType())) {
535 // The vreg we are storing into was previously the high vreg of a pair.
536 // We need to invalidate its low vreg.
537 DCHECK((*current_locals_)[reg_number] == nullptr);
538 (*current_locals_)[reg_number - 1] = nullptr;
539 }
540 }
541
542 (*current_locals_)[reg_number] = stored_value;
543 if (DataType::Is64BitType(stored_type)) {
544 // We are storing a pair. Invalidate the instruction in the high vreg.
545 (*current_locals_)[reg_number + 1] = nullptr;
546 }
547 }
548
InitializeParameters()549 void HInstructionBuilder::InitializeParameters() {
550 DCHECK(current_block_->IsEntryBlock());
551
552 // outer_compilation_unit_ is null only when unit testing.
553 if (outer_compilation_unit_ == nullptr) {
554 return;
555 }
556
557 const char* shorty = dex_compilation_unit_->GetShorty();
558 uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
559 uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
560 uint16_t parameter_index = 0;
561
562 const dex::MethodId& referrer_method_id =
563 dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
564 if (!dex_compilation_unit_->IsStatic()) {
565 // Add the implicit 'this' argument, not expressed in the signature.
566 HParameterValue* parameter = new (allocator_) HParameterValue(*dex_file_,
567 referrer_method_id.class_idx_,
568 parameter_index++,
569 DataType::Type::kReference,
570 /* is_this= */ true);
571 AppendInstruction(parameter);
572 UpdateLocal(locals_index++, parameter);
573 number_of_parameters--;
574 current_this_parameter_ = parameter;
575 } else {
576 DCHECK(current_this_parameter_ == nullptr);
577 }
578
579 const dex::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
580 const dex::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
581 for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
582 HParameterValue* parameter = new (allocator_) HParameterValue(
583 *dex_file_,
584 arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
585 parameter_index++,
586 DataType::FromShorty(shorty[shorty_pos]),
587 /* is_this= */ false);
588 ++shorty_pos;
589 AppendInstruction(parameter);
590 // Store the parameter value in the local that the dex code will use
591 // to reference that parameter.
592 UpdateLocal(locals_index++, parameter);
593 if (DataType::Is64BitType(parameter->GetType())) {
594 i++;
595 locals_index++;
596 parameter_index++;
597 }
598 }
599 }
600
601 template<typename T>
If_22t(const Instruction & instruction,uint32_t dex_pc)602 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
603 HInstruction* first = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
604 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
605 T* comparison = new (allocator_) T(first, second, dex_pc);
606 AppendInstruction(comparison);
607 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
608 current_block_ = nullptr;
609 }
610
611 template<typename T>
If_21t(const Instruction & instruction,uint32_t dex_pc)612 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
613 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
614 T* comparison = new (allocator_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
615 AppendInstruction(comparison);
616 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
617 current_block_ = nullptr;
618 }
619
620 template<typename T>
Unop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)621 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
622 DataType::Type type,
623 uint32_t dex_pc) {
624 HInstruction* first = LoadLocal(instruction.VRegB(), type);
625 AppendInstruction(new (allocator_) T(type, first, dex_pc));
626 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
627 }
628
Conversion_12x(const Instruction & instruction,DataType::Type input_type,DataType::Type result_type,uint32_t dex_pc)629 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
630 DataType::Type input_type,
631 DataType::Type result_type,
632 uint32_t dex_pc) {
633 HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
634 AppendInstruction(new (allocator_) HTypeConversion(result_type, first, dex_pc));
635 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
636 }
637
638 template<typename T>
Binop_23x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)639 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
640 DataType::Type type,
641 uint32_t dex_pc) {
642 HInstruction* first = LoadLocal(instruction.VRegB(), type);
643 HInstruction* second = LoadLocal(instruction.VRegC(), type);
644 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
645 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
646 }
647
648 template<typename T>
Binop_23x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)649 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
650 DataType::Type type,
651 uint32_t dex_pc) {
652 HInstruction* first = LoadLocal(instruction.VRegB(), type);
653 HInstruction* second = LoadLocal(instruction.VRegC(), DataType::Type::kInt32);
654 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
655 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
656 }
657
Binop_23x_cmp(const Instruction & instruction,DataType::Type type,ComparisonBias bias,uint32_t dex_pc)658 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
659 DataType::Type type,
660 ComparisonBias bias,
661 uint32_t dex_pc) {
662 HInstruction* first = LoadLocal(instruction.VRegB(), type);
663 HInstruction* second = LoadLocal(instruction.VRegC(), type);
664 AppendInstruction(new (allocator_) HCompare(type, first, second, bias, dex_pc));
665 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
666 }
667
668 template<typename T>
Binop_12x_shift(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)669 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
670 DataType::Type type,
671 uint32_t dex_pc) {
672 HInstruction* first = LoadLocal(instruction.VRegA(), type);
673 HInstruction* second = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
674 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
675 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
676 }
677
678 template<typename T>
Binop_12x(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)679 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
680 DataType::Type type,
681 uint32_t dex_pc) {
682 HInstruction* first = LoadLocal(instruction.VRegA(), type);
683 HInstruction* second = LoadLocal(instruction.VRegB(), type);
684 AppendInstruction(new (allocator_) T(type, first, second, dex_pc));
685 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
686 }
687
688 template<typename T>
Binop_22s(const Instruction & instruction,bool reverse,uint32_t dex_pc)689 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
690 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
691 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
692 if (reverse) {
693 std::swap(first, second);
694 }
695 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
696 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
697 }
698
699 template<typename T>
Binop_22b(const Instruction & instruction,bool reverse,uint32_t dex_pc)700 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
701 HInstruction* first = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
702 HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
703 if (reverse) {
704 std::swap(first, second);
705 }
706 AppendInstruction(new (allocator_) T(DataType::Type::kInt32, first, second, dex_pc));
707 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
708 }
709
710 // Does the method being compiled need any constructor barriers being inserted?
711 // (Always 'false' for methods that aren't <init>.)
RequiresConstructorBarrier(const DexCompilationUnit * cu)712 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu) {
713 // Can be null in unit tests only.
714 if (UNLIKELY(cu == nullptr)) {
715 return false;
716 }
717
718 // Constructor barriers are applicable only for <init> methods.
719 if (LIKELY(!cu->IsConstructor() || cu->IsStatic())) {
720 return false;
721 }
722
723 return cu->RequiresConstructorBarrier();
724 }
725
726 // Returns true if `block` has only one successor which starts at the next
727 // dex_pc after `instruction` at `dex_pc`.
IsFallthroughInstruction(const Instruction & instruction,uint32_t dex_pc,HBasicBlock * block)728 static bool IsFallthroughInstruction(const Instruction& instruction,
729 uint32_t dex_pc,
730 HBasicBlock* block) {
731 uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
732 return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
733 }
734
BuildSwitch(const Instruction & instruction,uint32_t dex_pc)735 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
736 HInstruction* value = LoadLocal(instruction.VRegA(), DataType::Type::kInt32);
737 DexSwitchTable table(instruction, dex_pc);
738
739 if (table.GetNumEntries() == 0) {
740 // Empty Switch. Code falls through to the next block.
741 DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
742 AppendInstruction(new (allocator_) HGoto(dex_pc));
743 } else if (table.ShouldBuildDecisionTree()) {
744 for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
745 HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
746 HEqual* comparison = new (allocator_) HEqual(value, case_value, dex_pc);
747 AppendInstruction(comparison);
748 AppendInstruction(new (allocator_) HIf(comparison, dex_pc));
749
750 if (!it.IsLast()) {
751 current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
752 }
753 }
754 } else {
755 AppendInstruction(
756 new (allocator_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
757 }
758
759 current_block_ = nullptr;
760 }
761
BuildReturn(const Instruction & instruction,DataType::Type type,uint32_t dex_pc)762 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
763 DataType::Type type,
764 uint32_t dex_pc) {
765 if (type == DataType::Type::kVoid) {
766 // Only <init> (which is a return-void) could possibly have a constructor fence.
767 // This may insert additional redundant constructor fences from the super constructors.
768 // TODO: remove redundant constructor fences (b/36656456).
769 if (RequiresConstructorBarrier(dex_compilation_unit_)) {
770 // Compiling instance constructor.
771 DCHECK_STREQ("<init>", graph_->GetMethodName());
772
773 HInstruction* fence_target = current_this_parameter_;
774 DCHECK(fence_target != nullptr);
775
776 AppendInstruction(new (allocator_) HConstructorFence(fence_target, dex_pc, allocator_));
777 MaybeRecordStat(
778 compilation_stats_,
779 MethodCompilationStat::kConstructorFenceGeneratedFinal);
780 }
781 AppendInstruction(new (allocator_) HReturnVoid(dex_pc));
782 } else {
783 DCHECK(!RequiresConstructorBarrier(dex_compilation_unit_));
784 HInstruction* value = LoadLocal(instruction.VRegA(), type);
785 AppendInstruction(new (allocator_) HReturn(value, dex_pc));
786 }
787 current_block_ = nullptr;
788 }
789
GetInvokeTypeFromOpCode(Instruction::Code opcode)790 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
791 switch (opcode) {
792 case Instruction::INVOKE_STATIC:
793 case Instruction::INVOKE_STATIC_RANGE:
794 return kStatic;
795 case Instruction::INVOKE_DIRECT:
796 case Instruction::INVOKE_DIRECT_RANGE:
797 return kDirect;
798 case Instruction::INVOKE_VIRTUAL:
799 case Instruction::INVOKE_VIRTUAL_QUICK:
800 case Instruction::INVOKE_VIRTUAL_RANGE:
801 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
802 return kVirtual;
803 case Instruction::INVOKE_INTERFACE:
804 case Instruction::INVOKE_INTERFACE_RANGE:
805 return kInterface;
806 case Instruction::INVOKE_SUPER_RANGE:
807 case Instruction::INVOKE_SUPER:
808 return kSuper;
809 default:
810 LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
811 UNREACHABLE();
812 }
813 }
814
ResolveMethod(uint16_t method_idx,InvokeType invoke_type)815 ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
816 ScopedObjectAccess soa(Thread::Current());
817
818 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
819 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
820
821 ArtMethod* resolved_method =
822 class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
823 method_idx,
824 dex_compilation_unit_->GetDexCache(),
825 class_loader,
826 graph_->GetArtMethod(),
827 invoke_type);
828
829 if (UNLIKELY(resolved_method == nullptr)) {
830 // Clean up any exception left by type resolution.
831 soa.Self()->ClearException();
832 return nullptr;
833 }
834
835 // The referrer may be unresolved for AOT if we're compiling a class that cannot be
836 // resolved because, for example, we don't find a superclass in the classpath.
837 if (graph_->GetArtMethod() == nullptr) {
838 // The class linker cannot check access without a referrer, so we have to do it.
839 // Fall back to HInvokeUnresolved if the method isn't public.
840 if (!resolved_method->IsPublic()) {
841 return nullptr;
842 }
843 }
844
845 // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
846 // We need to look at the referrer's super class vtable. We need to do this to know if we need to
847 // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
848 // which require runtime handling.
849 if (invoke_type == kSuper) {
850 ObjPtr<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass().Get();
851 if (compiling_class == nullptr) {
852 // We could not determine the method's class we need to wait until runtime.
853 DCHECK(Runtime::Current()->IsAotCompiler());
854 return nullptr;
855 }
856 ObjPtr<mirror::Class> referenced_class = class_linker->LookupResolvedType(
857 dex_compilation_unit_->GetDexFile()->GetMethodId(method_idx).class_idx_,
858 dex_compilation_unit_->GetDexCache().Get(),
859 class_loader.Get());
860 DCHECK(referenced_class != nullptr); // We have already resolved a method from this class.
861 if (!referenced_class->IsAssignableFrom(compiling_class)) {
862 // We cannot statically determine the target method. The runtime will throw a
863 // NoSuchMethodError on this one.
864 return nullptr;
865 }
866 ArtMethod* actual_method;
867 if (referenced_class->IsInterface()) {
868 actual_method = referenced_class->FindVirtualMethodForInterfaceSuper(
869 resolved_method, class_linker->GetImagePointerSize());
870 } else {
871 uint16_t vtable_index = resolved_method->GetMethodIndex();
872 actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
873 vtable_index, class_linker->GetImagePointerSize());
874 }
875 if (actual_method != resolved_method &&
876 !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
877 // The back-end code generator relies on this check in order to ensure that it will not
878 // attempt to read the dex_cache with a dex_method_index that is not from the correct
879 // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
880 // builder, which means that the code-generator (and sharpening and inliner, maybe)
881 // might invoke an incorrect method.
882 // TODO: The actual method could still be referenced in the current dex file, so we
883 // could try locating it.
884 // TODO: Remove the dex_file restriction.
885 return nullptr;
886 }
887 if (!actual_method->IsInvokable()) {
888 // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
889 // could resolve the callee to the wrong method.
890 return nullptr;
891 }
892 resolved_method = actual_method;
893 }
894
895 return resolved_method;
896 }
897
IsStringConstructor(ArtMethod * method)898 static bool IsStringConstructor(ArtMethod* method) {
899 ScopedObjectAccess soa(Thread::Current());
900 return method->GetDeclaringClass()->IsStringClass() && method->IsConstructor();
901 }
902
BuildInvoke(const Instruction & instruction,uint32_t dex_pc,uint32_t method_idx,const InstructionOperands & operands)903 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
904 uint32_t dex_pc,
905 uint32_t method_idx,
906 const InstructionOperands& operands) {
907 InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
908 const char* shorty = dex_file_->GetMethodShorty(method_idx);
909 DataType::Type return_type = DataType::FromShorty(shorty[0]);
910
911 // Remove the return type from the 'proto'.
912 size_t number_of_arguments = strlen(shorty) - 1;
913 if (invoke_type != kStatic) { // instance call
914 // One extra argument for 'this'.
915 number_of_arguments++;
916 }
917
918 ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
919
920 if (UNLIKELY(resolved_method == nullptr)) {
921 MaybeRecordStat(compilation_stats_,
922 MethodCompilationStat::kUnresolvedMethod);
923 HInvoke* invoke = new (allocator_) HInvokeUnresolved(allocator_,
924 number_of_arguments,
925 return_type,
926 dex_pc,
927 method_idx,
928 invoke_type);
929 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ true);
930 }
931
932 // Replace calls to String.<init> with StringFactory.
933 if (IsStringConstructor(resolved_method)) {
934 uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method);
935 HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
936 HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
937 HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
938 dchecked_integral_cast<uint64_t>(string_init_entry_point)
939 };
940 ScopedObjectAccess soa(Thread::Current());
941 MethodReference target_method(resolved_method->GetDexFile(),
942 resolved_method->GetDexMethodIndex());
943 // We pass null for the resolved_method to ensure optimizations
944 // don't rely on it.
945 HInvoke* invoke = new (allocator_) HInvokeStaticOrDirect(
946 allocator_,
947 number_of_arguments - 1,
948 /* return_type= */ DataType::Type::kReference,
949 dex_pc,
950 method_idx,
951 /* resolved_method= */ nullptr,
952 dispatch_info,
953 invoke_type,
954 target_method,
955 HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
956 return HandleStringInit(invoke, operands, shorty);
957 }
958
959 // Potential class initialization check, in the case of a static method call.
960 HClinitCheck* clinit_check = nullptr;
961 HInvoke* invoke = nullptr;
962 if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
963 // By default, consider that the called method implicitly requires
964 // an initialization check of its declaring method.
965 HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
966 = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
967 ScopedObjectAccess soa(Thread::Current());
968 if (invoke_type == kStatic) {
969 clinit_check =
970 ProcessClinitCheckForInvoke(dex_pc, resolved_method, &clinit_check_requirement);
971 } else if (invoke_type == kSuper) {
972 if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
973 // Update the method index to the one resolved. Note that this may be a no-op if
974 // we resolved to the method referenced by the instruction.
975 method_idx = resolved_method->GetDexMethodIndex();
976 }
977 }
978
979 HInvokeStaticOrDirect::DispatchInfo dispatch_info =
980 HSharpening::SharpenInvokeStaticOrDirect(resolved_method, code_generator_);
981 MethodReference target_method(resolved_method->GetDexFile(),
982 resolved_method->GetDexMethodIndex());
983 invoke = new (allocator_) HInvokeStaticOrDirect(allocator_,
984 number_of_arguments,
985 return_type,
986 dex_pc,
987 method_idx,
988 resolved_method,
989 dispatch_info,
990 invoke_type,
991 target_method,
992 clinit_check_requirement);
993 } else if (invoke_type == kVirtual) {
994 ScopedObjectAccess soa(Thread::Current()); // Needed for the method index
995 invoke = new (allocator_) HInvokeVirtual(allocator_,
996 number_of_arguments,
997 return_type,
998 dex_pc,
999 method_idx,
1000 resolved_method,
1001 resolved_method->GetMethodIndex());
1002 } else {
1003 DCHECK_EQ(invoke_type, kInterface);
1004 ScopedObjectAccess soa(Thread::Current()); // Needed for the IMT index.
1005 invoke = new (allocator_) HInvokeInterface(allocator_,
1006 number_of_arguments,
1007 return_type,
1008 dex_pc,
1009 method_idx,
1010 resolved_method,
1011 ImTable::GetImtIndex(resolved_method));
1012 }
1013 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false, clinit_check);
1014 }
1015
BuildInvokePolymorphic(uint32_t dex_pc,uint32_t method_idx,dex::ProtoIndex proto_idx,const InstructionOperands & operands)1016 bool HInstructionBuilder::BuildInvokePolymorphic(uint32_t dex_pc,
1017 uint32_t method_idx,
1018 dex::ProtoIndex proto_idx,
1019 const InstructionOperands& operands) {
1020 const char* shorty = dex_file_->GetShorty(proto_idx);
1021 DCHECK_EQ(1 + ArtMethod::NumArgRegisters(shorty), operands.GetNumberOfOperands());
1022 DataType::Type return_type = DataType::FromShorty(shorty[0]);
1023 size_t number_of_arguments = strlen(shorty);
1024 HInvoke* invoke = new (allocator_) HInvokePolymorphic(allocator_,
1025 number_of_arguments,
1026 return_type,
1027 dex_pc,
1028 method_idx);
1029 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1030 }
1031
1032
BuildInvokeCustom(uint32_t dex_pc,uint32_t call_site_idx,const InstructionOperands & operands)1033 bool HInstructionBuilder::BuildInvokeCustom(uint32_t dex_pc,
1034 uint32_t call_site_idx,
1035 const InstructionOperands& operands) {
1036 dex::ProtoIndex proto_idx = dex_file_->GetProtoIndexForCallSite(call_site_idx);
1037 const char* shorty = dex_file_->GetShorty(proto_idx);
1038 DataType::Type return_type = DataType::FromShorty(shorty[0]);
1039 size_t number_of_arguments = strlen(shorty) - 1;
1040 HInvoke* invoke = new (allocator_) HInvokeCustom(allocator_,
1041 number_of_arguments,
1042 call_site_idx,
1043 return_type,
1044 dex_pc);
1045 return HandleInvoke(invoke, operands, shorty, /* is_unresolved= */ false);
1046 }
1047
BuildNewInstance(dex::TypeIndex type_index,uint32_t dex_pc)1048 HNewInstance* HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) {
1049 ScopedObjectAccess soa(Thread::Current());
1050
1051 HLoadClass* load_class = BuildLoadClass(type_index, dex_pc);
1052
1053 HInstruction* cls = load_class;
1054 Handle<mirror::Class> klass = load_class->GetClass();
1055
1056 if (!IsInitialized(klass)) {
1057 cls = new (allocator_) HClinitCheck(load_class, dex_pc);
1058 AppendInstruction(cls);
1059 }
1060
1061 // Only the access check entrypoint handles the finalizable class case. If we
1062 // need access checks, then we haven't resolved the method and the class may
1063 // again be finalizable.
1064 QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized;
1065 if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) {
1066 entrypoint = kQuickAllocObjectWithChecks;
1067 }
1068 // We will always be able to resolve the string class since it is in the BCP.
1069 if (!klass.IsNull() && klass->IsStringClass()) {
1070 entrypoint = kQuickAllocStringObject;
1071 }
1072
1073 // Consider classes we haven't resolved as potentially finalizable.
1074 bool finalizable = (klass == nullptr) || klass->IsFinalizable();
1075
1076 HNewInstance* new_instance = new (allocator_) HNewInstance(
1077 cls,
1078 dex_pc,
1079 type_index,
1080 *dex_compilation_unit_->GetDexFile(),
1081 finalizable,
1082 entrypoint);
1083 AppendInstruction(new_instance);
1084
1085 return new_instance;
1086 }
1087
BuildConstructorFenceForAllocation(HInstruction * allocation)1088 void HInstructionBuilder::BuildConstructorFenceForAllocation(HInstruction* allocation) {
1089 DCHECK(allocation != nullptr &&
1090 (allocation->IsNewInstance() ||
1091 allocation->IsNewArray())); // corresponding to "new" keyword in JLS.
1092
1093 if (allocation->IsNewInstance()) {
1094 // STRING SPECIAL HANDLING:
1095 // -------------------------------
1096 // Strings have a real HNewInstance node but they end up always having 0 uses.
1097 // All uses of a String HNewInstance are always transformed to replace their input
1098 // of the HNewInstance with an input of the invoke to StringFactory.
1099 //
1100 // Do not emit an HConstructorFence here since it can inhibit some String new-instance
1101 // optimizations (to pass checker tests that rely on those optimizations).
1102 HNewInstance* new_inst = allocation->AsNewInstance();
1103 HLoadClass* load_class = new_inst->GetLoadClass();
1104
1105 Thread* self = Thread::Current();
1106 ScopedObjectAccess soa(self);
1107 StackHandleScope<1> hs(self);
1108 Handle<mirror::Class> klass = load_class->GetClass();
1109 if (klass != nullptr && klass->IsStringClass()) {
1110 return;
1111 // Note: Do not use allocation->IsStringAlloc which requires
1112 // a valid ReferenceTypeInfo, but that doesn't get made until after reference type
1113 // propagation (and instruction builder is too early).
1114 }
1115 // (In terms of correctness, the StringFactory needs to provide its own
1116 // default initialization barrier, see below.)
1117 }
1118
1119 // JLS 17.4.5 "Happens-before Order" describes:
1120 //
1121 // The default initialization of any object happens-before any other actions (other than
1122 // default-writes) of a program.
1123 //
1124 // In our implementation the default initialization of an object to type T means
1125 // setting all of its initial data (object[0..size)) to 0, and setting the
1126 // object's class header (i.e. object.getClass() == T.class).
1127 //
1128 // In practice this fence ensures that the writes to the object header
1129 // are visible to other threads if this object escapes the current thread.
1130 // (and in theory the 0-initializing, but that happens automatically
1131 // when new memory pages are mapped in by the OS).
1132 HConstructorFence* ctor_fence =
1133 new (allocator_) HConstructorFence(allocation, allocation->GetDexPc(), allocator_);
1134 AppendInstruction(ctor_fence);
1135 MaybeRecordStat(
1136 compilation_stats_,
1137 MethodCompilationStat::kConstructorFenceGeneratedNew);
1138 }
1139
IsInBootImage(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1140 static bool IsInBootImage(ObjPtr<mirror::Class> cls, const CompilerOptions& compiler_options)
1141 REQUIRES_SHARED(Locks::mutator_lock_) {
1142 if (compiler_options.IsBootImage()) {
1143 std::string temp;
1144 const char* descriptor = cls->GetDescriptor(&temp);
1145 return compiler_options.IsImageClass(descriptor);
1146 } else {
1147 return Runtime::Current()->GetHeap()->FindSpaceFromObject(cls, false)->IsImageSpace();
1148 }
1149 }
1150
IsSubClass(ObjPtr<mirror::Class> to_test,ObjPtr<mirror::Class> super_class)1151 static bool IsSubClass(ObjPtr<mirror::Class> to_test, ObjPtr<mirror::Class> super_class)
1152 REQUIRES_SHARED(Locks::mutator_lock_) {
1153 return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
1154 }
1155
HasTrivialClinit(ObjPtr<mirror::Class> klass,PointerSize pointer_size)1156 static bool HasTrivialClinit(ObjPtr<mirror::Class> klass, PointerSize pointer_size)
1157 REQUIRES_SHARED(Locks::mutator_lock_) {
1158 // Check if the class has encoded fields that trigger bytecode execution.
1159 // (Encoded fields are just a different representation of <clinit>.)
1160 if (klass->NumStaticFields() != 0u) {
1161 DCHECK(klass->GetClassDef() != nullptr);
1162 EncodedStaticFieldValueIterator it(klass->GetDexFile(), *klass->GetClassDef());
1163 for (; it.HasNext(); it.Next()) {
1164 switch (it.GetValueType()) {
1165 case EncodedArrayValueIterator::ValueType::kBoolean:
1166 case EncodedArrayValueIterator::ValueType::kByte:
1167 case EncodedArrayValueIterator::ValueType::kShort:
1168 case EncodedArrayValueIterator::ValueType::kChar:
1169 case EncodedArrayValueIterator::ValueType::kInt:
1170 case EncodedArrayValueIterator::ValueType::kLong:
1171 case EncodedArrayValueIterator::ValueType::kFloat:
1172 case EncodedArrayValueIterator::ValueType::kDouble:
1173 case EncodedArrayValueIterator::ValueType::kNull:
1174 case EncodedArrayValueIterator::ValueType::kString:
1175 // Primitive, null or j.l.String initialization is permitted.
1176 break;
1177 case EncodedArrayValueIterator::ValueType::kType:
1178 // Type initialization can load classes and execute bytecode through a class loader
1179 // which can execute arbitrary bytecode. We do not optimize for known class loaders;
1180 // kType is rarely used (if ever).
1181 return false;
1182 default:
1183 // Other types in the encoded static field list are rejected by the DexFileVerifier.
1184 LOG(FATAL) << "Unexpected type " << it.GetValueType();
1185 UNREACHABLE();
1186 }
1187 }
1188 }
1189 // Check if the class has <clinit> that executes arbitrary code.
1190 // Initialization of static fields of the class itself with constants is allowed.
1191 ArtMethod* clinit = klass->FindClassInitializer(pointer_size);
1192 if (clinit != nullptr) {
1193 const DexFile& dex_file = *clinit->GetDexFile();
1194 CodeItemInstructionAccessor accessor(dex_file, clinit->GetCodeItem());
1195 for (DexInstructionPcPair it : accessor) {
1196 switch (it->Opcode()) {
1197 case Instruction::CONST_4:
1198 case Instruction::CONST_16:
1199 case Instruction::CONST:
1200 case Instruction::CONST_HIGH16:
1201 case Instruction::CONST_WIDE_16:
1202 case Instruction::CONST_WIDE_32:
1203 case Instruction::CONST_WIDE:
1204 case Instruction::CONST_WIDE_HIGH16:
1205 case Instruction::CONST_STRING:
1206 case Instruction::CONST_STRING_JUMBO:
1207 // Primitive, null or j.l.String initialization is permitted.
1208 break;
1209 case Instruction::RETURN_VOID:
1210 case Instruction::RETURN_VOID_NO_BARRIER:
1211 break;
1212 case Instruction::SPUT:
1213 case Instruction::SPUT_WIDE:
1214 case Instruction::SPUT_OBJECT:
1215 case Instruction::SPUT_BOOLEAN:
1216 case Instruction::SPUT_BYTE:
1217 case Instruction::SPUT_CHAR:
1218 case Instruction::SPUT_SHORT:
1219 // Only initialization of a static field of the same class is permitted.
1220 if (dex_file.GetFieldId(it->VRegB_21c()).class_idx_ != klass->GetDexTypeIndex()) {
1221 return false;
1222 }
1223 break;
1224 case Instruction::NEW_ARRAY:
1225 // Only primitive arrays are permitted.
1226 if (Primitive::GetType(dex_file.GetTypeDescriptor(dex_file.GetTypeId(
1227 dex::TypeIndex(it->VRegC_22c())))[1]) == Primitive::kPrimNot) {
1228 return false;
1229 }
1230 break;
1231 case Instruction::APUT:
1232 case Instruction::APUT_WIDE:
1233 case Instruction::APUT_BOOLEAN:
1234 case Instruction::APUT_BYTE:
1235 case Instruction::APUT_CHAR:
1236 case Instruction::APUT_SHORT:
1237 case Instruction::FILL_ARRAY_DATA:
1238 case Instruction::NOP:
1239 // Allow initialization of primitive arrays (only constants can be stored).
1240 // Note: We expect NOPs used for fill-array-data-payload but accept all NOPs
1241 // (even unreferenced switch payloads if they make it through the verifier).
1242 break;
1243 default:
1244 return false;
1245 }
1246 }
1247 }
1248 return true;
1249 }
1250
HasTrivialInitialization(ObjPtr<mirror::Class> cls,const CompilerOptions & compiler_options)1251 static bool HasTrivialInitialization(ObjPtr<mirror::Class> cls,
1252 const CompilerOptions& compiler_options)
1253 REQUIRES_SHARED(Locks::mutator_lock_) {
1254 Runtime* runtime = Runtime::Current();
1255 PointerSize pointer_size = runtime->GetClassLinker()->GetImagePointerSize();
1256
1257 // Check the superclass chain.
1258 for (ObjPtr<mirror::Class> klass = cls; klass != nullptr; klass = klass->GetSuperClass()) {
1259 if (klass->IsInitialized() && IsInBootImage(klass, compiler_options)) {
1260 break; // `klass` and its superclasses are already initialized in the boot image.
1261 }
1262 if (!HasTrivialClinit(klass, pointer_size)) {
1263 return false;
1264 }
1265 }
1266
1267 // Also check interfaces with default methods as they need to be initialized as well.
1268 ObjPtr<mirror::IfTable> iftable = cls->GetIfTable();
1269 DCHECK(iftable != nullptr);
1270 for (int32_t i = 0, count = iftable->Count(); i != count; ++i) {
1271 ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
1272 if (!iface->HasDefaultMethods()) {
1273 continue; // Initializing `cls` does not initialize this interface.
1274 }
1275 if (iface->IsInitialized() && IsInBootImage(iface, compiler_options)) {
1276 continue; // This interface is already initialized in the boot image.
1277 }
1278 if (!HasTrivialClinit(iface, pointer_size)) {
1279 return false;
1280 }
1281 }
1282 return true;
1283 }
1284
IsInitialized(Handle<mirror::Class> cls) const1285 bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
1286 if (cls == nullptr) {
1287 return false;
1288 }
1289
1290 // Check if the class will be initialized at runtime.
1291 if (cls->IsInitialized()) {
1292 Runtime* runtime = Runtime::Current();
1293 if (!runtime->IsAotCompiler()) {
1294 DCHECK(runtime->UseJitCompilation());
1295 // For JIT, the class cannot revert to an uninitialized state.
1296 return true;
1297 }
1298 // Assume loaded only if klass is in the boot image. App classes cannot be assumed
1299 // loaded because we don't even know what class loader will be used to load them.
1300 if (IsInBootImage(cls.Get(), code_generator_->GetCompilerOptions())) {
1301 return true;
1302 }
1303 }
1304
1305 // We can avoid the class initialization check for `cls` in static methods and constructors
1306 // in the very same class; invoking a static method involves a class initialization check
1307 // and so does the instance allocation that must be executed before invoking a constructor.
1308 // Other instance methods of the same class can run on an escaped instance
1309 // of an erroneous class. Even a superclass may need to be checked as the subclass
1310 // can be completely initialized while the superclass is initializing and the subclass
1311 // remains initialized when the superclass initializer throws afterwards. b/62478025
1312 // Note: The HClinitCheck+HInvokeStaticOrDirect merging can still apply.
1313 auto is_static_method_or_constructor_of_cls = [cls](const DexCompilationUnit& compilation_unit)
1314 REQUIRES_SHARED(Locks::mutator_lock_) {
1315 return (compilation_unit.GetAccessFlags() & (kAccStatic | kAccConstructor)) != 0u &&
1316 compilation_unit.GetCompilingClass().Get() == cls.Get();
1317 };
1318 if (is_static_method_or_constructor_of_cls(*outer_compilation_unit_) ||
1319 // Check also the innermost method. Though excessive copies of ClinitCheck can be
1320 // eliminated by GVN, that happens only after the decision whether to inline the
1321 // graph or not and that may depend on the presence of the ClinitCheck.
1322 // TODO: We should walk over the entire inlined method chain, but we don't pass that
1323 // information to the builder.
1324 is_static_method_or_constructor_of_cls(*dex_compilation_unit_)) {
1325 return true;
1326 }
1327
1328 // Otherwise, we may be able to avoid the check if `cls` is a superclass of a method being
1329 // compiled here (anywhere in the inlining chain) as the `cls` must have started initializing
1330 // before calling any `cls` or subclass methods. Static methods require a clinit check and
1331 // instance methods require an instance which cannot be created before doing a clinit check.
1332 // When a subclass of `cls` starts initializing, it starts initializing its superclass
1333 // chain up to `cls` without running any bytecode, i.e. without any opportunity for circular
1334 // initialization weirdness.
1335 //
1336 // If the initialization of `cls` is trivial (`cls` and its superclasses and superinterfaces
1337 // with default methods initialize only their own static fields using constant values), it must
1338 // complete, either successfully or by throwing and marking `cls` erroneous, without allocating
1339 // any instances of `cls` or subclasses (or any other class) and without calling any methods.
1340 // If it completes by throwing, no instances of `cls` shall be created and no subclass method
1341 // bytecode shall execute (see above), therefore the instruction we're building shall be
1342 // unreachable. By reaching the instruction, we know that `cls` was initialized successfully.
1343 //
1344 // TODO: We should walk over the entire inlined methods chain, but we don't pass that
1345 // information to the builder. (We could also check if we're guaranteed a non-null instance
1346 // of `cls` at this location but that's outside the scope of the instruction builder.)
1347 bool is_subclass = IsSubClass(outer_compilation_unit_->GetCompilingClass().Get(), cls.Get());
1348 if (dex_compilation_unit_ != outer_compilation_unit_) {
1349 is_subclass = is_subclass ||
1350 IsSubClass(dex_compilation_unit_->GetCompilingClass().Get(), cls.Get());
1351 }
1352 if (is_subclass && HasTrivialInitialization(cls.Get(), code_generator_->GetCompilerOptions())) {
1353 return true;
1354 }
1355
1356 return false;
1357 }
1358
ProcessClinitCheckForInvoke(uint32_t dex_pc,ArtMethod * resolved_method,HInvokeStaticOrDirect::ClinitCheckRequirement * clinit_check_requirement)1359 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
1360 uint32_t dex_pc,
1361 ArtMethod* resolved_method,
1362 HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
1363 Handle<mirror::Class> klass = handles_->NewHandle(resolved_method->GetDeclaringClass());
1364
1365 HClinitCheck* clinit_check = nullptr;
1366 if (IsInitialized(klass)) {
1367 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
1368 } else {
1369 HLoadClass* cls = BuildLoadClass(klass->GetDexTypeIndex(),
1370 klass->GetDexFile(),
1371 klass,
1372 dex_pc,
1373 /* needs_access_check= */ false);
1374 if (cls != nullptr) {
1375 *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
1376 clinit_check = new (allocator_) HClinitCheck(cls, dex_pc);
1377 AppendInstruction(clinit_check);
1378 }
1379 }
1380 return clinit_check;
1381 }
1382
SetupInvokeArguments(HInvoke * invoke,const InstructionOperands & operands,const char * shorty,size_t start_index,size_t * argument_index)1383 bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
1384 const InstructionOperands& operands,
1385 const char* shorty,
1386 size_t start_index,
1387 size_t* argument_index) {
1388 uint32_t shorty_index = 1; // Skip the return type.
1389 const size_t number_of_operands = operands.GetNumberOfOperands();
1390 for (size_t i = start_index;
1391 // Make sure we don't go over the expected arguments or over the number of
1392 // dex registers given. If the instruction was seen as dead by the verifier,
1393 // it hasn't been properly checked.
1394 (i < number_of_operands) && (*argument_index < invoke->GetNumberOfArguments());
1395 i++, (*argument_index)++) {
1396 DataType::Type type = DataType::FromShorty(shorty[shorty_index++]);
1397 bool is_wide = (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
1398 if (is_wide && ((i + 1 == number_of_operands) ||
1399 (operands.GetOperand(i) + 1 != operands.GetOperand(i + 1)))) {
1400 // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
1401 // reject any class where this is violated. However, the verifier only does these checks
1402 // on non trivially dead instructions, so we just bailout the compilation.
1403 VLOG(compiler) << "Did not compile "
1404 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1405 << " because of non-sequential dex register pair in wide argument";
1406 MaybeRecordStat(compilation_stats_,
1407 MethodCompilationStat::kNotCompiledMalformedOpcode);
1408 return false;
1409 }
1410 HInstruction* arg = LoadLocal(operands.GetOperand(i), type);
1411 invoke->SetArgumentAt(*argument_index, arg);
1412 if (is_wide) {
1413 i++;
1414 }
1415 }
1416
1417 if (*argument_index != invoke->GetNumberOfArguments()) {
1418 VLOG(compiler) << "Did not compile "
1419 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
1420 << " because of wrong number of arguments in invoke instruction";
1421 MaybeRecordStat(compilation_stats_,
1422 MethodCompilationStat::kNotCompiledMalformedOpcode);
1423 return false;
1424 }
1425
1426 if (invoke->IsInvokeStaticOrDirect() &&
1427 HInvokeStaticOrDirect::NeedsCurrentMethodInput(
1428 invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
1429 invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
1430 (*argument_index)++;
1431 }
1432
1433 return true;
1434 }
1435
HandleInvoke(HInvoke * invoke,const InstructionOperands & operands,const char * shorty,bool is_unresolved,HClinitCheck * clinit_check)1436 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
1437 const InstructionOperands& operands,
1438 const char* shorty,
1439 bool is_unresolved,
1440 HClinitCheck* clinit_check) {
1441 DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
1442
1443 size_t start_index = 0;
1444 size_t argument_index = 0;
1445 if (invoke->GetInvokeType() != InvokeType::kStatic) { // Instance call.
1446 uint32_t obj_reg = operands.GetOperand(0);
1447 HInstruction* arg = is_unresolved
1448 ? LoadLocal(obj_reg, DataType::Type::kReference)
1449 : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc());
1450 invoke->SetArgumentAt(0, arg);
1451 start_index = 1;
1452 argument_index = 1;
1453 }
1454
1455 if (!SetupInvokeArguments(invoke, operands, shorty, start_index, &argument_index)) {
1456 return false;
1457 }
1458
1459 if (clinit_check != nullptr) {
1460 // Add the class initialization check as last input of `invoke`.
1461 DCHECK(invoke->IsInvokeStaticOrDirect());
1462 DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
1463 == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
1464 invoke->SetArgumentAt(argument_index, clinit_check);
1465 argument_index++;
1466 }
1467
1468 AppendInstruction(invoke);
1469 latest_result_ = invoke;
1470
1471 return true;
1472 }
1473
HandleStringInit(HInvoke * invoke,const InstructionOperands & operands,const char * shorty)1474 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
1475 const InstructionOperands& operands,
1476 const char* shorty) {
1477 DCHECK(invoke->IsInvokeStaticOrDirect());
1478 DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
1479
1480 size_t start_index = 1;
1481 size_t argument_index = 0;
1482 if (!SetupInvokeArguments(invoke, operands, shorty, start_index, &argument_index)) {
1483 return false;
1484 }
1485
1486 AppendInstruction(invoke);
1487
1488 // This is a StringFactory call, not an actual String constructor. Its result
1489 // replaces the empty String pre-allocated by NewInstance.
1490 uint32_t orig_this_reg = operands.GetOperand(0);
1491 HInstruction* arg_this = LoadLocal(orig_this_reg, DataType::Type::kReference);
1492
1493 // Replacing the NewInstance might render it redundant. Keep a list of these
1494 // to be visited once it is clear whether it has remaining uses.
1495 if (arg_this->IsNewInstance()) {
1496 ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
1497 } else {
1498 DCHECK(arg_this->IsPhi());
1499 // We can get a phi as input of a String.<init> if there is a loop between the
1500 // allocation and the String.<init> call. As we don't know which other phis might alias
1501 // with `arg_this`, we keep a record of those invocations so we can later replace
1502 // the allocation with the invocation.
1503 // Add the actual 'this' input so the analysis knows what is the allocation instruction.
1504 // The input will be removed during the analysis.
1505 invoke->AddInput(arg_this);
1506 ssa_builder_->AddUninitializedStringPhi(invoke);
1507 }
1508 // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
1509 for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
1510 if ((*current_locals_)[vreg] == arg_this) {
1511 (*current_locals_)[vreg] = invoke;
1512 }
1513 }
1514 return true;
1515 }
1516
GetFieldAccessType(const DexFile & dex_file,uint16_t field_index)1517 static DataType::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
1518 const dex::FieldId& field_id = dex_file.GetFieldId(field_index);
1519 const char* type = dex_file.GetFieldTypeDescriptor(field_id);
1520 return DataType::FromShorty(type[0]);
1521 }
1522
BuildInstanceFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,size_t quicken_index)1523 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
1524 uint32_t dex_pc,
1525 bool is_put,
1526 size_t quicken_index) {
1527 uint32_t source_or_dest_reg = instruction.VRegA_22c();
1528 uint32_t obj_reg = instruction.VRegB_22c();
1529 uint16_t field_index;
1530 if (instruction.IsQuickened()) {
1531 if (!CanDecodeQuickenedInfo()) {
1532 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
1533 << instruction.Opcode();
1534 return false;
1535 }
1536 field_index = LookupQuickenedInfo(quicken_index);
1537 } else {
1538 field_index = instruction.VRegC_22c();
1539 }
1540
1541 ScopedObjectAccess soa(Thread::Current());
1542 ArtField* resolved_field = ResolveField(field_index, /* is_static= */ false, is_put);
1543
1544 // Generate an explicit null check on the reference, unless the field access
1545 // is unresolved. In that case, we rely on the runtime to perform various
1546 // checks first, followed by a null check.
1547 HInstruction* object = (resolved_field == nullptr)
1548 ? LoadLocal(obj_reg, DataType::Type::kReference)
1549 : LoadNullCheckedLocal(obj_reg, dex_pc);
1550
1551 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1552 if (is_put) {
1553 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1554 HInstruction* field_set = nullptr;
1555 if (resolved_field == nullptr) {
1556 MaybeRecordStat(compilation_stats_,
1557 MethodCompilationStat::kUnresolvedField);
1558 field_set = new (allocator_) HUnresolvedInstanceFieldSet(object,
1559 value,
1560 field_type,
1561 field_index,
1562 dex_pc);
1563 } else {
1564 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1565 field_set = new (allocator_) HInstanceFieldSet(object,
1566 value,
1567 resolved_field,
1568 field_type,
1569 resolved_field->GetOffset(),
1570 resolved_field->IsVolatile(),
1571 field_index,
1572 class_def_index,
1573 *dex_file_,
1574 dex_pc);
1575 }
1576 AppendInstruction(field_set);
1577 } else {
1578 HInstruction* field_get = nullptr;
1579 if (resolved_field == nullptr) {
1580 MaybeRecordStat(compilation_stats_,
1581 MethodCompilationStat::kUnresolvedField);
1582 field_get = new (allocator_) HUnresolvedInstanceFieldGet(object,
1583 field_type,
1584 field_index,
1585 dex_pc);
1586 } else {
1587 uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
1588 field_get = new (allocator_) HInstanceFieldGet(object,
1589 resolved_field,
1590 field_type,
1591 resolved_field->GetOffset(),
1592 resolved_field->IsVolatile(),
1593 field_index,
1594 class_def_index,
1595 *dex_file_,
1596 dex_pc);
1597 }
1598 AppendInstruction(field_get);
1599 UpdateLocal(source_or_dest_reg, field_get);
1600 }
1601
1602 return true;
1603 }
1604
BuildUnresolvedStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type field_type)1605 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
1606 uint32_t dex_pc,
1607 bool is_put,
1608 DataType::Type field_type) {
1609 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1610 uint16_t field_index = instruction.VRegB_21c();
1611
1612 if (is_put) {
1613 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1614 AppendInstruction(
1615 new (allocator_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
1616 } else {
1617 AppendInstruction(new (allocator_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
1618 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1619 }
1620 }
1621
ResolveField(uint16_t field_idx,bool is_static,bool is_put)1622 ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) {
1623 ScopedObjectAccess soa(Thread::Current());
1624
1625 ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
1626 Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader();
1627
1628 ArtField* resolved_field = class_linker->ResolveField(field_idx,
1629 dex_compilation_unit_->GetDexCache(),
1630 class_loader,
1631 is_static);
1632 DCHECK_EQ(resolved_field == nullptr, soa.Self()->IsExceptionPending());
1633 if (UNLIKELY(resolved_field == nullptr)) {
1634 // Clean up any exception left by field resolution.
1635 soa.Self()->ClearException();
1636 return nullptr;
1637 }
1638
1639 // Check static/instance. The class linker has a fast path for looking into the dex cache
1640 // and does not check static/instance if it hits it.
1641 if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
1642 return nullptr;
1643 }
1644
1645 // Check access.
1646 Handle<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass();
1647 if (compiling_class == nullptr) {
1648 if (!resolved_field->IsPublic()) {
1649 return nullptr;
1650 }
1651 } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(),
1652 resolved_field,
1653 dex_compilation_unit_->GetDexCache().Get(),
1654 field_idx)) {
1655 return nullptr;
1656 }
1657
1658 if (is_put &&
1659 resolved_field->IsFinal() &&
1660 (compiling_class.Get() != resolved_field->GetDeclaringClass())) {
1661 // Final fields can only be updated within their own class.
1662 // TODO: Only allow it in constructors. b/34966607.
1663 return nullptr;
1664 }
1665
1666 return resolved_field;
1667 }
1668
BuildStaticFieldAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put)1669 void HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
1670 uint32_t dex_pc,
1671 bool is_put) {
1672 uint32_t source_or_dest_reg = instruction.VRegA_21c();
1673 uint16_t field_index = instruction.VRegB_21c();
1674
1675 ScopedObjectAccess soa(Thread::Current());
1676 ArtField* resolved_field = ResolveField(field_index, /* is_static= */ true, is_put);
1677
1678 if (resolved_field == nullptr) {
1679 MaybeRecordStat(compilation_stats_,
1680 MethodCompilationStat::kUnresolvedField);
1681 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1682 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1683 return;
1684 }
1685
1686 DataType::Type field_type = GetFieldAccessType(*dex_file_, field_index);
1687
1688 Handle<mirror::Class> klass = handles_->NewHandle(resolved_field->GetDeclaringClass());
1689 HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(),
1690 klass->GetDexFile(),
1691 klass,
1692 dex_pc,
1693 /* needs_access_check= */ false);
1694
1695 if (constant == nullptr) {
1696 // The class cannot be referenced from this compiled code. Generate
1697 // an unresolved access.
1698 MaybeRecordStat(compilation_stats_,
1699 MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
1700 BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
1701 return;
1702 }
1703
1704 HInstruction* cls = constant;
1705 if (!IsInitialized(klass)) {
1706 cls = new (allocator_) HClinitCheck(constant, dex_pc);
1707 AppendInstruction(cls);
1708 }
1709
1710 uint16_t class_def_index = klass->GetDexClassDefIndex();
1711 if (is_put) {
1712 // We need to keep the class alive before loading the value.
1713 HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
1714 DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
1715 AppendInstruction(new (allocator_) HStaticFieldSet(cls,
1716 value,
1717 resolved_field,
1718 field_type,
1719 resolved_field->GetOffset(),
1720 resolved_field->IsVolatile(),
1721 field_index,
1722 class_def_index,
1723 *dex_file_,
1724 dex_pc));
1725 } else {
1726 AppendInstruction(new (allocator_) HStaticFieldGet(cls,
1727 resolved_field,
1728 field_type,
1729 resolved_field->GetOffset(),
1730 resolved_field->IsVolatile(),
1731 field_index,
1732 class_def_index,
1733 *dex_file_,
1734 dex_pc));
1735 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1736 }
1737 }
1738
BuildCheckedDivRem(uint16_t out_vreg,uint16_t first_vreg,int64_t second_vreg_or_constant,uint32_t dex_pc,DataType::Type type,bool second_is_constant,bool isDiv)1739 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
1740 uint16_t first_vreg,
1741 int64_t second_vreg_or_constant,
1742 uint32_t dex_pc,
1743 DataType::Type type,
1744 bool second_is_constant,
1745 bool isDiv) {
1746 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
1747
1748 HInstruction* first = LoadLocal(first_vreg, type);
1749 HInstruction* second = nullptr;
1750 if (second_is_constant) {
1751 if (type == DataType::Type::kInt32) {
1752 second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
1753 } else {
1754 second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
1755 }
1756 } else {
1757 second = LoadLocal(second_vreg_or_constant, type);
1758 }
1759
1760 if (!second_is_constant
1761 || (type == DataType::Type::kInt32 && second->AsIntConstant()->GetValue() == 0)
1762 || (type == DataType::Type::kInt64 && second->AsLongConstant()->GetValue() == 0)) {
1763 second = new (allocator_) HDivZeroCheck(second, dex_pc);
1764 AppendInstruction(second);
1765 }
1766
1767 if (isDiv) {
1768 AppendInstruction(new (allocator_) HDiv(type, first, second, dex_pc));
1769 } else {
1770 AppendInstruction(new (allocator_) HRem(type, first, second, dex_pc));
1771 }
1772 UpdateLocal(out_vreg, current_block_->GetLastInstruction());
1773 }
1774
BuildArrayAccess(const Instruction & instruction,uint32_t dex_pc,bool is_put,DataType::Type anticipated_type)1775 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
1776 uint32_t dex_pc,
1777 bool is_put,
1778 DataType::Type anticipated_type) {
1779 uint8_t source_or_dest_reg = instruction.VRegA_23x();
1780 uint8_t array_reg = instruction.VRegB_23x();
1781 uint8_t index_reg = instruction.VRegC_23x();
1782
1783 HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
1784 HInstruction* length = new (allocator_) HArrayLength(object, dex_pc);
1785 AppendInstruction(length);
1786 HInstruction* index = LoadLocal(index_reg, DataType::Type::kInt32);
1787 index = new (allocator_) HBoundsCheck(index, length, dex_pc);
1788 AppendInstruction(index);
1789 if (is_put) {
1790 HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
1791 // TODO: Insert a type check node if the type is Object.
1792 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
1793 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1794 AppendInstruction(aset);
1795 } else {
1796 HArrayGet* aget = new (allocator_) HArrayGet(object, index, anticipated_type, dex_pc);
1797 ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
1798 AppendInstruction(aget);
1799 UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
1800 }
1801 graph_->SetHasBoundsChecks(true);
1802 }
1803
BuildNewArray(uint32_t dex_pc,dex::TypeIndex type_index,HInstruction * length)1804 HNewArray* HInstructionBuilder::BuildNewArray(uint32_t dex_pc,
1805 dex::TypeIndex type_index,
1806 HInstruction* length) {
1807 HLoadClass* cls = BuildLoadClass(type_index, dex_pc);
1808
1809 const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(type_index));
1810 DCHECK_EQ(descriptor[0], '[');
1811 size_t component_type_shift = Primitive::ComponentSizeShift(Primitive::GetType(descriptor[1]));
1812
1813 HNewArray* new_array = new (allocator_) HNewArray(cls, length, dex_pc, component_type_shift);
1814 AppendInstruction(new_array);
1815 return new_array;
1816 }
1817
BuildFilledNewArray(uint32_t dex_pc,dex::TypeIndex type_index,const InstructionOperands & operands)1818 HNewArray* HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
1819 dex::TypeIndex type_index,
1820 const InstructionOperands& operands) {
1821 const size_t number_of_operands = operands.GetNumberOfOperands();
1822 HInstruction* length = graph_->GetIntConstant(number_of_operands, dex_pc);
1823
1824 HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
1825 const char* descriptor = dex_file_->StringByTypeIdx(type_index);
1826 DCHECK_EQ(descriptor[0], '[') << descriptor;
1827 char primitive = descriptor[1];
1828 DCHECK(primitive == 'I'
1829 || primitive == 'L'
1830 || primitive == '[') << descriptor;
1831 bool is_reference_array = (primitive == 'L') || (primitive == '[');
1832 DataType::Type type = is_reference_array ? DataType::Type::kReference : DataType::Type::kInt32;
1833
1834 for (size_t i = 0; i < number_of_operands; ++i) {
1835 HInstruction* value = LoadLocal(operands.GetOperand(i), type);
1836 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1837 HArraySet* aset = new (allocator_) HArraySet(new_array, index, value, type, dex_pc);
1838 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1839 AppendInstruction(aset);
1840 }
1841 latest_result_ = new_array;
1842
1843 return new_array;
1844 }
1845
1846 template <typename T>
BuildFillArrayData(HInstruction * object,const T * data,uint32_t element_count,DataType::Type anticipated_type,uint32_t dex_pc)1847 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
1848 const T* data,
1849 uint32_t element_count,
1850 DataType::Type anticipated_type,
1851 uint32_t dex_pc) {
1852 for (uint32_t i = 0; i < element_count; ++i) {
1853 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1854 HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
1855 HArraySet* aset = new (allocator_) HArraySet(object, index, value, anticipated_type, dex_pc);
1856 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1857 AppendInstruction(aset);
1858 }
1859 }
1860
BuildFillArrayData(const Instruction & instruction,uint32_t dex_pc)1861 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
1862 HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
1863
1864 int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
1865 const Instruction::ArrayDataPayload* payload =
1866 reinterpret_cast<const Instruction::ArrayDataPayload*>(
1867 code_item_accessor_.Insns() + payload_offset);
1868 const uint8_t* data = payload->data;
1869 uint32_t element_count = payload->element_count;
1870
1871 if (element_count == 0u) {
1872 // For empty payload we emit only the null check above.
1873 return;
1874 }
1875
1876 HInstruction* length = new (allocator_) HArrayLength(array, dex_pc);
1877 AppendInstruction(length);
1878
1879 // Implementation of this DEX instruction seems to be that the bounds check is
1880 // done before doing any stores.
1881 HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
1882 AppendInstruction(new (allocator_) HBoundsCheck(last_index, length, dex_pc));
1883
1884 switch (payload->element_width) {
1885 case 1:
1886 BuildFillArrayData(array,
1887 reinterpret_cast<const int8_t*>(data),
1888 element_count,
1889 DataType::Type::kInt8,
1890 dex_pc);
1891 break;
1892 case 2:
1893 BuildFillArrayData(array,
1894 reinterpret_cast<const int16_t*>(data),
1895 element_count,
1896 DataType::Type::kInt16,
1897 dex_pc);
1898 break;
1899 case 4:
1900 BuildFillArrayData(array,
1901 reinterpret_cast<const int32_t*>(data),
1902 element_count,
1903 DataType::Type::kInt32,
1904 dex_pc);
1905 break;
1906 case 8:
1907 BuildFillWideArrayData(array,
1908 reinterpret_cast<const int64_t*>(data),
1909 element_count,
1910 dex_pc);
1911 break;
1912 default:
1913 LOG(FATAL) << "Unknown element width for " << payload->element_width;
1914 }
1915 graph_->SetHasBoundsChecks(true);
1916 }
1917
BuildFillWideArrayData(HInstruction * object,const int64_t * data,uint32_t element_count,uint32_t dex_pc)1918 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
1919 const int64_t* data,
1920 uint32_t element_count,
1921 uint32_t dex_pc) {
1922 for (uint32_t i = 0; i < element_count; ++i) {
1923 HInstruction* index = graph_->GetIntConstant(i, dex_pc);
1924 HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
1925 HArraySet* aset =
1926 new (allocator_) HArraySet(object, index, value, DataType::Type::kInt64, dex_pc);
1927 ssa_builder_->MaybeAddAmbiguousArraySet(aset);
1928 AppendInstruction(aset);
1929 }
1930 }
1931
BuildLoadString(dex::StringIndex string_index,uint32_t dex_pc)1932 void HInstructionBuilder::BuildLoadString(dex::StringIndex string_index, uint32_t dex_pc) {
1933 HLoadString* load_string =
1934 new (allocator_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc);
1935 HSharpening::ProcessLoadString(load_string,
1936 code_generator_,
1937 *dex_compilation_unit_,
1938 handles_);
1939 AppendInstruction(load_string);
1940 }
1941
BuildLoadClass(dex::TypeIndex type_index,uint32_t dex_pc)1942 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) {
1943 ScopedObjectAccess soa(Thread::Current());
1944 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
1945 Handle<mirror::Class> klass = ResolveClass(soa, type_index);
1946 bool needs_access_check = LoadClassNeedsAccessCheck(klass);
1947 return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
1948 }
1949
BuildLoadClass(dex::TypeIndex type_index,const DexFile & dex_file,Handle<mirror::Class> klass,uint32_t dex_pc,bool needs_access_check)1950 HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index,
1951 const DexFile& dex_file,
1952 Handle<mirror::Class> klass,
1953 uint32_t dex_pc,
1954 bool needs_access_check) {
1955 // Try to find a reference in the compiling dex file.
1956 const DexFile* actual_dex_file = &dex_file;
1957 if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) {
1958 dex::TypeIndex local_type_index =
1959 klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile());
1960 if (local_type_index.IsValid()) {
1961 type_index = local_type_index;
1962 actual_dex_file = dex_compilation_unit_->GetDexFile();
1963 }
1964 }
1965
1966 // Note: `klass` must be from `handles_`.
1967 bool is_referrers_class =
1968 (klass != nullptr) && (outer_compilation_unit_->GetCompilingClass().Get() == klass.Get());
1969 HLoadClass* load_class = new (allocator_) HLoadClass(
1970 graph_->GetCurrentMethod(),
1971 type_index,
1972 *actual_dex_file,
1973 klass,
1974 is_referrers_class,
1975 dex_pc,
1976 needs_access_check);
1977
1978 HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class,
1979 code_generator_,
1980 *dex_compilation_unit_);
1981
1982 if (load_kind == HLoadClass::LoadKind::kInvalid) {
1983 // We actually cannot reference this class, we're forced to bail.
1984 return nullptr;
1985 }
1986 // Load kind must be set before inserting the instruction into the graph.
1987 load_class->SetLoadKind(load_kind);
1988 AppendInstruction(load_class);
1989 return load_class;
1990 }
1991
ResolveClass(ScopedObjectAccess & soa,dex::TypeIndex type_index)1992 Handle<mirror::Class> HInstructionBuilder::ResolveClass(ScopedObjectAccess& soa,
1993 dex::TypeIndex type_index) {
1994 auto it = class_cache_.find(type_index);
1995 if (it != class_cache_.end()) {
1996 return it->second;
1997 }
1998
1999 ObjPtr<mirror::Class> klass = dex_compilation_unit_->GetClassLinker()->ResolveType(
2000 type_index, dex_compilation_unit_->GetDexCache(), dex_compilation_unit_->GetClassLoader());
2001 DCHECK_EQ(klass == nullptr, soa.Self()->IsExceptionPending());
2002 soa.Self()->ClearException(); // Clean up the exception left by type resolution if any.
2003
2004 Handle<mirror::Class> h_klass = handles_->NewHandle(klass);
2005 class_cache_.Put(type_index, h_klass);
2006 return h_klass;
2007 }
2008
LoadClassNeedsAccessCheck(Handle<mirror::Class> klass)2009 bool HInstructionBuilder::LoadClassNeedsAccessCheck(Handle<mirror::Class> klass) {
2010 if (klass == nullptr) {
2011 return true;
2012 } else if (klass->IsPublic()) {
2013 return false;
2014 } else {
2015 ObjPtr<mirror::Class> compiling_class = dex_compilation_unit_->GetCompilingClass().Get();
2016 return compiling_class == nullptr || !compiling_class->CanAccess(klass.Get());
2017 }
2018 }
2019
BuildLoadMethodHandle(uint16_t method_handle_index,uint32_t dex_pc)2020 void HInstructionBuilder::BuildLoadMethodHandle(uint16_t method_handle_index, uint32_t dex_pc) {
2021 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2022 HLoadMethodHandle* load_method_handle = new (allocator_) HLoadMethodHandle(
2023 graph_->GetCurrentMethod(), method_handle_index, dex_file, dex_pc);
2024 AppendInstruction(load_method_handle);
2025 }
2026
BuildLoadMethodType(dex::ProtoIndex proto_index,uint32_t dex_pc)2027 void HInstructionBuilder::BuildLoadMethodType(dex::ProtoIndex proto_index, uint32_t dex_pc) {
2028 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2029 HLoadMethodType* load_method_type =
2030 new (allocator_) HLoadMethodType(graph_->GetCurrentMethod(), proto_index, dex_file, dex_pc);
2031 AppendInstruction(load_method_type);
2032 }
2033
BuildTypeCheck(const Instruction & instruction,uint8_t destination,uint8_t reference,dex::TypeIndex type_index,uint32_t dex_pc)2034 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
2035 uint8_t destination,
2036 uint8_t reference,
2037 dex::TypeIndex type_index,
2038 uint32_t dex_pc) {
2039 HInstruction* object = LoadLocal(reference, DataType::Type::kReference);
2040
2041 ScopedObjectAccess soa(Thread::Current());
2042 const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
2043 Handle<mirror::Class> klass = ResolveClass(soa, type_index);
2044 bool needs_access_check = LoadClassNeedsAccessCheck(klass);
2045 TypeCheckKind check_kind = HSharpening::ComputeTypeCheckKind(
2046 klass.Get(), code_generator_, needs_access_check);
2047
2048 HInstruction* class_or_null = nullptr;
2049 HIntConstant* bitstring_path_to_root = nullptr;
2050 HIntConstant* bitstring_mask = nullptr;
2051 if (check_kind == TypeCheckKind::kBitstringCheck) {
2052 // TODO: Allow using the bitstring check also if we need an access check.
2053 DCHECK(!needs_access_check);
2054 class_or_null = graph_->GetNullConstant(dex_pc);
2055 MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
2056 uint32_t path_to_root =
2057 SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootForTarget(klass.Get());
2058 uint32_t mask = SubtypeCheck<ObjPtr<mirror::Class>>::GetEncodedPathToRootMask(klass.Get());
2059 bitstring_path_to_root = graph_->GetIntConstant(static_cast<int32_t>(path_to_root), dex_pc);
2060 bitstring_mask = graph_->GetIntConstant(static_cast<int32_t>(mask), dex_pc);
2061 } else {
2062 class_or_null = BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check);
2063 }
2064 DCHECK(class_or_null != nullptr);
2065
2066 if (instruction.Opcode() == Instruction::INSTANCE_OF) {
2067 AppendInstruction(new (allocator_) HInstanceOf(object,
2068 class_or_null,
2069 check_kind,
2070 klass,
2071 dex_pc,
2072 allocator_,
2073 bitstring_path_to_root,
2074 bitstring_mask));
2075 UpdateLocal(destination, current_block_->GetLastInstruction());
2076 } else {
2077 DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
2078 // We emit a CheckCast followed by a BoundType. CheckCast is a statement
2079 // which may throw. If it succeeds BoundType sets the new type of `object`
2080 // for all subsequent uses.
2081 AppendInstruction(
2082 new (allocator_) HCheckCast(object,
2083 class_or_null,
2084 check_kind,
2085 klass,
2086 dex_pc,
2087 allocator_,
2088 bitstring_path_to_root,
2089 bitstring_mask));
2090 AppendInstruction(new (allocator_) HBoundType(object, dex_pc));
2091 UpdateLocal(reference, current_block_->GetLastInstruction());
2092 }
2093 }
2094
CanDecodeQuickenedInfo() const2095 bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
2096 return !quicken_info_.IsNull();
2097 }
2098
LookupQuickenedInfo(uint32_t quicken_index)2099 uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t quicken_index) {
2100 DCHECK(CanDecodeQuickenedInfo());
2101 return quicken_info_.GetData(quicken_index);
2102 }
2103
ProcessDexInstruction(const Instruction & instruction,uint32_t dex_pc,size_t quicken_index)2104 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction,
2105 uint32_t dex_pc,
2106 size_t quicken_index) {
2107 switch (instruction.Opcode()) {
2108 case Instruction::CONST_4: {
2109 int32_t register_index = instruction.VRegA();
2110 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
2111 UpdateLocal(register_index, constant);
2112 break;
2113 }
2114
2115 case Instruction::CONST_16: {
2116 int32_t register_index = instruction.VRegA();
2117 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
2118 UpdateLocal(register_index, constant);
2119 break;
2120 }
2121
2122 case Instruction::CONST: {
2123 int32_t register_index = instruction.VRegA();
2124 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
2125 UpdateLocal(register_index, constant);
2126 break;
2127 }
2128
2129 case Instruction::CONST_HIGH16: {
2130 int32_t register_index = instruction.VRegA();
2131 HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
2132 UpdateLocal(register_index, constant);
2133 break;
2134 }
2135
2136 case Instruction::CONST_WIDE_16: {
2137 int32_t register_index = instruction.VRegA();
2138 // Get 16 bits of constant value, sign extended to 64 bits.
2139 int64_t value = instruction.VRegB_21s();
2140 value <<= 48;
2141 value >>= 48;
2142 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2143 UpdateLocal(register_index, constant);
2144 break;
2145 }
2146
2147 case Instruction::CONST_WIDE_32: {
2148 int32_t register_index = instruction.VRegA();
2149 // Get 32 bits of constant value, sign extended to 64 bits.
2150 int64_t value = instruction.VRegB_31i();
2151 value <<= 32;
2152 value >>= 32;
2153 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2154 UpdateLocal(register_index, constant);
2155 break;
2156 }
2157
2158 case Instruction::CONST_WIDE: {
2159 int32_t register_index = instruction.VRegA();
2160 HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
2161 UpdateLocal(register_index, constant);
2162 break;
2163 }
2164
2165 case Instruction::CONST_WIDE_HIGH16: {
2166 int32_t register_index = instruction.VRegA();
2167 int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
2168 HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
2169 UpdateLocal(register_index, constant);
2170 break;
2171 }
2172
2173 // Note that the SSA building will refine the types.
2174 case Instruction::MOVE:
2175 case Instruction::MOVE_FROM16:
2176 case Instruction::MOVE_16: {
2177 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt32);
2178 UpdateLocal(instruction.VRegA(), value);
2179 break;
2180 }
2181
2182 // Note that the SSA building will refine the types.
2183 case Instruction::MOVE_WIDE:
2184 case Instruction::MOVE_WIDE_FROM16:
2185 case Instruction::MOVE_WIDE_16: {
2186 HInstruction* value = LoadLocal(instruction.VRegB(), DataType::Type::kInt64);
2187 UpdateLocal(instruction.VRegA(), value);
2188 break;
2189 }
2190
2191 case Instruction::MOVE_OBJECT:
2192 case Instruction::MOVE_OBJECT_16:
2193 case Instruction::MOVE_OBJECT_FROM16: {
2194 // The verifier has no notion of a null type, so a move-object of constant 0
2195 // will lead to the same constant 0 in the destination register. To mimic
2196 // this behavior, we just pretend we haven't seen a type change (int to reference)
2197 // for the 0 constant and phis. We rely on our type propagation to eventually get the
2198 // types correct.
2199 uint32_t reg_number = instruction.VRegB();
2200 HInstruction* value = (*current_locals_)[reg_number];
2201 if (value->IsIntConstant()) {
2202 DCHECK_EQ(value->AsIntConstant()->GetValue(), 0);
2203 } else if (value->IsPhi()) {
2204 DCHECK(value->GetType() == DataType::Type::kInt32 ||
2205 value->GetType() == DataType::Type::kReference);
2206 } else {
2207 value = LoadLocal(reg_number, DataType::Type::kReference);
2208 }
2209 UpdateLocal(instruction.VRegA(), value);
2210 break;
2211 }
2212
2213 case Instruction::RETURN_VOID_NO_BARRIER:
2214 case Instruction::RETURN_VOID: {
2215 BuildReturn(instruction, DataType::Type::kVoid, dex_pc);
2216 break;
2217 }
2218
2219 #define IF_XX(comparison, cond) \
2220 case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
2221 case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
2222
2223 IF_XX(HEqual, EQ);
2224 IF_XX(HNotEqual, NE);
2225 IF_XX(HLessThan, LT);
2226 IF_XX(HLessThanOrEqual, LE);
2227 IF_XX(HGreaterThan, GT);
2228 IF_XX(HGreaterThanOrEqual, GE);
2229
2230 case Instruction::GOTO:
2231 case Instruction::GOTO_16:
2232 case Instruction::GOTO_32: {
2233 AppendInstruction(new (allocator_) HGoto(dex_pc));
2234 current_block_ = nullptr;
2235 break;
2236 }
2237
2238 case Instruction::RETURN: {
2239 BuildReturn(instruction, return_type_, dex_pc);
2240 break;
2241 }
2242
2243 case Instruction::RETURN_OBJECT: {
2244 BuildReturn(instruction, return_type_, dex_pc);
2245 break;
2246 }
2247
2248 case Instruction::RETURN_WIDE: {
2249 BuildReturn(instruction, return_type_, dex_pc);
2250 break;
2251 }
2252
2253 case Instruction::INVOKE_DIRECT:
2254 case Instruction::INVOKE_INTERFACE:
2255 case Instruction::INVOKE_STATIC:
2256 case Instruction::INVOKE_SUPER:
2257 case Instruction::INVOKE_VIRTUAL:
2258 case Instruction::INVOKE_VIRTUAL_QUICK: {
2259 uint16_t method_idx;
2260 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
2261 if (!CanDecodeQuickenedInfo()) {
2262 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2263 << instruction.Opcode();
2264 return false;
2265 }
2266 method_idx = LookupQuickenedInfo(quicken_index);
2267 } else {
2268 method_idx = instruction.VRegB_35c();
2269 }
2270 uint32_t args[5];
2271 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2272 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2273 if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2274 return false;
2275 }
2276 break;
2277 }
2278
2279 case Instruction::INVOKE_DIRECT_RANGE:
2280 case Instruction::INVOKE_INTERFACE_RANGE:
2281 case Instruction::INVOKE_STATIC_RANGE:
2282 case Instruction::INVOKE_SUPER_RANGE:
2283 case Instruction::INVOKE_VIRTUAL_RANGE:
2284 case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2285 uint16_t method_idx;
2286 if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
2287 if (!CanDecodeQuickenedInfo()) {
2288 VLOG(compiler) << "Not compiled: Could not decode quickened instruction "
2289 << instruction.Opcode();
2290 return false;
2291 }
2292 method_idx = LookupQuickenedInfo(quicken_index);
2293 } else {
2294 method_idx = instruction.VRegB_3rc();
2295 }
2296 RangeInstructionOperands operands(instruction.VRegC(), instruction.VRegA_3rc());
2297 if (!BuildInvoke(instruction, dex_pc, method_idx, operands)) {
2298 return false;
2299 }
2300 break;
2301 }
2302
2303 case Instruction::INVOKE_POLYMORPHIC: {
2304 uint16_t method_idx = instruction.VRegB_45cc();
2305 dex::ProtoIndex proto_idx(instruction.VRegH_45cc());
2306 uint32_t args[5];
2307 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2308 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2309 return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2310 }
2311
2312 case Instruction::INVOKE_POLYMORPHIC_RANGE: {
2313 uint16_t method_idx = instruction.VRegB_4rcc();
2314 dex::ProtoIndex proto_idx(instruction.VRegH_4rcc());
2315 RangeInstructionOperands operands(instruction.VRegC_4rcc(), instruction.VRegA_4rcc());
2316 return BuildInvokePolymorphic(dex_pc, method_idx, proto_idx, operands);
2317 }
2318
2319 case Instruction::INVOKE_CUSTOM: {
2320 uint16_t call_site_idx = instruction.VRegB_35c();
2321 uint32_t args[5];
2322 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2323 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2324 return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2325 }
2326
2327 case Instruction::INVOKE_CUSTOM_RANGE: {
2328 uint16_t call_site_idx = instruction.VRegB_3rc();
2329 RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
2330 return BuildInvokeCustom(dex_pc, call_site_idx, operands);
2331 }
2332
2333 case Instruction::NEG_INT: {
2334 Unop_12x<HNeg>(instruction, DataType::Type::kInt32, dex_pc);
2335 break;
2336 }
2337
2338 case Instruction::NEG_LONG: {
2339 Unop_12x<HNeg>(instruction, DataType::Type::kInt64, dex_pc);
2340 break;
2341 }
2342
2343 case Instruction::NEG_FLOAT: {
2344 Unop_12x<HNeg>(instruction, DataType::Type::kFloat32, dex_pc);
2345 break;
2346 }
2347
2348 case Instruction::NEG_DOUBLE: {
2349 Unop_12x<HNeg>(instruction, DataType::Type::kFloat64, dex_pc);
2350 break;
2351 }
2352
2353 case Instruction::NOT_INT: {
2354 Unop_12x<HNot>(instruction, DataType::Type::kInt32, dex_pc);
2355 break;
2356 }
2357
2358 case Instruction::NOT_LONG: {
2359 Unop_12x<HNot>(instruction, DataType::Type::kInt64, dex_pc);
2360 break;
2361 }
2362
2363 case Instruction::INT_TO_LONG: {
2364 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt64, dex_pc);
2365 break;
2366 }
2367
2368 case Instruction::INT_TO_FLOAT: {
2369 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat32, dex_pc);
2370 break;
2371 }
2372
2373 case Instruction::INT_TO_DOUBLE: {
2374 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kFloat64, dex_pc);
2375 break;
2376 }
2377
2378 case Instruction::LONG_TO_INT: {
2379 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kInt32, dex_pc);
2380 break;
2381 }
2382
2383 case Instruction::LONG_TO_FLOAT: {
2384 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat32, dex_pc);
2385 break;
2386 }
2387
2388 case Instruction::LONG_TO_DOUBLE: {
2389 Conversion_12x(instruction, DataType::Type::kInt64, DataType::Type::kFloat64, dex_pc);
2390 break;
2391 }
2392
2393 case Instruction::FLOAT_TO_INT: {
2394 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt32, dex_pc);
2395 break;
2396 }
2397
2398 case Instruction::FLOAT_TO_LONG: {
2399 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kInt64, dex_pc);
2400 break;
2401 }
2402
2403 case Instruction::FLOAT_TO_DOUBLE: {
2404 Conversion_12x(instruction, DataType::Type::kFloat32, DataType::Type::kFloat64, dex_pc);
2405 break;
2406 }
2407
2408 case Instruction::DOUBLE_TO_INT: {
2409 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt32, dex_pc);
2410 break;
2411 }
2412
2413 case Instruction::DOUBLE_TO_LONG: {
2414 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kInt64, dex_pc);
2415 break;
2416 }
2417
2418 case Instruction::DOUBLE_TO_FLOAT: {
2419 Conversion_12x(instruction, DataType::Type::kFloat64, DataType::Type::kFloat32, dex_pc);
2420 break;
2421 }
2422
2423 case Instruction::INT_TO_BYTE: {
2424 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt8, dex_pc);
2425 break;
2426 }
2427
2428 case Instruction::INT_TO_SHORT: {
2429 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kInt16, dex_pc);
2430 break;
2431 }
2432
2433 case Instruction::INT_TO_CHAR: {
2434 Conversion_12x(instruction, DataType::Type::kInt32, DataType::Type::kUint16, dex_pc);
2435 break;
2436 }
2437
2438 case Instruction::ADD_INT: {
2439 Binop_23x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2440 break;
2441 }
2442
2443 case Instruction::ADD_LONG: {
2444 Binop_23x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2445 break;
2446 }
2447
2448 case Instruction::ADD_DOUBLE: {
2449 Binop_23x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2450 break;
2451 }
2452
2453 case Instruction::ADD_FLOAT: {
2454 Binop_23x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2455 break;
2456 }
2457
2458 case Instruction::SUB_INT: {
2459 Binop_23x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2460 break;
2461 }
2462
2463 case Instruction::SUB_LONG: {
2464 Binop_23x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2465 break;
2466 }
2467
2468 case Instruction::SUB_FLOAT: {
2469 Binop_23x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2470 break;
2471 }
2472
2473 case Instruction::SUB_DOUBLE: {
2474 Binop_23x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2475 break;
2476 }
2477
2478 case Instruction::ADD_INT_2ADDR: {
2479 Binop_12x<HAdd>(instruction, DataType::Type::kInt32, dex_pc);
2480 break;
2481 }
2482
2483 case Instruction::MUL_INT: {
2484 Binop_23x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2485 break;
2486 }
2487
2488 case Instruction::MUL_LONG: {
2489 Binop_23x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2490 break;
2491 }
2492
2493 case Instruction::MUL_FLOAT: {
2494 Binop_23x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2495 break;
2496 }
2497
2498 case Instruction::MUL_DOUBLE: {
2499 Binop_23x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2500 break;
2501 }
2502
2503 case Instruction::DIV_INT: {
2504 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2505 dex_pc, DataType::Type::kInt32, false, true);
2506 break;
2507 }
2508
2509 case Instruction::DIV_LONG: {
2510 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2511 dex_pc, DataType::Type::kInt64, false, true);
2512 break;
2513 }
2514
2515 case Instruction::DIV_FLOAT: {
2516 Binop_23x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
2517 break;
2518 }
2519
2520 case Instruction::DIV_DOUBLE: {
2521 Binop_23x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
2522 break;
2523 }
2524
2525 case Instruction::REM_INT: {
2526 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2527 dex_pc, DataType::Type::kInt32, false, false);
2528 break;
2529 }
2530
2531 case Instruction::REM_LONG: {
2532 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2533 dex_pc, DataType::Type::kInt64, false, false);
2534 break;
2535 }
2536
2537 case Instruction::REM_FLOAT: {
2538 Binop_23x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2539 break;
2540 }
2541
2542 case Instruction::REM_DOUBLE: {
2543 Binop_23x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2544 break;
2545 }
2546
2547 case Instruction::AND_INT: {
2548 Binop_23x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
2549 break;
2550 }
2551
2552 case Instruction::AND_LONG: {
2553 Binop_23x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
2554 break;
2555 }
2556
2557 case Instruction::SHL_INT: {
2558 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2559 break;
2560 }
2561
2562 case Instruction::SHL_LONG: {
2563 Binop_23x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2564 break;
2565 }
2566
2567 case Instruction::SHR_INT: {
2568 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
2569 break;
2570 }
2571
2572 case Instruction::SHR_LONG: {
2573 Binop_23x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
2574 break;
2575 }
2576
2577 case Instruction::USHR_INT: {
2578 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
2579 break;
2580 }
2581
2582 case Instruction::USHR_LONG: {
2583 Binop_23x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
2584 break;
2585 }
2586
2587 case Instruction::OR_INT: {
2588 Binop_23x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
2589 break;
2590 }
2591
2592 case Instruction::OR_LONG: {
2593 Binop_23x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
2594 break;
2595 }
2596
2597 case Instruction::XOR_INT: {
2598 Binop_23x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
2599 break;
2600 }
2601
2602 case Instruction::XOR_LONG: {
2603 Binop_23x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
2604 break;
2605 }
2606
2607 case Instruction::ADD_LONG_2ADDR: {
2608 Binop_12x<HAdd>(instruction, DataType::Type::kInt64, dex_pc);
2609 break;
2610 }
2611
2612 case Instruction::ADD_DOUBLE_2ADDR: {
2613 Binop_12x<HAdd>(instruction, DataType::Type::kFloat64, dex_pc);
2614 break;
2615 }
2616
2617 case Instruction::ADD_FLOAT_2ADDR: {
2618 Binop_12x<HAdd>(instruction, DataType::Type::kFloat32, dex_pc);
2619 break;
2620 }
2621
2622 case Instruction::SUB_INT_2ADDR: {
2623 Binop_12x<HSub>(instruction, DataType::Type::kInt32, dex_pc);
2624 break;
2625 }
2626
2627 case Instruction::SUB_LONG_2ADDR: {
2628 Binop_12x<HSub>(instruction, DataType::Type::kInt64, dex_pc);
2629 break;
2630 }
2631
2632 case Instruction::SUB_FLOAT_2ADDR: {
2633 Binop_12x<HSub>(instruction, DataType::Type::kFloat32, dex_pc);
2634 break;
2635 }
2636
2637 case Instruction::SUB_DOUBLE_2ADDR: {
2638 Binop_12x<HSub>(instruction, DataType::Type::kFloat64, dex_pc);
2639 break;
2640 }
2641
2642 case Instruction::MUL_INT_2ADDR: {
2643 Binop_12x<HMul>(instruction, DataType::Type::kInt32, dex_pc);
2644 break;
2645 }
2646
2647 case Instruction::MUL_LONG_2ADDR: {
2648 Binop_12x<HMul>(instruction, DataType::Type::kInt64, dex_pc);
2649 break;
2650 }
2651
2652 case Instruction::MUL_FLOAT_2ADDR: {
2653 Binop_12x<HMul>(instruction, DataType::Type::kFloat32, dex_pc);
2654 break;
2655 }
2656
2657 case Instruction::MUL_DOUBLE_2ADDR: {
2658 Binop_12x<HMul>(instruction, DataType::Type::kFloat64, dex_pc);
2659 break;
2660 }
2661
2662 case Instruction::DIV_INT_2ADDR: {
2663 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2664 dex_pc, DataType::Type::kInt32, false, true);
2665 break;
2666 }
2667
2668 case Instruction::DIV_LONG_2ADDR: {
2669 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2670 dex_pc, DataType::Type::kInt64, false, true);
2671 break;
2672 }
2673
2674 case Instruction::REM_INT_2ADDR: {
2675 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2676 dex_pc, DataType::Type::kInt32, false, false);
2677 break;
2678 }
2679
2680 case Instruction::REM_LONG_2ADDR: {
2681 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
2682 dex_pc, DataType::Type::kInt64, false, false);
2683 break;
2684 }
2685
2686 case Instruction::REM_FLOAT_2ADDR: {
2687 Binop_12x<HRem>(instruction, DataType::Type::kFloat32, dex_pc);
2688 break;
2689 }
2690
2691 case Instruction::REM_DOUBLE_2ADDR: {
2692 Binop_12x<HRem>(instruction, DataType::Type::kFloat64, dex_pc);
2693 break;
2694 }
2695
2696 case Instruction::SHL_INT_2ADDR: {
2697 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt32, dex_pc);
2698 break;
2699 }
2700
2701 case Instruction::SHL_LONG_2ADDR: {
2702 Binop_12x_shift<HShl>(instruction, DataType::Type::kInt64, dex_pc);
2703 break;
2704 }
2705
2706 case Instruction::SHR_INT_2ADDR: {
2707 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt32, dex_pc);
2708 break;
2709 }
2710
2711 case Instruction::SHR_LONG_2ADDR: {
2712 Binop_12x_shift<HShr>(instruction, DataType::Type::kInt64, dex_pc);
2713 break;
2714 }
2715
2716 case Instruction::USHR_INT_2ADDR: {
2717 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt32, dex_pc);
2718 break;
2719 }
2720
2721 case Instruction::USHR_LONG_2ADDR: {
2722 Binop_12x_shift<HUShr>(instruction, DataType::Type::kInt64, dex_pc);
2723 break;
2724 }
2725
2726 case Instruction::DIV_FLOAT_2ADDR: {
2727 Binop_12x<HDiv>(instruction, DataType::Type::kFloat32, dex_pc);
2728 break;
2729 }
2730
2731 case Instruction::DIV_DOUBLE_2ADDR: {
2732 Binop_12x<HDiv>(instruction, DataType::Type::kFloat64, dex_pc);
2733 break;
2734 }
2735
2736 case Instruction::AND_INT_2ADDR: {
2737 Binop_12x<HAnd>(instruction, DataType::Type::kInt32, dex_pc);
2738 break;
2739 }
2740
2741 case Instruction::AND_LONG_2ADDR: {
2742 Binop_12x<HAnd>(instruction, DataType::Type::kInt64, dex_pc);
2743 break;
2744 }
2745
2746 case Instruction::OR_INT_2ADDR: {
2747 Binop_12x<HOr>(instruction, DataType::Type::kInt32, dex_pc);
2748 break;
2749 }
2750
2751 case Instruction::OR_LONG_2ADDR: {
2752 Binop_12x<HOr>(instruction, DataType::Type::kInt64, dex_pc);
2753 break;
2754 }
2755
2756 case Instruction::XOR_INT_2ADDR: {
2757 Binop_12x<HXor>(instruction, DataType::Type::kInt32, dex_pc);
2758 break;
2759 }
2760
2761 case Instruction::XOR_LONG_2ADDR: {
2762 Binop_12x<HXor>(instruction, DataType::Type::kInt64, dex_pc);
2763 break;
2764 }
2765
2766 case Instruction::ADD_INT_LIT16: {
2767 Binop_22s<HAdd>(instruction, false, dex_pc);
2768 break;
2769 }
2770
2771 case Instruction::AND_INT_LIT16: {
2772 Binop_22s<HAnd>(instruction, false, dex_pc);
2773 break;
2774 }
2775
2776 case Instruction::OR_INT_LIT16: {
2777 Binop_22s<HOr>(instruction, false, dex_pc);
2778 break;
2779 }
2780
2781 case Instruction::XOR_INT_LIT16: {
2782 Binop_22s<HXor>(instruction, false, dex_pc);
2783 break;
2784 }
2785
2786 case Instruction::RSUB_INT: {
2787 Binop_22s<HSub>(instruction, true, dex_pc);
2788 break;
2789 }
2790
2791 case Instruction::MUL_INT_LIT16: {
2792 Binop_22s<HMul>(instruction, false, dex_pc);
2793 break;
2794 }
2795
2796 case Instruction::ADD_INT_LIT8: {
2797 Binop_22b<HAdd>(instruction, false, dex_pc);
2798 break;
2799 }
2800
2801 case Instruction::AND_INT_LIT8: {
2802 Binop_22b<HAnd>(instruction, false, dex_pc);
2803 break;
2804 }
2805
2806 case Instruction::OR_INT_LIT8: {
2807 Binop_22b<HOr>(instruction, false, dex_pc);
2808 break;
2809 }
2810
2811 case Instruction::XOR_INT_LIT8: {
2812 Binop_22b<HXor>(instruction, false, dex_pc);
2813 break;
2814 }
2815
2816 case Instruction::RSUB_INT_LIT8: {
2817 Binop_22b<HSub>(instruction, true, dex_pc);
2818 break;
2819 }
2820
2821 case Instruction::MUL_INT_LIT8: {
2822 Binop_22b<HMul>(instruction, false, dex_pc);
2823 break;
2824 }
2825
2826 case Instruction::DIV_INT_LIT16:
2827 case Instruction::DIV_INT_LIT8: {
2828 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2829 dex_pc, DataType::Type::kInt32, true, true);
2830 break;
2831 }
2832
2833 case Instruction::REM_INT_LIT16:
2834 case Instruction::REM_INT_LIT8: {
2835 BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
2836 dex_pc, DataType::Type::kInt32, true, false);
2837 break;
2838 }
2839
2840 case Instruction::SHL_INT_LIT8: {
2841 Binop_22b<HShl>(instruction, false, dex_pc);
2842 break;
2843 }
2844
2845 case Instruction::SHR_INT_LIT8: {
2846 Binop_22b<HShr>(instruction, false, dex_pc);
2847 break;
2848 }
2849
2850 case Instruction::USHR_INT_LIT8: {
2851 Binop_22b<HUShr>(instruction, false, dex_pc);
2852 break;
2853 }
2854
2855 case Instruction::NEW_INSTANCE: {
2856 HNewInstance* new_instance =
2857 BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc);
2858 DCHECK(new_instance != nullptr);
2859
2860 UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
2861 BuildConstructorFenceForAllocation(new_instance);
2862 break;
2863 }
2864
2865 case Instruction::NEW_ARRAY: {
2866 dex::TypeIndex type_index(instruction.VRegC_22c());
2867 HInstruction* length = LoadLocal(instruction.VRegB_22c(), DataType::Type::kInt32);
2868 HNewArray* new_array = BuildNewArray(dex_pc, type_index, length);
2869
2870 UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
2871 BuildConstructorFenceForAllocation(new_array);
2872 break;
2873 }
2874
2875 case Instruction::FILLED_NEW_ARRAY: {
2876 dex::TypeIndex type_index(instruction.VRegB_35c());
2877 uint32_t args[5];
2878 uint32_t number_of_vreg_arguments = instruction.GetVarArgs(args);
2879 VarArgsInstructionOperands operands(args, number_of_vreg_arguments);
2880 HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
2881 BuildConstructorFenceForAllocation(new_array);
2882 break;
2883 }
2884
2885 case Instruction::FILLED_NEW_ARRAY_RANGE: {
2886 dex::TypeIndex type_index(instruction.VRegB_3rc());
2887 RangeInstructionOperands operands(instruction.VRegC_3rc(), instruction.VRegA_3rc());
2888 HNewArray* new_array = BuildFilledNewArray(dex_pc, type_index, operands);
2889 BuildConstructorFenceForAllocation(new_array);
2890 break;
2891 }
2892
2893 case Instruction::FILL_ARRAY_DATA: {
2894 BuildFillArrayData(instruction, dex_pc);
2895 break;
2896 }
2897
2898 case Instruction::MOVE_RESULT:
2899 case Instruction::MOVE_RESULT_WIDE:
2900 case Instruction::MOVE_RESULT_OBJECT: {
2901 DCHECK(latest_result_ != nullptr);
2902 UpdateLocal(instruction.VRegA(), latest_result_);
2903 latest_result_ = nullptr;
2904 break;
2905 }
2906
2907 case Instruction::CMP_LONG: {
2908 Binop_23x_cmp(instruction, DataType::Type::kInt64, ComparisonBias::kNoBias, dex_pc);
2909 break;
2910 }
2911
2912 case Instruction::CMPG_FLOAT: {
2913 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kGtBias, dex_pc);
2914 break;
2915 }
2916
2917 case Instruction::CMPG_DOUBLE: {
2918 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kGtBias, dex_pc);
2919 break;
2920 }
2921
2922 case Instruction::CMPL_FLOAT: {
2923 Binop_23x_cmp(instruction, DataType::Type::kFloat32, ComparisonBias::kLtBias, dex_pc);
2924 break;
2925 }
2926
2927 case Instruction::CMPL_DOUBLE: {
2928 Binop_23x_cmp(instruction, DataType::Type::kFloat64, ComparisonBias::kLtBias, dex_pc);
2929 break;
2930 }
2931
2932 case Instruction::NOP:
2933 break;
2934
2935 case Instruction::IGET:
2936 case Instruction::IGET_QUICK:
2937 case Instruction::IGET_WIDE:
2938 case Instruction::IGET_WIDE_QUICK:
2939 case Instruction::IGET_OBJECT:
2940 case Instruction::IGET_OBJECT_QUICK:
2941 case Instruction::IGET_BOOLEAN:
2942 case Instruction::IGET_BOOLEAN_QUICK:
2943 case Instruction::IGET_BYTE:
2944 case Instruction::IGET_BYTE_QUICK:
2945 case Instruction::IGET_CHAR:
2946 case Instruction::IGET_CHAR_QUICK:
2947 case Instruction::IGET_SHORT:
2948 case Instruction::IGET_SHORT_QUICK: {
2949 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ false, quicken_index)) {
2950 return false;
2951 }
2952 break;
2953 }
2954
2955 case Instruction::IPUT:
2956 case Instruction::IPUT_QUICK:
2957 case Instruction::IPUT_WIDE:
2958 case Instruction::IPUT_WIDE_QUICK:
2959 case Instruction::IPUT_OBJECT:
2960 case Instruction::IPUT_OBJECT_QUICK:
2961 case Instruction::IPUT_BOOLEAN:
2962 case Instruction::IPUT_BOOLEAN_QUICK:
2963 case Instruction::IPUT_BYTE:
2964 case Instruction::IPUT_BYTE_QUICK:
2965 case Instruction::IPUT_CHAR:
2966 case Instruction::IPUT_CHAR_QUICK:
2967 case Instruction::IPUT_SHORT:
2968 case Instruction::IPUT_SHORT_QUICK: {
2969 if (!BuildInstanceFieldAccess(instruction, dex_pc, /* is_put= */ true, quicken_index)) {
2970 return false;
2971 }
2972 break;
2973 }
2974
2975 case Instruction::SGET:
2976 case Instruction::SGET_WIDE:
2977 case Instruction::SGET_OBJECT:
2978 case Instruction::SGET_BOOLEAN:
2979 case Instruction::SGET_BYTE:
2980 case Instruction::SGET_CHAR:
2981 case Instruction::SGET_SHORT: {
2982 BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ false);
2983 break;
2984 }
2985
2986 case Instruction::SPUT:
2987 case Instruction::SPUT_WIDE:
2988 case Instruction::SPUT_OBJECT:
2989 case Instruction::SPUT_BOOLEAN:
2990 case Instruction::SPUT_BYTE:
2991 case Instruction::SPUT_CHAR:
2992 case Instruction::SPUT_SHORT: {
2993 BuildStaticFieldAccess(instruction, dex_pc, /* is_put= */ true);
2994 break;
2995 }
2996
2997 #define ARRAY_XX(kind, anticipated_type) \
2998 case Instruction::AGET##kind: { \
2999 BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \
3000 break; \
3001 } \
3002 case Instruction::APUT##kind: { \
3003 BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \
3004 break; \
3005 }
3006
3007 ARRAY_XX(, DataType::Type::kInt32);
3008 ARRAY_XX(_WIDE, DataType::Type::kInt64);
3009 ARRAY_XX(_OBJECT, DataType::Type::kReference);
3010 ARRAY_XX(_BOOLEAN, DataType::Type::kBool);
3011 ARRAY_XX(_BYTE, DataType::Type::kInt8);
3012 ARRAY_XX(_CHAR, DataType::Type::kUint16);
3013 ARRAY_XX(_SHORT, DataType::Type::kInt16);
3014
3015 case Instruction::ARRAY_LENGTH: {
3016 HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
3017 AppendInstruction(new (allocator_) HArrayLength(object, dex_pc));
3018 UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
3019 break;
3020 }
3021
3022 case Instruction::CONST_STRING: {
3023 dex::StringIndex string_index(instruction.VRegB_21c());
3024 BuildLoadString(string_index, dex_pc);
3025 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3026 break;
3027 }
3028
3029 case Instruction::CONST_STRING_JUMBO: {
3030 dex::StringIndex string_index(instruction.VRegB_31c());
3031 BuildLoadString(string_index, dex_pc);
3032 UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
3033 break;
3034 }
3035
3036 case Instruction::CONST_CLASS: {
3037 dex::TypeIndex type_index(instruction.VRegB_21c());
3038 BuildLoadClass(type_index, dex_pc);
3039 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3040 break;
3041 }
3042
3043 case Instruction::CONST_METHOD_HANDLE: {
3044 uint16_t method_handle_idx = instruction.VRegB_21c();
3045 BuildLoadMethodHandle(method_handle_idx, dex_pc);
3046 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3047 break;
3048 }
3049
3050 case Instruction::CONST_METHOD_TYPE: {
3051 dex::ProtoIndex proto_idx(instruction.VRegB_21c());
3052 BuildLoadMethodType(proto_idx, dex_pc);
3053 UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
3054 break;
3055 }
3056
3057 case Instruction::MOVE_EXCEPTION: {
3058 AppendInstruction(new (allocator_) HLoadException(dex_pc));
3059 UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
3060 AppendInstruction(new (allocator_) HClearException(dex_pc));
3061 break;
3062 }
3063
3064 case Instruction::THROW: {
3065 HInstruction* exception = LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference);
3066 AppendInstruction(new (allocator_) HThrow(exception, dex_pc));
3067 // We finished building this block. Set the current block to null to avoid
3068 // adding dead instructions to it.
3069 current_block_ = nullptr;
3070 break;
3071 }
3072
3073 case Instruction::INSTANCE_OF: {
3074 uint8_t destination = instruction.VRegA_22c();
3075 uint8_t reference = instruction.VRegB_22c();
3076 dex::TypeIndex type_index(instruction.VRegC_22c());
3077 BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
3078 break;
3079 }
3080
3081 case Instruction::CHECK_CAST: {
3082 uint8_t reference = instruction.VRegA_21c();
3083 dex::TypeIndex type_index(instruction.VRegB_21c());
3084 BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
3085 break;
3086 }
3087
3088 case Instruction::MONITOR_ENTER: {
3089 AppendInstruction(new (allocator_) HMonitorOperation(
3090 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3091 HMonitorOperation::OperationKind::kEnter,
3092 dex_pc));
3093 break;
3094 }
3095
3096 case Instruction::MONITOR_EXIT: {
3097 AppendInstruction(new (allocator_) HMonitorOperation(
3098 LoadLocal(instruction.VRegA_11x(), DataType::Type::kReference),
3099 HMonitorOperation::OperationKind::kExit,
3100 dex_pc));
3101 break;
3102 }
3103
3104 case Instruction::SPARSE_SWITCH:
3105 case Instruction::PACKED_SWITCH: {
3106 BuildSwitch(instruction, dex_pc);
3107 break;
3108 }
3109
3110 case Instruction::UNUSED_3E:
3111 case Instruction::UNUSED_3F:
3112 case Instruction::UNUSED_40:
3113 case Instruction::UNUSED_41:
3114 case Instruction::UNUSED_42:
3115 case Instruction::UNUSED_43:
3116 case Instruction::UNUSED_79:
3117 case Instruction::UNUSED_7A:
3118 case Instruction::UNUSED_F3:
3119 case Instruction::UNUSED_F4:
3120 case Instruction::UNUSED_F5:
3121 case Instruction::UNUSED_F6:
3122 case Instruction::UNUSED_F7:
3123 case Instruction::UNUSED_F8:
3124 case Instruction::UNUSED_F9: {
3125 VLOG(compiler) << "Did not compile "
3126 << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex())
3127 << " because of unhandled instruction "
3128 << instruction.Name();
3129 MaybeRecordStat(compilation_stats_,
3130 MethodCompilationStat::kNotCompiledUnhandledInstruction);
3131 return false;
3132 }
3133 }
3134 return true;
3135 } // NOLINT(readability/fn_size)
3136
LookupResolvedType(dex::TypeIndex type_index,const DexCompilationUnit & compilation_unit) const3137 ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType(
3138 dex::TypeIndex type_index,
3139 const DexCompilationUnit& compilation_unit) const {
3140 return compilation_unit.GetClassLinker()->LookupResolvedType(
3141 type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get());
3142 }
3143
LookupReferrerClass() const3144 ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const {
3145 // TODO: Cache the result in a Handle<mirror::Class>.
3146 const dex::MethodId& method_id =
3147 dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
3148 return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_);
3149 }
3150
3151 } // namespace art
3152