1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stddef.h>
6
7 #include <algorithm>
8 #include <limits>
9 #include <vector>
10
11 #include "base/debug/activity_tracker.h"
12 #include "base/logging.h"
13 #include "base/synchronization/condition_variable.h"
14 #include "base/synchronization/lock.h"
15 #include "base/synchronization/waitable_event.h"
16 #include "base/threading/scoped_blocking_call.h"
17 #include "base/threading/thread_restrictions.h"
18
19 // -----------------------------------------------------------------------------
20 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
21 // support cross-process events (where one process can signal an event which
22 // others are waiting on). Because of this, we can avoid having one thread per
23 // listener in several cases.
24 //
25 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
26 // waiter is either an async wait, in which case we have a Task and the
27 // MessageLoop to run it on, or a blocking wait, in which case we have the
28 // condition variable to signal.
29 //
30 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
31 // waits can be canceled, which means grabbing the lock and removing oneself
32 // from the list.
33 //
34 // Waiting on multiple events is handled by adding a single, synchronous wait to
35 // the wait-list of many events. An event passes a pointer to itself when
36 // firing a waiter and so we can store that pointer to find out which event
37 // triggered.
38 // -----------------------------------------------------------------------------
39
40 namespace base {
41
42 // -----------------------------------------------------------------------------
43 // This is just an abstract base class for waking the two types of waiters
44 // -----------------------------------------------------------------------------
WaitableEvent(ResetPolicy reset_policy,InitialState initial_state)45 WaitableEvent::WaitableEvent(ResetPolicy reset_policy,
46 InitialState initial_state)
47 : kernel_(new WaitableEventKernel(reset_policy, initial_state)) {}
48
49 WaitableEvent::~WaitableEvent() = default;
50
Reset()51 void WaitableEvent::Reset() {
52 base::AutoLock locked(kernel_->lock_);
53 kernel_->signaled_ = false;
54 }
55
Signal()56 void WaitableEvent::Signal() {
57 base::AutoLock locked(kernel_->lock_);
58
59 if (kernel_->signaled_)
60 return;
61
62 if (kernel_->manual_reset_) {
63 SignalAll();
64 kernel_->signaled_ = true;
65 } else {
66 // In the case of auto reset, if no waiters were woken, we remain
67 // signaled.
68 if (!SignalOne())
69 kernel_->signaled_ = true;
70 }
71 }
72
IsSignaled()73 bool WaitableEvent::IsSignaled() {
74 base::AutoLock locked(kernel_->lock_);
75
76 const bool result = kernel_->signaled_;
77 if (result && !kernel_->manual_reset_)
78 kernel_->signaled_ = false;
79 return result;
80 }
81
82 // -----------------------------------------------------------------------------
83 // Synchronous waits
84
85 // -----------------------------------------------------------------------------
86 // This is a synchronous waiter. The thread is waiting on the given condition
87 // variable and the fired flag in this object.
88 // -----------------------------------------------------------------------------
89 class SyncWaiter : public WaitableEvent::Waiter {
90 public:
SyncWaiter()91 SyncWaiter()
92 : fired_(false), signaling_event_(nullptr), lock_(), cv_(&lock_) {}
93
Fire(WaitableEvent * signaling_event)94 bool Fire(WaitableEvent* signaling_event) override {
95 base::AutoLock locked(lock_);
96
97 if (fired_)
98 return false;
99
100 fired_ = true;
101 signaling_event_ = signaling_event;
102
103 cv_.Broadcast();
104
105 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
106 // the blocking thread's stack. There is no |delete this;| in Fire. The
107 // SyncWaiter object is destroyed when it goes out of scope.
108
109 return true;
110 }
111
signaling_event() const112 WaitableEvent* signaling_event() const {
113 return signaling_event_;
114 }
115
116 // ---------------------------------------------------------------------------
117 // These waiters are always stack allocated and don't delete themselves. Thus
118 // there's no problem and the ABA tag is the same as the object pointer.
119 // ---------------------------------------------------------------------------
Compare(void * tag)120 bool Compare(void* tag) override { return this == tag; }
121
122 // ---------------------------------------------------------------------------
123 // Called with lock held.
124 // ---------------------------------------------------------------------------
fired() const125 bool fired() const {
126 return fired_;
127 }
128
129 // ---------------------------------------------------------------------------
130 // During a TimedWait, we need a way to make sure that an auto-reset
131 // WaitableEvent doesn't think that this event has been signaled between
132 // unlocking it and removing it from the wait-list. Called with lock held.
133 // ---------------------------------------------------------------------------
Disable()134 void Disable() {
135 fired_ = true;
136 }
137
lock()138 base::Lock* lock() {
139 return &lock_;
140 }
141
cv()142 base::ConditionVariable* cv() {
143 return &cv_;
144 }
145
146 private:
147 bool fired_;
148 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
149 base::Lock lock_;
150 base::ConditionVariable cv_;
151 };
152
Wait()153 void WaitableEvent::Wait() {
154 bool result = TimedWaitUntil(TimeTicks::Max());
155 DCHECK(result) << "TimedWait() should never fail with infinite timeout";
156 }
157
TimedWait(const TimeDelta & wait_delta)158 bool WaitableEvent::TimedWait(const TimeDelta& wait_delta) {
159 // TimeTicks takes care of overflow including the cases when wait_delta
160 // is a maximum value.
161 return TimedWaitUntil(TimeTicks::Now() + wait_delta);
162 }
163
TimedWaitUntil(const TimeTicks & end_time)164 bool WaitableEvent::TimedWaitUntil(const TimeTicks& end_time) {
165 internal::AssertBaseSyncPrimitivesAllowed();
166 ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK);
167 // Record the event that this thread is blocking upon (for hang diagnosis).
168 base::debug::ScopedEventWaitActivity event_activity(this);
169
170 const bool finite_time = !end_time.is_max();
171
172 kernel_->lock_.Acquire();
173 if (kernel_->signaled_) {
174 if (!kernel_->manual_reset_) {
175 // In this case we were signaled when we had no waiters. Now that
176 // someone has waited upon us, we can automatically reset.
177 kernel_->signaled_ = false;
178 }
179
180 kernel_->lock_.Release();
181 return true;
182 }
183
184 SyncWaiter sw;
185 sw.lock()->Acquire();
186
187 Enqueue(&sw);
188 kernel_->lock_.Release();
189 // We are violating locking order here by holding the SyncWaiter lock but not
190 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
191 // again before unlocking it.
192
193 for (;;) {
194 const TimeTicks current_time(TimeTicks::Now());
195
196 if (sw.fired() || (finite_time && current_time >= end_time)) {
197 const bool return_value = sw.fired();
198
199 // We can't acquire @lock_ before releasing the SyncWaiter lock (because
200 // of locking order), however, in between the two a signal could be fired
201 // and @sw would accept it, however we will still return false, so the
202 // signal would be lost on an auto-reset WaitableEvent. Thus we call
203 // Disable which makes sw::Fire return false.
204 sw.Disable();
205 sw.lock()->Release();
206
207 // This is a bug that has been enshrined in the interface of
208 // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
209 // even though it'll always return false in that case. However, taking
210 // the lock ensures that |Signal| has completed before we return and
211 // means that a WaitableEvent can synchronise its own destruction.
212 kernel_->lock_.Acquire();
213 kernel_->Dequeue(&sw, &sw);
214 kernel_->lock_.Release();
215
216 return return_value;
217 }
218
219 if (finite_time) {
220 const TimeDelta max_wait(end_time - current_time);
221 sw.cv()->TimedWait(max_wait);
222 } else {
223 sw.cv()->Wait();
224 }
225 }
226 }
227
228 // -----------------------------------------------------------------------------
229 // Synchronous waiting on multiple objects.
230
231 static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)232 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
233 const std::pair<WaitableEvent*, unsigned> &b) {
234 return a.first < b.first;
235 }
236
237 // static
WaitMany(WaitableEvent ** raw_waitables,size_t count)238 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
239 size_t count) {
240 internal::AssertBaseSyncPrimitivesAllowed();
241 DCHECK(count) << "Cannot wait on no events";
242 ScopedBlockingCall scoped_blocking_call(BlockingType::MAY_BLOCK);
243 // Record an event (the first) that this thread is blocking upon.
244 base::debug::ScopedEventWaitActivity event_activity(raw_waitables[0]);
245
246 // We need to acquire the locks in a globally consistent order. Thus we sort
247 // the array of waitables by address. We actually sort a pairs so that we can
248 // map back to the original index values later.
249 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
250 waitables.reserve(count);
251 for (size_t i = 0; i < count; ++i)
252 waitables.push_back(std::make_pair(raw_waitables[i], i));
253
254 DCHECK_EQ(count, waitables.size());
255
256 sort(waitables.begin(), waitables.end(), cmp_fst_addr);
257
258 // The set of waitables must be distinct. Since we have just sorted by
259 // address, we can check this cheaply by comparing pairs of consecutive
260 // elements.
261 for (size_t i = 0; i < waitables.size() - 1; ++i) {
262 DCHECK(waitables[i].first != waitables[i+1].first);
263 }
264
265 SyncWaiter sw;
266
267 const size_t r = EnqueueMany(&waitables[0], count, &sw);
268 if (r < count) {
269 // One of the events is already signaled. The SyncWaiter has not been
270 // enqueued anywhere.
271 return waitables[r].second;
272 }
273
274 // At this point, we hold the locks on all the WaitableEvents and we have
275 // enqueued our waiter in them all.
276 sw.lock()->Acquire();
277 // Release the WaitableEvent locks in the reverse order
278 for (size_t i = 0; i < count; ++i) {
279 waitables[count - (1 + i)].first->kernel_->lock_.Release();
280 }
281
282 for (;;) {
283 if (sw.fired())
284 break;
285
286 sw.cv()->Wait();
287 }
288 sw.lock()->Release();
289
290 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
291 WaitableEvent *const signaled_event = sw.signaling_event();
292 // This will store the index of the raw_waitables which fired.
293 size_t signaled_index = 0;
294
295 // Take the locks of each WaitableEvent in turn (except the signaled one) and
296 // remove our SyncWaiter from the wait-list
297 for (size_t i = 0; i < count; ++i) {
298 if (raw_waitables[i] != signaled_event) {
299 raw_waitables[i]->kernel_->lock_.Acquire();
300 // There's no possible ABA issue with the address of the SyncWaiter here
301 // because it lives on the stack. Thus the tag value is just the pointer
302 // value again.
303 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
304 raw_waitables[i]->kernel_->lock_.Release();
305 } else {
306 // By taking this lock here we ensure that |Signal| has completed by the
307 // time we return, because |Signal| holds this lock. This matches the
308 // behaviour of |Wait| and |TimedWait|.
309 raw_waitables[i]->kernel_->lock_.Acquire();
310 raw_waitables[i]->kernel_->lock_.Release();
311 signaled_index = i;
312 }
313 }
314
315 return signaled_index;
316 }
317
318 // -----------------------------------------------------------------------------
319 // If return value == count:
320 // The locks of the WaitableEvents have been taken in order and the Waiter has
321 // been enqueued in the wait-list of each. None of the WaitableEvents are
322 // currently signaled
323 // else:
324 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
325 // in any of them and the return value is the index of the WaitableEvent which
326 // was signaled with the lowest input index from the original WaitMany call.
327 // -----------------------------------------------------------------------------
328 // static
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)329 size_t WaitableEvent::EnqueueMany(std::pair<WaitableEvent*, size_t>* waitables,
330 size_t count,
331 Waiter* waiter) {
332 size_t winner = count;
333 size_t winner_index = count;
334 for (size_t i = 0; i < count; ++i) {
335 auto& kernel = waitables[i].first->kernel_;
336 kernel->lock_.Acquire();
337 if (kernel->signaled_ && waitables[i].second < winner) {
338 winner = waitables[i].second;
339 winner_index = i;
340 }
341 }
342
343 // No events signaled. All locks acquired. Enqueue the Waiter on all of them
344 // and return.
345 if (winner == count) {
346 for (size_t i = 0; i < count; ++i)
347 waitables[i].first->Enqueue(waiter);
348 return count;
349 }
350
351 // Unlock in reverse order and possibly clear the chosen winner's signal
352 // before returning its index.
353 for (auto* w = waitables + count - 1; w >= waitables; --w) {
354 auto& kernel = w->first->kernel_;
355 if (w->second == winner) {
356 if (!kernel->manual_reset_)
357 kernel->signaled_ = false;
358 }
359 kernel->lock_.Release();
360 }
361
362 return winner_index;
363 }
364
365 // -----------------------------------------------------------------------------
366
367
368 // -----------------------------------------------------------------------------
369 // Private functions...
370
WaitableEventKernel(ResetPolicy reset_policy,InitialState initial_state)371 WaitableEvent::WaitableEventKernel::WaitableEventKernel(
372 ResetPolicy reset_policy,
373 InitialState initial_state)
374 : manual_reset_(reset_policy == ResetPolicy::MANUAL),
375 signaled_(initial_state == InitialState::SIGNALED) {}
376
377 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() = default;
378
379 // -----------------------------------------------------------------------------
380 // Wake all waiting waiters. Called with lock held.
381 // -----------------------------------------------------------------------------
SignalAll()382 bool WaitableEvent::SignalAll() {
383 bool signaled_at_least_one = false;
384
385 for (std::list<Waiter*>::iterator
386 i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
387 if ((*i)->Fire(this))
388 signaled_at_least_one = true;
389 }
390
391 kernel_->waiters_.clear();
392 return signaled_at_least_one;
393 }
394
395 // ---------------------------------------------------------------------------
396 // Try to wake a single waiter. Return true if one was woken. Called with lock
397 // held.
398 // ---------------------------------------------------------------------------
SignalOne()399 bool WaitableEvent::SignalOne() {
400 for (;;) {
401 if (kernel_->waiters_.empty())
402 return false;
403
404 const bool r = (*kernel_->waiters_.begin())->Fire(this);
405 kernel_->waiters_.pop_front();
406 if (r)
407 return true;
408 }
409 }
410
411 // -----------------------------------------------------------------------------
412 // Add a waiter to the list of those waiting. Called with lock held.
413 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)414 void WaitableEvent::Enqueue(Waiter* waiter) {
415 kernel_->waiters_.push_back(waiter);
416 }
417
418 // -----------------------------------------------------------------------------
419 // Remove a waiter from the list of those waiting. Return true if the waiter was
420 // actually removed. Called with lock held.
421 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)422 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
423 for (std::list<Waiter*>::iterator
424 i = waiters_.begin(); i != waiters_.end(); ++i) {
425 if (*i == waiter && (*i)->Compare(tag)) {
426 waiters_.erase(i);
427 return true;
428 }
429 }
430
431 return false;
432 }
433
434 // -----------------------------------------------------------------------------
435
436 } // namespace base
437