1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/InstrTypes.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PatternMatch.h"
28 #include "llvm/IR/Type.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/Support/AlignOf.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/KnownBits.h"
33 #include <cassert>
34 #include <utility>
35
36 using namespace llvm;
37 using namespace PatternMatch;
38
39 #define DEBUG_TYPE "instcombine"
40
41 namespace {
42
43 /// Class representing coefficient of floating-point addend.
44 /// This class needs to be highly efficient, which is especially true for
45 /// the constructor. As of I write this comment, the cost of the default
46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47 /// perform write-merging).
48 ///
49 class FAddendCoef {
50 public:
51 // The constructor has to initialize a APFloat, which is unnecessary for
52 // most addends which have coefficient either 1 or -1. So, the constructor
53 // is expensive. In order to avoid the cost of the constructor, we should
54 // reuse some instances whenever possible. The pre-created instances
55 // FAddCombine::Add[0-5] embodies this idea.
56 FAddendCoef() = default;
57 ~FAddendCoef();
58
59 // If possible, don't define operator+/operator- etc because these
60 // operators inevitably call FAddendCoef's constructor which is not cheap.
61 void operator=(const FAddendCoef &A);
62 void operator+=(const FAddendCoef &A);
63 void operator*=(const FAddendCoef &S);
64
set(short C)65 void set(short C) {
66 assert(!insaneIntVal(C) && "Insane coefficient");
67 IsFp = false; IntVal = C;
68 }
69
70 void set(const APFloat& C);
71
72 void negate();
73
isZero() const74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75 Value *getValue(Type *) const;
76
isOne() const77 bool isOne() const { return isInt() && IntVal == 1; }
isTwo() const78 bool isTwo() const { return isInt() && IntVal == 2; }
isMinusOne() const79 bool isMinusOne() const { return isInt() && IntVal == -1; }
isMinusTwo() const80 bool isMinusTwo() const { return isInt() && IntVal == -2; }
81
82 private:
insaneIntVal(int V)83 bool insaneIntVal(int V) { return V > 4 || V < -4; }
84
getFpValPtr()85 APFloat *getFpValPtr()
86 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
87
getFpValPtr() const88 const APFloat *getFpValPtr() const
89 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
90
getFpVal() const91 const APFloat &getFpVal() const {
92 assert(IsFp && BufHasFpVal && "Incorret state");
93 return *getFpValPtr();
94 }
95
getFpVal()96 APFloat &getFpVal() {
97 assert(IsFp && BufHasFpVal && "Incorret state");
98 return *getFpValPtr();
99 }
100
isInt() const101 bool isInt() const { return !IsFp; }
102
103 // If the coefficient is represented by an integer, promote it to a
104 // floating point.
105 void convertToFpType(const fltSemantics &Sem);
106
107 // Construct an APFloat from a signed integer.
108 // TODO: We should get rid of this function when APFloat can be constructed
109 // from an *SIGNED* integer.
110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111
112 bool IsFp = false;
113
114 // True iff FpValBuf contains an instance of APFloat.
115 bool BufHasFpVal = false;
116
117 // The integer coefficient of an individual addend is either 1 or -1,
118 // and we try to simplify at most 4 addends from neighboring at most
119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120 // is overkill of this end.
121 short IntVal = 0;
122
123 AlignedCharArrayUnion<APFloat> FpValBuf;
124 };
125
126 /// FAddend is used to represent floating-point addend. An addend is
127 /// represented as <C, V>, where the V is a symbolic value, and C is a
128 /// constant coefficient. A constant addend is represented as <C, 0>.
129 class FAddend {
130 public:
131 FAddend() = default;
132
operator +=(const FAddend & T)133 void operator+=(const FAddend &T) {
134 assert((Val == T.Val) && "Symbolic-values disagree");
135 Coeff += T.Coeff;
136 }
137
getSymVal() const138 Value *getSymVal() const { return Val; }
getCoef() const139 const FAddendCoef &getCoef() const { return Coeff; }
140
isConstant() const141 bool isConstant() const { return Val == nullptr; }
isZero() const142 bool isZero() const { return Coeff.isZero(); }
143
set(short Coefficient,Value * V)144 void set(short Coefficient, Value *V) {
145 Coeff.set(Coefficient);
146 Val = V;
147 }
set(const APFloat & Coefficient,Value * V)148 void set(const APFloat &Coefficient, Value *V) {
149 Coeff.set(Coefficient);
150 Val = V;
151 }
set(const ConstantFP * Coefficient,Value * V)152 void set(const ConstantFP *Coefficient, Value *V) {
153 Coeff.set(Coefficient->getValueAPF());
154 Val = V;
155 }
156
negate()157 void negate() { Coeff.negate(); }
158
159 /// Drill down the U-D chain one step to find the definition of V, and
160 /// try to break the definition into one or two addends.
161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162
163 /// Similar to FAddend::drillDownOneStep() except that the value being
164 /// splitted is the addend itself.
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166
167 private:
Scale(const FAddendCoef & ScaleAmt)168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169
170 // This addend has the value of "Coeff * Val".
171 Value *Val = nullptr;
172 FAddendCoef Coeff;
173 };
174
175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176 /// with its neighboring at most two instructions.
177 ///
178 class FAddCombine {
179 public:
FAddCombine(InstCombiner::BuilderTy & B)180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181
182 Value *simplify(Instruction *FAdd);
183
184 private:
185 using AddendVect = SmallVector<const FAddend *, 4>;
186
187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188
189 Value *performFactorization(Instruction *I);
190
191 /// Convert given addend to a Value
192 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
193
194 /// Return the number of instructions needed to emit the N-ary addition.
195 unsigned calcInstrNumber(const AddendVect& Vect);
196
197 Value *createFSub(Value *Opnd0, Value *Opnd1);
198 Value *createFAdd(Value *Opnd0, Value *Opnd1);
199 Value *createFMul(Value *Opnd0, Value *Opnd1);
200 Value *createFDiv(Value *Opnd0, Value *Opnd1);
201 Value *createFNeg(Value *V);
202 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
203 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
204
205 // Debugging stuff are clustered here.
206 #ifndef NDEBUG
207 unsigned CreateInstrNum;
initCreateInstNum()208 void initCreateInstNum() { CreateInstrNum = 0; }
incCreateInstNum()209 void incCreateInstNum() { CreateInstrNum++; }
210 #else
initCreateInstNum()211 void initCreateInstNum() {}
incCreateInstNum()212 void incCreateInstNum() {}
213 #endif
214
215 InstCombiner::BuilderTy &Builder;
216 Instruction *Instr = nullptr;
217 };
218
219 } // end anonymous namespace
220
221 //===----------------------------------------------------------------------===//
222 //
223 // Implementation of
224 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
225 //
226 //===----------------------------------------------------------------------===//
~FAddendCoef()227 FAddendCoef::~FAddendCoef() {
228 if (BufHasFpVal)
229 getFpValPtr()->~APFloat();
230 }
231
set(const APFloat & C)232 void FAddendCoef::set(const APFloat& C) {
233 APFloat *P = getFpValPtr();
234
235 if (isInt()) {
236 // As the buffer is meanless byte stream, we cannot call
237 // APFloat::operator=().
238 new(P) APFloat(C);
239 } else
240 *P = C;
241
242 IsFp = BufHasFpVal = true;
243 }
244
convertToFpType(const fltSemantics & Sem)245 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
246 if (!isInt())
247 return;
248
249 APFloat *P = getFpValPtr();
250 if (IntVal > 0)
251 new(P) APFloat(Sem, IntVal);
252 else {
253 new(P) APFloat(Sem, 0 - IntVal);
254 P->changeSign();
255 }
256 IsFp = BufHasFpVal = true;
257 }
258
createAPFloatFromInt(const fltSemantics & Sem,int Val)259 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
260 if (Val >= 0)
261 return APFloat(Sem, Val);
262
263 APFloat T(Sem, 0 - Val);
264 T.changeSign();
265
266 return T;
267 }
268
operator =(const FAddendCoef & That)269 void FAddendCoef::operator=(const FAddendCoef &That) {
270 if (That.isInt())
271 set(That.IntVal);
272 else
273 set(That.getFpVal());
274 }
275
operator +=(const FAddendCoef & That)276 void FAddendCoef::operator+=(const FAddendCoef &That) {
277 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
278 if (isInt() == That.isInt()) {
279 if (isInt())
280 IntVal += That.IntVal;
281 else
282 getFpVal().add(That.getFpVal(), RndMode);
283 return;
284 }
285
286 if (isInt()) {
287 const APFloat &T = That.getFpVal();
288 convertToFpType(T.getSemantics());
289 getFpVal().add(T, RndMode);
290 return;
291 }
292
293 APFloat &T = getFpVal();
294 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
295 }
296
operator *=(const FAddendCoef & That)297 void FAddendCoef::operator*=(const FAddendCoef &That) {
298 if (That.isOne())
299 return;
300
301 if (That.isMinusOne()) {
302 negate();
303 return;
304 }
305
306 if (isInt() && That.isInt()) {
307 int Res = IntVal * (int)That.IntVal;
308 assert(!insaneIntVal(Res) && "Insane int value");
309 IntVal = Res;
310 return;
311 }
312
313 const fltSemantics &Semantic =
314 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
315
316 if (isInt())
317 convertToFpType(Semantic);
318 APFloat &F0 = getFpVal();
319
320 if (That.isInt())
321 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
322 APFloat::rmNearestTiesToEven);
323 else
324 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
325 }
326
negate()327 void FAddendCoef::negate() {
328 if (isInt())
329 IntVal = 0 - IntVal;
330 else
331 getFpVal().changeSign();
332 }
333
getValue(Type * Ty) const334 Value *FAddendCoef::getValue(Type *Ty) const {
335 return isInt() ?
336 ConstantFP::get(Ty, float(IntVal)) :
337 ConstantFP::get(Ty->getContext(), getFpVal());
338 }
339
340 // The definition of <Val> Addends
341 // =========================================
342 // A + B <1, A>, <1,B>
343 // A - B <1, A>, <1,B>
344 // 0 - B <-1, B>
345 // C * A, <C, A>
346 // A + C <1, A> <C, NULL>
347 // 0 +/- 0 <0, NULL> (corner case)
348 //
349 // Legend: A and B are not constant, C is constant
drillValueDownOneStep(Value * Val,FAddend & Addend0,FAddend & Addend1)350 unsigned FAddend::drillValueDownOneStep
351 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
352 Instruction *I = nullptr;
353 if (!Val || !(I = dyn_cast<Instruction>(Val)))
354 return 0;
355
356 unsigned Opcode = I->getOpcode();
357
358 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
359 ConstantFP *C0, *C1;
360 Value *Opnd0 = I->getOperand(0);
361 Value *Opnd1 = I->getOperand(1);
362 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
363 Opnd0 = nullptr;
364
365 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
366 Opnd1 = nullptr;
367
368 if (Opnd0) {
369 if (!C0)
370 Addend0.set(1, Opnd0);
371 else
372 Addend0.set(C0, nullptr);
373 }
374
375 if (Opnd1) {
376 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
377 if (!C1)
378 Addend.set(1, Opnd1);
379 else
380 Addend.set(C1, nullptr);
381 if (Opcode == Instruction::FSub)
382 Addend.negate();
383 }
384
385 if (Opnd0 || Opnd1)
386 return Opnd0 && Opnd1 ? 2 : 1;
387
388 // Both operands are zero. Weird!
389 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
390 return 1;
391 }
392
393 if (I->getOpcode() == Instruction::FMul) {
394 Value *V0 = I->getOperand(0);
395 Value *V1 = I->getOperand(1);
396 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
397 Addend0.set(C, V1);
398 return 1;
399 }
400
401 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
402 Addend0.set(C, V0);
403 return 1;
404 }
405 }
406
407 return 0;
408 }
409
410 // Try to break *this* addend into two addends. e.g. Suppose this addend is
411 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
412 // i.e. <2.3, X> and <2.3, Y>.
drillAddendDownOneStep(FAddend & Addend0,FAddend & Addend1) const413 unsigned FAddend::drillAddendDownOneStep
414 (FAddend &Addend0, FAddend &Addend1) const {
415 if (isConstant())
416 return 0;
417
418 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
419 if (!BreakNum || Coeff.isOne())
420 return BreakNum;
421
422 Addend0.Scale(Coeff);
423
424 if (BreakNum == 2)
425 Addend1.Scale(Coeff);
426
427 return BreakNum;
428 }
429
430 // Try to perform following optimization on the input instruction I. Return the
431 // simplified expression if was successful; otherwise, return 0.
432 //
433 // Instruction "I" is Simplified into
434 // -------------------------------------------------------
435 // (x * y) +/- (x * z) x * (y +/- z)
436 // (y / x) +/- (z / x) (y +/- z) / x
performFactorization(Instruction * I)437 Value *FAddCombine::performFactorization(Instruction *I) {
438 assert((I->getOpcode() == Instruction::FAdd ||
439 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
440
441 Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
442 Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
443
444 if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
445 return nullptr;
446
447 bool isMpy = false;
448 if (I0->getOpcode() == Instruction::FMul)
449 isMpy = true;
450 else if (I0->getOpcode() != Instruction::FDiv)
451 return nullptr;
452
453 Value *Opnd0_0 = I0->getOperand(0);
454 Value *Opnd0_1 = I0->getOperand(1);
455 Value *Opnd1_0 = I1->getOperand(0);
456 Value *Opnd1_1 = I1->getOperand(1);
457
458 // Input Instr I Factor AddSub0 AddSub1
459 // ----------------------------------------------
460 // (x*y) +/- (x*z) x y z
461 // (y/x) +/- (z/x) x y z
462 Value *Factor = nullptr;
463 Value *AddSub0 = nullptr, *AddSub1 = nullptr;
464
465 if (isMpy) {
466 if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
467 Factor = Opnd0_0;
468 else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
469 Factor = Opnd0_1;
470
471 if (Factor) {
472 AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
473 AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
474 }
475 } else if (Opnd0_1 == Opnd1_1) {
476 Factor = Opnd0_1;
477 AddSub0 = Opnd0_0;
478 AddSub1 = Opnd1_0;
479 }
480
481 if (!Factor)
482 return nullptr;
483
484 FastMathFlags Flags;
485 Flags.setFast();
486 if (I0) Flags &= I->getFastMathFlags();
487 if (I1) Flags &= I->getFastMathFlags();
488
489 // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
490 Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
491 createFAdd(AddSub0, AddSub1) :
492 createFSub(AddSub0, AddSub1);
493 if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
494 const APFloat &F = CFP->getValueAPF();
495 if (!F.isNormal())
496 return nullptr;
497 } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
498 II->setFastMathFlags(Flags);
499
500 if (isMpy) {
501 Value *RI = createFMul(Factor, NewAddSub);
502 if (Instruction *II = dyn_cast<Instruction>(RI))
503 II->setFastMathFlags(Flags);
504 return RI;
505 }
506
507 Value *RI = createFDiv(NewAddSub, Factor);
508 if (Instruction *II = dyn_cast<Instruction>(RI))
509 II->setFastMathFlags(Flags);
510 return RI;
511 }
512
simplify(Instruction * I)513 Value *FAddCombine::simplify(Instruction *I) {
514 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
515 "Expected 'reassoc'+'nsz' instruction");
516
517 // Currently we are not able to handle vector type.
518 if (I->getType()->isVectorTy())
519 return nullptr;
520
521 assert((I->getOpcode() == Instruction::FAdd ||
522 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
523
524 // Save the instruction before calling other member-functions.
525 Instr = I;
526
527 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
528
529 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
530
531 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
532 unsigned Opnd0_ExpNum = 0;
533 unsigned Opnd1_ExpNum = 0;
534
535 if (!Opnd0.isConstant())
536 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
537
538 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
539 if (OpndNum == 2 && !Opnd1.isConstant())
540 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
541
542 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
543 if (Opnd0_ExpNum && Opnd1_ExpNum) {
544 AddendVect AllOpnds;
545 AllOpnds.push_back(&Opnd0_0);
546 AllOpnds.push_back(&Opnd1_0);
547 if (Opnd0_ExpNum == 2)
548 AllOpnds.push_back(&Opnd0_1);
549 if (Opnd1_ExpNum == 2)
550 AllOpnds.push_back(&Opnd1_1);
551
552 // Compute instruction quota. We should save at least one instruction.
553 unsigned InstQuota = 0;
554
555 Value *V0 = I->getOperand(0);
556 Value *V1 = I->getOperand(1);
557 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
558 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
559
560 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
561 return R;
562 }
563
564 if (OpndNum != 2) {
565 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
566 // splitted into two addends, say "V = X - Y", the instruction would have
567 // been optimized into "I = Y - X" in the previous steps.
568 //
569 const FAddendCoef &CE = Opnd0.getCoef();
570 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
571 }
572
573 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
574 if (Opnd1_ExpNum) {
575 AddendVect AllOpnds;
576 AllOpnds.push_back(&Opnd0);
577 AllOpnds.push_back(&Opnd1_0);
578 if (Opnd1_ExpNum == 2)
579 AllOpnds.push_back(&Opnd1_1);
580
581 if (Value *R = simplifyFAdd(AllOpnds, 1))
582 return R;
583 }
584
585 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
586 if (Opnd0_ExpNum) {
587 AddendVect AllOpnds;
588 AllOpnds.push_back(&Opnd1);
589 AllOpnds.push_back(&Opnd0_0);
590 if (Opnd0_ExpNum == 2)
591 AllOpnds.push_back(&Opnd0_1);
592
593 if (Value *R = simplifyFAdd(AllOpnds, 1))
594 return R;
595 }
596
597 // step 6: Try factorization as the last resort,
598 return performFactorization(I);
599 }
600
simplifyFAdd(AddendVect & Addends,unsigned InstrQuota)601 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
602 unsigned AddendNum = Addends.size();
603 assert(AddendNum <= 4 && "Too many addends");
604
605 // For saving intermediate results;
606 unsigned NextTmpIdx = 0;
607 FAddend TmpResult[3];
608
609 // Points to the constant addend of the resulting simplified expression.
610 // If the resulting expr has constant-addend, this constant-addend is
611 // desirable to reside at the top of the resulting expression tree. Placing
612 // constant close to supper-expr(s) will potentially reveal some optimization
613 // opportunities in super-expr(s).
614 const FAddend *ConstAdd = nullptr;
615
616 // Simplified addends are placed <SimpVect>.
617 AddendVect SimpVect;
618
619 // The outer loop works on one symbolic-value at a time. Suppose the input
620 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
621 // The symbolic-values will be processed in this order: x, y, z.
622 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
623
624 const FAddend *ThisAddend = Addends[SymIdx];
625 if (!ThisAddend) {
626 // This addend was processed before.
627 continue;
628 }
629
630 Value *Val = ThisAddend->getSymVal();
631 unsigned StartIdx = SimpVect.size();
632 SimpVect.push_back(ThisAddend);
633
634 // The inner loop collects addends sharing same symbolic-value, and these
635 // addends will be later on folded into a single addend. Following above
636 // example, if the symbolic value "y" is being processed, the inner loop
637 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
638 // be later on folded into "<b1+b2, y>".
639 for (unsigned SameSymIdx = SymIdx + 1;
640 SameSymIdx < AddendNum; SameSymIdx++) {
641 const FAddend *T = Addends[SameSymIdx];
642 if (T && T->getSymVal() == Val) {
643 // Set null such that next iteration of the outer loop will not process
644 // this addend again.
645 Addends[SameSymIdx] = nullptr;
646 SimpVect.push_back(T);
647 }
648 }
649
650 // If multiple addends share same symbolic value, fold them together.
651 if (StartIdx + 1 != SimpVect.size()) {
652 FAddend &R = TmpResult[NextTmpIdx ++];
653 R = *SimpVect[StartIdx];
654 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
655 R += *SimpVect[Idx];
656
657 // Pop all addends being folded and push the resulting folded addend.
658 SimpVect.resize(StartIdx);
659 if (Val) {
660 if (!R.isZero()) {
661 SimpVect.push_back(&R);
662 }
663 } else {
664 // Don't push constant addend at this time. It will be the last element
665 // of <SimpVect>.
666 ConstAdd = &R;
667 }
668 }
669 }
670
671 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
672 "out-of-bound access");
673
674 if (ConstAdd)
675 SimpVect.push_back(ConstAdd);
676
677 Value *Result;
678 if (!SimpVect.empty())
679 Result = createNaryFAdd(SimpVect, InstrQuota);
680 else {
681 // The addition is folded to 0.0.
682 Result = ConstantFP::get(Instr->getType(), 0.0);
683 }
684
685 return Result;
686 }
687
createNaryFAdd(const AddendVect & Opnds,unsigned InstrQuota)688 Value *FAddCombine::createNaryFAdd
689 (const AddendVect &Opnds, unsigned InstrQuota) {
690 assert(!Opnds.empty() && "Expect at least one addend");
691
692 // Step 1: Check if the # of instructions needed exceeds the quota.
693
694 unsigned InstrNeeded = calcInstrNumber(Opnds);
695 if (InstrNeeded > InstrQuota)
696 return nullptr;
697
698 initCreateInstNum();
699
700 // step 2: Emit the N-ary addition.
701 // Note that at most three instructions are involved in Fadd-InstCombine: the
702 // addition in question, and at most two neighboring instructions.
703 // The resulting optimized addition should have at least one less instruction
704 // than the original addition expression tree. This implies that the resulting
705 // N-ary addition has at most two instructions, and we don't need to worry
706 // about tree-height when constructing the N-ary addition.
707
708 Value *LastVal = nullptr;
709 bool LastValNeedNeg = false;
710
711 // Iterate the addends, creating fadd/fsub using adjacent two addends.
712 for (const FAddend *Opnd : Opnds) {
713 bool NeedNeg;
714 Value *V = createAddendVal(*Opnd, NeedNeg);
715 if (!LastVal) {
716 LastVal = V;
717 LastValNeedNeg = NeedNeg;
718 continue;
719 }
720
721 if (LastValNeedNeg == NeedNeg) {
722 LastVal = createFAdd(LastVal, V);
723 continue;
724 }
725
726 if (LastValNeedNeg)
727 LastVal = createFSub(V, LastVal);
728 else
729 LastVal = createFSub(LastVal, V);
730
731 LastValNeedNeg = false;
732 }
733
734 if (LastValNeedNeg) {
735 LastVal = createFNeg(LastVal);
736 }
737
738 #ifndef NDEBUG
739 assert(CreateInstrNum == InstrNeeded &&
740 "Inconsistent in instruction numbers");
741 #endif
742
743 return LastVal;
744 }
745
createFSub(Value * Opnd0,Value * Opnd1)746 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
747 Value *V = Builder.CreateFSub(Opnd0, Opnd1);
748 if (Instruction *I = dyn_cast<Instruction>(V))
749 createInstPostProc(I);
750 return V;
751 }
752
createFNeg(Value * V)753 Value *FAddCombine::createFNeg(Value *V) {
754 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
755 Value *NewV = createFSub(Zero, V);
756 if (Instruction *I = dyn_cast<Instruction>(NewV))
757 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
758 return NewV;
759 }
760
createFAdd(Value * Opnd0,Value * Opnd1)761 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
762 Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
763 if (Instruction *I = dyn_cast<Instruction>(V))
764 createInstPostProc(I);
765 return V;
766 }
767
createFMul(Value * Opnd0,Value * Opnd1)768 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
769 Value *V = Builder.CreateFMul(Opnd0, Opnd1);
770 if (Instruction *I = dyn_cast<Instruction>(V))
771 createInstPostProc(I);
772 return V;
773 }
774
createFDiv(Value * Opnd0,Value * Opnd1)775 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
776 Value *V = Builder.CreateFDiv(Opnd0, Opnd1);
777 if (Instruction *I = dyn_cast<Instruction>(V))
778 createInstPostProc(I);
779 return V;
780 }
781
createInstPostProc(Instruction * NewInstr,bool NoNumber)782 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
783 NewInstr->setDebugLoc(Instr->getDebugLoc());
784
785 // Keep track of the number of instruction created.
786 if (!NoNumber)
787 incCreateInstNum();
788
789 // Propagate fast-math flags
790 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
791 }
792
793 // Return the number of instruction needed to emit the N-ary addition.
794 // NOTE: Keep this function in sync with createAddendVal().
calcInstrNumber(const AddendVect & Opnds)795 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
796 unsigned OpndNum = Opnds.size();
797 unsigned InstrNeeded = OpndNum - 1;
798
799 // The number of addends in the form of "(-1)*x".
800 unsigned NegOpndNum = 0;
801
802 // Adjust the number of instructions needed to emit the N-ary add.
803 for (const FAddend *Opnd : Opnds) {
804 if (Opnd->isConstant())
805 continue;
806
807 // The constant check above is really for a few special constant
808 // coefficients.
809 if (isa<UndefValue>(Opnd->getSymVal()))
810 continue;
811
812 const FAddendCoef &CE = Opnd->getCoef();
813 if (CE.isMinusOne() || CE.isMinusTwo())
814 NegOpndNum++;
815
816 // Let the addend be "c * x". If "c == +/-1", the value of the addend
817 // is immediately available; otherwise, it needs exactly one instruction
818 // to evaluate the value.
819 if (!CE.isMinusOne() && !CE.isOne())
820 InstrNeeded++;
821 }
822 if (NegOpndNum == OpndNum)
823 InstrNeeded++;
824 return InstrNeeded;
825 }
826
827 // Input Addend Value NeedNeg(output)
828 // ================================================================
829 // Constant C C false
830 // <+/-1, V> V coefficient is -1
831 // <2/-2, V> "fadd V, V" coefficient is -2
832 // <C, V> "fmul V, C" false
833 //
834 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
createAddendVal(const FAddend & Opnd,bool & NeedNeg)835 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
836 const FAddendCoef &Coeff = Opnd.getCoef();
837
838 if (Opnd.isConstant()) {
839 NeedNeg = false;
840 return Coeff.getValue(Instr->getType());
841 }
842
843 Value *OpndVal = Opnd.getSymVal();
844
845 if (Coeff.isMinusOne() || Coeff.isOne()) {
846 NeedNeg = Coeff.isMinusOne();
847 return OpndVal;
848 }
849
850 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
851 NeedNeg = Coeff.isMinusTwo();
852 return createFAdd(OpndVal, OpndVal);
853 }
854
855 NeedNeg = false;
856 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
857 }
858
859 // Checks if any operand is negative and we can convert add to sub.
860 // This function checks for following negative patterns
861 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
862 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
863 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
checkForNegativeOperand(BinaryOperator & I,InstCombiner::BuilderTy & Builder)864 static Value *checkForNegativeOperand(BinaryOperator &I,
865 InstCombiner::BuilderTy &Builder) {
866 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
867
868 // This function creates 2 instructions to replace ADD, we need at least one
869 // of LHS or RHS to have one use to ensure benefit in transform.
870 if (!LHS->hasOneUse() && !RHS->hasOneUse())
871 return nullptr;
872
873 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
874 const APInt *C1 = nullptr, *C2 = nullptr;
875
876 // if ONE is on other side, swap
877 if (match(RHS, m_Add(m_Value(X), m_One())))
878 std::swap(LHS, RHS);
879
880 if (match(LHS, m_Add(m_Value(X), m_One()))) {
881 // if XOR on other side, swap
882 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
883 std::swap(X, RHS);
884
885 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
886 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
887 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
888 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
889 Value *NewAnd = Builder.CreateAnd(Z, *C1);
890 return Builder.CreateSub(RHS, NewAnd, "sub");
891 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
892 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
893 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
894 Value *NewOr = Builder.CreateOr(Z, ~(*C1));
895 return Builder.CreateSub(RHS, NewOr, "sub");
896 }
897 }
898 }
899
900 // Restore LHS and RHS
901 LHS = I.getOperand(0);
902 RHS = I.getOperand(1);
903
904 // if XOR is on other side, swap
905 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
906 std::swap(LHS, RHS);
907
908 // C2 is ODD
909 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
910 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
911 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
912 if (C1->countTrailingZeros() == 0)
913 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
914 Value *NewOr = Builder.CreateOr(Z, ~(*C2));
915 return Builder.CreateSub(RHS, NewOr, "sub");
916 }
917 return nullptr;
918 }
919
foldAddWithConstant(BinaryOperator & Add)920 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
921 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
922 Constant *Op1C;
923 if (!match(Op1, m_Constant(Op1C)))
924 return nullptr;
925
926 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
927 return NV;
928
929 Value *X, *Y;
930
931 // add (sub X, Y), -1 --> add (not Y), X
932 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
933 match(Op1, m_AllOnes()))
934 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
935
936 // zext(bool) + C -> bool ? C + 1 : C
937 if (match(Op0, m_ZExt(m_Value(X))) &&
938 X->getType()->getScalarSizeInBits() == 1)
939 return SelectInst::Create(X, AddOne(Op1C), Op1);
940
941 // ~X + C --> (C-1) - X
942 if (match(Op0, m_Not(m_Value(X))))
943 return BinaryOperator::CreateSub(SubOne(Op1C), X);
944
945 const APInt *C;
946 if (!match(Op1, m_APInt(C)))
947 return nullptr;
948
949 if (C->isSignMask()) {
950 // If wrapping is not allowed, then the addition must set the sign bit:
951 // X + (signmask) --> X | signmask
952 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
953 return BinaryOperator::CreateOr(Op0, Op1);
954
955 // If wrapping is allowed, then the addition flips the sign bit of LHS:
956 // X + (signmask) --> X ^ signmask
957 return BinaryOperator::CreateXor(Op0, Op1);
958 }
959
960 // Is this add the last step in a convoluted sext?
961 // add(zext(xor i16 X, -32768), -32768) --> sext X
962 Type *Ty = Add.getType();
963 const APInt *C2;
964 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
965 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
966 return CastInst::Create(Instruction::SExt, X, Ty);
967
968 // (add (zext (add nuw X, C2)), C) --> (zext (add nuw X, C2 + C))
969 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
970 C->isNegative() && C->sge(-C2->sext(C->getBitWidth()))) {
971 Constant *NewC =
972 ConstantInt::get(X->getType(), *C2 + C->trunc(C2->getBitWidth()));
973 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
974 }
975
976 if (C->isOneValue() && Op0->hasOneUse()) {
977 // add (sext i1 X), 1 --> zext (not X)
978 // TODO: The smallest IR representation is (select X, 0, 1), and that would
979 // not require the one-use check. But we need to remove a transform in
980 // visitSelect and make sure that IR value tracking for select is equal or
981 // better than for these ops.
982 if (match(Op0, m_SExt(m_Value(X))) &&
983 X->getType()->getScalarSizeInBits() == 1)
984 return new ZExtInst(Builder.CreateNot(X), Ty);
985
986 // Shifts and add used to flip and mask off the low bit:
987 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
988 const APInt *C3;
989 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
990 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
991 Value *NotX = Builder.CreateNot(X);
992 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
993 }
994 }
995
996 return nullptr;
997 }
998
999 // Matches multiplication expression Op * C where C is a constant. Returns the
1000 // constant value in C and the other operand in Op. Returns true if such a
1001 // match is found.
MatchMul(Value * E,Value * & Op,APInt & C)1002 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1003 const APInt *AI;
1004 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1005 C = *AI;
1006 return true;
1007 }
1008 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1009 C = APInt(AI->getBitWidth(), 1);
1010 C <<= *AI;
1011 return true;
1012 }
1013 return false;
1014 }
1015
1016 // Matches remainder expression Op % C where C is a constant. Returns the
1017 // constant value in C and the other operand in Op. Returns the signedness of
1018 // the remainder operation in IsSigned. Returns true if such a match is
1019 // found.
MatchRem(Value * E,Value * & Op,APInt & C,bool & IsSigned)1020 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1021 const APInt *AI;
1022 IsSigned = false;
1023 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1024 IsSigned = true;
1025 C = *AI;
1026 return true;
1027 }
1028 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1029 C = *AI;
1030 return true;
1031 }
1032 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1033 C = *AI + 1;
1034 return true;
1035 }
1036 return false;
1037 }
1038
1039 // Matches division expression Op / C with the given signedness as indicated
1040 // by IsSigned, where C is a constant. Returns the constant value in C and the
1041 // other operand in Op. Returns true if such a match is found.
MatchDiv(Value * E,Value * & Op,APInt & C,bool IsSigned)1042 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1043 const APInt *AI;
1044 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1045 C = *AI;
1046 return true;
1047 }
1048 if (!IsSigned) {
1049 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1050 C = *AI;
1051 return true;
1052 }
1053 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1054 C = APInt(AI->getBitWidth(), 1);
1055 C <<= *AI;
1056 return true;
1057 }
1058 }
1059 return false;
1060 }
1061
1062 // Returns whether C0 * C1 with the given signedness overflows.
MulWillOverflow(APInt & C0,APInt & C1,bool IsSigned)1063 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1064 bool overflow;
1065 if (IsSigned)
1066 (void)C0.smul_ov(C1, overflow);
1067 else
1068 (void)C0.umul_ov(C1, overflow);
1069 return overflow;
1070 }
1071
1072 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1073 // does not overflow.
SimplifyAddWithRemainder(BinaryOperator & I)1074 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1075 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1076 Value *X, *MulOpV;
1077 APInt C0, MulOpC;
1078 bool IsSigned;
1079 // Match I = X % C0 + MulOpV * C0
1080 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1081 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1082 C0 == MulOpC) {
1083 Value *RemOpV;
1084 APInt C1;
1085 bool Rem2IsSigned;
1086 // Match MulOpC = RemOpV % C1
1087 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1088 IsSigned == Rem2IsSigned) {
1089 Value *DivOpV;
1090 APInt DivOpC;
1091 // Match RemOpV = X / C0
1092 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1093 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1094 Value *NewDivisor =
1095 ConstantInt::get(X->getType()->getContext(), C0 * C1);
1096 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1097 : Builder.CreateURem(X, NewDivisor, "urem");
1098 }
1099 }
1100 }
1101
1102 return nullptr;
1103 }
1104
1105 /// Fold
1106 /// (1 << NBits) - 1
1107 /// Into:
1108 /// ~(-(1 << NBits))
1109 /// Because a 'not' is better for bit-tracking analysis and other transforms
1110 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
canonicalizeLowbitMask(BinaryOperator & I,InstCombiner::BuilderTy & Builder)1111 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1112 InstCombiner::BuilderTy &Builder) {
1113 Value *NBits;
1114 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1115 return nullptr;
1116
1117 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1118 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1119 // Be wary of constant folding.
1120 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1121 // Always NSW. But NUW propagates from `add`.
1122 BOp->setHasNoSignedWrap();
1123 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1124 }
1125
1126 return BinaryOperator::CreateNot(NotMask, I.getName());
1127 }
1128
visitAdd(BinaryOperator & I)1129 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1130 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1131 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1132 SQ.getWithInstruction(&I)))
1133 return replaceInstUsesWith(I, V);
1134
1135 if (SimplifyAssociativeOrCommutative(I))
1136 return &I;
1137
1138 if (Instruction *X = foldShuffledBinop(I))
1139 return X;
1140
1141 // (A*B)+(A*C) -> A*(B+C) etc
1142 if (Value *V = SimplifyUsingDistributiveLaws(I))
1143 return replaceInstUsesWith(I, V);
1144
1145 if (Instruction *X = foldAddWithConstant(I))
1146 return X;
1147
1148 // FIXME: This should be moved into the above helper function to allow these
1149 // transforms for general constant or constant splat vectors.
1150 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1151 Type *Ty = I.getType();
1152 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1153 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1154 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1155 unsigned TySizeBits = Ty->getScalarSizeInBits();
1156 const APInt &RHSVal = CI->getValue();
1157 unsigned ExtendAmt = 0;
1158 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1159 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1160 if (XorRHS->getValue() == -RHSVal) {
1161 if (RHSVal.isPowerOf2())
1162 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1163 else if (XorRHS->getValue().isPowerOf2())
1164 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1165 }
1166
1167 if (ExtendAmt) {
1168 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1169 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1170 ExtendAmt = 0;
1171 }
1172
1173 if (ExtendAmt) {
1174 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1175 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1176 return BinaryOperator::CreateAShr(NewShl, ShAmt);
1177 }
1178
1179 // If this is a xor that was canonicalized from a sub, turn it back into
1180 // a sub and fuse this add with it.
1181 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1182 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1183 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1184 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1185 XorLHS);
1186 }
1187 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1188 // transform them into (X + (signmask ^ C))
1189 if (XorRHS->getValue().isSignMask())
1190 return BinaryOperator::CreateAdd(XorLHS,
1191 ConstantExpr::getXor(XorRHS, CI));
1192 }
1193 }
1194
1195 if (Ty->isIntOrIntVectorTy(1))
1196 return BinaryOperator::CreateXor(LHS, RHS);
1197
1198 // X + X --> X << 1
1199 if (LHS == RHS) {
1200 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1201 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1202 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1203 return Shl;
1204 }
1205
1206 Value *A, *B;
1207 if (match(LHS, m_Neg(m_Value(A)))) {
1208 // -A + -B --> -(A + B)
1209 if (match(RHS, m_Neg(m_Value(B))))
1210 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1211
1212 // -A + B --> B - A
1213 return BinaryOperator::CreateSub(RHS, A);
1214 }
1215
1216 // A + -B --> A - B
1217 if (match(RHS, m_Neg(m_Value(B))))
1218 return BinaryOperator::CreateSub(LHS, B);
1219
1220 if (Value *V = checkForNegativeOperand(I, Builder))
1221 return replaceInstUsesWith(I, V);
1222
1223 // (A + 1) + ~B --> A - B
1224 // ~B + (A + 1) --> A - B
1225 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))))
1226 return BinaryOperator::CreateSub(A, B);
1227
1228 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1229 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1230
1231 // A+B --> A|B iff A and B have no bits set in common.
1232 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1233 return BinaryOperator::CreateOr(LHS, RHS);
1234
1235 // FIXME: We already did a check for ConstantInt RHS above this.
1236 // FIXME: Is this pattern covered by another fold? No regression tests fail on
1237 // removal.
1238 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1239 // (X & FF00) + xx00 -> (X+xx00) & FF00
1240 Value *X;
1241 ConstantInt *C2;
1242 if (LHS->hasOneUse() &&
1243 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1244 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1245 // See if all bits from the first bit set in the Add RHS up are included
1246 // in the mask. First, get the rightmost bit.
1247 const APInt &AddRHSV = CRHS->getValue();
1248
1249 // Form a mask of all bits from the lowest bit added through the top.
1250 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1251
1252 // See if the and mask includes all of these bits.
1253 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1254
1255 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1256 // Okay, the xform is safe. Insert the new add pronto.
1257 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1258 return BinaryOperator::CreateAnd(NewAdd, C2);
1259 }
1260 }
1261 }
1262
1263 // add (select X 0 (sub n A)) A --> select X A n
1264 {
1265 SelectInst *SI = dyn_cast<SelectInst>(LHS);
1266 Value *A = RHS;
1267 if (!SI) {
1268 SI = dyn_cast<SelectInst>(RHS);
1269 A = LHS;
1270 }
1271 if (SI && SI->hasOneUse()) {
1272 Value *TV = SI->getTrueValue();
1273 Value *FV = SI->getFalseValue();
1274 Value *N;
1275
1276 // Can we fold the add into the argument of the select?
1277 // We check both true and false select arguments for a matching subtract.
1278 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1279 // Fold the add into the true select value.
1280 return SelectInst::Create(SI->getCondition(), N, A);
1281
1282 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1283 // Fold the add into the false select value.
1284 return SelectInst::Create(SI->getCondition(), A, N);
1285 }
1286 }
1287
1288 // Check for (add (sext x), y), see if we can merge this into an
1289 // integer add followed by a sext.
1290 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
1291 // (add (sext x), cst) --> (sext (add x, cst'))
1292 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1293 if (LHSConv->hasOneUse()) {
1294 Constant *CI =
1295 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1296 if (ConstantExpr::getSExt(CI, Ty) == RHSC &&
1297 willNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
1298 // Insert the new, smaller add.
1299 Value *NewAdd =
1300 Builder.CreateNSWAdd(LHSConv->getOperand(0), CI, "addconv");
1301 return new SExtInst(NewAdd, Ty);
1302 }
1303 }
1304 }
1305
1306 // (add (sext x), (sext y)) --> (sext (add int x, y))
1307 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
1308 // Only do this if x/y have the same type, if at least one of them has a
1309 // single use (so we don't increase the number of sexts), and if the
1310 // integer add will not overflow.
1311 if (LHSConv->getOperand(0)->getType() ==
1312 RHSConv->getOperand(0)->getType() &&
1313 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1314 willNotOverflowSignedAdd(LHSConv->getOperand(0),
1315 RHSConv->getOperand(0), I)) {
1316 // Insert the new integer add.
1317 Value *NewAdd = Builder.CreateNSWAdd(LHSConv->getOperand(0),
1318 RHSConv->getOperand(0), "addconv");
1319 return new SExtInst(NewAdd, Ty);
1320 }
1321 }
1322 }
1323
1324 // Check for (add (zext x), y), see if we can merge this into an
1325 // integer add followed by a zext.
1326 if (auto *LHSConv = dyn_cast<ZExtInst>(LHS)) {
1327 // (add (zext x), cst) --> (zext (add x, cst'))
1328 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
1329 if (LHSConv->hasOneUse()) {
1330 Constant *CI =
1331 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
1332 if (ConstantExpr::getZExt(CI, Ty) == RHSC &&
1333 willNotOverflowUnsignedAdd(LHSConv->getOperand(0), CI, I)) {
1334 // Insert the new, smaller add.
1335 Value *NewAdd =
1336 Builder.CreateNUWAdd(LHSConv->getOperand(0), CI, "addconv");
1337 return new ZExtInst(NewAdd, Ty);
1338 }
1339 }
1340 }
1341
1342 // (add (zext x), (zext y)) --> (zext (add int x, y))
1343 if (auto *RHSConv = dyn_cast<ZExtInst>(RHS)) {
1344 // Only do this if x/y have the same type, if at least one of them has a
1345 // single use (so we don't increase the number of zexts), and if the
1346 // integer add will not overflow.
1347 if (LHSConv->getOperand(0)->getType() ==
1348 RHSConv->getOperand(0)->getType() &&
1349 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1350 willNotOverflowUnsignedAdd(LHSConv->getOperand(0),
1351 RHSConv->getOperand(0), I)) {
1352 // Insert the new integer add.
1353 Value *NewAdd = Builder.CreateNUWAdd(
1354 LHSConv->getOperand(0), RHSConv->getOperand(0), "addconv");
1355 return new ZExtInst(NewAdd, Ty);
1356 }
1357 }
1358 }
1359
1360 // (add (xor A, B) (and A, B)) --> (or A, B)
1361 // (add (and A, B) (xor A, B)) --> (or A, B)
1362 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1363 m_c_And(m_Deferred(A), m_Deferred(B)))))
1364 return BinaryOperator::CreateOr(A, B);
1365
1366 // (add (or A, B) (and A, B)) --> (add A, B)
1367 // (add (and A, B) (or A, B)) --> (add A, B)
1368 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1369 m_c_And(m_Deferred(A), m_Deferred(B))))) {
1370 I.setOperand(0, A);
1371 I.setOperand(1, B);
1372 return &I;
1373 }
1374
1375 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1376 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1377 // computeKnownBits.
1378 bool Changed = false;
1379 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1380 Changed = true;
1381 I.setHasNoSignedWrap(true);
1382 }
1383 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1384 Changed = true;
1385 I.setHasNoUnsignedWrap(true);
1386 }
1387
1388 if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1389 return V;
1390
1391 return Changed ? &I : nullptr;
1392 }
1393
visitFAdd(BinaryOperator & I)1394 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1395 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1396 I.getFastMathFlags(),
1397 SQ.getWithInstruction(&I)))
1398 return replaceInstUsesWith(I, V);
1399
1400 if (SimplifyAssociativeOrCommutative(I))
1401 return &I;
1402
1403 if (Instruction *X = foldShuffledBinop(I))
1404 return X;
1405
1406 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1407 return FoldedFAdd;
1408
1409 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1410 Value *X;
1411 // (-X) + Y --> Y - X
1412 if (match(LHS, m_FNeg(m_Value(X))))
1413 return BinaryOperator::CreateFSubFMF(RHS, X, &I);
1414 // Y + (-X) --> Y - X
1415 if (match(RHS, m_FNeg(m_Value(X))))
1416 return BinaryOperator::CreateFSubFMF(LHS, X, &I);
1417
1418 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1419 // integer add followed by a promotion.
1420 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1421 Value *LHSIntVal = LHSConv->getOperand(0);
1422 Type *FPType = LHSConv->getType();
1423
1424 // TODO: This check is overly conservative. In many cases known bits
1425 // analysis can tell us that the result of the addition has less significant
1426 // bits than the integer type can hold.
1427 auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1428 Type *FScalarTy = FTy->getScalarType();
1429 Type *IScalarTy = ITy->getScalarType();
1430
1431 // Do we have enough bits in the significand to represent the result of
1432 // the integer addition?
1433 unsigned MaxRepresentableBits =
1434 APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1435 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1436 };
1437
1438 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1439 // ... if the constant fits in the integer value. This is useful for things
1440 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1441 // requires a constant pool load, and generally allows the add to be better
1442 // instcombined.
1443 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1444 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1445 Constant *CI =
1446 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1447 if (LHSConv->hasOneUse() &&
1448 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1449 willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1450 // Insert the new integer add.
1451 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1452 return new SIToFPInst(NewAdd, I.getType());
1453 }
1454 }
1455
1456 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1457 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1458 Value *RHSIntVal = RHSConv->getOperand(0);
1459 // It's enough to check LHS types only because we require int types to
1460 // be the same for this transform.
1461 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1462 // Only do this if x/y have the same type, if at least one of them has a
1463 // single use (so we don't increase the number of int->fp conversions),
1464 // and if the integer add will not overflow.
1465 if (LHSIntVal->getType() == RHSIntVal->getType() &&
1466 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1467 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1468 // Insert the new integer add.
1469 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1470 return new SIToFPInst(NewAdd, I.getType());
1471 }
1472 }
1473 }
1474 }
1475
1476 // Handle specials cases for FAdd with selects feeding the operation
1477 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1478 return replaceInstUsesWith(I, V);
1479
1480 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1481 if (Value *V = FAddCombine(Builder).simplify(&I))
1482 return replaceInstUsesWith(I, V);
1483 }
1484
1485 return nullptr;
1486 }
1487
1488 /// Optimize pointer differences into the same array into a size. Consider:
1489 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1490 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
OptimizePointerDifference(Value * LHS,Value * RHS,Type * Ty)1491 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1492 Type *Ty) {
1493 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1494 // this.
1495 bool Swapped = false;
1496 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1497
1498 // For now we require one side to be the base pointer "A" or a constant
1499 // GEP derived from it.
1500 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1501 // (gep X, ...) - X
1502 if (LHSGEP->getOperand(0) == RHS) {
1503 GEP1 = LHSGEP;
1504 Swapped = false;
1505 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1506 // (gep X, ...) - (gep X, ...)
1507 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1508 RHSGEP->getOperand(0)->stripPointerCasts()) {
1509 GEP2 = RHSGEP;
1510 GEP1 = LHSGEP;
1511 Swapped = false;
1512 }
1513 }
1514 }
1515
1516 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1517 // X - (gep X, ...)
1518 if (RHSGEP->getOperand(0) == LHS) {
1519 GEP1 = RHSGEP;
1520 Swapped = true;
1521 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1522 // (gep X, ...) - (gep X, ...)
1523 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1524 LHSGEP->getOperand(0)->stripPointerCasts()) {
1525 GEP2 = LHSGEP;
1526 GEP1 = RHSGEP;
1527 Swapped = true;
1528 }
1529 }
1530 }
1531
1532 if (!GEP1)
1533 // No GEP found.
1534 return nullptr;
1535
1536 if (GEP2) {
1537 // (gep X, ...) - (gep X, ...)
1538 //
1539 // Avoid duplicating the arithmetic if there are more than one non-constant
1540 // indices between the two GEPs and either GEP has a non-constant index and
1541 // multiple users. If zero non-constant index, the result is a constant and
1542 // there is no duplication. If one non-constant index, the result is an add
1543 // or sub with a constant, which is no larger than the original code, and
1544 // there's no duplicated arithmetic, even if either GEP has multiple
1545 // users. If more than one non-constant indices combined, as long as the GEP
1546 // with at least one non-constant index doesn't have multiple users, there
1547 // is no duplication.
1548 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1549 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1550 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1551 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1552 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1553 return nullptr;
1554 }
1555 }
1556
1557 // Emit the offset of the GEP and an intptr_t.
1558 Value *Result = EmitGEPOffset(GEP1);
1559
1560 // If we had a constant expression GEP on the other side offsetting the
1561 // pointer, subtract it from the offset we have.
1562 if (GEP2) {
1563 Value *Offset = EmitGEPOffset(GEP2);
1564 Result = Builder.CreateSub(Result, Offset);
1565 }
1566
1567 // If we have p - gep(p, ...) then we have to negate the result.
1568 if (Swapped)
1569 Result = Builder.CreateNeg(Result, "diff.neg");
1570
1571 return Builder.CreateIntCast(Result, Ty, true);
1572 }
1573
visitSub(BinaryOperator & I)1574 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1575 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1576 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1577 SQ.getWithInstruction(&I)))
1578 return replaceInstUsesWith(I, V);
1579
1580 if (Instruction *X = foldShuffledBinop(I))
1581 return X;
1582
1583 // (A*B)-(A*C) -> A*(B-C) etc
1584 if (Value *V = SimplifyUsingDistributiveLaws(I))
1585 return replaceInstUsesWith(I, V);
1586
1587 // If this is a 'B = x-(-A)', change to B = x+A.
1588 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1589 if (Value *V = dyn_castNegVal(Op1)) {
1590 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1591
1592 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1593 assert(BO->getOpcode() == Instruction::Sub &&
1594 "Expected a subtraction operator!");
1595 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1596 Res->setHasNoSignedWrap(true);
1597 } else {
1598 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1599 Res->setHasNoSignedWrap(true);
1600 }
1601
1602 return Res;
1603 }
1604
1605 if (I.getType()->isIntOrIntVectorTy(1))
1606 return BinaryOperator::CreateXor(Op0, Op1);
1607
1608 // Replace (-1 - A) with (~A).
1609 if (match(Op0, m_AllOnes()))
1610 return BinaryOperator::CreateNot(Op1);
1611
1612 // (~X) - (~Y) --> Y - X
1613 Value *X, *Y;
1614 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1615 return BinaryOperator::CreateSub(Y, X);
1616
1617 // (X + -1) - Y --> ~Y + X
1618 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1619 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1620
1621 // Y - (X + 1) --> ~X + Y
1622 if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1623 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1624
1625 if (Constant *C = dyn_cast<Constant>(Op0)) {
1626 bool IsNegate = match(C, m_ZeroInt());
1627 Value *X;
1628 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1629 // 0 - (zext bool) --> sext bool
1630 // C - (zext bool) --> bool ? C - 1 : C
1631 if (IsNegate)
1632 return CastInst::CreateSExtOrBitCast(X, I.getType());
1633 return SelectInst::Create(X, SubOne(C), C);
1634 }
1635 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1636 // 0 - (sext bool) --> zext bool
1637 // C - (sext bool) --> bool ? C + 1 : C
1638 if (IsNegate)
1639 return CastInst::CreateZExtOrBitCast(X, I.getType());
1640 return SelectInst::Create(X, AddOne(C), C);
1641 }
1642
1643 // C - ~X == X + (1+C)
1644 if (match(Op1, m_Not(m_Value(X))))
1645 return BinaryOperator::CreateAdd(X, AddOne(C));
1646
1647 // Try to fold constant sub into select arguments.
1648 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1649 if (Instruction *R = FoldOpIntoSelect(I, SI))
1650 return R;
1651
1652 // Try to fold constant sub into PHI values.
1653 if (PHINode *PN = dyn_cast<PHINode>(Op1))
1654 if (Instruction *R = foldOpIntoPhi(I, PN))
1655 return R;
1656
1657 // C-(X+C2) --> (C-C2)-X
1658 Constant *C2;
1659 if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1660 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1661 }
1662
1663 const APInt *Op0C;
1664 if (match(Op0, m_APInt(Op0C))) {
1665 unsigned BitWidth = I.getType()->getScalarSizeInBits();
1666
1667 // -(X >>u 31) -> (X >>s 31)
1668 // -(X >>s 31) -> (X >>u 31)
1669 if (Op0C->isNullValue()) {
1670 Value *X;
1671 const APInt *ShAmt;
1672 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1673 *ShAmt == BitWidth - 1) {
1674 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1675 return BinaryOperator::CreateAShr(X, ShAmtOp);
1676 }
1677 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1678 *ShAmt == BitWidth - 1) {
1679 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1680 return BinaryOperator::CreateLShr(X, ShAmtOp);
1681 }
1682
1683 if (Op1->hasOneUse()) {
1684 Value *LHS, *RHS;
1685 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1686 if (SPF == SPF_ABS || SPF == SPF_NABS) {
1687 // This is a negate of an ABS/NABS pattern. Just swap the operands
1688 // of the select.
1689 SelectInst *SI = cast<SelectInst>(Op1);
1690 Value *TrueVal = SI->getTrueValue();
1691 Value *FalseVal = SI->getFalseValue();
1692 SI->setTrueValue(FalseVal);
1693 SI->setFalseValue(TrueVal);
1694 // Don't swap prof metadata, we didn't change the branch behavior.
1695 return replaceInstUsesWith(I, SI);
1696 }
1697 }
1698 }
1699
1700 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1701 // zero.
1702 if (Op0C->isMask()) {
1703 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1704 if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1705 return BinaryOperator::CreateXor(Op1, Op0);
1706 }
1707 }
1708
1709 {
1710 Value *Y;
1711 // X-(X+Y) == -Y X-(Y+X) == -Y
1712 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1713 return BinaryOperator::CreateNeg(Y);
1714
1715 // (X-Y)-X == -Y
1716 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1717 return BinaryOperator::CreateNeg(Y);
1718 }
1719
1720 // (sub (or A, B), (xor A, B)) --> (and A, B)
1721 {
1722 Value *A, *B;
1723 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1724 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1725 return BinaryOperator::CreateAnd(A, B);
1726 }
1727
1728 {
1729 Value *Y;
1730 // ((X | Y) - X) --> (~X & Y)
1731 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1732 return BinaryOperator::CreateAnd(
1733 Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1734 }
1735
1736 if (Op1->hasOneUse()) {
1737 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1738 Constant *C = nullptr;
1739
1740 // (X - (Y - Z)) --> (X + (Z - Y)).
1741 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1742 return BinaryOperator::CreateAdd(Op0,
1743 Builder.CreateSub(Z, Y, Op1->getName()));
1744
1745 // (X - (X & Y)) --> (X & ~Y)
1746 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1747 return BinaryOperator::CreateAnd(Op0,
1748 Builder.CreateNot(Y, Y->getName() + ".not"));
1749
1750 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
1751 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
1752 C->isNotMinSignedValue() && !C->isOneValue())
1753 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
1754
1755 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
1756 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1757 if (Value *XNeg = dyn_castNegVal(X))
1758 return BinaryOperator::CreateShl(XNeg, Y);
1759
1760 // Subtracting -1/0 is the same as adding 1/0:
1761 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1762 // 'nuw' is dropped in favor of the canonical form.
1763 if (match(Op1, m_SExt(m_Value(Y))) &&
1764 Y->getType()->getScalarSizeInBits() == 1) {
1765 Value *Zext = Builder.CreateZExt(Y, I.getType());
1766 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1767 Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1768 return Add;
1769 }
1770
1771 // X - A*-B -> X + A*B
1772 // X - -A*B -> X + A*B
1773 Value *A, *B;
1774 Constant *CI;
1775 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1776 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1777
1778 // X - A*CI -> X + A*-CI
1779 // No need to handle commuted multiply because multiply handling will
1780 // ensure constant will be move to the right hand side.
1781 if (match(Op1, m_Mul(m_Value(A), m_Constant(CI)))) {
1782 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(CI));
1783 return BinaryOperator::CreateAdd(Op0, NewMul);
1784 }
1785 }
1786
1787 // Optimize pointer differences into the same array into a size. Consider:
1788 // &A[10] - &A[0]: we should compile this to "10".
1789 Value *LHSOp, *RHSOp;
1790 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1791 match(Op1, m_PtrToInt(m_Value(RHSOp))))
1792 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1793 return replaceInstUsesWith(I, Res);
1794
1795 // trunc(p)-trunc(q) -> trunc(p-q)
1796 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1797 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1798 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1799 return replaceInstUsesWith(I, Res);
1800
1801 // Canonicalize a shifty way to code absolute value to the common pattern.
1802 // There are 2 potential commuted variants.
1803 // We're relying on the fact that we only do this transform when the shift has
1804 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1805 // instructions).
1806 Value *A;
1807 const APInt *ShAmt;
1808 Type *Ty = I.getType();
1809 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1810 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1811 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1812 // B = ashr i32 A, 31 ; smear the sign bit
1813 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
1814 // --> (A < 0) ? -A : A
1815 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1816 // Copy the nuw/nsw flags from the sub to the negate.
1817 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1818 I.hasNoSignedWrap());
1819 return SelectInst::Create(Cmp, Neg, A);
1820 }
1821
1822 bool Changed = false;
1823 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1824 Changed = true;
1825 I.setHasNoSignedWrap(true);
1826 }
1827 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1828 Changed = true;
1829 I.setHasNoUnsignedWrap(true);
1830 }
1831
1832 return Changed ? &I : nullptr;
1833 }
1834
visitFSub(BinaryOperator & I)1835 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1836 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
1837 I.getFastMathFlags(),
1838 SQ.getWithInstruction(&I)))
1839 return replaceInstUsesWith(I, V);
1840
1841 if (Instruction *X = foldShuffledBinop(I))
1842 return X;
1843
1844 // Subtraction from -0.0 is the canonical form of fneg.
1845 // fsub nsz 0, X ==> fsub nsz -0.0, X
1846 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1847 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1848 return BinaryOperator::CreateFNegFMF(Op1, &I);
1849
1850 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1851 // Canonicalize to fadd to make analysis easier.
1852 // This can also help codegen because fadd is commutative.
1853 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1854 // killed later. We still limit that particular transform with 'hasOneUse'
1855 // because an fneg is assumed better/cheaper than a generic fsub.
1856 Value *X, *Y;
1857 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1858 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1859 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1860 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
1861 }
1862 }
1863
1864 if (isa<Constant>(Op0))
1865 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1866 if (Instruction *NV = FoldOpIntoSelect(I, SI))
1867 return NV;
1868
1869 // X - C --> X + (-C)
1870 // But don't transform constant expressions because there's an inverse fold
1871 // for X + (-Y) --> X - Y.
1872 Constant *C;
1873 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
1874 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
1875
1876 // X - (-Y) --> X + Y
1877 if (match(Op1, m_FNeg(m_Value(Y))))
1878 return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
1879
1880 // Similar to above, but look through a cast of the negated value:
1881 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
1882 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y)))))) {
1883 Value *TruncY = Builder.CreateFPTrunc(Y, I.getType());
1884 return BinaryOperator::CreateFAddFMF(Op0, TruncY, &I);
1885 }
1886 // X - (fpext(-Y)) --> X + fpext(Y)
1887 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y)))))) {
1888 Value *ExtY = Builder.CreateFPExt(Y, I.getType());
1889 return BinaryOperator::CreateFAddFMF(Op0, ExtY, &I);
1890 }
1891
1892 // Handle specials cases for FSub with selects feeding the operation
1893 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
1894 return replaceInstUsesWith(I, V);
1895
1896 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1897 if (Value *V = FAddCombine(Builder).simplify(&I))
1898 return replaceInstUsesWith(I, V);
1899 }
1900
1901 return nullptr;
1902 }
1903