1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_ 18 #define ART_COMPILER_UTILS_ASSEMBLER_H_ 19 20 #include <vector> 21 22 #include <android-base/logging.h> 23 24 #include "arch/instruction_set.h" 25 #include "arch/instruction_set_features.h" 26 #include "arm/constants_arm.h" 27 #include "base/arena_allocator.h" 28 #include "base/arena_object.h" 29 #include "base/array_ref.h" 30 #include "base/enums.h" 31 #include "base/macros.h" 32 #include "base/memory_region.h" 33 #include "dwarf/debug_frame_opcode_writer.h" 34 #include "label.h" 35 #include "managed_register.h" 36 #include "mips/constants_mips.h" 37 #include "offsets.h" 38 #include "x86/constants_x86.h" 39 #include "x86_64/constants_x86_64.h" 40 41 namespace art { 42 43 class Assembler; 44 class AssemblerBuffer; 45 46 // Assembler fixups are positions in generated code that require processing 47 // after the code has been copied to executable memory. This includes building 48 // relocation information. 49 class AssemblerFixup { 50 public: 51 virtual void Process(const MemoryRegion& region, int position) = 0; ~AssemblerFixup()52 virtual ~AssemblerFixup() {} 53 54 private: 55 AssemblerFixup* previous_; 56 int position_; 57 previous()58 AssemblerFixup* previous() const { return previous_; } set_previous(AssemblerFixup * previous_in)59 void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; } 60 position()61 int position() const { return position_; } set_position(int position_in)62 void set_position(int position_in) { position_ = position_in; } 63 64 friend class AssemblerBuffer; 65 }; 66 67 // Parent of all queued slow paths, emitted during finalization 68 class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> { 69 public: SlowPath()70 SlowPath() : next_(nullptr) {} ~SlowPath()71 virtual ~SlowPath() {} 72 Continuation()73 Label* Continuation() { return &continuation_; } Entry()74 Label* Entry() { return &entry_; } 75 // Generate code for slow path 76 virtual void Emit(Assembler *sp_asm) = 0; 77 78 protected: 79 // Entry branched to by fast path 80 Label entry_; 81 // Optional continuation that is branched to at the end of the slow path 82 Label continuation_; 83 // Next in linked list of slow paths 84 SlowPath *next_; 85 86 private: 87 friend class AssemblerBuffer; 88 DISALLOW_COPY_AND_ASSIGN(SlowPath); 89 }; 90 91 class AssemblerBuffer { 92 public: 93 explicit AssemblerBuffer(ArenaAllocator* allocator); 94 ~AssemblerBuffer(); 95 GetAllocator()96 ArenaAllocator* GetAllocator() { 97 return allocator_; 98 } 99 100 // Basic support for emitting, loading, and storing. Emit(T value)101 template<typename T> void Emit(T value) { 102 CHECK(HasEnsuredCapacity()); 103 *reinterpret_cast<T*>(cursor_) = value; 104 cursor_ += sizeof(T); 105 } 106 Load(size_t position)107 template<typename T> T Load(size_t position) { 108 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 109 return *reinterpret_cast<T*>(contents_ + position); 110 } 111 Store(size_t position,T value)112 template<typename T> void Store(size_t position, T value) { 113 CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); 114 *reinterpret_cast<T*>(contents_ + position) = value; 115 } 116 Resize(size_t new_size)117 void Resize(size_t new_size) { 118 if (new_size > Capacity()) { 119 ExtendCapacity(new_size); 120 } 121 cursor_ = contents_ + new_size; 122 } 123 Move(size_t newposition,size_t oldposition,size_t size)124 void Move(size_t newposition, size_t oldposition, size_t size) { 125 // Move a chunk of the buffer from oldposition to newposition. 126 DCHECK_LE(oldposition + size, Size()); 127 DCHECK_LE(newposition + size, Size()); 128 memmove(contents_ + newposition, contents_ + oldposition, size); 129 } 130 131 // Emit a fixup at the current location. EmitFixup(AssemblerFixup * fixup)132 void EmitFixup(AssemblerFixup* fixup) { 133 fixup->set_previous(fixup_); 134 fixup->set_position(Size()); 135 fixup_ = fixup; 136 } 137 EnqueueSlowPath(SlowPath * slowpath)138 void EnqueueSlowPath(SlowPath* slowpath) { 139 if (slow_path_ == nullptr) { 140 slow_path_ = slowpath; 141 } else { 142 SlowPath* cur = slow_path_; 143 for ( ; cur->next_ != nullptr ; cur = cur->next_) {} 144 cur->next_ = slowpath; 145 } 146 } 147 EmitSlowPaths(Assembler * sp_asm)148 void EmitSlowPaths(Assembler* sp_asm) { 149 SlowPath* cur = slow_path_; 150 SlowPath* next = nullptr; 151 slow_path_ = nullptr; 152 for ( ; cur != nullptr ; cur = next) { 153 cur->Emit(sp_asm); 154 next = cur->next_; 155 delete cur; 156 } 157 } 158 159 // Get the size of the emitted code. Size()160 size_t Size() const { 161 CHECK_GE(cursor_, contents_); 162 return cursor_ - contents_; 163 } 164 contents()165 uint8_t* contents() const { return contents_; } 166 167 // Copy the assembled instructions into the specified memory block 168 // and apply all fixups. 169 void FinalizeInstructions(const MemoryRegion& region); 170 171 // To emit an instruction to the assembler buffer, the EnsureCapacity helper 172 // must be used to guarantee that the underlying data area is big enough to 173 // hold the emitted instruction. Usage: 174 // 175 // AssemblerBuffer buffer; 176 // AssemblerBuffer::EnsureCapacity ensured(&buffer); 177 // ... emit bytes for single instruction ... 178 179 #ifndef NDEBUG 180 181 class EnsureCapacity { 182 public: EnsureCapacity(AssemblerBuffer * buffer)183 explicit EnsureCapacity(AssemblerBuffer* buffer) { 184 if (buffer->cursor() > buffer->limit()) { 185 buffer->ExtendCapacity(buffer->Size() + kMinimumGap); 186 } 187 // In debug mode, we save the assembler buffer along with the gap 188 // size before we start emitting to the buffer. This allows us to 189 // check that any single generated instruction doesn't overflow the 190 // limit implied by the minimum gap size. 191 buffer_ = buffer; 192 gap_ = ComputeGap(); 193 // Make sure that extending the capacity leaves a big enough gap 194 // for any kind of instruction. 195 CHECK_GE(gap_, kMinimumGap); 196 // Mark the buffer as having ensured the capacity. 197 CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. 198 buffer->has_ensured_capacity_ = true; 199 } 200 ~EnsureCapacity()201 ~EnsureCapacity() { 202 // Unmark the buffer, so we cannot emit after this. 203 buffer_->has_ensured_capacity_ = false; 204 // Make sure the generated instruction doesn't take up more 205 // space than the minimum gap. 206 int delta = gap_ - ComputeGap(); 207 CHECK_LE(delta, kMinimumGap); 208 } 209 210 private: 211 AssemblerBuffer* buffer_; 212 int gap_; 213 ComputeGap()214 int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } 215 }; 216 217 bool has_ensured_capacity_; HasEnsuredCapacity()218 bool HasEnsuredCapacity() const { return has_ensured_capacity_; } 219 220 #else 221 222 class EnsureCapacity { 223 public: EnsureCapacity(AssemblerBuffer * buffer)224 explicit EnsureCapacity(AssemblerBuffer* buffer) { 225 if (buffer->cursor() > buffer->limit()) { 226 buffer->ExtendCapacity(buffer->Size() + kMinimumGap); 227 } 228 } 229 }; 230 231 // When building the C++ tests, assertion code is enabled. To allow 232 // asserting that the user of the assembler buffer has ensured the 233 // capacity needed for emitting, we add a dummy method in non-debug mode. HasEnsuredCapacity()234 bool HasEnsuredCapacity() const { return true; } 235 236 #endif 237 238 // Returns the position in the instruction stream. GetPosition()239 int GetPosition() { return cursor_ - contents_; } 240 Capacity()241 size_t Capacity() const { 242 CHECK_GE(limit_, contents_); 243 return (limit_ - contents_) + kMinimumGap; 244 } 245 246 // Unconditionally increase the capacity. 247 // The provided `min_capacity` must be higher than current `Capacity()`. 248 void ExtendCapacity(size_t min_capacity); 249 250 private: 251 // The limit is set to kMinimumGap bytes before the end of the data area. 252 // This leaves enough space for the longest possible instruction and allows 253 // for a single, fast space check per instruction. 254 static const int kMinimumGap = 32; 255 256 ArenaAllocator* const allocator_; 257 uint8_t* contents_; 258 uint8_t* cursor_; 259 uint8_t* limit_; 260 AssemblerFixup* fixup_; 261 #ifndef NDEBUG 262 bool fixups_processed_; 263 #endif 264 265 // Head of linked list of slow paths 266 SlowPath* slow_path_; 267 cursor()268 uint8_t* cursor() const { return cursor_; } limit()269 uint8_t* limit() const { return limit_; } 270 271 // Process the fixup chain starting at the given fixup. The offset is 272 // non-zero for fixups in the body if the preamble is non-empty. 273 void ProcessFixups(const MemoryRegion& region); 274 275 // Compute the limit based on the data area and the capacity. See 276 // description of kMinimumGap for the reasoning behind the value. ComputeLimit(uint8_t * data,size_t capacity)277 static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) { 278 return data + capacity - kMinimumGap; 279 } 280 281 friend class AssemblerFixup; 282 }; 283 284 // The purpose of this class is to ensure that we do not have to explicitly 285 // call the AdvancePC method (which is good for convenience and correctness). 286 class DebugFrameOpCodeWriterForAssembler final 287 : public dwarf::DebugFrameOpCodeWriter<> { 288 public: 289 struct DelayedAdvancePC { 290 uint32_t stream_pos; 291 uint32_t pc; 292 }; 293 294 // This method is called the by the opcode writers. 295 void ImplicitlyAdvancePC() final; 296 DebugFrameOpCodeWriterForAssembler(Assembler * buffer)297 explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer) 298 : dwarf::DebugFrameOpCodeWriter<>(/* enabled= */ false), 299 assembler_(buffer), 300 delay_emitting_advance_pc_(false), 301 delayed_advance_pcs_() { 302 } 303 ~DebugFrameOpCodeWriterForAssembler()304 ~DebugFrameOpCodeWriterForAssembler() { 305 DCHECK(delayed_advance_pcs_.empty()); 306 } 307 308 // Tell the writer to delay emitting advance PC info. 309 // The assembler must explicitly process all the delayed advances. DelayEmittingAdvancePCs()310 void DelayEmittingAdvancePCs() { 311 delay_emitting_advance_pc_ = true; 312 } 313 314 // Override the last delayed PC. The new PC can be out of order. OverrideDelayedPC(size_t pc)315 void OverrideDelayedPC(size_t pc) { 316 DCHECK(delay_emitting_advance_pc_); 317 if (enabled_) { 318 DCHECK(!delayed_advance_pcs_.empty()); 319 delayed_advance_pcs_.back().pc = pc; 320 } 321 } 322 323 // Return the number of delayed advance PC entries. NumberOfDelayedAdvancePCs()324 size_t NumberOfDelayedAdvancePCs() const { 325 return delayed_advance_pcs_.size(); 326 } 327 328 // Release the CFI stream and advance PC infos so that the assembler can patch it. 329 std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> ReleaseStreamAndPrepareForDelayedAdvancePC()330 ReleaseStreamAndPrepareForDelayedAdvancePC() { 331 DCHECK(delay_emitting_advance_pc_); 332 delay_emitting_advance_pc_ = false; 333 std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result; 334 result.first.swap(opcodes_); 335 result.second.swap(delayed_advance_pcs_); 336 return result; 337 } 338 339 // Reserve space for the CFI stream. ReserveCFIStream(size_t capacity)340 void ReserveCFIStream(size_t capacity) { 341 opcodes_.reserve(capacity); 342 } 343 344 // Append raw data to the CFI stream. AppendRawData(const std::vector<uint8_t> & raw_data,size_t first,size_t last)345 void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) { 346 DCHECK_LE(0u, first); 347 DCHECK_LE(first, last); 348 DCHECK_LE(last, raw_data.size()); 349 opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last); 350 } 351 352 private: 353 Assembler* assembler_; 354 bool delay_emitting_advance_pc_; 355 std::vector<DelayedAdvancePC> delayed_advance_pcs_; 356 }; 357 358 class Assembler : public DeletableArenaObject<kArenaAllocAssembler> { 359 public: 360 // Finalize the code; emit slow paths, fixup branches, add literal pool, etc. FinalizeCode()361 virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); } 362 363 // Size of generated code CodeSize()364 virtual size_t CodeSize() const { return buffer_.Size(); } CodeBufferBaseAddress()365 virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); } 366 // CodePosition() is a non-const method similar to CodeSize(), which is used to 367 // record positions within the code buffer for the purpose of signal handling 368 // (stack overflow checks and implicit null checks may trigger signals and the 369 // signal handlers expect them right before the recorded positions). 370 // On most architectures CodePosition() should be equivalent to CodeSize(), but 371 // the MIPS assembler needs to be aware of this recording, so it doesn't put 372 // the instructions that can trigger signals into branch delay slots. Handling 373 // signals from instructions in delay slots is a bit problematic and should be 374 // avoided. CodePosition()375 virtual size_t CodePosition() { return CodeSize(); } 376 377 // Copy instructions out of assembly buffer into the given region of memory FinalizeInstructions(const MemoryRegion & region)378 virtual void FinalizeInstructions(const MemoryRegion& region) { 379 buffer_.FinalizeInstructions(region); 380 } 381 382 // TODO: Implement with disassembler. Comment(const char * format ATTRIBUTE_UNUSED,...)383 virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {} 384 385 virtual void Bind(Label* label) = 0; 386 virtual void Jump(Label* label) = 0; 387 ~Assembler()388 virtual ~Assembler() {} 389 390 /** 391 * @brief Buffer of DWARF's Call Frame Information opcodes. 392 * @details It is used by debuggers and other tools to unwind the call stack. 393 */ cfi()394 DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; } 395 GetAllocator()396 ArenaAllocator* GetAllocator() { 397 return buffer_.GetAllocator(); 398 } 399 GetBuffer()400 AssemblerBuffer* GetBuffer() { 401 return &buffer_; 402 } 403 404 protected: Assembler(ArenaAllocator * allocator)405 explicit Assembler(ArenaAllocator* allocator) : buffer_(allocator), cfi_(this) {} 406 407 AssemblerBuffer buffer_; 408 409 DebugFrameOpCodeWriterForAssembler cfi_; 410 }; 411 412 } // namespace art 413 414 #endif // ART_COMPILER_UTILS_ASSEMBLER_H_ 415