1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "RuntimeDyldELF.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "Targets/RuntimeDyldELFMips.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/ELF.h"
21 #include "llvm/Object/ELFObjectFile.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/Support/Endian.h"
24 #include "llvm/Support/MemoryBuffer.h"
25
26 using namespace llvm;
27 using namespace llvm::object;
28 using namespace llvm::support::endian;
29
30 #define DEBUG_TYPE "dyld"
31
or32le(void * P,int32_t V)32 static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33
or32AArch64Imm(void * L,uint64_t Imm)34 static void or32AArch64Imm(void *L, uint64_t Imm) {
35 or32le(L, (Imm & 0xFFF) << 10);
36 }
37
write(bool isBE,void * P,T V)38 template <class T> static void write(bool isBE, void *P, T V) {
39 isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
40 }
41
write32AArch64Addr(void * L,uint64_t Imm)42 static void write32AArch64Addr(void *L, uint64_t Imm) {
43 uint32_t ImmLo = (Imm & 0x3) << 29;
44 uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45 uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46 write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47 }
48
49 // Return the bits [Start, End] from Val shifted Start bits.
50 // For instance, getBits(0xF0, 4, 8) returns 0xF.
getBits(uint64_t Val,int Start,int End)51 static uint64_t getBits(uint64_t Val, int Start, int End) {
52 uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53 return (Val >> Start) & Mask;
54 }
55
56 namespace {
57
58 template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60
61 typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
62 typedef Elf_Sym_Impl<ELFT> Elf_Sym;
63 typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
64 typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
65
66 typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
67
68 typedef typename ELFT::uint addr_type;
69
70 DyldELFObject(ELFObjectFile<ELFT> &&Obj);
71
72 public:
73 static Expected<std::unique_ptr<DyldELFObject>>
74 create(MemoryBufferRef Wrapper);
75
76 void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77
78 void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79
80 // Methods for type inquiry through isa, cast and dyn_cast
classof(const Binary * v)81 static bool classof(const Binary *v) {
82 return (isa<ELFObjectFile<ELFT>>(v) &&
83 classof(cast<ELFObjectFile<ELFT>>(v)));
84 }
classof(const ELFObjectFile<ELFT> * v)85 static bool classof(const ELFObjectFile<ELFT> *v) {
86 return v->isDyldType();
87 }
88 };
89
90
91
92 // The MemoryBuffer passed into this constructor is just a wrapper around the
93 // actual memory. Ultimately, the Binary parent class will take ownership of
94 // this MemoryBuffer object but not the underlying memory.
95 template <class ELFT>
DyldELFObject(ELFObjectFile<ELFT> && Obj)96 DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
97 : ELFObjectFile<ELFT>(std::move(Obj)) {
98 this->isDyldELFObject = true;
99 }
100
101 template <class ELFT>
102 Expected<std::unique_ptr<DyldELFObject<ELFT>>>
create(MemoryBufferRef Wrapper)103 DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
104 auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
105 if (auto E = Obj.takeError())
106 return std::move(E);
107 std::unique_ptr<DyldELFObject<ELFT>> Ret(
108 new DyldELFObject<ELFT>(std::move(*Obj)));
109 return std::move(Ret);
110 }
111
112 template <class ELFT>
updateSectionAddress(const SectionRef & Sec,uint64_t Addr)113 void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
114 uint64_t Addr) {
115 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
116 Elf_Shdr *shdr =
117 const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
118
119 // This assumes the address passed in matches the target address bitness
120 // The template-based type cast handles everything else.
121 shdr->sh_addr = static_cast<addr_type>(Addr);
122 }
123
124 template <class ELFT>
updateSymbolAddress(const SymbolRef & SymRef,uint64_t Addr)125 void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
126 uint64_t Addr) {
127
128 Elf_Sym *sym = const_cast<Elf_Sym *>(
129 ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
130
131 // This assumes the address passed in matches the target address bitness
132 // The template-based type cast handles everything else.
133 sym->st_value = static_cast<addr_type>(Addr);
134 }
135
136 class LoadedELFObjectInfo final
137 : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
138 RuntimeDyld::LoadedObjectInfo> {
139 public:
LoadedELFObjectInfo(RuntimeDyldImpl & RTDyld,ObjSectionToIDMap ObjSecToIDMap)140 LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
141 : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
142
143 OwningBinary<ObjectFile>
144 getObjectForDebug(const ObjectFile &Obj) const override;
145 };
146
147 template <typename ELFT>
148 static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
createRTDyldELFObject(MemoryBufferRef Buffer,const ObjectFile & SourceObject,const LoadedELFObjectInfo & L)149 createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
150 const LoadedELFObjectInfo &L) {
151 typedef typename ELFT::Shdr Elf_Shdr;
152 typedef typename ELFT::uint addr_type;
153
154 Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
155 DyldELFObject<ELFT>::create(Buffer);
156 if (Error E = ObjOrErr.takeError())
157 return std::move(E);
158
159 std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
160
161 // Iterate over all sections in the object.
162 auto SI = SourceObject.section_begin();
163 for (const auto &Sec : Obj->sections()) {
164 StringRef SectionName;
165 Sec.getName(SectionName);
166 if (SectionName != "") {
167 DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
168 Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
169 reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
170
171 if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
172 // This assumes that the address passed in matches the target address
173 // bitness. The template-based type cast handles everything else.
174 shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
175 }
176 }
177 ++SI;
178 }
179
180 return std::move(Obj);
181 }
182
183 static OwningBinary<ObjectFile>
createELFDebugObject(const ObjectFile & Obj,const LoadedELFObjectInfo & L)184 createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
185 assert(Obj.isELF() && "Not an ELF object file.");
186
187 std::unique_ptr<MemoryBuffer> Buffer =
188 MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
189
190 Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
191 handleAllErrors(DebugObj.takeError());
192 if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
193 DebugObj =
194 createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
195 else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
196 DebugObj =
197 createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
198 else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
199 DebugObj =
200 createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
201 else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
202 DebugObj =
203 createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
204 else
205 llvm_unreachable("Unexpected ELF format");
206
207 handleAllErrors(DebugObj.takeError());
208 return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
209 }
210
211 OwningBinary<ObjectFile>
getObjectForDebug(const ObjectFile & Obj) const212 LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
213 return createELFDebugObject(Obj, *this);
214 }
215
216 } // anonymous namespace
217
218 namespace llvm {
219
RuntimeDyldELF(RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver)220 RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
221 JITSymbolResolver &Resolver)
222 : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
~RuntimeDyldELF()223 RuntimeDyldELF::~RuntimeDyldELF() {}
224
registerEHFrames()225 void RuntimeDyldELF::registerEHFrames() {
226 for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
227 SID EHFrameSID = UnregisteredEHFrameSections[i];
228 uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
229 uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
230 size_t EHFrameSize = Sections[EHFrameSID].getSize();
231 MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
232 }
233 UnregisteredEHFrameSections.clear();
234 }
235
236 std::unique_ptr<RuntimeDyldELF>
create(Triple::ArchType Arch,RuntimeDyld::MemoryManager & MemMgr,JITSymbolResolver & Resolver)237 llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
238 RuntimeDyld::MemoryManager &MemMgr,
239 JITSymbolResolver &Resolver) {
240 switch (Arch) {
241 default:
242 return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
243 case Triple::mips:
244 case Triple::mipsel:
245 case Triple::mips64:
246 case Triple::mips64el:
247 return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
248 }
249 }
250
251 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
loadObject(const object::ObjectFile & O)252 RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
253 if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
254 return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
255 else {
256 HasError = true;
257 raw_string_ostream ErrStream(ErrorStr);
258 logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
259 return nullptr;
260 }
261 }
262
resolveX86_64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset)263 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
264 uint64_t Offset, uint64_t Value,
265 uint32_t Type, int64_t Addend,
266 uint64_t SymOffset) {
267 switch (Type) {
268 default:
269 llvm_unreachable("Relocation type not implemented yet!");
270 break;
271 case ELF::R_X86_64_NONE:
272 break;
273 case ELF::R_X86_64_64: {
274 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275 Value + Addend;
276 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
277 << format("%p\n", Section.getAddressWithOffset(Offset)));
278 break;
279 }
280 case ELF::R_X86_64_32:
281 case ELF::R_X86_64_32S: {
282 Value += Addend;
283 assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
284 (Type == ELF::R_X86_64_32S &&
285 ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
286 uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
287 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
288 TruncatedAddr;
289 LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
290 << format("%p\n", Section.getAddressWithOffset(Offset)));
291 break;
292 }
293 case ELF::R_X86_64_PC8: {
294 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
295 int64_t RealOffset = Value + Addend - FinalAddress;
296 assert(isInt<8>(RealOffset));
297 int8_t TruncOffset = (RealOffset & 0xFF);
298 Section.getAddress()[Offset] = TruncOffset;
299 break;
300 }
301 case ELF::R_X86_64_PC32: {
302 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
303 int64_t RealOffset = Value + Addend - FinalAddress;
304 assert(isInt<32>(RealOffset));
305 int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
306 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
307 TruncOffset;
308 break;
309 }
310 case ELF::R_X86_64_PC64: {
311 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312 int64_t RealOffset = Value + Addend - FinalAddress;
313 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
314 RealOffset;
315 LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
316 << format("%p\n", FinalAddress));
317 break;
318 }
319 case ELF::R_X86_64_GOTOFF64: {
320 // Compute Value - GOTBase.
321 uint64_t GOTBase = 0;
322 for (const auto &Section : Sections) {
323 if (Section.getName() == ".got") {
324 GOTBase = Section.getLoadAddressWithOffset(0);
325 break;
326 }
327 }
328 assert(GOTBase != 0 && "missing GOT");
329 int64_t GOTOffset = Value - GOTBase + Addend;
330 support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
331 break;
332 }
333 }
334 }
335
resolveX86Relocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)336 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
337 uint64_t Offset, uint32_t Value,
338 uint32_t Type, int32_t Addend) {
339 switch (Type) {
340 case ELF::R_386_32: {
341 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
342 Value + Addend;
343 break;
344 }
345 // Handle R_386_PLT32 like R_386_PC32 since it should be able to
346 // reach any 32 bit address.
347 case ELF::R_386_PLT32:
348 case ELF::R_386_PC32: {
349 uint32_t FinalAddress =
350 Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
351 uint32_t RealOffset = Value + Addend - FinalAddress;
352 support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
353 RealOffset;
354 break;
355 }
356 default:
357 // There are other relocation types, but it appears these are the
358 // only ones currently used by the LLVM ELF object writer
359 llvm_unreachable("Relocation type not implemented yet!");
360 break;
361 }
362 }
363
resolveAArch64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)364 void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
365 uint64_t Offset, uint64_t Value,
366 uint32_t Type, int64_t Addend) {
367 uint32_t *TargetPtr =
368 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
369 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
370 // Data should use target endian. Code should always use little endian.
371 bool isBE = Arch == Triple::aarch64_be;
372
373 LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
374 << format("%llx", Section.getAddressWithOffset(Offset))
375 << " FinalAddress: 0x" << format("%llx", FinalAddress)
376 << " Value: 0x" << format("%llx", Value) << " Type: 0x"
377 << format("%x", Type) << " Addend: 0x"
378 << format("%llx", Addend) << "\n");
379
380 switch (Type) {
381 default:
382 llvm_unreachable("Relocation type not implemented yet!");
383 break;
384 case ELF::R_AARCH64_ABS16: {
385 uint64_t Result = Value + Addend;
386 assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
387 write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
388 break;
389 }
390 case ELF::R_AARCH64_ABS32: {
391 uint64_t Result = Value + Addend;
392 assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
393 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
394 break;
395 }
396 case ELF::R_AARCH64_ABS64:
397 write(isBE, TargetPtr, Value + Addend);
398 break;
399 case ELF::R_AARCH64_PREL32: {
400 uint64_t Result = Value + Addend - FinalAddress;
401 assert(static_cast<int64_t>(Result) >= INT32_MIN &&
402 static_cast<int64_t>(Result) <= UINT32_MAX);
403 write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
404 break;
405 }
406 case ELF::R_AARCH64_PREL64:
407 write(isBE, TargetPtr, Value + Addend - FinalAddress);
408 break;
409 case ELF::R_AARCH64_CALL26: // fallthrough
410 case ELF::R_AARCH64_JUMP26: {
411 // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
412 // calculation.
413 uint64_t BranchImm = Value + Addend - FinalAddress;
414
415 // "Check that -2^27 <= result < 2^27".
416 assert(isInt<28>(BranchImm));
417 or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
418 break;
419 }
420 case ELF::R_AARCH64_MOVW_UABS_G3:
421 or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
422 break;
423 case ELF::R_AARCH64_MOVW_UABS_G2_NC:
424 or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
425 break;
426 case ELF::R_AARCH64_MOVW_UABS_G1_NC:
427 or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
428 break;
429 case ELF::R_AARCH64_MOVW_UABS_G0_NC:
430 or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
431 break;
432 case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
433 // Operation: Page(S+A) - Page(P)
434 uint64_t Result =
435 ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
436
437 // Check that -2^32 <= X < 2^32
438 assert(isInt<33>(Result) && "overflow check failed for relocation");
439
440 // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
441 // from bits 32:12 of X.
442 write32AArch64Addr(TargetPtr, Result >> 12);
443 break;
444 }
445 case ELF::R_AARCH64_ADD_ABS_LO12_NC:
446 // Operation: S + A
447 // Immediate goes in bits 21:10 of LD/ST instruction, taken
448 // from bits 11:0 of X
449 or32AArch64Imm(TargetPtr, Value + Addend);
450 break;
451 case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
452 // Operation: S + A
453 // Immediate goes in bits 21:10 of LD/ST instruction, taken
454 // from bits 11:0 of X
455 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
456 break;
457 case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
458 // Operation: S + A
459 // Immediate goes in bits 21:10 of LD/ST instruction, taken
460 // from bits 11:1 of X
461 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
462 break;
463 case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
464 // Operation: S + A
465 // Immediate goes in bits 21:10 of LD/ST instruction, taken
466 // from bits 11:2 of X
467 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
468 break;
469 case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
470 // Operation: S + A
471 // Immediate goes in bits 21:10 of LD/ST instruction, taken
472 // from bits 11:3 of X
473 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
474 break;
475 case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
476 // Operation: S + A
477 // Immediate goes in bits 21:10 of LD/ST instruction, taken
478 // from bits 11:4 of X
479 or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
480 break;
481 }
482 }
483
resolveARMRelocation(const SectionEntry & Section,uint64_t Offset,uint32_t Value,uint32_t Type,int32_t Addend)484 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
485 uint64_t Offset, uint32_t Value,
486 uint32_t Type, int32_t Addend) {
487 // TODO: Add Thumb relocations.
488 uint32_t *TargetPtr =
489 reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
490 uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
491 Value += Addend;
492
493 LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
494 << Section.getAddressWithOffset(Offset)
495 << " FinalAddress: " << format("%p", FinalAddress)
496 << " Value: " << format("%x", Value)
497 << " Type: " << format("%x", Type)
498 << " Addend: " << format("%x", Addend) << "\n");
499
500 switch (Type) {
501 default:
502 llvm_unreachable("Not implemented relocation type!");
503
504 case ELF::R_ARM_NONE:
505 break;
506 // Write a 31bit signed offset
507 case ELF::R_ARM_PREL31:
508 support::ulittle32_t::ref{TargetPtr} =
509 (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
510 ((Value - FinalAddress) & ~0x80000000);
511 break;
512 case ELF::R_ARM_TARGET1:
513 case ELF::R_ARM_ABS32:
514 support::ulittle32_t::ref{TargetPtr} = Value;
515 break;
516 // Write first 16 bit of 32 bit value to the mov instruction.
517 // Last 4 bit should be shifted.
518 case ELF::R_ARM_MOVW_ABS_NC:
519 case ELF::R_ARM_MOVT_ABS:
520 if (Type == ELF::R_ARM_MOVW_ABS_NC)
521 Value = Value & 0xFFFF;
522 else if (Type == ELF::R_ARM_MOVT_ABS)
523 Value = (Value >> 16) & 0xFFFF;
524 support::ulittle32_t::ref{TargetPtr} =
525 (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
526 (((Value >> 12) & 0xF) << 16);
527 break;
528 // Write 24 bit relative value to the branch instruction.
529 case ELF::R_ARM_PC24: // Fall through.
530 case ELF::R_ARM_CALL: // Fall through.
531 case ELF::R_ARM_JUMP24:
532 int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
533 RelValue = (RelValue & 0x03FFFFFC) >> 2;
534 assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
535 support::ulittle32_t::ref{TargetPtr} =
536 (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
537 break;
538 }
539 }
540
setMipsABI(const ObjectFile & Obj)541 void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
542 if (Arch == Triple::UnknownArch ||
543 !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
544 IsMipsO32ABI = false;
545 IsMipsN32ABI = false;
546 IsMipsN64ABI = false;
547 return;
548 }
549 if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
550 unsigned AbiVariant = E->getPlatformFlags();
551 IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
552 IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
553 }
554 IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
555 }
556
557 // Return the .TOC. section and offset.
findPPC64TOCSection(const ELFObjectFileBase & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)558 Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
559 ObjSectionToIDMap &LocalSections,
560 RelocationValueRef &Rel) {
561 // Set a default SectionID in case we do not find a TOC section below.
562 // This may happen for references to TOC base base (sym@toc, .odp
563 // relocation) without a .toc directive. In this case just use the
564 // first section (which is usually the .odp) since the code won't
565 // reference the .toc base directly.
566 Rel.SymbolName = nullptr;
567 Rel.SectionID = 0;
568
569 // The TOC consists of sections .got, .toc, .tocbss, .plt in that
570 // order. The TOC starts where the first of these sections starts.
571 for (auto &Section: Obj.sections()) {
572 StringRef SectionName;
573 if (auto EC = Section.getName(SectionName))
574 return errorCodeToError(EC);
575
576 if (SectionName == ".got"
577 || SectionName == ".toc"
578 || SectionName == ".tocbss"
579 || SectionName == ".plt") {
580 if (auto SectionIDOrErr =
581 findOrEmitSection(Obj, Section, false, LocalSections))
582 Rel.SectionID = *SectionIDOrErr;
583 else
584 return SectionIDOrErr.takeError();
585 break;
586 }
587 }
588
589 // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
590 // thus permitting a full 64 Kbytes segment.
591 Rel.Addend = 0x8000;
592
593 return Error::success();
594 }
595
596 // Returns the sections and offset associated with the ODP entry referenced
597 // by Symbol.
findOPDEntrySection(const ELFObjectFileBase & Obj,ObjSectionToIDMap & LocalSections,RelocationValueRef & Rel)598 Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
599 ObjSectionToIDMap &LocalSections,
600 RelocationValueRef &Rel) {
601 // Get the ELF symbol value (st_value) to compare with Relocation offset in
602 // .opd entries
603 for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
604 si != se; ++si) {
605 section_iterator RelSecI = si->getRelocatedSection();
606 if (RelSecI == Obj.section_end())
607 continue;
608
609 StringRef RelSectionName;
610 if (auto EC = RelSecI->getName(RelSectionName))
611 return errorCodeToError(EC);
612
613 if (RelSectionName != ".opd")
614 continue;
615
616 for (elf_relocation_iterator i = si->relocation_begin(),
617 e = si->relocation_end();
618 i != e;) {
619 // The R_PPC64_ADDR64 relocation indicates the first field
620 // of a .opd entry
621 uint64_t TypeFunc = i->getType();
622 if (TypeFunc != ELF::R_PPC64_ADDR64) {
623 ++i;
624 continue;
625 }
626
627 uint64_t TargetSymbolOffset = i->getOffset();
628 symbol_iterator TargetSymbol = i->getSymbol();
629 int64_t Addend;
630 if (auto AddendOrErr = i->getAddend())
631 Addend = *AddendOrErr;
632 else
633 return AddendOrErr.takeError();
634
635 ++i;
636 if (i == e)
637 break;
638
639 // Just check if following relocation is a R_PPC64_TOC
640 uint64_t TypeTOC = i->getType();
641 if (TypeTOC != ELF::R_PPC64_TOC)
642 continue;
643
644 // Finally compares the Symbol value and the target symbol offset
645 // to check if this .opd entry refers to the symbol the relocation
646 // points to.
647 if (Rel.Addend != (int64_t)TargetSymbolOffset)
648 continue;
649
650 section_iterator TSI = Obj.section_end();
651 if (auto TSIOrErr = TargetSymbol->getSection())
652 TSI = *TSIOrErr;
653 else
654 return TSIOrErr.takeError();
655 assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
656
657 bool IsCode = TSI->isText();
658 if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
659 LocalSections))
660 Rel.SectionID = *SectionIDOrErr;
661 else
662 return SectionIDOrErr.takeError();
663 Rel.Addend = (intptr_t)Addend;
664 return Error::success();
665 }
666 }
667 llvm_unreachable("Attempting to get address of ODP entry!");
668 }
669
670 // Relocation masks following the #lo(value), #hi(value), #ha(value),
671 // #higher(value), #highera(value), #highest(value), and #highesta(value)
672 // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
673 // document.
674
applyPPClo(uint64_t value)675 static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
676
applyPPChi(uint64_t value)677 static inline uint16_t applyPPChi(uint64_t value) {
678 return (value >> 16) & 0xffff;
679 }
680
applyPPCha(uint64_t value)681 static inline uint16_t applyPPCha (uint64_t value) {
682 return ((value + 0x8000) >> 16) & 0xffff;
683 }
684
applyPPChigher(uint64_t value)685 static inline uint16_t applyPPChigher(uint64_t value) {
686 return (value >> 32) & 0xffff;
687 }
688
applyPPChighera(uint64_t value)689 static inline uint16_t applyPPChighera (uint64_t value) {
690 return ((value + 0x8000) >> 32) & 0xffff;
691 }
692
applyPPChighest(uint64_t value)693 static inline uint16_t applyPPChighest(uint64_t value) {
694 return (value >> 48) & 0xffff;
695 }
696
applyPPChighesta(uint64_t value)697 static inline uint16_t applyPPChighesta (uint64_t value) {
698 return ((value + 0x8000) >> 48) & 0xffff;
699 }
700
resolvePPC32Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)701 void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
702 uint64_t Offset, uint64_t Value,
703 uint32_t Type, int64_t Addend) {
704 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
705 switch (Type) {
706 default:
707 llvm_unreachable("Relocation type not implemented yet!");
708 break;
709 case ELF::R_PPC_ADDR16_LO:
710 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
711 break;
712 case ELF::R_PPC_ADDR16_HI:
713 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
714 break;
715 case ELF::R_PPC_ADDR16_HA:
716 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
717 break;
718 }
719 }
720
resolvePPC64Relocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)721 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
722 uint64_t Offset, uint64_t Value,
723 uint32_t Type, int64_t Addend) {
724 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
725 switch (Type) {
726 default:
727 llvm_unreachable("Relocation type not implemented yet!");
728 break;
729 case ELF::R_PPC64_ADDR16:
730 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
731 break;
732 case ELF::R_PPC64_ADDR16_DS:
733 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
734 break;
735 case ELF::R_PPC64_ADDR16_LO:
736 writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
737 break;
738 case ELF::R_PPC64_ADDR16_LO_DS:
739 writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
740 break;
741 case ELF::R_PPC64_ADDR16_HI:
742 case ELF::R_PPC64_ADDR16_HIGH:
743 writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
744 break;
745 case ELF::R_PPC64_ADDR16_HA:
746 case ELF::R_PPC64_ADDR16_HIGHA:
747 writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
748 break;
749 case ELF::R_PPC64_ADDR16_HIGHER:
750 writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
751 break;
752 case ELF::R_PPC64_ADDR16_HIGHERA:
753 writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
754 break;
755 case ELF::R_PPC64_ADDR16_HIGHEST:
756 writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
757 break;
758 case ELF::R_PPC64_ADDR16_HIGHESTA:
759 writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
760 break;
761 case ELF::R_PPC64_ADDR14: {
762 assert(((Value + Addend) & 3) == 0);
763 // Preserve the AA/LK bits in the branch instruction
764 uint8_t aalk = *(LocalAddress + 3);
765 writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
766 } break;
767 case ELF::R_PPC64_REL16_LO: {
768 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
769 uint64_t Delta = Value - FinalAddress + Addend;
770 writeInt16BE(LocalAddress, applyPPClo(Delta));
771 } break;
772 case ELF::R_PPC64_REL16_HI: {
773 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
774 uint64_t Delta = Value - FinalAddress + Addend;
775 writeInt16BE(LocalAddress, applyPPChi(Delta));
776 } break;
777 case ELF::R_PPC64_REL16_HA: {
778 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
779 uint64_t Delta = Value - FinalAddress + Addend;
780 writeInt16BE(LocalAddress, applyPPCha(Delta));
781 } break;
782 case ELF::R_PPC64_ADDR32: {
783 int64_t Result = static_cast<int64_t>(Value + Addend);
784 if (SignExtend64<32>(Result) != Result)
785 llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
786 writeInt32BE(LocalAddress, Result);
787 } break;
788 case ELF::R_PPC64_REL24: {
789 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
790 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
791 if (SignExtend64<26>(delta) != delta)
792 llvm_unreachable("Relocation R_PPC64_REL24 overflow");
793 // We preserve bits other than LI field, i.e. PO and AA/LK fields.
794 uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
795 writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
796 } break;
797 case ELF::R_PPC64_REL32: {
798 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
799 int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
800 if (SignExtend64<32>(delta) != delta)
801 llvm_unreachable("Relocation R_PPC64_REL32 overflow");
802 writeInt32BE(LocalAddress, delta);
803 } break;
804 case ELF::R_PPC64_REL64: {
805 uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
806 uint64_t Delta = Value - FinalAddress + Addend;
807 writeInt64BE(LocalAddress, Delta);
808 } break;
809 case ELF::R_PPC64_ADDR64:
810 writeInt64BE(LocalAddress, Value + Addend);
811 break;
812 }
813 }
814
resolveSystemZRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)815 void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
816 uint64_t Offset, uint64_t Value,
817 uint32_t Type, int64_t Addend) {
818 uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
819 switch (Type) {
820 default:
821 llvm_unreachable("Relocation type not implemented yet!");
822 break;
823 case ELF::R_390_PC16DBL:
824 case ELF::R_390_PLT16DBL: {
825 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
826 assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
827 writeInt16BE(LocalAddress, Delta / 2);
828 break;
829 }
830 case ELF::R_390_PC32DBL:
831 case ELF::R_390_PLT32DBL: {
832 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
833 assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
834 writeInt32BE(LocalAddress, Delta / 2);
835 break;
836 }
837 case ELF::R_390_PC16: {
838 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
839 assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
840 writeInt16BE(LocalAddress, Delta);
841 break;
842 }
843 case ELF::R_390_PC32: {
844 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
845 assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
846 writeInt32BE(LocalAddress, Delta);
847 break;
848 }
849 case ELF::R_390_PC64: {
850 int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
851 writeInt64BE(LocalAddress, Delta);
852 break;
853 }
854 case ELF::R_390_8:
855 *LocalAddress = (uint8_t)(Value + Addend);
856 break;
857 case ELF::R_390_16:
858 writeInt16BE(LocalAddress, Value + Addend);
859 break;
860 case ELF::R_390_32:
861 writeInt32BE(LocalAddress, Value + Addend);
862 break;
863 case ELF::R_390_64:
864 writeInt64BE(LocalAddress, Value + Addend);
865 break;
866 }
867 }
868
resolveBPFRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend)869 void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
870 uint64_t Offset, uint64_t Value,
871 uint32_t Type, int64_t Addend) {
872 bool isBE = Arch == Triple::bpfeb;
873
874 switch (Type) {
875 default:
876 llvm_unreachable("Relocation type not implemented yet!");
877 break;
878 case ELF::R_BPF_NONE:
879 break;
880 case ELF::R_BPF_64_64: {
881 write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
882 LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
883 << format("%p\n", Section.getAddressWithOffset(Offset)));
884 break;
885 }
886 case ELF::R_BPF_64_32: {
887 Value += Addend;
888 assert(Value <= UINT32_MAX);
889 write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
890 LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
891 << format("%p\n", Section.getAddressWithOffset(Offset)));
892 break;
893 }
894 }
895 }
896
897 // The target location for the relocation is described by RE.SectionID and
898 // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
899 // SectionEntry has three members describing its location.
900 // SectionEntry::Address is the address at which the section has been loaded
901 // into memory in the current (host) process. SectionEntry::LoadAddress is the
902 // address that the section will have in the target process.
903 // SectionEntry::ObjAddress is the address of the bits for this section in the
904 // original emitted object image (also in the current address space).
905 //
906 // Relocations will be applied as if the section were loaded at
907 // SectionEntry::LoadAddress, but they will be applied at an address based
908 // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
909 // Target memory contents if they are required for value calculations.
910 //
911 // The Value parameter here is the load address of the symbol for the
912 // relocation to be applied. For relocations which refer to symbols in the
913 // current object Value will be the LoadAddress of the section in which
914 // the symbol resides (RE.Addend provides additional information about the
915 // symbol location). For external symbols, Value will be the address of the
916 // symbol in the target address space.
resolveRelocation(const RelocationEntry & RE,uint64_t Value)917 void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
918 uint64_t Value) {
919 const SectionEntry &Section = Sections[RE.SectionID];
920 return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
921 RE.SymOffset, RE.SectionID);
922 }
923
resolveRelocation(const SectionEntry & Section,uint64_t Offset,uint64_t Value,uint32_t Type,int64_t Addend,uint64_t SymOffset,SID SectionID)924 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
925 uint64_t Offset, uint64_t Value,
926 uint32_t Type, int64_t Addend,
927 uint64_t SymOffset, SID SectionID) {
928 switch (Arch) {
929 case Triple::x86_64:
930 resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
931 break;
932 case Triple::x86:
933 resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
934 (uint32_t)(Addend & 0xffffffffL));
935 break;
936 case Triple::aarch64:
937 case Triple::aarch64_be:
938 resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
939 break;
940 case Triple::arm: // Fall through.
941 case Triple::armeb:
942 case Triple::thumb:
943 case Triple::thumbeb:
944 resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
945 (uint32_t)(Addend & 0xffffffffL));
946 break;
947 case Triple::ppc:
948 resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
949 break;
950 case Triple::ppc64: // Fall through.
951 case Triple::ppc64le:
952 resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
953 break;
954 case Triple::systemz:
955 resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
956 break;
957 case Triple::bpfel:
958 case Triple::bpfeb:
959 resolveBPFRelocation(Section, Offset, Value, Type, Addend);
960 break;
961 default:
962 llvm_unreachable("Unsupported CPU type!");
963 }
964 }
965
computePlaceholderAddress(unsigned SectionID,uint64_t Offset) const966 void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
967 return (void *)(Sections[SectionID].getObjAddress() + Offset);
968 }
969
processSimpleRelocation(unsigned SectionID,uint64_t Offset,unsigned RelType,RelocationValueRef Value)970 void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
971 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
972 if (Value.SymbolName)
973 addRelocationForSymbol(RE, Value.SymbolName);
974 else
975 addRelocationForSection(RE, Value.SectionID);
976 }
977
getMatchingLoRelocation(uint32_t RelType,bool IsLocal) const978 uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
979 bool IsLocal) const {
980 switch (RelType) {
981 case ELF::R_MICROMIPS_GOT16:
982 if (IsLocal)
983 return ELF::R_MICROMIPS_LO16;
984 break;
985 case ELF::R_MICROMIPS_HI16:
986 return ELF::R_MICROMIPS_LO16;
987 case ELF::R_MIPS_GOT16:
988 if (IsLocal)
989 return ELF::R_MIPS_LO16;
990 break;
991 case ELF::R_MIPS_HI16:
992 return ELF::R_MIPS_LO16;
993 case ELF::R_MIPS_PCHI16:
994 return ELF::R_MIPS_PCLO16;
995 default:
996 break;
997 }
998 return ELF::R_MIPS_NONE;
999 }
1000
1001 // Sometimes we don't need to create thunk for a branch.
1002 // This typically happens when branch target is located
1003 // in the same object file. In such case target is either
1004 // a weak symbol or symbol in a different executable section.
1005 // This function checks if branch target is located in the
1006 // same object file and if distance between source and target
1007 // fits R_AARCH64_CALL26 relocation. If both conditions are
1008 // met, it emits direct jump to the target and returns true.
1009 // Otherwise false is returned and thunk is created.
resolveAArch64ShortBranch(unsigned SectionID,relocation_iterator RelI,const RelocationValueRef & Value)1010 bool RuntimeDyldELF::resolveAArch64ShortBranch(
1011 unsigned SectionID, relocation_iterator RelI,
1012 const RelocationValueRef &Value) {
1013 uint64_t Address;
1014 if (Value.SymbolName) {
1015 auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1016
1017 // Don't create direct branch for external symbols.
1018 if (Loc == GlobalSymbolTable.end())
1019 return false;
1020
1021 const auto &SymInfo = Loc->second;
1022 Address =
1023 uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1024 SymInfo.getOffset()));
1025 } else {
1026 Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1027 }
1028 uint64_t Offset = RelI->getOffset();
1029 uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1030
1031 // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1032 // If distance between source and target is out of range then we should
1033 // create thunk.
1034 if (!isInt<28>(Address + Value.Addend - SourceAddress))
1035 return false;
1036
1037 resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1038 Value.Addend);
1039
1040 return true;
1041 }
1042
resolveAArch64Branch(unsigned SectionID,const RelocationValueRef & Value,relocation_iterator RelI,StubMap & Stubs)1043 void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1044 const RelocationValueRef &Value,
1045 relocation_iterator RelI,
1046 StubMap &Stubs) {
1047
1048 LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1049 SectionEntry &Section = Sections[SectionID];
1050
1051 uint64_t Offset = RelI->getOffset();
1052 unsigned RelType = RelI->getType();
1053 // Look for an existing stub.
1054 StubMap::const_iterator i = Stubs.find(Value);
1055 if (i != Stubs.end()) {
1056 resolveRelocation(Section, Offset,
1057 (uint64_t)Section.getAddressWithOffset(i->second),
1058 RelType, 0);
1059 LLVM_DEBUG(dbgs() << " Stub function found\n");
1060 } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1061 // Create a new stub function.
1062 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1063 Stubs[Value] = Section.getStubOffset();
1064 uint8_t *StubTargetAddr = createStubFunction(
1065 Section.getAddressWithOffset(Section.getStubOffset()));
1066
1067 RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1068 ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1069 RelocationEntry REmovk_g2(SectionID,
1070 StubTargetAddr - Section.getAddress() + 4,
1071 ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1072 RelocationEntry REmovk_g1(SectionID,
1073 StubTargetAddr - Section.getAddress() + 8,
1074 ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1075 RelocationEntry REmovk_g0(SectionID,
1076 StubTargetAddr - Section.getAddress() + 12,
1077 ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1078
1079 if (Value.SymbolName) {
1080 addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1081 addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1082 addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1083 addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1084 } else {
1085 addRelocationForSection(REmovz_g3, Value.SectionID);
1086 addRelocationForSection(REmovk_g2, Value.SectionID);
1087 addRelocationForSection(REmovk_g1, Value.SectionID);
1088 addRelocationForSection(REmovk_g0, Value.SectionID);
1089 }
1090 resolveRelocation(Section, Offset,
1091 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1092 Section.getStubOffset())),
1093 RelType, 0);
1094 Section.advanceStubOffset(getMaxStubSize());
1095 }
1096 }
1097
1098 Expected<relocation_iterator>
processRelocationRef(unsigned SectionID,relocation_iterator RelI,const ObjectFile & O,ObjSectionToIDMap & ObjSectionToID,StubMap & Stubs)1099 RuntimeDyldELF::processRelocationRef(
1100 unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1101 ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1102 const auto &Obj = cast<ELFObjectFileBase>(O);
1103 uint64_t RelType = RelI->getType();
1104 int64_t Addend = 0;
1105 if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1106 Addend = *AddendOrErr;
1107 else
1108 consumeError(AddendOrErr.takeError());
1109 elf_symbol_iterator Symbol = RelI->getSymbol();
1110
1111 // Obtain the symbol name which is referenced in the relocation
1112 StringRef TargetName;
1113 if (Symbol != Obj.symbol_end()) {
1114 if (auto TargetNameOrErr = Symbol->getName())
1115 TargetName = *TargetNameOrErr;
1116 else
1117 return TargetNameOrErr.takeError();
1118 }
1119 LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1120 << " TargetName: " << TargetName << "\n");
1121 RelocationValueRef Value;
1122 // First search for the symbol in the local symbol table
1123 SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1124
1125 // Search for the symbol in the global symbol table
1126 RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1127 if (Symbol != Obj.symbol_end()) {
1128 gsi = GlobalSymbolTable.find(TargetName.data());
1129 Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1130 if (!SymTypeOrErr) {
1131 std::string Buf;
1132 raw_string_ostream OS(Buf);
1133 logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
1134 OS.flush();
1135 report_fatal_error(Buf);
1136 }
1137 SymType = *SymTypeOrErr;
1138 }
1139 if (gsi != GlobalSymbolTable.end()) {
1140 const auto &SymInfo = gsi->second;
1141 Value.SectionID = SymInfo.getSectionID();
1142 Value.Offset = SymInfo.getOffset();
1143 Value.Addend = SymInfo.getOffset() + Addend;
1144 } else {
1145 switch (SymType) {
1146 case SymbolRef::ST_Debug: {
1147 // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1148 // and can be changed by another developers. Maybe best way is add
1149 // a new symbol type ST_Section to SymbolRef and use it.
1150 auto SectionOrErr = Symbol->getSection();
1151 if (!SectionOrErr) {
1152 std::string Buf;
1153 raw_string_ostream OS(Buf);
1154 logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1155 OS.flush();
1156 report_fatal_error(Buf);
1157 }
1158 section_iterator si = *SectionOrErr;
1159 if (si == Obj.section_end())
1160 llvm_unreachable("Symbol section not found, bad object file format!");
1161 LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1162 bool isCode = si->isText();
1163 if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1164 ObjSectionToID))
1165 Value.SectionID = *SectionIDOrErr;
1166 else
1167 return SectionIDOrErr.takeError();
1168 Value.Addend = Addend;
1169 break;
1170 }
1171 case SymbolRef::ST_Data:
1172 case SymbolRef::ST_Function:
1173 case SymbolRef::ST_Unknown: {
1174 Value.SymbolName = TargetName.data();
1175 Value.Addend = Addend;
1176
1177 // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1178 // will manifest here as a NULL symbol name.
1179 // We can set this as a valid (but empty) symbol name, and rely
1180 // on addRelocationForSymbol to handle this.
1181 if (!Value.SymbolName)
1182 Value.SymbolName = "";
1183 break;
1184 }
1185 default:
1186 llvm_unreachable("Unresolved symbol type!");
1187 break;
1188 }
1189 }
1190
1191 uint64_t Offset = RelI->getOffset();
1192
1193 LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1194 << "\n");
1195 if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1196 if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1197 resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1198 } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1199 // Craete new GOT entry or find existing one. If GOT entry is
1200 // to be created, then we also emit ABS64 relocation for it.
1201 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1202 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1203 ELF::R_AARCH64_ADR_PREL_PG_HI21);
1204
1205 } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1206 uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1207 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1208 ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1209 } else {
1210 processSimpleRelocation(SectionID, Offset, RelType, Value);
1211 }
1212 } else if (Arch == Triple::arm) {
1213 if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1214 RelType == ELF::R_ARM_JUMP24) {
1215 // This is an ARM branch relocation, need to use a stub function.
1216 LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1217 SectionEntry &Section = Sections[SectionID];
1218
1219 // Look for an existing stub.
1220 StubMap::const_iterator i = Stubs.find(Value);
1221 if (i != Stubs.end()) {
1222 resolveRelocation(
1223 Section, Offset,
1224 reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1225 RelType, 0);
1226 LLVM_DEBUG(dbgs() << " Stub function found\n");
1227 } else {
1228 // Create a new stub function.
1229 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1230 Stubs[Value] = Section.getStubOffset();
1231 uint8_t *StubTargetAddr = createStubFunction(
1232 Section.getAddressWithOffset(Section.getStubOffset()));
1233 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1234 ELF::R_ARM_ABS32, Value.Addend);
1235 if (Value.SymbolName)
1236 addRelocationForSymbol(RE, Value.SymbolName);
1237 else
1238 addRelocationForSection(RE, Value.SectionID);
1239
1240 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1241 Section.getAddressWithOffset(
1242 Section.getStubOffset())),
1243 RelType, 0);
1244 Section.advanceStubOffset(getMaxStubSize());
1245 }
1246 } else {
1247 uint32_t *Placeholder =
1248 reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1249 if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1250 RelType == ELF::R_ARM_ABS32) {
1251 Value.Addend += *Placeholder;
1252 } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1253 // See ELF for ARM documentation
1254 Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1255 }
1256 processSimpleRelocation(SectionID, Offset, RelType, Value);
1257 }
1258 } else if (IsMipsO32ABI) {
1259 uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1260 computePlaceholderAddress(SectionID, Offset));
1261 uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1262 if (RelType == ELF::R_MIPS_26) {
1263 // This is an Mips branch relocation, need to use a stub function.
1264 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1265 SectionEntry &Section = Sections[SectionID];
1266
1267 // Extract the addend from the instruction.
1268 // We shift up by two since the Value will be down shifted again
1269 // when applying the relocation.
1270 uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1271
1272 Value.Addend += Addend;
1273
1274 // Look up for existing stub.
1275 StubMap::const_iterator i = Stubs.find(Value);
1276 if (i != Stubs.end()) {
1277 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1278 addRelocationForSection(RE, SectionID);
1279 LLVM_DEBUG(dbgs() << " Stub function found\n");
1280 } else {
1281 // Create a new stub function.
1282 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1283 Stubs[Value] = Section.getStubOffset();
1284
1285 unsigned AbiVariant = Obj.getPlatformFlags();
1286
1287 uint8_t *StubTargetAddr = createStubFunction(
1288 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1289
1290 // Creating Hi and Lo relocations for the filled stub instructions.
1291 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1292 ELF::R_MIPS_HI16, Value.Addend);
1293 RelocationEntry RELo(SectionID,
1294 StubTargetAddr - Section.getAddress() + 4,
1295 ELF::R_MIPS_LO16, Value.Addend);
1296
1297 if (Value.SymbolName) {
1298 addRelocationForSymbol(REHi, Value.SymbolName);
1299 addRelocationForSymbol(RELo, Value.SymbolName);
1300 } else {
1301 addRelocationForSection(REHi, Value.SectionID);
1302 addRelocationForSection(RELo, Value.SectionID);
1303 }
1304
1305 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1306 addRelocationForSection(RE, SectionID);
1307 Section.advanceStubOffset(getMaxStubSize());
1308 }
1309 } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1310 int64_t Addend = (Opcode & 0x0000ffff) << 16;
1311 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1312 PendingRelocs.push_back(std::make_pair(Value, RE));
1313 } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1314 int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1315 for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1316 const RelocationValueRef &MatchingValue = I->first;
1317 RelocationEntry &Reloc = I->second;
1318 if (MatchingValue == Value &&
1319 RelType == getMatchingLoRelocation(Reloc.RelType) &&
1320 SectionID == Reloc.SectionID) {
1321 Reloc.Addend += Addend;
1322 if (Value.SymbolName)
1323 addRelocationForSymbol(Reloc, Value.SymbolName);
1324 else
1325 addRelocationForSection(Reloc, Value.SectionID);
1326 I = PendingRelocs.erase(I);
1327 } else
1328 ++I;
1329 }
1330 RelocationEntry RE(SectionID, Offset, RelType, Addend);
1331 if (Value.SymbolName)
1332 addRelocationForSymbol(RE, Value.SymbolName);
1333 else
1334 addRelocationForSection(RE, Value.SectionID);
1335 } else {
1336 if (RelType == ELF::R_MIPS_32)
1337 Value.Addend += Opcode;
1338 else if (RelType == ELF::R_MIPS_PC16)
1339 Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1340 else if (RelType == ELF::R_MIPS_PC19_S2)
1341 Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1342 else if (RelType == ELF::R_MIPS_PC21_S2)
1343 Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1344 else if (RelType == ELF::R_MIPS_PC26_S2)
1345 Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1346 processSimpleRelocation(SectionID, Offset, RelType, Value);
1347 }
1348 } else if (IsMipsN32ABI || IsMipsN64ABI) {
1349 uint32_t r_type = RelType & 0xff;
1350 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1351 if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1352 || r_type == ELF::R_MIPS_GOT_DISP) {
1353 StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1354 if (i != GOTSymbolOffsets.end())
1355 RE.SymOffset = i->second;
1356 else {
1357 RE.SymOffset = allocateGOTEntries(1);
1358 GOTSymbolOffsets[TargetName] = RE.SymOffset;
1359 }
1360 if (Value.SymbolName)
1361 addRelocationForSymbol(RE, Value.SymbolName);
1362 else
1363 addRelocationForSection(RE, Value.SectionID);
1364 } else if (RelType == ELF::R_MIPS_26) {
1365 // This is an Mips branch relocation, need to use a stub function.
1366 LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1367 SectionEntry &Section = Sections[SectionID];
1368
1369 // Look up for existing stub.
1370 StubMap::const_iterator i = Stubs.find(Value);
1371 if (i != Stubs.end()) {
1372 RelocationEntry RE(SectionID, Offset, RelType, i->second);
1373 addRelocationForSection(RE, SectionID);
1374 LLVM_DEBUG(dbgs() << " Stub function found\n");
1375 } else {
1376 // Create a new stub function.
1377 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1378 Stubs[Value] = Section.getStubOffset();
1379
1380 unsigned AbiVariant = Obj.getPlatformFlags();
1381
1382 uint8_t *StubTargetAddr = createStubFunction(
1383 Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1384
1385 if (IsMipsN32ABI) {
1386 // Creating Hi and Lo relocations for the filled stub instructions.
1387 RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1388 ELF::R_MIPS_HI16, Value.Addend);
1389 RelocationEntry RELo(SectionID,
1390 StubTargetAddr - Section.getAddress() + 4,
1391 ELF::R_MIPS_LO16, Value.Addend);
1392 if (Value.SymbolName) {
1393 addRelocationForSymbol(REHi, Value.SymbolName);
1394 addRelocationForSymbol(RELo, Value.SymbolName);
1395 } else {
1396 addRelocationForSection(REHi, Value.SectionID);
1397 addRelocationForSection(RELo, Value.SectionID);
1398 }
1399 } else {
1400 // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1401 // instructions.
1402 RelocationEntry REHighest(SectionID,
1403 StubTargetAddr - Section.getAddress(),
1404 ELF::R_MIPS_HIGHEST, Value.Addend);
1405 RelocationEntry REHigher(SectionID,
1406 StubTargetAddr - Section.getAddress() + 4,
1407 ELF::R_MIPS_HIGHER, Value.Addend);
1408 RelocationEntry REHi(SectionID,
1409 StubTargetAddr - Section.getAddress() + 12,
1410 ELF::R_MIPS_HI16, Value.Addend);
1411 RelocationEntry RELo(SectionID,
1412 StubTargetAddr - Section.getAddress() + 20,
1413 ELF::R_MIPS_LO16, Value.Addend);
1414 if (Value.SymbolName) {
1415 addRelocationForSymbol(REHighest, Value.SymbolName);
1416 addRelocationForSymbol(REHigher, Value.SymbolName);
1417 addRelocationForSymbol(REHi, Value.SymbolName);
1418 addRelocationForSymbol(RELo, Value.SymbolName);
1419 } else {
1420 addRelocationForSection(REHighest, Value.SectionID);
1421 addRelocationForSection(REHigher, Value.SectionID);
1422 addRelocationForSection(REHi, Value.SectionID);
1423 addRelocationForSection(RELo, Value.SectionID);
1424 }
1425 }
1426 RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1427 addRelocationForSection(RE, SectionID);
1428 Section.advanceStubOffset(getMaxStubSize());
1429 }
1430 } else {
1431 processSimpleRelocation(SectionID, Offset, RelType, Value);
1432 }
1433
1434 } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1435 if (RelType == ELF::R_PPC64_REL24) {
1436 // Determine ABI variant in use for this object.
1437 unsigned AbiVariant = Obj.getPlatformFlags();
1438 AbiVariant &= ELF::EF_PPC64_ABI;
1439 // A PPC branch relocation will need a stub function if the target is
1440 // an external symbol (either Value.SymbolName is set, or SymType is
1441 // Symbol::ST_Unknown) or if the target address is not within the
1442 // signed 24-bits branch address.
1443 SectionEntry &Section = Sections[SectionID];
1444 uint8_t *Target = Section.getAddressWithOffset(Offset);
1445 bool RangeOverflow = false;
1446 bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1447 if (!IsExtern) {
1448 if (AbiVariant != 2) {
1449 // In the ELFv1 ABI, a function call may point to the .opd entry,
1450 // so the final symbol value is calculated based on the relocation
1451 // values in the .opd section.
1452 if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1453 return std::move(Err);
1454 } else {
1455 // In the ELFv2 ABI, a function symbol may provide a local entry
1456 // point, which must be used for direct calls.
1457 if (Value.SectionID == SectionID){
1458 uint8_t SymOther = Symbol->getOther();
1459 Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1460 }
1461 }
1462 uint8_t *RelocTarget =
1463 Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1464 int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1465 // If it is within 26-bits branch range, just set the branch target
1466 if (SignExtend64<26>(delta) != delta) {
1467 RangeOverflow = true;
1468 } else if ((AbiVariant != 2) ||
1469 (AbiVariant == 2 && Value.SectionID == SectionID)) {
1470 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1471 addRelocationForSection(RE, Value.SectionID);
1472 }
1473 }
1474 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1475 RangeOverflow) {
1476 // It is an external symbol (either Value.SymbolName is set, or
1477 // SymType is SymbolRef::ST_Unknown) or out of range.
1478 StubMap::const_iterator i = Stubs.find(Value);
1479 if (i != Stubs.end()) {
1480 // Symbol function stub already created, just relocate to it
1481 resolveRelocation(Section, Offset,
1482 reinterpret_cast<uint64_t>(
1483 Section.getAddressWithOffset(i->second)),
1484 RelType, 0);
1485 LLVM_DEBUG(dbgs() << " Stub function found\n");
1486 } else {
1487 // Create a new stub function.
1488 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1489 Stubs[Value] = Section.getStubOffset();
1490 uint8_t *StubTargetAddr = createStubFunction(
1491 Section.getAddressWithOffset(Section.getStubOffset()),
1492 AbiVariant);
1493 RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1494 ELF::R_PPC64_ADDR64, Value.Addend);
1495
1496 // Generates the 64-bits address loads as exemplified in section
1497 // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1498 // apply to the low part of the instructions, so we have to update
1499 // the offset according to the target endianness.
1500 uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1501 if (!IsTargetLittleEndian)
1502 StubRelocOffset += 2;
1503
1504 RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1505 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1506 RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1507 ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1508 RelocationEntry REh(SectionID, StubRelocOffset + 12,
1509 ELF::R_PPC64_ADDR16_HI, Value.Addend);
1510 RelocationEntry REl(SectionID, StubRelocOffset + 16,
1511 ELF::R_PPC64_ADDR16_LO, Value.Addend);
1512
1513 if (Value.SymbolName) {
1514 addRelocationForSymbol(REhst, Value.SymbolName);
1515 addRelocationForSymbol(REhr, Value.SymbolName);
1516 addRelocationForSymbol(REh, Value.SymbolName);
1517 addRelocationForSymbol(REl, Value.SymbolName);
1518 } else {
1519 addRelocationForSection(REhst, Value.SectionID);
1520 addRelocationForSection(REhr, Value.SectionID);
1521 addRelocationForSection(REh, Value.SectionID);
1522 addRelocationForSection(REl, Value.SectionID);
1523 }
1524
1525 resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1526 Section.getAddressWithOffset(
1527 Section.getStubOffset())),
1528 RelType, 0);
1529 Section.advanceStubOffset(getMaxStubSize());
1530 }
1531 if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1532 // Restore the TOC for external calls
1533 if (AbiVariant == 2)
1534 writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1535 else
1536 writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1537 }
1538 }
1539 } else if (RelType == ELF::R_PPC64_TOC16 ||
1540 RelType == ELF::R_PPC64_TOC16_DS ||
1541 RelType == ELF::R_PPC64_TOC16_LO ||
1542 RelType == ELF::R_PPC64_TOC16_LO_DS ||
1543 RelType == ELF::R_PPC64_TOC16_HI ||
1544 RelType == ELF::R_PPC64_TOC16_HA) {
1545 // These relocations are supposed to subtract the TOC address from
1546 // the final value. This does not fit cleanly into the RuntimeDyld
1547 // scheme, since there may be *two* sections involved in determining
1548 // the relocation value (the section of the symbol referred to by the
1549 // relocation, and the TOC section associated with the current module).
1550 //
1551 // Fortunately, these relocations are currently only ever generated
1552 // referring to symbols that themselves reside in the TOC, which means
1553 // that the two sections are actually the same. Thus they cancel out
1554 // and we can immediately resolve the relocation right now.
1555 switch (RelType) {
1556 case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1557 case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1558 case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1559 case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1560 case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1561 case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1562 default: llvm_unreachable("Wrong relocation type.");
1563 }
1564
1565 RelocationValueRef TOCValue;
1566 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1567 return std::move(Err);
1568 if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1569 llvm_unreachable("Unsupported TOC relocation.");
1570 Value.Addend -= TOCValue.Addend;
1571 resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1572 } else {
1573 // There are two ways to refer to the TOC address directly: either
1574 // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1575 // ignored), or via any relocation that refers to the magic ".TOC."
1576 // symbols (in which case the addend is respected).
1577 if (RelType == ELF::R_PPC64_TOC) {
1578 RelType = ELF::R_PPC64_ADDR64;
1579 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1580 return std::move(Err);
1581 } else if (TargetName == ".TOC.") {
1582 if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1583 return std::move(Err);
1584 Value.Addend += Addend;
1585 }
1586
1587 RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1588
1589 if (Value.SymbolName)
1590 addRelocationForSymbol(RE, Value.SymbolName);
1591 else
1592 addRelocationForSection(RE, Value.SectionID);
1593 }
1594 } else if (Arch == Triple::systemz &&
1595 (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1596 // Create function stubs for both PLT and GOT references, regardless of
1597 // whether the GOT reference is to data or code. The stub contains the
1598 // full address of the symbol, as needed by GOT references, and the
1599 // executable part only adds an overhead of 8 bytes.
1600 //
1601 // We could try to conserve space by allocating the code and data
1602 // parts of the stub separately. However, as things stand, we allocate
1603 // a stub for every relocation, so using a GOT in JIT code should be
1604 // no less space efficient than using an explicit constant pool.
1605 LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1606 SectionEntry &Section = Sections[SectionID];
1607
1608 // Look for an existing stub.
1609 StubMap::const_iterator i = Stubs.find(Value);
1610 uintptr_t StubAddress;
1611 if (i != Stubs.end()) {
1612 StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1613 LLVM_DEBUG(dbgs() << " Stub function found\n");
1614 } else {
1615 // Create a new stub function.
1616 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1617
1618 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1619 uintptr_t StubAlignment = getStubAlignment();
1620 StubAddress =
1621 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1622 -StubAlignment;
1623 unsigned StubOffset = StubAddress - BaseAddress;
1624
1625 Stubs[Value] = StubOffset;
1626 createStubFunction((uint8_t *)StubAddress);
1627 RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1628 Value.Offset);
1629 if (Value.SymbolName)
1630 addRelocationForSymbol(RE, Value.SymbolName);
1631 else
1632 addRelocationForSection(RE, Value.SectionID);
1633 Section.advanceStubOffset(getMaxStubSize());
1634 }
1635
1636 if (RelType == ELF::R_390_GOTENT)
1637 resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1638 Addend);
1639 else
1640 resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1641 } else if (Arch == Triple::x86_64) {
1642 if (RelType == ELF::R_X86_64_PLT32) {
1643 // The way the PLT relocations normally work is that the linker allocates
1644 // the
1645 // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1646 // entry will then jump to an address provided by the GOT. On first call,
1647 // the
1648 // GOT address will point back into PLT code that resolves the symbol. After
1649 // the first call, the GOT entry points to the actual function.
1650 //
1651 // For local functions we're ignoring all of that here and just replacing
1652 // the PLT32 relocation type with PC32, which will translate the relocation
1653 // into a PC-relative call directly to the function. For external symbols we
1654 // can't be sure the function will be within 2^32 bytes of the call site, so
1655 // we need to create a stub, which calls into the GOT. This case is
1656 // equivalent to the usual PLT implementation except that we use the stub
1657 // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1658 // rather than allocating a PLT section.
1659 if (Value.SymbolName) {
1660 // This is a call to an external function.
1661 // Look for an existing stub.
1662 SectionEntry &Section = Sections[SectionID];
1663 StubMap::const_iterator i = Stubs.find(Value);
1664 uintptr_t StubAddress;
1665 if (i != Stubs.end()) {
1666 StubAddress = uintptr_t(Section.getAddress()) + i->second;
1667 LLVM_DEBUG(dbgs() << " Stub function found\n");
1668 } else {
1669 // Create a new stub function (equivalent to a PLT entry).
1670 LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1671
1672 uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1673 uintptr_t StubAlignment = getStubAlignment();
1674 StubAddress =
1675 (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1676 -StubAlignment;
1677 unsigned StubOffset = StubAddress - BaseAddress;
1678 Stubs[Value] = StubOffset;
1679 createStubFunction((uint8_t *)StubAddress);
1680
1681 // Bump our stub offset counter
1682 Section.advanceStubOffset(getMaxStubSize());
1683
1684 // Allocate a GOT Entry
1685 uint64_t GOTOffset = allocateGOTEntries(1);
1686
1687 // The load of the GOT address has an addend of -4
1688 resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1689 ELF::R_X86_64_PC32);
1690
1691 // Fill in the value of the symbol we're targeting into the GOT
1692 addRelocationForSymbol(
1693 computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1694 Value.SymbolName);
1695 }
1696
1697 // Make the target call a call into the stub table.
1698 resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1699 Addend);
1700 } else {
1701 RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1702 Value.Offset);
1703 addRelocationForSection(RE, Value.SectionID);
1704 }
1705 } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1706 RelType == ELF::R_X86_64_GOTPCRELX ||
1707 RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1708 uint64_t GOTOffset = allocateGOTEntries(1);
1709 resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1710 ELF::R_X86_64_PC32);
1711
1712 // Fill in the value of the symbol we're targeting into the GOT
1713 RelocationEntry RE =
1714 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1715 if (Value.SymbolName)
1716 addRelocationForSymbol(RE, Value.SymbolName);
1717 else
1718 addRelocationForSection(RE, Value.SectionID);
1719 } else if (RelType == ELF::R_X86_64_GOT64) {
1720 // Fill in a 64-bit GOT offset.
1721 uint64_t GOTOffset = allocateGOTEntries(1);
1722 resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1723 ELF::R_X86_64_64, 0);
1724
1725 // Fill in the value of the symbol we're targeting into the GOT
1726 RelocationEntry RE =
1727 computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1728 if (Value.SymbolName)
1729 addRelocationForSymbol(RE, Value.SymbolName);
1730 else
1731 addRelocationForSection(RE, Value.SectionID);
1732 } else if (RelType == ELF::R_X86_64_GOTPC64) {
1733 // Materialize the address of the base of the GOT relative to the PC.
1734 // This doesn't create a GOT entry, but it does mean we need a GOT
1735 // section.
1736 (void)allocateGOTEntries(0);
1737 resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1738 } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1739 // GOTOFF relocations ultimately require a section difference relocation.
1740 (void)allocateGOTEntries(0);
1741 processSimpleRelocation(SectionID, Offset, RelType, Value);
1742 } else if (RelType == ELF::R_X86_64_PC32) {
1743 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1744 processSimpleRelocation(SectionID, Offset, RelType, Value);
1745 } else if (RelType == ELF::R_X86_64_PC64) {
1746 Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1747 processSimpleRelocation(SectionID, Offset, RelType, Value);
1748 } else {
1749 processSimpleRelocation(SectionID, Offset, RelType, Value);
1750 }
1751 } else {
1752 if (Arch == Triple::x86) {
1753 Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1754 }
1755 processSimpleRelocation(SectionID, Offset, RelType, Value);
1756 }
1757 return ++RelI;
1758 }
1759
getGOTEntrySize()1760 size_t RuntimeDyldELF::getGOTEntrySize() {
1761 // We don't use the GOT in all of these cases, but it's essentially free
1762 // to put them all here.
1763 size_t Result = 0;
1764 switch (Arch) {
1765 case Triple::x86_64:
1766 case Triple::aarch64:
1767 case Triple::aarch64_be:
1768 case Triple::ppc64:
1769 case Triple::ppc64le:
1770 case Triple::systemz:
1771 Result = sizeof(uint64_t);
1772 break;
1773 case Triple::x86:
1774 case Triple::arm:
1775 case Triple::thumb:
1776 Result = sizeof(uint32_t);
1777 break;
1778 case Triple::mips:
1779 case Triple::mipsel:
1780 case Triple::mips64:
1781 case Triple::mips64el:
1782 if (IsMipsO32ABI || IsMipsN32ABI)
1783 Result = sizeof(uint32_t);
1784 else if (IsMipsN64ABI)
1785 Result = sizeof(uint64_t);
1786 else
1787 llvm_unreachable("Mips ABI not handled");
1788 break;
1789 default:
1790 llvm_unreachable("Unsupported CPU type!");
1791 }
1792 return Result;
1793 }
1794
allocateGOTEntries(unsigned no)1795 uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1796 if (GOTSectionID == 0) {
1797 GOTSectionID = Sections.size();
1798 // Reserve a section id. We'll allocate the section later
1799 // once we know the total size
1800 Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1801 }
1802 uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1803 CurrentGOTIndex += no;
1804 return StartOffset;
1805 }
1806
findOrAllocGOTEntry(const RelocationValueRef & Value,unsigned GOTRelType)1807 uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1808 unsigned GOTRelType) {
1809 auto E = GOTOffsetMap.insert({Value, 0});
1810 if (E.second) {
1811 uint64_t GOTOffset = allocateGOTEntries(1);
1812
1813 // Create relocation for newly created GOT entry
1814 RelocationEntry RE =
1815 computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1816 if (Value.SymbolName)
1817 addRelocationForSymbol(RE, Value.SymbolName);
1818 else
1819 addRelocationForSection(RE, Value.SectionID);
1820
1821 E.first->second = GOTOffset;
1822 }
1823
1824 return E.first->second;
1825 }
1826
resolveGOTOffsetRelocation(unsigned SectionID,uint64_t Offset,uint64_t GOTOffset,uint32_t Type)1827 void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1828 uint64_t Offset,
1829 uint64_t GOTOffset,
1830 uint32_t Type) {
1831 // Fill in the relative address of the GOT Entry into the stub
1832 RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1833 addRelocationForSection(GOTRE, GOTSectionID);
1834 }
1835
computeGOTOffsetRE(uint64_t GOTOffset,uint64_t SymbolOffset,uint32_t Type)1836 RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1837 uint64_t SymbolOffset,
1838 uint32_t Type) {
1839 return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1840 }
1841
finalizeLoad(const ObjectFile & Obj,ObjSectionToIDMap & SectionMap)1842 Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1843 ObjSectionToIDMap &SectionMap) {
1844 if (IsMipsO32ABI)
1845 if (!PendingRelocs.empty())
1846 return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1847
1848 // If necessary, allocate the global offset table
1849 if (GOTSectionID != 0) {
1850 // Allocate memory for the section
1851 size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1852 uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1853 GOTSectionID, ".got", false);
1854 if (!Addr)
1855 return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1856
1857 Sections[GOTSectionID] =
1858 SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1859
1860 if (Checker)
1861 Checker->registerSection(Obj.getFileName(), GOTSectionID);
1862
1863 // For now, initialize all GOT entries to zero. We'll fill them in as
1864 // needed when GOT-based relocations are applied.
1865 memset(Addr, 0, TotalSize);
1866 if (IsMipsN32ABI || IsMipsN64ABI) {
1867 // To correctly resolve Mips GOT relocations, we need a mapping from
1868 // object's sections to GOTs.
1869 for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1870 SI != SE; ++SI) {
1871 if (SI->relocation_begin() != SI->relocation_end()) {
1872 section_iterator RelocatedSection = SI->getRelocatedSection();
1873 ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1874 assert (i != SectionMap.end());
1875 SectionToGOTMap[i->second] = GOTSectionID;
1876 }
1877 }
1878 GOTSymbolOffsets.clear();
1879 }
1880 }
1881
1882 // Look for and record the EH frame section.
1883 ObjSectionToIDMap::iterator i, e;
1884 for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1885 const SectionRef &Section = i->first;
1886 StringRef Name;
1887 Section.getName(Name);
1888 if (Name == ".eh_frame") {
1889 UnregisteredEHFrameSections.push_back(i->second);
1890 break;
1891 }
1892 }
1893
1894 GOTSectionID = 0;
1895 CurrentGOTIndex = 0;
1896
1897 return Error::success();
1898 }
1899
isCompatibleFile(const object::ObjectFile & Obj) const1900 bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1901 return Obj.isELF();
1902 }
1903
relocationNeedsGot(const RelocationRef & R) const1904 bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1905 unsigned RelTy = R.getType();
1906 if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1907 return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1908 RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1909
1910 if (Arch == Triple::x86_64)
1911 return RelTy == ELF::R_X86_64_GOTPCREL ||
1912 RelTy == ELF::R_X86_64_GOTPCRELX ||
1913 RelTy == ELF::R_X86_64_GOT64 ||
1914 RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1915 return false;
1916 }
1917
relocationNeedsStub(const RelocationRef & R) const1918 bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1919 if (Arch != Triple::x86_64)
1920 return true; // Conservative answer
1921
1922 switch (R.getType()) {
1923 default:
1924 return true; // Conservative answer
1925
1926
1927 case ELF::R_X86_64_GOTPCREL:
1928 case ELF::R_X86_64_GOTPCRELX:
1929 case ELF::R_X86_64_REX_GOTPCRELX:
1930 case ELF::R_X86_64_GOTPC64:
1931 case ELF::R_X86_64_GOT64:
1932 case ELF::R_X86_64_GOTOFF64:
1933 case ELF::R_X86_64_PC32:
1934 case ELF::R_X86_64_PC64:
1935 case ELF::R_X86_64_64:
1936 // We know that these reloation types won't need a stub function. This list
1937 // can be extended as needed.
1938 return false;
1939 }
1940 }
1941
1942 } // namespace llvm
1943