1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file implements the new LLVM's Global Value Numbering pass.
12 /// GVN partitions values computed by a function into congruence classes.
13 /// Values ending up in the same congruence class are guaranteed to be the same
14 /// for every execution of the program. In that respect, congruency is a
15 /// compile-time approximation of equivalence of values at runtime.
16 /// The algorithm implemented here uses a sparse formulation and it's based
17 /// on the ideas described in the paper:
18 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
19 /// Karthik Gargi.
20 ///
21 /// A brief overview of the algorithm: The algorithm is essentially the same as
22 /// the standard RPO value numbering algorithm (a good reference is the paper
23 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
24 /// The RPO algorithm proceeds, on every iteration, to process every reachable
25 /// block and every instruction in that block. This is because the standard RPO
26 /// algorithm does not track what things have the same value number, it only
27 /// tracks what the value number of a given operation is (the mapping is
28 /// operation -> value number). Thus, when a value number of an operation
29 /// changes, it must reprocess everything to ensure all uses of a value number
30 /// get updated properly. In constrast, the sparse algorithm we use *also*
31 /// tracks what operations have a given value number (IE it also tracks the
32 /// reverse mapping from value number -> operations with that value number), so
33 /// that it only needs to reprocess the instructions that are affected when
34 /// something's value number changes. The vast majority of complexity and code
35 /// in this file is devoted to tracking what value numbers could change for what
36 /// instructions when various things happen. The rest of the algorithm is
37 /// devoted to performing symbolic evaluation, forward propagation, and
38 /// simplification of operations based on the value numbers deduced so far
39 ///
40 /// In order to make the GVN mostly-complete, we use a technique derived from
41 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
42 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
43 /// based GVN algorithms is related to their inability to detect equivalence
44 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
45 /// We resolve this issue by generating the equivalent "phi of ops" form for
46 /// each op of phis we see, in a way that only takes polynomial time to resolve.
47 ///
48 /// We also do not perform elimination by using any published algorithm. All
49 /// published algorithms are O(Instructions). Instead, we use a technique that
50 /// is O(number of operations with the same value number), enabling us to skip
51 /// trying to eliminate things that have unique value numbers.
52 //
53 //===----------------------------------------------------------------------===//
54
55 #include "llvm/Transforms/Scalar/NewGVN.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/BitVector.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseMapInfo.h"
60 #include "llvm/ADT/DenseSet.h"
61 #include "llvm/ADT/DepthFirstIterator.h"
62 #include "llvm/ADT/GraphTraits.h"
63 #include "llvm/ADT/Hashing.h"
64 #include "llvm/ADT/PointerIntPair.h"
65 #include "llvm/ADT/PostOrderIterator.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Transforms/Utils/Local.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/LLVMContext.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/Use.h"
95 #include "llvm/IR/User.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/PredicateInfo.h"
110 #include "llvm/Transforms/Utils/VNCoercion.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstdint>
114 #include <iterator>
115 #include <map>
116 #include <memory>
117 #include <set>
118 #include <string>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122
123 using namespace llvm;
124 using namespace llvm::GVNExpression;
125 using namespace llvm::VNCoercion;
126
127 #define DEBUG_TYPE "newgvn"
128
129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
133 STATISTIC(NumGVNMaxIterations,
134 "Maximum Number of iterations it took to converge GVN");
135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
137 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
138 "Number of avoided sorted leader changes");
139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
141 STATISTIC(NumGVNPHIOfOpsEliminations,
142 "Number of things eliminated using PHI of ops");
143 DEBUG_COUNTER(VNCounter, "newgvn-vn",
144 "Controls which instructions are value numbered");
145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
146 "Controls which instructions we create phi of ops for");
147 // Currently store defining access refinement is too slow due to basicaa being
148 // egregiously slow. This flag lets us keep it working while we work on this
149 // issue.
150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
151 cl::init(false), cl::Hidden);
152
153 /// Currently, the generation "phi of ops" can result in correctness issues.
154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
155 cl::Hidden);
156
157 //===----------------------------------------------------------------------===//
158 // GVN Pass
159 //===----------------------------------------------------------------------===//
160
161 // Anchor methods.
162 namespace llvm {
163 namespace GVNExpression {
164
165 Expression::~Expression() = default;
166 BasicExpression::~BasicExpression() = default;
167 CallExpression::~CallExpression() = default;
168 LoadExpression::~LoadExpression() = default;
169 StoreExpression::~StoreExpression() = default;
170 AggregateValueExpression::~AggregateValueExpression() = default;
171 PHIExpression::~PHIExpression() = default;
172
173 } // end namespace GVNExpression
174 } // end namespace llvm
175
176 namespace {
177
178 // Tarjan's SCC finding algorithm with Nuutila's improvements
179 // SCCIterator is actually fairly complex for the simple thing we want.
180 // It also wants to hand us SCC's that are unrelated to the phi node we ask
181 // about, and have us process them there or risk redoing work.
182 // Graph traits over a filter iterator also doesn't work that well here.
183 // This SCC finder is specialized to walk use-def chains, and only follows
184 // instructions,
185 // not generic values (arguments, etc).
186 struct TarjanSCC {
TarjanSCC__anonc9d17a0b0111::TarjanSCC187 TarjanSCC() : Components(1) {}
188
Start__anonc9d17a0b0111::TarjanSCC189 void Start(const Instruction *Start) {
190 if (Root.lookup(Start) == 0)
191 FindSCC(Start);
192 }
193
getComponentFor__anonc9d17a0b0111::TarjanSCC194 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
195 unsigned ComponentID = ValueToComponent.lookup(V);
196
197 assert(ComponentID > 0 &&
198 "Asking for a component for a value we never processed");
199 return Components[ComponentID];
200 }
201
202 private:
FindSCC__anonc9d17a0b0111::TarjanSCC203 void FindSCC(const Instruction *I) {
204 Root[I] = ++DFSNum;
205 // Store the DFS Number we had before it possibly gets incremented.
206 unsigned int OurDFS = DFSNum;
207 for (auto &Op : I->operands()) {
208 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
209 if (Root.lookup(Op) == 0)
210 FindSCC(InstOp);
211 if (!InComponent.count(Op))
212 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
213 }
214 }
215 // See if we really were the root of a component, by seeing if we still have
216 // our DFSNumber. If we do, we are the root of the component, and we have
217 // completed a component. If we do not, we are not the root of a component,
218 // and belong on the component stack.
219 if (Root.lookup(I) == OurDFS) {
220 unsigned ComponentID = Components.size();
221 Components.resize(Components.size() + 1);
222 auto &Component = Components.back();
223 Component.insert(I);
224 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
225 InComponent.insert(I);
226 ValueToComponent[I] = ComponentID;
227 // Pop a component off the stack and label it.
228 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
229 auto *Member = Stack.back();
230 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
231 Component.insert(Member);
232 InComponent.insert(Member);
233 ValueToComponent[Member] = ComponentID;
234 Stack.pop_back();
235 }
236 } else {
237 // Part of a component, push to stack
238 Stack.push_back(I);
239 }
240 }
241
242 unsigned int DFSNum = 1;
243 SmallPtrSet<const Value *, 8> InComponent;
244 DenseMap<const Value *, unsigned int> Root;
245 SmallVector<const Value *, 8> Stack;
246
247 // Store the components as vector of ptr sets, because we need the topo order
248 // of SCC's, but not individual member order
249 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
250
251 DenseMap<const Value *, unsigned> ValueToComponent;
252 };
253
254 // Congruence classes represent the set of expressions/instructions
255 // that are all the same *during some scope in the function*.
256 // That is, because of the way we perform equality propagation, and
257 // because of memory value numbering, it is not correct to assume
258 // you can willy-nilly replace any member with any other at any
259 // point in the function.
260 //
261 // For any Value in the Member set, it is valid to replace any dominated member
262 // with that Value.
263 //
264 // Every congruence class has a leader, and the leader is used to symbolize
265 // instructions in a canonical way (IE every operand of an instruction that is a
266 // member of the same congruence class will always be replaced with leader
267 // during symbolization). To simplify symbolization, we keep the leader as a
268 // constant if class can be proved to be a constant value. Otherwise, the
269 // leader is the member of the value set with the smallest DFS number. Each
270 // congruence class also has a defining expression, though the expression may be
271 // null. If it exists, it can be used for forward propagation and reassociation
272 // of values.
273
274 // For memory, we also track a representative MemoryAccess, and a set of memory
275 // members for MemoryPhis (which have no real instructions). Note that for
276 // memory, it seems tempting to try to split the memory members into a
277 // MemoryCongruenceClass or something. Unfortunately, this does not work
278 // easily. The value numbering of a given memory expression depends on the
279 // leader of the memory congruence class, and the leader of memory congruence
280 // class depends on the value numbering of a given memory expression. This
281 // leads to wasted propagation, and in some cases, missed optimization. For
282 // example: If we had value numbered two stores together before, but now do not,
283 // we move them to a new value congruence class. This in turn will move at one
284 // of the memorydefs to a new memory congruence class. Which in turn, affects
285 // the value numbering of the stores we just value numbered (because the memory
286 // congruence class is part of the value number). So while theoretically
287 // possible to split them up, it turns out to be *incredibly* complicated to get
288 // it to work right, because of the interdependency. While structurally
289 // slightly messier, it is algorithmically much simpler and faster to do what we
290 // do here, and track them both at once in the same class.
291 // Note: The default iterators for this class iterate over values
292 class CongruenceClass {
293 public:
294 using MemberType = Value;
295 using MemberSet = SmallPtrSet<MemberType *, 4>;
296 using MemoryMemberType = MemoryPhi;
297 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
298
CongruenceClass(unsigned ID)299 explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID,Value * Leader,const Expression * E)300 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
301 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
302
getID() const303 unsigned getID() const { return ID; }
304
305 // True if this class has no members left. This is mainly used for assertion
306 // purposes, and for skipping empty classes.
isDead() const307 bool isDead() const {
308 // If it's both dead from a value perspective, and dead from a memory
309 // perspective, it's really dead.
310 return empty() && memory_empty();
311 }
312
313 // Leader functions
getLeader() const314 Value *getLeader() const { return RepLeader; }
setLeader(Value * Leader)315 void setLeader(Value *Leader) { RepLeader = Leader; }
getNextLeader() const316 const std::pair<Value *, unsigned int> &getNextLeader() const {
317 return NextLeader;
318 }
resetNextLeader()319 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
addPossibleNextLeader(std::pair<Value *,unsigned int> LeaderPair)320 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
321 if (LeaderPair.second < NextLeader.second)
322 NextLeader = LeaderPair;
323 }
324
getStoredValue() const325 Value *getStoredValue() const { return RepStoredValue; }
setStoredValue(Value * Leader)326 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
getMemoryLeader() const327 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
setMemoryLeader(const MemoryAccess * Leader)328 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
329
330 // Forward propagation info
getDefiningExpr() const331 const Expression *getDefiningExpr() const { return DefiningExpr; }
332
333 // Value member set
empty() const334 bool empty() const { return Members.empty(); }
size() const335 unsigned size() const { return Members.size(); }
begin() const336 MemberSet::const_iterator begin() const { return Members.begin(); }
end() const337 MemberSet::const_iterator end() const { return Members.end(); }
insert(MemberType * M)338 void insert(MemberType *M) { Members.insert(M); }
erase(MemberType * M)339 void erase(MemberType *M) { Members.erase(M); }
swap(MemberSet & Other)340 void swap(MemberSet &Other) { Members.swap(Other); }
341
342 // Memory member set
memory_empty() const343 bool memory_empty() const { return MemoryMembers.empty(); }
memory_size() const344 unsigned memory_size() const { return MemoryMembers.size(); }
memory_begin() const345 MemoryMemberSet::const_iterator memory_begin() const {
346 return MemoryMembers.begin();
347 }
memory_end() const348 MemoryMemberSet::const_iterator memory_end() const {
349 return MemoryMembers.end();
350 }
memory() const351 iterator_range<MemoryMemberSet::const_iterator> memory() const {
352 return make_range(memory_begin(), memory_end());
353 }
354
memory_insert(const MemoryMemberType * M)355 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
memory_erase(const MemoryMemberType * M)356 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
357
358 // Store count
getStoreCount() const359 unsigned getStoreCount() const { return StoreCount; }
incStoreCount()360 void incStoreCount() { ++StoreCount; }
decStoreCount()361 void decStoreCount() {
362 assert(StoreCount != 0 && "Store count went negative");
363 --StoreCount;
364 }
365
366 // True if this class has no memory members.
definesNoMemory() const367 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
368
369 // Return true if two congruence classes are equivalent to each other. This
370 // means that every field but the ID number and the dead field are equivalent.
isEquivalentTo(const CongruenceClass * Other) const371 bool isEquivalentTo(const CongruenceClass *Other) const {
372 if (!Other)
373 return false;
374 if (this == Other)
375 return true;
376
377 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
378 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
379 Other->RepMemoryAccess))
380 return false;
381 if (DefiningExpr != Other->DefiningExpr)
382 if (!DefiningExpr || !Other->DefiningExpr ||
383 *DefiningExpr != *Other->DefiningExpr)
384 return false;
385
386 if (Members.size() != Other->Members.size())
387 return false;
388
389 return all_of(Members,
390 [&](const Value *V) { return Other->Members.count(V); });
391 }
392
393 private:
394 unsigned ID;
395
396 // Representative leader.
397 Value *RepLeader = nullptr;
398
399 // The most dominating leader after our current leader, because the member set
400 // is not sorted and is expensive to keep sorted all the time.
401 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
402
403 // If this is represented by a store, the value of the store.
404 Value *RepStoredValue = nullptr;
405
406 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
407 // access.
408 const MemoryAccess *RepMemoryAccess = nullptr;
409
410 // Defining Expression.
411 const Expression *DefiningExpr = nullptr;
412
413 // Actual members of this class.
414 MemberSet Members;
415
416 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
417 // MemoryUses have real instructions representing them, so we only need to
418 // track MemoryPhis here.
419 MemoryMemberSet MemoryMembers;
420
421 // Number of stores in this congruence class.
422 // This is used so we can detect store equivalence changes properly.
423 int StoreCount = 0;
424 };
425
426 } // end anonymous namespace
427
428 namespace llvm {
429
430 struct ExactEqualsExpression {
431 const Expression &E;
432
ExactEqualsExpressionllvm::ExactEqualsExpression433 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
434
getComputedHashllvm::ExactEqualsExpression435 hash_code getComputedHash() const { return E.getComputedHash(); }
436
operator ==llvm::ExactEqualsExpression437 bool operator==(const Expression &Other) const {
438 return E.exactlyEquals(Other);
439 }
440 };
441
442 template <> struct DenseMapInfo<const Expression *> {
getEmptyKeyllvm::DenseMapInfo443 static const Expression *getEmptyKey() {
444 auto Val = static_cast<uintptr_t>(-1);
445 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
446 return reinterpret_cast<const Expression *>(Val);
447 }
448
getTombstoneKeyllvm::DenseMapInfo449 static const Expression *getTombstoneKey() {
450 auto Val = static_cast<uintptr_t>(~1U);
451 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
452 return reinterpret_cast<const Expression *>(Val);
453 }
454
getHashValuellvm::DenseMapInfo455 static unsigned getHashValue(const Expression *E) {
456 return E->getComputedHash();
457 }
458
getHashValuellvm::DenseMapInfo459 static unsigned getHashValue(const ExactEqualsExpression &E) {
460 return E.getComputedHash();
461 }
462
isEqualllvm::DenseMapInfo463 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
464 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
465 return false;
466 return LHS == *RHS;
467 }
468
isEqualllvm::DenseMapInfo469 static bool isEqual(const Expression *LHS, const Expression *RHS) {
470 if (LHS == RHS)
471 return true;
472 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
473 LHS == getEmptyKey() || RHS == getEmptyKey())
474 return false;
475 // Compare hashes before equality. This is *not* what the hashtable does,
476 // since it is computing it modulo the number of buckets, whereas we are
477 // using the full hash keyspace. Since the hashes are precomputed, this
478 // check is *much* faster than equality.
479 if (LHS->getComputedHash() != RHS->getComputedHash())
480 return false;
481 return *LHS == *RHS;
482 }
483 };
484
485 } // end namespace llvm
486
487 namespace {
488
489 class NewGVN {
490 Function &F;
491 DominatorTree *DT;
492 const TargetLibraryInfo *TLI;
493 AliasAnalysis *AA;
494 MemorySSA *MSSA;
495 MemorySSAWalker *MSSAWalker;
496 const DataLayout &DL;
497 std::unique_ptr<PredicateInfo> PredInfo;
498
499 // These are the only two things the create* functions should have
500 // side-effects on due to allocating memory.
501 mutable BumpPtrAllocator ExpressionAllocator;
502 mutable ArrayRecycler<Value *> ArgRecycler;
503 mutable TarjanSCC SCCFinder;
504 const SimplifyQuery SQ;
505
506 // Number of function arguments, used by ranking
507 unsigned int NumFuncArgs;
508
509 // RPOOrdering of basic blocks
510 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
511
512 // Congruence class info.
513
514 // This class is called INITIAL in the paper. It is the class everything
515 // startsout in, and represents any value. Being an optimistic analysis,
516 // anything in the TOP class has the value TOP, which is indeterminate and
517 // equivalent to everything.
518 CongruenceClass *TOPClass;
519 std::vector<CongruenceClass *> CongruenceClasses;
520 unsigned NextCongruenceNum;
521
522 // Value Mappings.
523 DenseMap<Value *, CongruenceClass *> ValueToClass;
524 DenseMap<Value *, const Expression *> ValueToExpression;
525
526 // Value PHI handling, used to make equivalence between phi(op, op) and
527 // op(phi, phi).
528 // These mappings just store various data that would normally be part of the
529 // IR.
530 SmallPtrSet<const Instruction *, 8> PHINodeUses;
531
532 DenseMap<const Value *, bool> OpSafeForPHIOfOps;
533
534 // Map a temporary instruction we created to a parent block.
535 DenseMap<const Value *, BasicBlock *> TempToBlock;
536
537 // Map between the already in-program instructions and the temporary phis we
538 // created that they are known equivalent to.
539 DenseMap<const Value *, PHINode *> RealToTemp;
540
541 // In order to know when we should re-process instructions that have
542 // phi-of-ops, we track the set of expressions that they needed as
543 // leaders. When we discover new leaders for those expressions, we process the
544 // associated phi-of-op instructions again in case they have changed. The
545 // other way they may change is if they had leaders, and those leaders
546 // disappear. However, at the point they have leaders, there are uses of the
547 // relevant operands in the created phi node, and so they will get reprocessed
548 // through the normal user marking we perform.
549 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
550 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
551 ExpressionToPhiOfOps;
552
553 // Map from temporary operation to MemoryAccess.
554 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
555
556 // Set of all temporary instructions we created.
557 // Note: This will include instructions that were just created during value
558 // numbering. The way to test if something is using them is to check
559 // RealToTemp.
560 DenseSet<Instruction *> AllTempInstructions;
561
562 // This is the set of instructions to revisit on a reachability change. At
563 // the end of the main iteration loop it will contain at least all the phi of
564 // ops instructions that will be changed to phis, as well as regular phis.
565 // During the iteration loop, it may contain other things, such as phi of ops
566 // instructions that used edge reachability to reach a result, and so need to
567 // be revisited when the edge changes, independent of whether the phi they
568 // depended on changes.
569 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
570
571 // Mapping from predicate info we used to the instructions we used it with.
572 // In order to correctly ensure propagation, we must keep track of what
573 // comparisons we used, so that when the values of the comparisons change, we
574 // propagate the information to the places we used the comparison.
575 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
576 PredicateToUsers;
577
578 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
579 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
580 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
581 MemoryToUsers;
582
583 // A table storing which memorydefs/phis represent a memory state provably
584 // equivalent to another memory state.
585 // We could use the congruence class machinery, but the MemoryAccess's are
586 // abstract memory states, so they can only ever be equivalent to each other,
587 // and not to constants, etc.
588 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
589
590 // We could, if we wanted, build MemoryPhiExpressions and
591 // MemoryVariableExpressions, etc, and value number them the same way we value
592 // number phi expressions. For the moment, this seems like overkill. They
593 // can only exist in one of three states: they can be TOP (equal to
594 // everything), Equivalent to something else, or unique. Because we do not
595 // create expressions for them, we need to simulate leader change not just
596 // when they change class, but when they change state. Note: We can do the
597 // same thing for phis, and avoid having phi expressions if we wanted, We
598 // should eventually unify in one direction or the other, so this is a little
599 // bit of an experiment in which turns out easier to maintain.
600 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
601 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
602
603 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
604 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
605
606 // Expression to class mapping.
607 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
608 ExpressionClassMap ExpressionToClass;
609
610 // We have a single expression that represents currently DeadExpressions.
611 // For dead expressions we can prove will stay dead, we mark them with
612 // DFS number zero. However, it's possible in the case of phi nodes
613 // for us to assume/prove all arguments are dead during fixpointing.
614 // We use DeadExpression for that case.
615 DeadExpression *SingletonDeadExpression = nullptr;
616
617 // Which values have changed as a result of leader changes.
618 SmallPtrSet<Value *, 8> LeaderChanges;
619
620 // Reachability info.
621 using BlockEdge = BasicBlockEdge;
622 DenseSet<BlockEdge> ReachableEdges;
623 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
624
625 // This is a bitvector because, on larger functions, we may have
626 // thousands of touched instructions at once (entire blocks,
627 // instructions with hundreds of uses, etc). Even with optimization
628 // for when we mark whole blocks as touched, when this was a
629 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
630 // the time in GVN just managing this list. The bitvector, on the
631 // other hand, efficiently supports test/set/clear of both
632 // individual and ranges, as well as "find next element" This
633 // enables us to use it as a worklist with essentially 0 cost.
634 BitVector TouchedInstructions;
635
636 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
637
638 #ifndef NDEBUG
639 // Debugging for how many times each block and instruction got processed.
640 DenseMap<const Value *, unsigned> ProcessedCount;
641 #endif
642
643 // DFS info.
644 // This contains a mapping from Instructions to DFS numbers.
645 // The numbering starts at 1. An instruction with DFS number zero
646 // means that the instruction is dead.
647 DenseMap<const Value *, unsigned> InstrDFS;
648
649 // This contains the mapping DFS numbers to instructions.
650 SmallVector<Value *, 32> DFSToInstr;
651
652 // Deletion info.
653 SmallPtrSet<Instruction *, 8> InstructionsToErase;
654
655 public:
NewGVN(Function & F,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * TLI,AliasAnalysis * AA,MemorySSA * MSSA,const DataLayout & DL)656 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
657 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
658 const DataLayout &DL)
659 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
660 PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
661 }
662
663 bool runGVN();
664
665 private:
666 // Expression handling.
667 const Expression *createExpression(Instruction *) const;
668 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
669 Instruction *) const;
670
671 // Our canonical form for phi arguments is a pair of incoming value, incoming
672 // basic block.
673 using ValPair = std::pair<Value *, BasicBlock *>;
674
675 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
676 BasicBlock *, bool &HasBackEdge,
677 bool &OriginalOpsConstant) const;
678 const DeadExpression *createDeadExpression() const;
679 const VariableExpression *createVariableExpression(Value *) const;
680 const ConstantExpression *createConstantExpression(Constant *) const;
681 const Expression *createVariableOrConstant(Value *V) const;
682 const UnknownExpression *createUnknownExpression(Instruction *) const;
683 const StoreExpression *createStoreExpression(StoreInst *,
684 const MemoryAccess *) const;
685 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
686 const MemoryAccess *) const;
687 const CallExpression *createCallExpression(CallInst *,
688 const MemoryAccess *) const;
689 const AggregateValueExpression *
690 createAggregateValueExpression(Instruction *) const;
691 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
692
693 // Congruence class handling.
createCongruenceClass(Value * Leader,const Expression * E)694 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
695 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
696 CongruenceClasses.emplace_back(result);
697 return result;
698 }
699
createMemoryClass(MemoryAccess * MA)700 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
701 auto *CC = createCongruenceClass(nullptr, nullptr);
702 CC->setMemoryLeader(MA);
703 return CC;
704 }
705
ensureLeaderOfMemoryClass(MemoryAccess * MA)706 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
707 auto *CC = getMemoryClass(MA);
708 if (CC->getMemoryLeader() != MA)
709 CC = createMemoryClass(MA);
710 return CC;
711 }
712
createSingletonCongruenceClass(Value * Member)713 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
714 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
715 CClass->insert(Member);
716 ValueToClass[Member] = CClass;
717 return CClass;
718 }
719
720 void initializeCongruenceClasses(Function &F);
721 const Expression *makePossiblePHIOfOps(Instruction *,
722 SmallPtrSetImpl<Value *> &);
723 Value *findLeaderForInst(Instruction *ValueOp,
724 SmallPtrSetImpl<Value *> &Visited,
725 MemoryAccess *MemAccess, Instruction *OrigInst,
726 BasicBlock *PredBB);
727 bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
728 SmallPtrSetImpl<const Value *> &Visited,
729 SmallVectorImpl<Instruction *> &Worklist);
730 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
731 SmallPtrSetImpl<const Value *> &);
732 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
733 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
734
735 // Value number an Instruction or MemoryPhi.
736 void valueNumberMemoryPhi(MemoryPhi *);
737 void valueNumberInstruction(Instruction *);
738
739 // Symbolic evaluation.
740 const Expression *checkSimplificationResults(Expression *, Instruction *,
741 Value *) const;
742 const Expression *performSymbolicEvaluation(Value *,
743 SmallPtrSetImpl<Value *> &) const;
744 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
745 Instruction *,
746 MemoryAccess *) const;
747 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
748 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
749 const Expression *performSymbolicCallEvaluation(Instruction *) const;
750 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
751 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
752 Instruction *I,
753 BasicBlock *PHIBlock) const;
754 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
755 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
756 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
757
758 // Congruence finding.
759 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
760 Value *lookupOperandLeader(Value *) const;
761 CongruenceClass *getClassForExpression(const Expression *E) const;
762 void performCongruenceFinding(Instruction *, const Expression *);
763 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
764 CongruenceClass *, CongruenceClass *);
765 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
766 CongruenceClass *, CongruenceClass *);
767 Value *getNextValueLeader(CongruenceClass *) const;
768 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
769 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
770 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
771 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
772 bool isMemoryAccessTOP(const MemoryAccess *) const;
773
774 // Ranking
775 unsigned int getRank(const Value *) const;
776 bool shouldSwapOperands(const Value *, const Value *) const;
777
778 // Reachability handling.
779 void updateReachableEdge(BasicBlock *, BasicBlock *);
780 void processOutgoingEdges(TerminatorInst *, BasicBlock *);
781 Value *findConditionEquivalence(Value *) const;
782
783 // Elimination.
784 struct ValueDFS;
785 void convertClassToDFSOrdered(const CongruenceClass &,
786 SmallVectorImpl<ValueDFS> &,
787 DenseMap<const Value *, unsigned int> &,
788 SmallPtrSetImpl<Instruction *> &) const;
789 void convertClassToLoadsAndStores(const CongruenceClass &,
790 SmallVectorImpl<ValueDFS> &) const;
791
792 bool eliminateInstructions(Function &);
793 void replaceInstruction(Instruction *, Value *);
794 void markInstructionForDeletion(Instruction *);
795 void deleteInstructionsInBlock(BasicBlock *);
796 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
797 const BasicBlock *) const;
798
799 // New instruction creation.
handleNewInstruction(Instruction *)800 void handleNewInstruction(Instruction *) {}
801
802 // Various instruction touch utilities
803 template <typename Map, typename KeyType, typename Func>
804 void for_each_found(Map &, const KeyType &, Func);
805 template <typename Map, typename KeyType>
806 void touchAndErase(Map &, const KeyType &);
807 void markUsersTouched(Value *);
808 void markMemoryUsersTouched(const MemoryAccess *);
809 void markMemoryDefTouched(const MemoryAccess *);
810 void markPredicateUsersTouched(Instruction *);
811 void markValueLeaderChangeTouched(CongruenceClass *CC);
812 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
813 void markPhiOfOpsChanged(const Expression *E);
814 void addPredicateUsers(const PredicateBase *, Instruction *) const;
815 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
816 void addAdditionalUsers(Value *To, Value *User) const;
817
818 // Main loop of value numbering
819 void iterateTouchedInstructions();
820
821 // Utilities.
822 void cleanupTables();
823 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
824 void updateProcessedCount(const Value *V);
825 void verifyMemoryCongruency() const;
826 void verifyIterationSettled(Function &F);
827 void verifyStoreExpressions() const;
828 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
829 const MemoryAccess *, const MemoryAccess *) const;
830 BasicBlock *getBlockForValue(Value *V) const;
831 void deleteExpression(const Expression *E) const;
832 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
833 MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
834 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
835 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
836
InstrToDFSNum(const Value * V) const837 unsigned InstrToDFSNum(const Value *V) const {
838 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
839 return InstrDFS.lookup(V);
840 }
841
InstrToDFSNum(const MemoryAccess * MA) const842 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
843 return MemoryToDFSNum(MA);
844 }
845
InstrFromDFSNum(unsigned DFSNum)846 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
847
848 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
849 // This deliberately takes a value so it can be used with Use's, which will
850 // auto-convert to Value's but not to MemoryAccess's.
MemoryToDFSNum(const Value * MA) const851 unsigned MemoryToDFSNum(const Value *MA) const {
852 assert(isa<MemoryAccess>(MA) &&
853 "This should not be used with instructions");
854 return isa<MemoryUseOrDef>(MA)
855 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
856 : InstrDFS.lookup(MA);
857 }
858
859 bool isCycleFree(const Instruction *) const;
860 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
861
862 // Debug counter info. When verifying, we have to reset the value numbering
863 // debug counter to the same state it started in to get the same results.
864 int64_t StartingVNCounter;
865 };
866
867 } // end anonymous namespace
868
869 template <typename T>
equalsLoadStoreHelper(const T & LHS,const Expression & RHS)870 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
871 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
872 return false;
873 return LHS.MemoryExpression::equals(RHS);
874 }
875
equals(const Expression & Other) const876 bool LoadExpression::equals(const Expression &Other) const {
877 return equalsLoadStoreHelper(*this, Other);
878 }
879
equals(const Expression & Other) const880 bool StoreExpression::equals(const Expression &Other) const {
881 if (!equalsLoadStoreHelper(*this, Other))
882 return false;
883 // Make sure that store vs store includes the value operand.
884 if (const auto *S = dyn_cast<StoreExpression>(&Other))
885 if (getStoredValue() != S->getStoredValue())
886 return false;
887 return true;
888 }
889
890 // Determine if the edge From->To is a backedge
isBackedge(BasicBlock * From,BasicBlock * To) const891 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
892 return From == To ||
893 RPOOrdering.lookup(DT->getNode(From)) >=
894 RPOOrdering.lookup(DT->getNode(To));
895 }
896
897 #ifndef NDEBUG
getBlockName(const BasicBlock * B)898 static std::string getBlockName(const BasicBlock *B) {
899 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
900 }
901 #endif
902
903 // Get a MemoryAccess for an instruction, fake or real.
getMemoryAccess(const Instruction * I) const904 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
905 auto *Result = MSSA->getMemoryAccess(I);
906 return Result ? Result : TempToMemory.lookup(I);
907 }
908
909 // Get a MemoryPhi for a basic block. These are all real.
getMemoryAccess(const BasicBlock * BB) const910 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
911 return MSSA->getMemoryAccess(BB);
912 }
913
914 // Get the basic block from an instruction/memory value.
getBlockForValue(Value * V) const915 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
916 if (auto *I = dyn_cast<Instruction>(V)) {
917 auto *Parent = I->getParent();
918 if (Parent)
919 return Parent;
920 Parent = TempToBlock.lookup(V);
921 assert(Parent && "Every fake instruction should have a block");
922 return Parent;
923 }
924
925 auto *MP = dyn_cast<MemoryPhi>(V);
926 assert(MP && "Should have been an instruction or a MemoryPhi");
927 return MP->getBlock();
928 }
929
930 // Delete a definitely dead expression, so it can be reused by the expression
931 // allocator. Some of these are not in creation functions, so we have to accept
932 // const versions.
deleteExpression(const Expression * E) const933 void NewGVN::deleteExpression(const Expression *E) const {
934 assert(isa<BasicExpression>(E));
935 auto *BE = cast<BasicExpression>(E);
936 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
937 ExpressionAllocator.Deallocate(E);
938 }
939
940 // If V is a predicateinfo copy, get the thing it is a copy of.
getCopyOf(const Value * V)941 static Value *getCopyOf(const Value *V) {
942 if (auto *II = dyn_cast<IntrinsicInst>(V))
943 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
944 return II->getOperand(0);
945 return nullptr;
946 }
947
948 // Return true if V is really PN, even accounting for predicateinfo copies.
isCopyOfPHI(const Value * V,const PHINode * PN)949 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
950 return V == PN || getCopyOf(V) == PN;
951 }
952
isCopyOfAPHI(const Value * V)953 static bool isCopyOfAPHI(const Value *V) {
954 auto *CO = getCopyOf(V);
955 return CO && isa<PHINode>(CO);
956 }
957
958 // Sort PHI Operands into a canonical order. What we use here is an RPO
959 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
960 // blocks.
sortPHIOps(MutableArrayRef<ValPair> Ops) const961 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
962 llvm::sort(Ops.begin(), Ops.end(),
963 [&](const ValPair &P1, const ValPair &P2) {
964 return BlockInstRange.lookup(P1.second).first <
965 BlockInstRange.lookup(P2.second).first;
966 });
967 }
968
969 // Return true if V is a value that will always be available (IE can
970 // be placed anywhere) in the function. We don't do globals here
971 // because they are often worse to put in place.
alwaysAvailable(Value * V)972 static bool alwaysAvailable(Value *V) {
973 return isa<Constant>(V) || isa<Argument>(V);
974 }
975
976 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
977 // the original instruction we are creating a PHIExpression for (but may not be
978 // a phi node). We require, as an invariant, that all the PHIOperands in the
979 // same block are sorted the same way. sortPHIOps will sort them into a
980 // canonical order.
createPHIExpression(ArrayRef<ValPair> PHIOperands,const Instruction * I,BasicBlock * PHIBlock,bool & HasBackedge,bool & OriginalOpsConstant) const981 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
982 const Instruction *I,
983 BasicBlock *PHIBlock,
984 bool &HasBackedge,
985 bool &OriginalOpsConstant) const {
986 unsigned NumOps = PHIOperands.size();
987 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
988
989 E->allocateOperands(ArgRecycler, ExpressionAllocator);
990 E->setType(PHIOperands.begin()->first->getType());
991 E->setOpcode(Instruction::PHI);
992
993 // Filter out unreachable phi operands.
994 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
995 auto *BB = P.second;
996 if (auto *PHIOp = dyn_cast<PHINode>(I))
997 if (isCopyOfPHI(P.first, PHIOp))
998 return false;
999 if (!ReachableEdges.count({BB, PHIBlock}))
1000 return false;
1001 // Things in TOPClass are equivalent to everything.
1002 if (ValueToClass.lookup(P.first) == TOPClass)
1003 return false;
1004 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1005 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1006 return lookupOperandLeader(P.first) != I;
1007 });
1008 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1009 [&](const ValPair &P) -> Value * {
1010 return lookupOperandLeader(P.first);
1011 });
1012 return E;
1013 }
1014
1015 // Set basic expression info (Arguments, type, opcode) for Expression
1016 // E from Instruction I in block B.
setBasicExpressionInfo(Instruction * I,BasicExpression * E) const1017 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1018 bool AllConstant = true;
1019 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1020 E->setType(GEP->getSourceElementType());
1021 else
1022 E->setType(I->getType());
1023 E->setOpcode(I->getOpcode());
1024 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1025
1026 // Transform the operand array into an operand leader array, and keep track of
1027 // whether all members are constant.
1028 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1029 auto Operand = lookupOperandLeader(O);
1030 AllConstant = AllConstant && isa<Constant>(Operand);
1031 return Operand;
1032 });
1033
1034 return AllConstant;
1035 }
1036
createBinaryExpression(unsigned Opcode,Type * T,Value * Arg1,Value * Arg2,Instruction * I) const1037 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1038 Value *Arg1, Value *Arg2,
1039 Instruction *I) const {
1040 auto *E = new (ExpressionAllocator) BasicExpression(2);
1041
1042 E->setType(T);
1043 E->setOpcode(Opcode);
1044 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1045 if (Instruction::isCommutative(Opcode)) {
1046 // Ensure that commutative instructions that only differ by a permutation
1047 // of their operands get the same value number by sorting the operand value
1048 // numbers. Since all commutative instructions have two operands it is more
1049 // efficient to sort by hand rather than using, say, std::sort.
1050 if (shouldSwapOperands(Arg1, Arg2))
1051 std::swap(Arg1, Arg2);
1052 }
1053 E->op_push_back(lookupOperandLeader(Arg1));
1054 E->op_push_back(lookupOperandLeader(Arg2));
1055
1056 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1057 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1058 return SimplifiedE;
1059 return E;
1060 }
1061
1062 // Take a Value returned by simplification of Expression E/Instruction
1063 // I, and see if it resulted in a simpler expression. If so, return
1064 // that expression.
checkSimplificationResults(Expression * E,Instruction * I,Value * V) const1065 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1066 Instruction *I,
1067 Value *V) const {
1068 if (!V)
1069 return nullptr;
1070 if (auto *C = dyn_cast<Constant>(V)) {
1071 if (I)
1072 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1073 << " constant " << *C << "\n");
1074 NumGVNOpsSimplified++;
1075 assert(isa<BasicExpression>(E) &&
1076 "We should always have had a basic expression here");
1077 deleteExpression(E);
1078 return createConstantExpression(C);
1079 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1080 if (I)
1081 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1082 << " variable " << *V << "\n");
1083 deleteExpression(E);
1084 return createVariableExpression(V);
1085 }
1086
1087 CongruenceClass *CC = ValueToClass.lookup(V);
1088 if (CC) {
1089 if (CC->getLeader() && CC->getLeader() != I) {
1090 // Don't add temporary instructions to the user lists.
1091 if (!AllTempInstructions.count(I))
1092 addAdditionalUsers(V, I);
1093 return createVariableOrConstant(CC->getLeader());
1094 }
1095 if (CC->getDefiningExpr()) {
1096 // If we simplified to something else, we need to communicate
1097 // that we're users of the value we simplified to.
1098 if (I != V) {
1099 // Don't add temporary instructions to the user lists.
1100 if (!AllTempInstructions.count(I))
1101 addAdditionalUsers(V, I);
1102 }
1103
1104 if (I)
1105 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1106 << " expression " << *CC->getDefiningExpr() << "\n");
1107 NumGVNOpsSimplified++;
1108 deleteExpression(E);
1109 return CC->getDefiningExpr();
1110 }
1111 }
1112
1113 return nullptr;
1114 }
1115
1116 // Create a value expression from the instruction I, replacing operands with
1117 // their leaders.
1118
createExpression(Instruction * I) const1119 const Expression *NewGVN::createExpression(Instruction *I) const {
1120 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1121
1122 bool AllConstant = setBasicExpressionInfo(I, E);
1123
1124 if (I->isCommutative()) {
1125 // Ensure that commutative instructions that only differ by a permutation
1126 // of their operands get the same value number by sorting the operand value
1127 // numbers. Since all commutative instructions have two operands it is more
1128 // efficient to sort by hand rather than using, say, std::sort.
1129 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1130 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1131 E->swapOperands(0, 1);
1132 }
1133 // Perform simplification.
1134 if (auto *CI = dyn_cast<CmpInst>(I)) {
1135 // Sort the operand value numbers so x<y and y>x get the same value
1136 // number.
1137 CmpInst::Predicate Predicate = CI->getPredicate();
1138 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1139 E->swapOperands(0, 1);
1140 Predicate = CmpInst::getSwappedPredicate(Predicate);
1141 }
1142 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1143 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1144 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1145 "Wrong types on cmp instruction");
1146 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1147 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1148 Value *V =
1149 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1150 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1151 return SimplifiedE;
1152 } else if (isa<SelectInst>(I)) {
1153 if (isa<Constant>(E->getOperand(0)) ||
1154 E->getOperand(1) == E->getOperand(2)) {
1155 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1156 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1157 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1158 E->getOperand(2), SQ);
1159 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1160 return SimplifiedE;
1161 }
1162 } else if (I->isBinaryOp()) {
1163 Value *V =
1164 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1165 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1166 return SimplifiedE;
1167 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
1168 Value *V =
1169 SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
1170 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1171 return SimplifiedE;
1172 } else if (isa<GetElementPtrInst>(I)) {
1173 Value *V = SimplifyGEPInst(
1174 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1175 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1176 return SimplifiedE;
1177 } else if (AllConstant) {
1178 // We don't bother trying to simplify unless all of the operands
1179 // were constant.
1180 // TODO: There are a lot of Simplify*'s we could call here, if we
1181 // wanted to. The original motivating case for this code was a
1182 // zext i1 false to i8, which we don't have an interface to
1183 // simplify (IE there is no SimplifyZExt).
1184
1185 SmallVector<Constant *, 8> C;
1186 for (Value *Arg : E->operands())
1187 C.emplace_back(cast<Constant>(Arg));
1188
1189 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1190 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1191 return SimplifiedE;
1192 }
1193 return E;
1194 }
1195
1196 const AggregateValueExpression *
createAggregateValueExpression(Instruction * I) const1197 NewGVN::createAggregateValueExpression(Instruction *I) const {
1198 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1199 auto *E = new (ExpressionAllocator)
1200 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1201 setBasicExpressionInfo(I, E);
1202 E->allocateIntOperands(ExpressionAllocator);
1203 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1204 return E;
1205 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1206 auto *E = new (ExpressionAllocator)
1207 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1208 setBasicExpressionInfo(EI, E);
1209 E->allocateIntOperands(ExpressionAllocator);
1210 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1211 return E;
1212 }
1213 llvm_unreachable("Unhandled type of aggregate value operation");
1214 }
1215
createDeadExpression() const1216 const DeadExpression *NewGVN::createDeadExpression() const {
1217 // DeadExpression has no arguments and all DeadExpression's are the same,
1218 // so we only need one of them.
1219 return SingletonDeadExpression;
1220 }
1221
createVariableExpression(Value * V) const1222 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1223 auto *E = new (ExpressionAllocator) VariableExpression(V);
1224 E->setOpcode(V->getValueID());
1225 return E;
1226 }
1227
createVariableOrConstant(Value * V) const1228 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1229 if (auto *C = dyn_cast<Constant>(V))
1230 return createConstantExpression(C);
1231 return createVariableExpression(V);
1232 }
1233
createConstantExpression(Constant * C) const1234 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1235 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1236 E->setOpcode(C->getValueID());
1237 return E;
1238 }
1239
createUnknownExpression(Instruction * I) const1240 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1241 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1242 E->setOpcode(I->getOpcode());
1243 return E;
1244 }
1245
1246 const CallExpression *
createCallExpression(CallInst * CI,const MemoryAccess * MA) const1247 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1248 // FIXME: Add operand bundles for calls.
1249 auto *E =
1250 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1251 setBasicExpressionInfo(CI, E);
1252 return E;
1253 }
1254
1255 // Return true if some equivalent of instruction Inst dominates instruction U.
someEquivalentDominates(const Instruction * Inst,const Instruction * U) const1256 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1257 const Instruction *U) const {
1258 auto *CC = ValueToClass.lookup(Inst);
1259 // This must be an instruction because we are only called from phi nodes
1260 // in the case that the value it needs to check against is an instruction.
1261
1262 // The most likely candidates for dominance are the leader and the next leader.
1263 // The leader or nextleader will dominate in all cases where there is an
1264 // equivalent that is higher up in the dom tree.
1265 // We can't *only* check them, however, because the
1266 // dominator tree could have an infinite number of non-dominating siblings
1267 // with instructions that are in the right congruence class.
1268 // A
1269 // B C D E F G
1270 // |
1271 // H
1272 // Instruction U could be in H, with equivalents in every other sibling.
1273 // Depending on the rpo order picked, the leader could be the equivalent in
1274 // any of these siblings.
1275 if (!CC)
1276 return false;
1277 if (alwaysAvailable(CC->getLeader()))
1278 return true;
1279 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1280 return true;
1281 if (CC->getNextLeader().first &&
1282 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1283 return true;
1284 return llvm::any_of(*CC, [&](const Value *Member) {
1285 return Member != CC->getLeader() &&
1286 DT->dominates(cast<Instruction>(Member), U);
1287 });
1288 }
1289
1290 // See if we have a congruence class and leader for this operand, and if so,
1291 // return it. Otherwise, return the operand itself.
lookupOperandLeader(Value * V) const1292 Value *NewGVN::lookupOperandLeader(Value *V) const {
1293 CongruenceClass *CC = ValueToClass.lookup(V);
1294 if (CC) {
1295 // Everything in TOP is represented by undef, as it can be any value.
1296 // We do have to make sure we get the type right though, so we can't set the
1297 // RepLeader to undef.
1298 if (CC == TOPClass)
1299 return UndefValue::get(V->getType());
1300 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1301 }
1302
1303 return V;
1304 }
1305
lookupMemoryLeader(const MemoryAccess * MA) const1306 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1307 auto *CC = getMemoryClass(MA);
1308 assert(CC->getMemoryLeader() &&
1309 "Every MemoryAccess should be mapped to a congruence class with a "
1310 "representative memory access");
1311 return CC->getMemoryLeader();
1312 }
1313
1314 // Return true if the MemoryAccess is really equivalent to everything. This is
1315 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1316 // state of all MemoryAccesses.
isMemoryAccessTOP(const MemoryAccess * MA) const1317 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1318 return getMemoryClass(MA) == TOPClass;
1319 }
1320
createLoadExpression(Type * LoadType,Value * PointerOp,LoadInst * LI,const MemoryAccess * MA) const1321 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1322 LoadInst *LI,
1323 const MemoryAccess *MA) const {
1324 auto *E =
1325 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1326 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1327 E->setType(LoadType);
1328
1329 // Give store and loads same opcode so they value number together.
1330 E->setOpcode(0);
1331 E->op_push_back(PointerOp);
1332 if (LI)
1333 E->setAlignment(LI->getAlignment());
1334
1335 // TODO: Value number heap versions. We may be able to discover
1336 // things alias analysis can't on it's own (IE that a store and a
1337 // load have the same value, and thus, it isn't clobbering the load).
1338 return E;
1339 }
1340
1341 const StoreExpression *
createStoreExpression(StoreInst * SI,const MemoryAccess * MA) const1342 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1343 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1344 auto *E = new (ExpressionAllocator)
1345 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1346 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1347 E->setType(SI->getValueOperand()->getType());
1348
1349 // Give store and loads same opcode so they value number together.
1350 E->setOpcode(0);
1351 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1352
1353 // TODO: Value number heap versions. We may be able to discover
1354 // things alias analysis can't on it's own (IE that a store and a
1355 // load have the same value, and thus, it isn't clobbering the load).
1356 return E;
1357 }
1358
performSymbolicStoreEvaluation(Instruction * I) const1359 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1360 // Unlike loads, we never try to eliminate stores, so we do not check if they
1361 // are simple and avoid value numbering them.
1362 auto *SI = cast<StoreInst>(I);
1363 auto *StoreAccess = getMemoryAccess(SI);
1364 // Get the expression, if any, for the RHS of the MemoryDef.
1365 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1366 if (EnableStoreRefinement)
1367 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1368 // If we bypassed the use-def chains, make sure we add a use.
1369 StoreRHS = lookupMemoryLeader(StoreRHS);
1370 if (StoreRHS != StoreAccess->getDefiningAccess())
1371 addMemoryUsers(StoreRHS, StoreAccess);
1372 // If we are defined by ourselves, use the live on entry def.
1373 if (StoreRHS == StoreAccess)
1374 StoreRHS = MSSA->getLiveOnEntryDef();
1375
1376 if (SI->isSimple()) {
1377 // See if we are defined by a previous store expression, it already has a
1378 // value, and it's the same value as our current store. FIXME: Right now, we
1379 // only do this for simple stores, we should expand to cover memcpys, etc.
1380 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1381 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1382 // We really want to check whether the expression we matched was a store. No
1383 // easy way to do that. However, we can check that the class we found has a
1384 // store, which, assuming the value numbering state is not corrupt, is
1385 // sufficient, because we must also be equivalent to that store's expression
1386 // for it to be in the same class as the load.
1387 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1388 return LastStore;
1389 // Also check if our value operand is defined by a load of the same memory
1390 // location, and the memory state is the same as it was then (otherwise, it
1391 // could have been overwritten later. See test32 in
1392 // transforms/DeadStoreElimination/simple.ll).
1393 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1394 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1395 LastStore->getOperand(0)) &&
1396 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1397 StoreRHS))
1398 return LastStore;
1399 deleteExpression(LastStore);
1400 }
1401
1402 // If the store is not equivalent to anything, value number it as a store that
1403 // produces a unique memory state (instead of using it's MemoryUse, we use
1404 // it's MemoryDef).
1405 return createStoreExpression(SI, StoreAccess);
1406 }
1407
1408 // See if we can extract the value of a loaded pointer from a load, a store, or
1409 // a memory instruction.
1410 const Expression *
performSymbolicLoadCoercion(Type * LoadType,Value * LoadPtr,LoadInst * LI,Instruction * DepInst,MemoryAccess * DefiningAccess) const1411 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1412 LoadInst *LI, Instruction *DepInst,
1413 MemoryAccess *DefiningAccess) const {
1414 assert((!LI || LI->isSimple()) && "Not a simple load");
1415 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1416 // Can't forward from non-atomic to atomic without violating memory model.
1417 // Also don't need to coerce if they are the same type, we will just
1418 // propagate.
1419 if (LI->isAtomic() > DepSI->isAtomic() ||
1420 LoadType == DepSI->getValueOperand()->getType())
1421 return nullptr;
1422 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1423 if (Offset >= 0) {
1424 if (auto *C = dyn_cast<Constant>(
1425 lookupOperandLeader(DepSI->getValueOperand()))) {
1426 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1427 << " to constant " << *C << "\n");
1428 return createConstantExpression(
1429 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1430 }
1431 }
1432 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1433 // Can't forward from non-atomic to atomic without violating memory model.
1434 if (LI->isAtomic() > DepLI->isAtomic())
1435 return nullptr;
1436 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1437 if (Offset >= 0) {
1438 // We can coerce a constant load into a load.
1439 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1440 if (auto *PossibleConstant =
1441 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1442 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1443 << " to constant " << *PossibleConstant << "\n");
1444 return createConstantExpression(PossibleConstant);
1445 }
1446 }
1447 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1448 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1449 if (Offset >= 0) {
1450 if (auto *PossibleConstant =
1451 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1452 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1453 << " to constant " << *PossibleConstant << "\n");
1454 return createConstantExpression(PossibleConstant);
1455 }
1456 }
1457 }
1458
1459 // All of the below are only true if the loaded pointer is produced
1460 // by the dependent instruction.
1461 if (LoadPtr != lookupOperandLeader(DepInst) &&
1462 !AA->isMustAlias(LoadPtr, DepInst))
1463 return nullptr;
1464 // If this load really doesn't depend on anything, then we must be loading an
1465 // undef value. This can happen when loading for a fresh allocation with no
1466 // intervening stores, for example. Note that this is only true in the case
1467 // that the result of the allocation is pointer equal to the load ptr.
1468 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1469 return createConstantExpression(UndefValue::get(LoadType));
1470 }
1471 // If this load occurs either right after a lifetime begin,
1472 // then the loaded value is undefined.
1473 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1474 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1475 return createConstantExpression(UndefValue::get(LoadType));
1476 }
1477 // If this load follows a calloc (which zero initializes memory),
1478 // then the loaded value is zero
1479 else if (isCallocLikeFn(DepInst, TLI)) {
1480 return createConstantExpression(Constant::getNullValue(LoadType));
1481 }
1482
1483 return nullptr;
1484 }
1485
performSymbolicLoadEvaluation(Instruction * I) const1486 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1487 auto *LI = cast<LoadInst>(I);
1488
1489 // We can eliminate in favor of non-simple loads, but we won't be able to
1490 // eliminate the loads themselves.
1491 if (!LI->isSimple())
1492 return nullptr;
1493
1494 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1495 // Load of undef is undef.
1496 if (isa<UndefValue>(LoadAddressLeader))
1497 return createConstantExpression(UndefValue::get(LI->getType()));
1498 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1499 MemoryAccess *DefiningAccess =
1500 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1501
1502 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1503 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1504 Instruction *DefiningInst = MD->getMemoryInst();
1505 // If the defining instruction is not reachable, replace with undef.
1506 if (!ReachableBlocks.count(DefiningInst->getParent()))
1507 return createConstantExpression(UndefValue::get(LI->getType()));
1508 // This will handle stores and memory insts. We only do if it the
1509 // defining access has a different type, or it is a pointer produced by
1510 // certain memory operations that cause the memory to have a fixed value
1511 // (IE things like calloc).
1512 if (const auto *CoercionResult =
1513 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1514 DefiningInst, DefiningAccess))
1515 return CoercionResult;
1516 }
1517 }
1518
1519 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1520 DefiningAccess);
1521 // If our MemoryLeader is not our defining access, add a use to the
1522 // MemoryLeader, so that we get reprocessed when it changes.
1523 if (LE->getMemoryLeader() != DefiningAccess)
1524 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1525 return LE;
1526 }
1527
1528 const Expression *
performSymbolicPredicateInfoEvaluation(Instruction * I) const1529 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1530 auto *PI = PredInfo->getPredicateInfoFor(I);
1531 if (!PI)
1532 return nullptr;
1533
1534 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1535
1536 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1537 if (!PWC)
1538 return nullptr;
1539
1540 auto *CopyOf = I->getOperand(0);
1541 auto *Cond = PWC->Condition;
1542
1543 // If this a copy of the condition, it must be either true or false depending
1544 // on the predicate info type and edge.
1545 if (CopyOf == Cond) {
1546 // We should not need to add predicate users because the predicate info is
1547 // already a use of this operand.
1548 if (isa<PredicateAssume>(PI))
1549 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1550 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1551 if (PBranch->TrueEdge)
1552 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1553 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1554 }
1555 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1556 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1557 }
1558
1559 // Not a copy of the condition, so see what the predicates tell us about this
1560 // value. First, though, we check to make sure the value is actually a copy
1561 // of one of the condition operands. It's possible, in certain cases, for it
1562 // to be a copy of a predicateinfo copy. In particular, if two branch
1563 // operations use the same condition, and one branch dominates the other, we
1564 // will end up with a copy of a copy. This is currently a small deficiency in
1565 // predicateinfo. What will end up happening here is that we will value
1566 // number both copies the same anyway.
1567
1568 // Everything below relies on the condition being a comparison.
1569 auto *Cmp = dyn_cast<CmpInst>(Cond);
1570 if (!Cmp)
1571 return nullptr;
1572
1573 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1574 LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1575 return nullptr;
1576 }
1577 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1578 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1579 bool SwappedOps = false;
1580 // Sort the ops.
1581 if (shouldSwapOperands(FirstOp, SecondOp)) {
1582 std::swap(FirstOp, SecondOp);
1583 SwappedOps = true;
1584 }
1585 CmpInst::Predicate Predicate =
1586 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1587
1588 if (isa<PredicateAssume>(PI)) {
1589 // If we assume the operands are equal, then they are equal.
1590 if (Predicate == CmpInst::ICMP_EQ) {
1591 addPredicateUsers(PI, I);
1592 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1593 I);
1594 return createVariableOrConstant(FirstOp);
1595 }
1596 }
1597 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1598 // If we are *not* a copy of the comparison, we may equal to the other
1599 // operand when the predicate implies something about equality of
1600 // operations. In particular, if the comparison is true/false when the
1601 // operands are equal, and we are on the right edge, we know this operation
1602 // is equal to something.
1603 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1604 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1605 addPredicateUsers(PI, I);
1606 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1607 I);
1608 return createVariableOrConstant(FirstOp);
1609 }
1610 // Handle the special case of floating point.
1611 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1612 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1613 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1614 addPredicateUsers(PI, I);
1615 addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1616 I);
1617 return createConstantExpression(cast<Constant>(FirstOp));
1618 }
1619 }
1620 return nullptr;
1621 }
1622
1623 // Evaluate read only and pure calls, and create an expression result.
performSymbolicCallEvaluation(Instruction * I) const1624 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1625 auto *CI = cast<CallInst>(I);
1626 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1627 // Intrinsics with the returned attribute are copies of arguments.
1628 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1629 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1630 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1631 return Result;
1632 return createVariableOrConstant(ReturnedValue);
1633 }
1634 }
1635 if (AA->doesNotAccessMemory(CI)) {
1636 return createCallExpression(CI, TOPClass->getMemoryLeader());
1637 } else if (AA->onlyReadsMemory(CI)) {
1638 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
1639 return createCallExpression(CI, DefiningAccess);
1640 }
1641 return nullptr;
1642 }
1643
1644 // Retrieve the memory class for a given MemoryAccess.
getMemoryClass(const MemoryAccess * MA) const1645 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1646 auto *Result = MemoryAccessToClass.lookup(MA);
1647 assert(Result && "Should have found memory class");
1648 return Result;
1649 }
1650
1651 // Update the MemoryAccess equivalence table to say that From is equal to To,
1652 // and return true if this is different from what already existed in the table.
setMemoryClass(const MemoryAccess * From,CongruenceClass * NewClass)1653 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1654 CongruenceClass *NewClass) {
1655 assert(NewClass &&
1656 "Every MemoryAccess should be getting mapped to a non-null class");
1657 LLVM_DEBUG(dbgs() << "Setting " << *From);
1658 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1659 LLVM_DEBUG(dbgs() << NewClass->getID()
1660 << " with current MemoryAccess leader ");
1661 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1662
1663 auto LookupResult = MemoryAccessToClass.find(From);
1664 bool Changed = false;
1665 // If it's already in the table, see if the value changed.
1666 if (LookupResult != MemoryAccessToClass.end()) {
1667 auto *OldClass = LookupResult->second;
1668 if (OldClass != NewClass) {
1669 // If this is a phi, we have to handle memory member updates.
1670 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1671 OldClass->memory_erase(MP);
1672 NewClass->memory_insert(MP);
1673 // This may have killed the class if it had no non-memory members
1674 if (OldClass->getMemoryLeader() == From) {
1675 if (OldClass->definesNoMemory()) {
1676 OldClass->setMemoryLeader(nullptr);
1677 } else {
1678 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1679 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1680 << OldClass->getID() << " to "
1681 << *OldClass->getMemoryLeader()
1682 << " due to removal of a memory member " << *From
1683 << "\n");
1684 markMemoryLeaderChangeTouched(OldClass);
1685 }
1686 }
1687 }
1688 // It wasn't equivalent before, and now it is.
1689 LookupResult->second = NewClass;
1690 Changed = true;
1691 }
1692 }
1693
1694 return Changed;
1695 }
1696
1697 // Determine if a instruction is cycle-free. That means the values in the
1698 // instruction don't depend on any expressions that can change value as a result
1699 // of the instruction. For example, a non-cycle free instruction would be v =
1700 // phi(0, v+1).
isCycleFree(const Instruction * I) const1701 bool NewGVN::isCycleFree(const Instruction *I) const {
1702 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1703 // and see what kind of SCC it ends up in. If it is a singleton, it is
1704 // cycle-free. If it is not in a singleton, it is only cycle free if the
1705 // other members are all phi nodes (as they do not compute anything, they are
1706 // copies).
1707 auto ICS = InstCycleState.lookup(I);
1708 if (ICS == ICS_Unknown) {
1709 SCCFinder.Start(I);
1710 auto &SCC = SCCFinder.getComponentFor(I);
1711 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1712 if (SCC.size() == 1)
1713 InstCycleState.insert({I, ICS_CycleFree});
1714 else {
1715 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1716 return isa<PHINode>(V) || isCopyOfAPHI(V);
1717 });
1718 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1719 for (auto *Member : SCC)
1720 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1721 InstCycleState.insert({MemberPhi, ICS});
1722 }
1723 }
1724 if (ICS == ICS_Cycle)
1725 return false;
1726 return true;
1727 }
1728
1729 // Evaluate PHI nodes symbolically and create an expression result.
1730 const Expression *
performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,Instruction * I,BasicBlock * PHIBlock) const1731 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1732 Instruction *I,
1733 BasicBlock *PHIBlock) const {
1734 // True if one of the incoming phi edges is a backedge.
1735 bool HasBackedge = false;
1736 // All constant tracks the state of whether all the *original* phi operands
1737 // This is really shorthand for "this phi cannot cycle due to forward
1738 // change in value of the phi is guaranteed not to later change the value of
1739 // the phi. IE it can't be v = phi(undef, v+1)
1740 bool OriginalOpsConstant = true;
1741 auto *E = cast<PHIExpression>(createPHIExpression(
1742 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1743 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1744 // See if all arguments are the same.
1745 // We track if any were undef because they need special handling.
1746 bool HasUndef = false;
1747 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1748 if (isa<UndefValue>(Arg)) {
1749 HasUndef = true;
1750 return false;
1751 }
1752 return true;
1753 });
1754 // If we are left with no operands, it's dead.
1755 if (Filtered.begin() == Filtered.end()) {
1756 // If it has undef at this point, it means there are no-non-undef arguments,
1757 // and thus, the value of the phi node must be undef.
1758 if (HasUndef) {
1759 LLVM_DEBUG(
1760 dbgs() << "PHI Node " << *I
1761 << " has no non-undef arguments, valuing it as undef\n");
1762 return createConstantExpression(UndefValue::get(I->getType()));
1763 }
1764
1765 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1766 deleteExpression(E);
1767 return createDeadExpression();
1768 }
1769 Value *AllSameValue = *(Filtered.begin());
1770 ++Filtered.begin();
1771 // Can't use std::equal here, sadly, because filter.begin moves.
1772 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1773 // In LLVM's non-standard representation of phi nodes, it's possible to have
1774 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1775 // on the original phi node), especially in weird CFG's where some arguments
1776 // are unreachable, or uninitialized along certain paths. This can cause
1777 // infinite loops during evaluation. We work around this by not trying to
1778 // really evaluate them independently, but instead using a variable
1779 // expression to say if one is equivalent to the other.
1780 // We also special case undef, so that if we have an undef, we can't use the
1781 // common value unless it dominates the phi block.
1782 if (HasUndef) {
1783 // If we have undef and at least one other value, this is really a
1784 // multivalued phi, and we need to know if it's cycle free in order to
1785 // evaluate whether we can ignore the undef. The other parts of this are
1786 // just shortcuts. If there is no backedge, or all operands are
1787 // constants, it also must be cycle free.
1788 if (HasBackedge && !OriginalOpsConstant &&
1789 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1790 return E;
1791
1792 // Only have to check for instructions
1793 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1794 if (!someEquivalentDominates(AllSameInst, I))
1795 return E;
1796 }
1797 // Can't simplify to something that comes later in the iteration.
1798 // Otherwise, when and if it changes congruence class, we will never catch
1799 // up. We will always be a class behind it.
1800 if (isa<Instruction>(AllSameValue) &&
1801 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1802 return E;
1803 NumGVNPhisAllSame++;
1804 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1805 << "\n");
1806 deleteExpression(E);
1807 return createVariableOrConstant(AllSameValue);
1808 }
1809 return E;
1810 }
1811
1812 const Expression *
performSymbolicAggrValueEvaluation(Instruction * I) const1813 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1814 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1815 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1816 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1817 unsigned Opcode = 0;
1818 // EI might be an extract from one of our recognised intrinsics. If it
1819 // is we'll synthesize a semantically equivalent expression instead on
1820 // an extract value expression.
1821 switch (II->getIntrinsicID()) {
1822 case Intrinsic::sadd_with_overflow:
1823 case Intrinsic::uadd_with_overflow:
1824 Opcode = Instruction::Add;
1825 break;
1826 case Intrinsic::ssub_with_overflow:
1827 case Intrinsic::usub_with_overflow:
1828 Opcode = Instruction::Sub;
1829 break;
1830 case Intrinsic::smul_with_overflow:
1831 case Intrinsic::umul_with_overflow:
1832 Opcode = Instruction::Mul;
1833 break;
1834 default:
1835 break;
1836 }
1837
1838 if (Opcode != 0) {
1839 // Intrinsic recognized. Grab its args to finish building the
1840 // expression.
1841 assert(II->getNumArgOperands() == 2 &&
1842 "Expect two args for recognised intrinsics.");
1843 return createBinaryExpression(Opcode, EI->getType(),
1844 II->getArgOperand(0),
1845 II->getArgOperand(1), I);
1846 }
1847 }
1848 }
1849
1850 return createAggregateValueExpression(I);
1851 }
1852
performSymbolicCmpEvaluation(Instruction * I) const1853 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1854 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1855
1856 auto *CI = cast<CmpInst>(I);
1857 // See if our operands are equal to those of a previous predicate, and if so,
1858 // if it implies true or false.
1859 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1860 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1861 auto OurPredicate = CI->getPredicate();
1862 if (shouldSwapOperands(Op0, Op1)) {
1863 std::swap(Op0, Op1);
1864 OurPredicate = CI->getSwappedPredicate();
1865 }
1866
1867 // Avoid processing the same info twice.
1868 const PredicateBase *LastPredInfo = nullptr;
1869 // See if we know something about the comparison itself, like it is the target
1870 // of an assume.
1871 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1872 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1873 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1874
1875 if (Op0 == Op1) {
1876 // This condition does not depend on predicates, no need to add users
1877 if (CI->isTrueWhenEqual())
1878 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1879 else if (CI->isFalseWhenEqual())
1880 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1881 }
1882
1883 // NOTE: Because we are comparing both operands here and below, and using
1884 // previous comparisons, we rely on fact that predicateinfo knows to mark
1885 // comparisons that use renamed operands as users of the earlier comparisons.
1886 // It is *not* enough to just mark predicateinfo renamed operands as users of
1887 // the earlier comparisons, because the *other* operand may have changed in a
1888 // previous iteration.
1889 // Example:
1890 // icmp slt %a, %b
1891 // %b.0 = ssa.copy(%b)
1892 // false branch:
1893 // icmp slt %c, %b.0
1894
1895 // %c and %a may start out equal, and thus, the code below will say the second
1896 // %icmp is false. c may become equal to something else, and in that case the
1897 // %second icmp *must* be reexamined, but would not if only the renamed
1898 // %operands are considered users of the icmp.
1899
1900 // *Currently* we only check one level of comparisons back, and only mark one
1901 // level back as touched when changes happen. If you modify this code to look
1902 // back farther through comparisons, you *must* mark the appropriate
1903 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1904 // we know something just from the operands themselves
1905
1906 // See if our operands have predicate info, so that we may be able to derive
1907 // something from a previous comparison.
1908 for (const auto &Op : CI->operands()) {
1909 auto *PI = PredInfo->getPredicateInfoFor(Op);
1910 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1911 if (PI == LastPredInfo)
1912 continue;
1913 LastPredInfo = PI;
1914 // In phi of ops cases, we may have predicate info that we are evaluating
1915 // in a different context.
1916 if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1917 continue;
1918 // TODO: Along the false edge, we may know more things too, like
1919 // icmp of
1920 // same operands is false.
1921 // TODO: We only handle actual comparison conditions below, not
1922 // and/or.
1923 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1924 if (!BranchCond)
1925 continue;
1926 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1927 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1928 auto BranchPredicate = BranchCond->getPredicate();
1929 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1930 std::swap(BranchOp0, BranchOp1);
1931 BranchPredicate = BranchCond->getSwappedPredicate();
1932 }
1933 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1934 if (PBranch->TrueEdge) {
1935 // If we know the previous predicate is true and we are in the true
1936 // edge then we may be implied true or false.
1937 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1938 OurPredicate)) {
1939 addPredicateUsers(PI, I);
1940 return createConstantExpression(
1941 ConstantInt::getTrue(CI->getType()));
1942 }
1943
1944 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1945 OurPredicate)) {
1946 addPredicateUsers(PI, I);
1947 return createConstantExpression(
1948 ConstantInt::getFalse(CI->getType()));
1949 }
1950 } else {
1951 // Just handle the ne and eq cases, where if we have the same
1952 // operands, we may know something.
1953 if (BranchPredicate == OurPredicate) {
1954 addPredicateUsers(PI, I);
1955 // Same predicate, same ops,we know it was false, so this is false.
1956 return createConstantExpression(
1957 ConstantInt::getFalse(CI->getType()));
1958 } else if (BranchPredicate ==
1959 CmpInst::getInversePredicate(OurPredicate)) {
1960 addPredicateUsers(PI, I);
1961 // Inverse predicate, we know the other was false, so this is true.
1962 return createConstantExpression(
1963 ConstantInt::getTrue(CI->getType()));
1964 }
1965 }
1966 }
1967 }
1968 }
1969 // Create expression will take care of simplifyCmpInst
1970 return createExpression(I);
1971 }
1972
1973 // Substitute and symbolize the value before value numbering.
1974 const Expression *
performSymbolicEvaluation(Value * V,SmallPtrSetImpl<Value * > & Visited) const1975 NewGVN::performSymbolicEvaluation(Value *V,
1976 SmallPtrSetImpl<Value *> &Visited) const {
1977 const Expression *E = nullptr;
1978 if (auto *C = dyn_cast<Constant>(V))
1979 E = createConstantExpression(C);
1980 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1981 E = createVariableExpression(V);
1982 } else {
1983 // TODO: memory intrinsics.
1984 // TODO: Some day, we should do the forward propagation and reassociation
1985 // parts of the algorithm.
1986 auto *I = cast<Instruction>(V);
1987 switch (I->getOpcode()) {
1988 case Instruction::ExtractValue:
1989 case Instruction::InsertValue:
1990 E = performSymbolicAggrValueEvaluation(I);
1991 break;
1992 case Instruction::PHI: {
1993 SmallVector<ValPair, 3> Ops;
1994 auto *PN = cast<PHINode>(I);
1995 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1996 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1997 // Sort to ensure the invariant createPHIExpression requires is met.
1998 sortPHIOps(Ops);
1999 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
2000 } break;
2001 case Instruction::Call:
2002 E = performSymbolicCallEvaluation(I);
2003 break;
2004 case Instruction::Store:
2005 E = performSymbolicStoreEvaluation(I);
2006 break;
2007 case Instruction::Load:
2008 E = performSymbolicLoadEvaluation(I);
2009 break;
2010 case Instruction::BitCast:
2011 E = createExpression(I);
2012 break;
2013 case Instruction::ICmp:
2014 case Instruction::FCmp:
2015 E = performSymbolicCmpEvaluation(I);
2016 break;
2017 case Instruction::Add:
2018 case Instruction::FAdd:
2019 case Instruction::Sub:
2020 case Instruction::FSub:
2021 case Instruction::Mul:
2022 case Instruction::FMul:
2023 case Instruction::UDiv:
2024 case Instruction::SDiv:
2025 case Instruction::FDiv:
2026 case Instruction::URem:
2027 case Instruction::SRem:
2028 case Instruction::FRem:
2029 case Instruction::Shl:
2030 case Instruction::LShr:
2031 case Instruction::AShr:
2032 case Instruction::And:
2033 case Instruction::Or:
2034 case Instruction::Xor:
2035 case Instruction::Trunc:
2036 case Instruction::ZExt:
2037 case Instruction::SExt:
2038 case Instruction::FPToUI:
2039 case Instruction::FPToSI:
2040 case Instruction::UIToFP:
2041 case Instruction::SIToFP:
2042 case Instruction::FPTrunc:
2043 case Instruction::FPExt:
2044 case Instruction::PtrToInt:
2045 case Instruction::IntToPtr:
2046 case Instruction::Select:
2047 case Instruction::ExtractElement:
2048 case Instruction::InsertElement:
2049 case Instruction::ShuffleVector:
2050 case Instruction::GetElementPtr:
2051 E = createExpression(I);
2052 break;
2053 default:
2054 return nullptr;
2055 }
2056 }
2057 return E;
2058 }
2059
2060 // Look up a container in a map, and then call a function for each thing in the
2061 // found container.
2062 template <typename Map, typename KeyType, typename Func>
for_each_found(Map & M,const KeyType & Key,Func F)2063 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2064 const auto Result = M.find_as(Key);
2065 if (Result != M.end())
2066 for (typename Map::mapped_type::value_type Mapped : Result->second)
2067 F(Mapped);
2068 }
2069
2070 // Look up a container of values/instructions in a map, and touch all the
2071 // instructions in the container. Then erase value from the map.
2072 template <typename Map, typename KeyType>
touchAndErase(Map & M,const KeyType & Key)2073 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2074 const auto Result = M.find_as(Key);
2075 if (Result != M.end()) {
2076 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2077 TouchedInstructions.set(InstrToDFSNum(Mapped));
2078 M.erase(Result);
2079 }
2080 }
2081
addAdditionalUsers(Value * To,Value * User) const2082 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2083 assert(User && To != User);
2084 if (isa<Instruction>(To))
2085 AdditionalUsers[To].insert(User);
2086 }
2087
markUsersTouched(Value * V)2088 void NewGVN::markUsersTouched(Value *V) {
2089 // Now mark the users as touched.
2090 for (auto *User : V->users()) {
2091 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2092 TouchedInstructions.set(InstrToDFSNum(User));
2093 }
2094 touchAndErase(AdditionalUsers, V);
2095 }
2096
addMemoryUsers(const MemoryAccess * To,MemoryAccess * U) const2097 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2098 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2099 MemoryToUsers[To].insert(U);
2100 }
2101
markMemoryDefTouched(const MemoryAccess * MA)2102 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2103 TouchedInstructions.set(MemoryToDFSNum(MA));
2104 }
2105
markMemoryUsersTouched(const MemoryAccess * MA)2106 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2107 if (isa<MemoryUse>(MA))
2108 return;
2109 for (auto U : MA->users())
2110 TouchedInstructions.set(MemoryToDFSNum(U));
2111 touchAndErase(MemoryToUsers, MA);
2112 }
2113
2114 // Add I to the set of users of a given predicate.
addPredicateUsers(const PredicateBase * PB,Instruction * I) const2115 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2116 // Don't add temporary instructions to the user lists.
2117 if (AllTempInstructions.count(I))
2118 return;
2119
2120 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2121 PredicateToUsers[PBranch->Condition].insert(I);
2122 else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
2123 PredicateToUsers[PAssume->Condition].insert(I);
2124 }
2125
2126 // Touch all the predicates that depend on this instruction.
markPredicateUsersTouched(Instruction * I)2127 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2128 touchAndErase(PredicateToUsers, I);
2129 }
2130
2131 // Mark users affected by a memory leader change.
markMemoryLeaderChangeTouched(CongruenceClass * CC)2132 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2133 for (auto M : CC->memory())
2134 markMemoryDefTouched(M);
2135 }
2136
2137 // Touch the instructions that need to be updated after a congruence class has a
2138 // leader change, and mark changed values.
markValueLeaderChangeTouched(CongruenceClass * CC)2139 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2140 for (auto M : *CC) {
2141 if (auto *I = dyn_cast<Instruction>(M))
2142 TouchedInstructions.set(InstrToDFSNum(I));
2143 LeaderChanges.insert(M);
2144 }
2145 }
2146
2147 // Give a range of things that have instruction DFS numbers, this will return
2148 // the member of the range with the smallest dfs number.
2149 template <class T, class Range>
getMinDFSOfRange(const Range & R) const2150 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2151 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2152 for (const auto X : R) {
2153 auto DFSNum = InstrToDFSNum(X);
2154 if (DFSNum < MinDFS.second)
2155 MinDFS = {X, DFSNum};
2156 }
2157 return MinDFS.first;
2158 }
2159
2160 // This function returns the MemoryAccess that should be the next leader of
2161 // congruence class CC, under the assumption that the current leader is going to
2162 // disappear.
getNextMemoryLeader(CongruenceClass * CC) const2163 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2164 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2165 // do for regular leaders.
2166 // Make sure there will be a leader to find.
2167 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2168 if (CC->getStoreCount() > 0) {
2169 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2170 return getMemoryAccess(NL);
2171 // Find the store with the minimum DFS number.
2172 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2173 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2174 return getMemoryAccess(cast<StoreInst>(V));
2175 }
2176 assert(CC->getStoreCount() == 0);
2177
2178 // Given our assertion, hitting this part must mean
2179 // !OldClass->memory_empty()
2180 if (CC->memory_size() == 1)
2181 return *CC->memory_begin();
2182 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2183 }
2184
2185 // This function returns the next value leader of a congruence class, under the
2186 // assumption that the current leader is going away. This should end up being
2187 // the next most dominating member.
getNextValueLeader(CongruenceClass * CC) const2188 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2189 // We don't need to sort members if there is only 1, and we don't care about
2190 // sorting the TOP class because everything either gets out of it or is
2191 // unreachable.
2192
2193 if (CC->size() == 1 || CC == TOPClass) {
2194 return *(CC->begin());
2195 } else if (CC->getNextLeader().first) {
2196 ++NumGVNAvoidedSortedLeaderChanges;
2197 return CC->getNextLeader().first;
2198 } else {
2199 ++NumGVNSortedLeaderChanges;
2200 // NOTE: If this ends up to slow, we can maintain a dual structure for
2201 // member testing/insertion, or keep things mostly sorted, and sort only
2202 // here, or use SparseBitVector or ....
2203 return getMinDFSOfRange<Value>(*CC);
2204 }
2205 }
2206
2207 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2208 // the memory members, etc for the move.
2209 //
2210 // The invariants of this function are:
2211 //
2212 // - I must be moving to NewClass from OldClass
2213 // - The StoreCount of OldClass and NewClass is expected to have been updated
2214 // for I already if it is a store.
2215 // - The OldClass memory leader has not been updated yet if I was the leader.
moveMemoryToNewCongruenceClass(Instruction * I,MemoryAccess * InstMA,CongruenceClass * OldClass,CongruenceClass * NewClass)2216 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2217 MemoryAccess *InstMA,
2218 CongruenceClass *OldClass,
2219 CongruenceClass *NewClass) {
2220 // If the leader is I, and we had a representative MemoryAccess, it should
2221 // be the MemoryAccess of OldClass.
2222 assert((!InstMA || !OldClass->getMemoryLeader() ||
2223 OldClass->getLeader() != I ||
2224 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2225 MemoryAccessToClass.lookup(InstMA)) &&
2226 "Representative MemoryAccess mismatch");
2227 // First, see what happens to the new class
2228 if (!NewClass->getMemoryLeader()) {
2229 // Should be a new class, or a store becoming a leader of a new class.
2230 assert(NewClass->size() == 1 ||
2231 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2232 NewClass->setMemoryLeader(InstMA);
2233 // Mark it touched if we didn't just create a singleton
2234 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2235 << NewClass->getID()
2236 << " due to new memory instruction becoming leader\n");
2237 markMemoryLeaderChangeTouched(NewClass);
2238 }
2239 setMemoryClass(InstMA, NewClass);
2240 // Now, fixup the old class if necessary
2241 if (OldClass->getMemoryLeader() == InstMA) {
2242 if (!OldClass->definesNoMemory()) {
2243 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2244 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2245 << OldClass->getID() << " to "
2246 << *OldClass->getMemoryLeader()
2247 << " due to removal of old leader " << *InstMA << "\n");
2248 markMemoryLeaderChangeTouched(OldClass);
2249 } else
2250 OldClass->setMemoryLeader(nullptr);
2251 }
2252 }
2253
2254 // Move a value, currently in OldClass, to be part of NewClass
2255 // Update OldClass and NewClass for the move (including changing leaders, etc).
moveValueToNewCongruenceClass(Instruction * I,const Expression * E,CongruenceClass * OldClass,CongruenceClass * NewClass)2256 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2257 CongruenceClass *OldClass,
2258 CongruenceClass *NewClass) {
2259 if (I == OldClass->getNextLeader().first)
2260 OldClass->resetNextLeader();
2261
2262 OldClass->erase(I);
2263 NewClass->insert(I);
2264
2265 if (NewClass->getLeader() != I)
2266 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2267 // Handle our special casing of stores.
2268 if (auto *SI = dyn_cast<StoreInst>(I)) {
2269 OldClass->decStoreCount();
2270 // Okay, so when do we want to make a store a leader of a class?
2271 // If we have a store defined by an earlier load, we want the earlier load
2272 // to lead the class.
2273 // If we have a store defined by something else, we want the store to lead
2274 // the class so everything else gets the "something else" as a value.
2275 // If we have a store as the single member of the class, we want the store
2276 // as the leader
2277 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2278 // If it's a store expression we are using, it means we are not equivalent
2279 // to something earlier.
2280 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2281 NewClass->setStoredValue(SE->getStoredValue());
2282 markValueLeaderChangeTouched(NewClass);
2283 // Shift the new class leader to be the store
2284 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2285 << NewClass->getID() << " from "
2286 << *NewClass->getLeader() << " to " << *SI
2287 << " because store joined class\n");
2288 // If we changed the leader, we have to mark it changed because we don't
2289 // know what it will do to symbolic evaluation.
2290 NewClass->setLeader(SI);
2291 }
2292 // We rely on the code below handling the MemoryAccess change.
2293 }
2294 NewClass->incStoreCount();
2295 }
2296 // True if there is no memory instructions left in a class that had memory
2297 // instructions before.
2298
2299 // If it's not a memory use, set the MemoryAccess equivalence
2300 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2301 if (InstMA)
2302 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2303 ValueToClass[I] = NewClass;
2304 // See if we destroyed the class or need to swap leaders.
2305 if (OldClass->empty() && OldClass != TOPClass) {
2306 if (OldClass->getDefiningExpr()) {
2307 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2308 << " from table\n");
2309 // We erase it as an exact expression to make sure we don't just erase an
2310 // equivalent one.
2311 auto Iter = ExpressionToClass.find_as(
2312 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2313 if (Iter != ExpressionToClass.end())
2314 ExpressionToClass.erase(Iter);
2315 #ifdef EXPENSIVE_CHECKS
2316 assert(
2317 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2318 "We erased the expression we just inserted, which should not happen");
2319 #endif
2320 }
2321 } else if (OldClass->getLeader() == I) {
2322 // When the leader changes, the value numbering of
2323 // everything may change due to symbolization changes, so we need to
2324 // reprocess.
2325 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2326 << OldClass->getID() << "\n");
2327 ++NumGVNLeaderChanges;
2328 // Destroy the stored value if there are no more stores to represent it.
2329 // Note that this is basically clean up for the expression removal that
2330 // happens below. If we remove stores from a class, we may leave it as a
2331 // class of equivalent memory phis.
2332 if (OldClass->getStoreCount() == 0) {
2333 if (OldClass->getStoredValue())
2334 OldClass->setStoredValue(nullptr);
2335 }
2336 OldClass->setLeader(getNextValueLeader(OldClass));
2337 OldClass->resetNextLeader();
2338 markValueLeaderChangeTouched(OldClass);
2339 }
2340 }
2341
2342 // For a given expression, mark the phi of ops instructions that could have
2343 // changed as a result.
markPhiOfOpsChanged(const Expression * E)2344 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2345 touchAndErase(ExpressionToPhiOfOps, E);
2346 }
2347
2348 // Perform congruence finding on a given value numbering expression.
performCongruenceFinding(Instruction * I,const Expression * E)2349 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2350 // This is guaranteed to return something, since it will at least find
2351 // TOP.
2352
2353 CongruenceClass *IClass = ValueToClass.lookup(I);
2354 assert(IClass && "Should have found a IClass");
2355 // Dead classes should have been eliminated from the mapping.
2356 assert(!IClass->isDead() && "Found a dead class");
2357
2358 CongruenceClass *EClass = nullptr;
2359 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2360 EClass = ValueToClass.lookup(VE->getVariableValue());
2361 } else if (isa<DeadExpression>(E)) {
2362 EClass = TOPClass;
2363 }
2364 if (!EClass) {
2365 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2366
2367 // If it's not in the value table, create a new congruence class.
2368 if (lookupResult.second) {
2369 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2370 auto place = lookupResult.first;
2371 place->second = NewClass;
2372
2373 // Constants and variables should always be made the leader.
2374 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2375 NewClass->setLeader(CE->getConstantValue());
2376 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2377 StoreInst *SI = SE->getStoreInst();
2378 NewClass->setLeader(SI);
2379 NewClass->setStoredValue(SE->getStoredValue());
2380 // The RepMemoryAccess field will be filled in properly by the
2381 // moveValueToNewCongruenceClass call.
2382 } else {
2383 NewClass->setLeader(I);
2384 }
2385 assert(!isa<VariableExpression>(E) &&
2386 "VariableExpression should have been handled already");
2387
2388 EClass = NewClass;
2389 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2390 << " using expression " << *E << " at "
2391 << NewClass->getID() << " and leader "
2392 << *(NewClass->getLeader()));
2393 if (NewClass->getStoredValue())
2394 LLVM_DEBUG(dbgs() << " and stored value "
2395 << *(NewClass->getStoredValue()));
2396 LLVM_DEBUG(dbgs() << "\n");
2397 } else {
2398 EClass = lookupResult.first->second;
2399 if (isa<ConstantExpression>(E))
2400 assert((isa<Constant>(EClass->getLeader()) ||
2401 (EClass->getStoredValue() &&
2402 isa<Constant>(EClass->getStoredValue()))) &&
2403 "Any class with a constant expression should have a "
2404 "constant leader");
2405
2406 assert(EClass && "Somehow don't have an eclass");
2407
2408 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2409 }
2410 }
2411 bool ClassChanged = IClass != EClass;
2412 bool LeaderChanged = LeaderChanges.erase(I);
2413 if (ClassChanged || LeaderChanged) {
2414 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2415 << *E << "\n");
2416 if (ClassChanged) {
2417 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2418 markPhiOfOpsChanged(E);
2419 }
2420
2421 markUsersTouched(I);
2422 if (MemoryAccess *MA = getMemoryAccess(I))
2423 markMemoryUsersTouched(MA);
2424 if (auto *CI = dyn_cast<CmpInst>(I))
2425 markPredicateUsersTouched(CI);
2426 }
2427 // If we changed the class of the store, we want to ensure nothing finds the
2428 // old store expression. In particular, loads do not compare against stored
2429 // value, so they will find old store expressions (and associated class
2430 // mappings) if we leave them in the table.
2431 if (ClassChanged && isa<StoreInst>(I)) {
2432 auto *OldE = ValueToExpression.lookup(I);
2433 // It could just be that the old class died. We don't want to erase it if we
2434 // just moved classes.
2435 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2436 // Erase this as an exact expression to ensure we don't erase expressions
2437 // equivalent to it.
2438 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2439 if (Iter != ExpressionToClass.end())
2440 ExpressionToClass.erase(Iter);
2441 }
2442 }
2443 ValueToExpression[I] = E;
2444 }
2445
2446 // Process the fact that Edge (from, to) is reachable, including marking
2447 // any newly reachable blocks and instructions for processing.
updateReachableEdge(BasicBlock * From,BasicBlock * To)2448 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2449 // Check if the Edge was reachable before.
2450 if (ReachableEdges.insert({From, To}).second) {
2451 // If this block wasn't reachable before, all instructions are touched.
2452 if (ReachableBlocks.insert(To).second) {
2453 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2454 << " marked reachable\n");
2455 const auto &InstRange = BlockInstRange.lookup(To);
2456 TouchedInstructions.set(InstRange.first, InstRange.second);
2457 } else {
2458 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2459 << " was reachable, but new edge {"
2460 << getBlockName(From) << "," << getBlockName(To)
2461 << "} to it found\n");
2462
2463 // We've made an edge reachable to an existing block, which may
2464 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2465 // they are the only thing that depend on new edges. Anything using their
2466 // values will get propagated to if necessary.
2467 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2468 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2469
2470 // FIXME: We should just add a union op on a Bitvector and
2471 // SparseBitVector. We can do it word by word faster than we are doing it
2472 // here.
2473 for (auto InstNum : RevisitOnReachabilityChange[To])
2474 TouchedInstructions.set(InstNum);
2475 }
2476 }
2477 }
2478
2479 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2480 // see if we know some constant value for it already.
findConditionEquivalence(Value * Cond) const2481 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2482 auto Result = lookupOperandLeader(Cond);
2483 return isa<Constant>(Result) ? Result : nullptr;
2484 }
2485
2486 // Process the outgoing edges of a block for reachability.
processOutgoingEdges(TerminatorInst * TI,BasicBlock * B)2487 void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
2488 // Evaluate reachability of terminator instruction.
2489 BranchInst *BR;
2490 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2491 Value *Cond = BR->getCondition();
2492 Value *CondEvaluated = findConditionEquivalence(Cond);
2493 if (!CondEvaluated) {
2494 if (auto *I = dyn_cast<Instruction>(Cond)) {
2495 const Expression *E = createExpression(I);
2496 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2497 CondEvaluated = CE->getConstantValue();
2498 }
2499 } else if (isa<ConstantInt>(Cond)) {
2500 CondEvaluated = Cond;
2501 }
2502 }
2503 ConstantInt *CI;
2504 BasicBlock *TrueSucc = BR->getSuccessor(0);
2505 BasicBlock *FalseSucc = BR->getSuccessor(1);
2506 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2507 if (CI->isOne()) {
2508 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2509 << " evaluated to true\n");
2510 updateReachableEdge(B, TrueSucc);
2511 } else if (CI->isZero()) {
2512 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2513 << " evaluated to false\n");
2514 updateReachableEdge(B, FalseSucc);
2515 }
2516 } else {
2517 updateReachableEdge(B, TrueSucc);
2518 updateReachableEdge(B, FalseSucc);
2519 }
2520 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2521 // For switches, propagate the case values into the case
2522 // destinations.
2523
2524 // Remember how many outgoing edges there are to every successor.
2525 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2526
2527 Value *SwitchCond = SI->getCondition();
2528 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2529 // See if we were able to turn this switch statement into a constant.
2530 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2531 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2532 // We should be able to get case value for this.
2533 auto Case = *SI->findCaseValue(CondVal);
2534 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2535 // We proved the value is outside of the range of the case.
2536 // We can't do anything other than mark the default dest as reachable,
2537 // and go home.
2538 updateReachableEdge(B, SI->getDefaultDest());
2539 return;
2540 }
2541 // Now get where it goes and mark it reachable.
2542 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2543 updateReachableEdge(B, TargetBlock);
2544 } else {
2545 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2546 BasicBlock *TargetBlock = SI->getSuccessor(i);
2547 ++SwitchEdges[TargetBlock];
2548 updateReachableEdge(B, TargetBlock);
2549 }
2550 }
2551 } else {
2552 // Otherwise this is either unconditional, or a type we have no
2553 // idea about. Just mark successors as reachable.
2554 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2555 BasicBlock *TargetBlock = TI->getSuccessor(i);
2556 updateReachableEdge(B, TargetBlock);
2557 }
2558
2559 // This also may be a memory defining terminator, in which case, set it
2560 // equivalent only to itself.
2561 //
2562 auto *MA = getMemoryAccess(TI);
2563 if (MA && !isa<MemoryUse>(MA)) {
2564 auto *CC = ensureLeaderOfMemoryClass(MA);
2565 if (setMemoryClass(MA, CC))
2566 markMemoryUsersTouched(MA);
2567 }
2568 }
2569 }
2570
2571 // Remove the PHI of Ops PHI for I
removePhiOfOps(Instruction * I,PHINode * PHITemp)2572 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2573 InstrDFS.erase(PHITemp);
2574 // It's still a temp instruction. We keep it in the array so it gets erased.
2575 // However, it's no longer used by I, or in the block
2576 TempToBlock.erase(PHITemp);
2577 RealToTemp.erase(I);
2578 // We don't remove the users from the phi node uses. This wastes a little
2579 // time, but such is life. We could use two sets to track which were there
2580 // are the start of NewGVN, and which were added, but right nowt he cost of
2581 // tracking is more than the cost of checking for more phi of ops.
2582 }
2583
2584 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
addPhiOfOps(PHINode * Op,BasicBlock * BB,Instruction * ExistingValue)2585 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2586 Instruction *ExistingValue) {
2587 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2588 AllTempInstructions.insert(Op);
2589 TempToBlock[Op] = BB;
2590 RealToTemp[ExistingValue] = Op;
2591 // Add all users to phi node use, as they are now uses of the phi of ops phis
2592 // and may themselves be phi of ops.
2593 for (auto *U : ExistingValue->users())
2594 if (auto *UI = dyn_cast<Instruction>(U))
2595 PHINodeUses.insert(UI);
2596 }
2597
okayForPHIOfOps(const Instruction * I)2598 static bool okayForPHIOfOps(const Instruction *I) {
2599 if (!EnablePhiOfOps)
2600 return false;
2601 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2602 isa<LoadInst>(I);
2603 }
2604
OpIsSafeForPHIOfOpsHelper(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited,SmallVectorImpl<Instruction * > & Worklist)2605 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2606 Value *V, const BasicBlock *PHIBlock,
2607 SmallPtrSetImpl<const Value *> &Visited,
2608 SmallVectorImpl<Instruction *> &Worklist) {
2609
2610 if (!isa<Instruction>(V))
2611 return true;
2612 auto OISIt = OpSafeForPHIOfOps.find(V);
2613 if (OISIt != OpSafeForPHIOfOps.end())
2614 return OISIt->second;
2615
2616 // Keep walking until we either dominate the phi block, or hit a phi, or run
2617 // out of things to check.
2618 if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2619 OpSafeForPHIOfOps.insert({V, true});
2620 return true;
2621 }
2622 // PHI in the same block.
2623 if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2624 OpSafeForPHIOfOps.insert({V, false});
2625 return false;
2626 }
2627
2628 auto *OrigI = cast<Instruction>(V);
2629 for (auto *Op : OrigI->operand_values()) {
2630 if (!isa<Instruction>(Op))
2631 continue;
2632 // Stop now if we find an unsafe operand.
2633 auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2634 if (OISIt != OpSafeForPHIOfOps.end()) {
2635 if (!OISIt->second) {
2636 OpSafeForPHIOfOps.insert({V, false});
2637 return false;
2638 }
2639 continue;
2640 }
2641 if (!Visited.insert(Op).second)
2642 continue;
2643 Worklist.push_back(cast<Instruction>(Op));
2644 }
2645 return true;
2646 }
2647
2648 // Return true if this operand will be safe to use for phi of ops.
2649 //
2650 // The reason some operands are unsafe is that we are not trying to recursively
2651 // translate everything back through phi nodes. We actually expect some lookups
2652 // of expressions to fail. In particular, a lookup where the expression cannot
2653 // exist in the predecessor. This is true even if the expression, as shown, can
2654 // be determined to be constant.
OpIsSafeForPHIOfOps(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited)2655 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2656 SmallPtrSetImpl<const Value *> &Visited) {
2657 SmallVector<Instruction *, 4> Worklist;
2658 if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2659 return false;
2660 while (!Worklist.empty()) {
2661 auto *I = Worklist.pop_back_val();
2662 if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2663 return false;
2664 }
2665 OpSafeForPHIOfOps.insert({V, true});
2666 return true;
2667 }
2668
2669 // Try to find a leader for instruction TransInst, which is a phi translated
2670 // version of something in our original program. Visited is used to ensure we
2671 // don't infinite loop during translations of cycles. OrigInst is the
2672 // instruction in the original program, and PredBB is the predecessor we
2673 // translated it through.
findLeaderForInst(Instruction * TransInst,SmallPtrSetImpl<Value * > & Visited,MemoryAccess * MemAccess,Instruction * OrigInst,BasicBlock * PredBB)2674 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2675 SmallPtrSetImpl<Value *> &Visited,
2676 MemoryAccess *MemAccess, Instruction *OrigInst,
2677 BasicBlock *PredBB) {
2678 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2679 // Make sure it's marked as a temporary instruction.
2680 AllTempInstructions.insert(TransInst);
2681 // and make sure anything that tries to add it's DFS number is
2682 // redirected to the instruction we are making a phi of ops
2683 // for.
2684 TempToBlock.insert({TransInst, PredBB});
2685 InstrDFS.insert({TransInst, IDFSNum});
2686
2687 const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2688 InstrDFS.erase(TransInst);
2689 AllTempInstructions.erase(TransInst);
2690 TempToBlock.erase(TransInst);
2691 if (MemAccess)
2692 TempToMemory.erase(TransInst);
2693 if (!E)
2694 return nullptr;
2695 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2696 if (!FoundVal) {
2697 ExpressionToPhiOfOps[E].insert(OrigInst);
2698 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2699 << " in block " << getBlockName(PredBB) << "\n");
2700 return nullptr;
2701 }
2702 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2703 FoundVal = SI->getValueOperand();
2704 return FoundVal;
2705 }
2706
2707 // When we see an instruction that is an op of phis, generate the equivalent phi
2708 // of ops form.
2709 const Expression *
makePossiblePHIOfOps(Instruction * I,SmallPtrSetImpl<Value * > & Visited)2710 NewGVN::makePossiblePHIOfOps(Instruction *I,
2711 SmallPtrSetImpl<Value *> &Visited) {
2712 if (!okayForPHIOfOps(I))
2713 return nullptr;
2714
2715 if (!Visited.insert(I).second)
2716 return nullptr;
2717 // For now, we require the instruction be cycle free because we don't
2718 // *always* create a phi of ops for instructions that could be done as phi
2719 // of ops, we only do it if we think it is useful. If we did do it all the
2720 // time, we could remove the cycle free check.
2721 if (!isCycleFree(I))
2722 return nullptr;
2723
2724 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2725 // TODO: We don't do phi translation on memory accesses because it's
2726 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2727 // which we don't have a good way of doing ATM.
2728 auto *MemAccess = getMemoryAccess(I);
2729 // If the memory operation is defined by a memory operation this block that
2730 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2731 // can't help, as it would still be killed by that memory operation.
2732 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2733 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2734 return nullptr;
2735
2736 // Convert op of phis to phi of ops
2737 SmallPtrSet<const Value *, 10> VisitedOps;
2738 SmallVector<Value *, 4> Ops(I->operand_values());
2739 BasicBlock *SamePHIBlock = nullptr;
2740 PHINode *OpPHI = nullptr;
2741 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2742 return nullptr;
2743 for (auto *Op : Ops) {
2744 if (!isa<PHINode>(Op)) {
2745 auto *ValuePHI = RealToTemp.lookup(Op);
2746 if (!ValuePHI)
2747 continue;
2748 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2749 Op = ValuePHI;
2750 }
2751 OpPHI = cast<PHINode>(Op);
2752 if (!SamePHIBlock) {
2753 SamePHIBlock = getBlockForValue(OpPHI);
2754 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2755 LLVM_DEBUG(
2756 dbgs()
2757 << "PHIs for operands are not all in the same block, aborting\n");
2758 return nullptr;
2759 }
2760 // No point in doing this for one-operand phis.
2761 if (OpPHI->getNumOperands() == 1) {
2762 OpPHI = nullptr;
2763 continue;
2764 }
2765 }
2766
2767 if (!OpPHI)
2768 return nullptr;
2769
2770 SmallVector<ValPair, 4> PHIOps;
2771 SmallPtrSet<Value *, 4> Deps;
2772 auto *PHIBlock = getBlockForValue(OpPHI);
2773 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2774 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2775 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2776 Value *FoundVal = nullptr;
2777 SmallPtrSet<Value *, 4> CurrentDeps;
2778 // We could just skip unreachable edges entirely but it's tricky to do
2779 // with rewriting existing phi nodes.
2780 if (ReachableEdges.count({PredBB, PHIBlock})) {
2781 // Clone the instruction, create an expression from it that is
2782 // translated back into the predecessor, and see if we have a leader.
2783 Instruction *ValueOp = I->clone();
2784 if (MemAccess)
2785 TempToMemory.insert({ValueOp, MemAccess});
2786 bool SafeForPHIOfOps = true;
2787 VisitedOps.clear();
2788 for (auto &Op : ValueOp->operands()) {
2789 auto *OrigOp = &*Op;
2790 // When these operand changes, it could change whether there is a
2791 // leader for us or not, so we have to add additional users.
2792 if (isa<PHINode>(Op)) {
2793 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2794 if (Op != OrigOp && Op != I)
2795 CurrentDeps.insert(Op);
2796 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2797 if (getBlockForValue(ValuePHI) == PHIBlock)
2798 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2799 }
2800 // If we phi-translated the op, it must be safe.
2801 SafeForPHIOfOps =
2802 SafeForPHIOfOps &&
2803 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2804 }
2805 // FIXME: For those things that are not safe we could generate
2806 // expressions all the way down, and see if this comes out to a
2807 // constant. For anything where that is true, and unsafe, we should
2808 // have made a phi-of-ops (or value numbered it equivalent to something)
2809 // for the pieces already.
2810 FoundVal = !SafeForPHIOfOps ? nullptr
2811 : findLeaderForInst(ValueOp, Visited,
2812 MemAccess, I, PredBB);
2813 ValueOp->deleteValue();
2814 if (!FoundVal) {
2815 // We failed to find a leader for the current ValueOp, but this might
2816 // change in case of the translated operands change.
2817 if (SafeForPHIOfOps)
2818 for (auto Dep : CurrentDeps)
2819 addAdditionalUsers(Dep, I);
2820
2821 return nullptr;
2822 }
2823 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2824 } else {
2825 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2826 << getBlockName(PredBB)
2827 << " because the block is unreachable\n");
2828 FoundVal = UndefValue::get(I->getType());
2829 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2830 }
2831
2832 PHIOps.push_back({FoundVal, PredBB});
2833 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2834 << getBlockName(PredBB) << "\n");
2835 }
2836 for (auto Dep : Deps)
2837 addAdditionalUsers(Dep, I);
2838 sortPHIOps(PHIOps);
2839 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2840 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2841 LLVM_DEBUG(
2842 dbgs()
2843 << "Not creating real PHI of ops because it simplified to existing "
2844 "value or constant\n");
2845 return E;
2846 }
2847 auto *ValuePHI = RealToTemp.lookup(I);
2848 bool NewPHI = false;
2849 if (!ValuePHI) {
2850 ValuePHI =
2851 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2852 addPhiOfOps(ValuePHI, PHIBlock, I);
2853 NewPHI = true;
2854 NumGVNPHIOfOpsCreated++;
2855 }
2856 if (NewPHI) {
2857 for (auto PHIOp : PHIOps)
2858 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2859 } else {
2860 TempToBlock[ValuePHI] = PHIBlock;
2861 unsigned int i = 0;
2862 for (auto PHIOp : PHIOps) {
2863 ValuePHI->setIncomingValue(i, PHIOp.first);
2864 ValuePHI->setIncomingBlock(i, PHIOp.second);
2865 ++i;
2866 }
2867 }
2868 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2869 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2870 << "\n");
2871
2872 return E;
2873 }
2874
2875 // The algorithm initially places the values of the routine in the TOP
2876 // congruence class. The leader of TOP is the undetermined value `undef`.
2877 // When the algorithm has finished, values still in TOP are unreachable.
initializeCongruenceClasses(Function & F)2878 void NewGVN::initializeCongruenceClasses(Function &F) {
2879 NextCongruenceNum = 0;
2880
2881 // Note that even though we use the live on entry def as a representative
2882 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2883 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2884 // should be checking whether the MemoryAccess is top if we want to know if it
2885 // is equivalent to everything. Otherwise, what this really signifies is that
2886 // the access "it reaches all the way back to the beginning of the function"
2887
2888 // Initialize all other instructions to be in TOP class.
2889 TOPClass = createCongruenceClass(nullptr, nullptr);
2890 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2891 // The live on entry def gets put into it's own class
2892 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2893 createMemoryClass(MSSA->getLiveOnEntryDef());
2894
2895 for (auto DTN : nodes(DT)) {
2896 BasicBlock *BB = DTN->getBlock();
2897 // All MemoryAccesses are equivalent to live on entry to start. They must
2898 // be initialized to something so that initial changes are noticed. For
2899 // the maximal answer, we initialize them all to be the same as
2900 // liveOnEntry.
2901 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2902 if (MemoryBlockDefs)
2903 for (const auto &Def : *MemoryBlockDefs) {
2904 MemoryAccessToClass[&Def] = TOPClass;
2905 auto *MD = dyn_cast<MemoryDef>(&Def);
2906 // Insert the memory phis into the member list.
2907 if (!MD) {
2908 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2909 TOPClass->memory_insert(MP);
2910 MemoryPhiState.insert({MP, MPS_TOP});
2911 }
2912
2913 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2914 TOPClass->incStoreCount();
2915 }
2916
2917 // FIXME: This is trying to discover which instructions are uses of phi
2918 // nodes. We should move this into one of the myriad of places that walk
2919 // all the operands already.
2920 for (auto &I : *BB) {
2921 if (isa<PHINode>(&I))
2922 for (auto *U : I.users())
2923 if (auto *UInst = dyn_cast<Instruction>(U))
2924 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2925 PHINodeUses.insert(UInst);
2926 // Don't insert void terminators into the class. We don't value number
2927 // them, and they just end up sitting in TOP.
2928 if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
2929 continue;
2930 TOPClass->insert(&I);
2931 ValueToClass[&I] = TOPClass;
2932 }
2933 }
2934
2935 // Initialize arguments to be in their own unique congruence classes
2936 for (auto &FA : F.args())
2937 createSingletonCongruenceClass(&FA);
2938 }
2939
cleanupTables()2940 void NewGVN::cleanupTables() {
2941 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2942 LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2943 << " has " << CongruenceClasses[i]->size()
2944 << " members\n");
2945 // Make sure we delete the congruence class (probably worth switching to
2946 // a unique_ptr at some point.
2947 delete CongruenceClasses[i];
2948 CongruenceClasses[i] = nullptr;
2949 }
2950
2951 // Destroy the value expressions
2952 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2953 AllTempInstructions.end());
2954 AllTempInstructions.clear();
2955
2956 // We have to drop all references for everything first, so there are no uses
2957 // left as we delete them.
2958 for (auto *I : TempInst) {
2959 I->dropAllReferences();
2960 }
2961
2962 while (!TempInst.empty()) {
2963 auto *I = TempInst.back();
2964 TempInst.pop_back();
2965 I->deleteValue();
2966 }
2967
2968 ValueToClass.clear();
2969 ArgRecycler.clear(ExpressionAllocator);
2970 ExpressionAllocator.Reset();
2971 CongruenceClasses.clear();
2972 ExpressionToClass.clear();
2973 ValueToExpression.clear();
2974 RealToTemp.clear();
2975 AdditionalUsers.clear();
2976 ExpressionToPhiOfOps.clear();
2977 TempToBlock.clear();
2978 TempToMemory.clear();
2979 PHINodeUses.clear();
2980 OpSafeForPHIOfOps.clear();
2981 ReachableBlocks.clear();
2982 ReachableEdges.clear();
2983 #ifndef NDEBUG
2984 ProcessedCount.clear();
2985 #endif
2986 InstrDFS.clear();
2987 InstructionsToErase.clear();
2988 DFSToInstr.clear();
2989 BlockInstRange.clear();
2990 TouchedInstructions.clear();
2991 MemoryAccessToClass.clear();
2992 PredicateToUsers.clear();
2993 MemoryToUsers.clear();
2994 RevisitOnReachabilityChange.clear();
2995 }
2996
2997 // Assign local DFS number mapping to instructions, and leave space for Value
2998 // PHI's.
assignDFSNumbers(BasicBlock * B,unsigned Start)2999 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
3000 unsigned Start) {
3001 unsigned End = Start;
3002 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
3003 InstrDFS[MemPhi] = End++;
3004 DFSToInstr.emplace_back(MemPhi);
3005 }
3006
3007 // Then the real block goes next.
3008 for (auto &I : *B) {
3009 // There's no need to call isInstructionTriviallyDead more than once on
3010 // an instruction. Therefore, once we know that an instruction is dead
3011 // we change its DFS number so that it doesn't get value numbered.
3012 if (isInstructionTriviallyDead(&I, TLI)) {
3013 InstrDFS[&I] = 0;
3014 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3015 markInstructionForDeletion(&I);
3016 continue;
3017 }
3018 if (isa<PHINode>(&I))
3019 RevisitOnReachabilityChange[B].set(End);
3020 InstrDFS[&I] = End++;
3021 DFSToInstr.emplace_back(&I);
3022 }
3023
3024 // All of the range functions taken half-open ranges (open on the end side).
3025 // So we do not subtract one from count, because at this point it is one
3026 // greater than the last instruction.
3027 return std::make_pair(Start, End);
3028 }
3029
updateProcessedCount(const Value * V)3030 void NewGVN::updateProcessedCount(const Value *V) {
3031 #ifndef NDEBUG
3032 if (ProcessedCount.count(V) == 0) {
3033 ProcessedCount.insert({V, 1});
3034 } else {
3035 ++ProcessedCount[V];
3036 assert(ProcessedCount[V] < 100 &&
3037 "Seem to have processed the same Value a lot");
3038 }
3039 #endif
3040 }
3041
3042 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
valueNumberMemoryPhi(MemoryPhi * MP)3043 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3044 // If all the arguments are the same, the MemoryPhi has the same value as the
3045 // argument. Filter out unreachable blocks and self phis from our operands.
3046 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3047 // self-phi checking.
3048 const BasicBlock *PHIBlock = MP->getBlock();
3049 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3050 return cast<MemoryAccess>(U) != MP &&
3051 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3052 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3053 });
3054 // If all that is left is nothing, our memoryphi is undef. We keep it as
3055 // InitialClass. Note: The only case this should happen is if we have at
3056 // least one self-argument.
3057 if (Filtered.begin() == Filtered.end()) {
3058 if (setMemoryClass(MP, TOPClass))
3059 markMemoryUsersTouched(MP);
3060 return;
3061 }
3062
3063 // Transform the remaining operands into operand leaders.
3064 // FIXME: mapped_iterator should have a range version.
3065 auto LookupFunc = [&](const Use &U) {
3066 return lookupMemoryLeader(cast<MemoryAccess>(U));
3067 };
3068 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3069 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3070
3071 // and now check if all the elements are equal.
3072 // Sadly, we can't use std::equals since these are random access iterators.
3073 const auto *AllSameValue = *MappedBegin;
3074 ++MappedBegin;
3075 bool AllEqual = std::all_of(
3076 MappedBegin, MappedEnd,
3077 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3078
3079 if (AllEqual)
3080 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3081 << "\n");
3082 else
3083 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3084 // If it's equal to something, it's in that class. Otherwise, it has to be in
3085 // a class where it is the leader (other things may be equivalent to it, but
3086 // it needs to start off in its own class, which means it must have been the
3087 // leader, and it can't have stopped being the leader because it was never
3088 // removed).
3089 CongruenceClass *CC =
3090 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3091 auto OldState = MemoryPhiState.lookup(MP);
3092 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3093 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3094 MemoryPhiState[MP] = NewState;
3095 if (setMemoryClass(MP, CC) || OldState != NewState)
3096 markMemoryUsersTouched(MP);
3097 }
3098
3099 // Value number a single instruction, symbolically evaluating, performing
3100 // congruence finding, and updating mappings.
valueNumberInstruction(Instruction * I)3101 void NewGVN::valueNumberInstruction(Instruction *I) {
3102 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3103 if (!I->isTerminator()) {
3104 const Expression *Symbolized = nullptr;
3105 SmallPtrSet<Value *, 2> Visited;
3106 if (DebugCounter::shouldExecute(VNCounter)) {
3107 Symbolized = performSymbolicEvaluation(I, Visited);
3108 // Make a phi of ops if necessary
3109 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3110 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3111 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3112 // If we created a phi of ops, use it.
3113 // If we couldn't create one, make sure we don't leave one lying around
3114 if (PHIE) {
3115 Symbolized = PHIE;
3116 } else if (auto *Op = RealToTemp.lookup(I)) {
3117 removePhiOfOps(I, Op);
3118 }
3119 }
3120 } else {
3121 // Mark the instruction as unused so we don't value number it again.
3122 InstrDFS[I] = 0;
3123 }
3124 // If we couldn't come up with a symbolic expression, use the unknown
3125 // expression
3126 if (Symbolized == nullptr)
3127 Symbolized = createUnknownExpression(I);
3128 performCongruenceFinding(I, Symbolized);
3129 } else {
3130 // Handle terminators that return values. All of them produce values we
3131 // don't currently understand. We don't place non-value producing
3132 // terminators in a class.
3133 if (!I->getType()->isVoidTy()) {
3134 auto *Symbolized = createUnknownExpression(I);
3135 performCongruenceFinding(I, Symbolized);
3136 }
3137 processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
3138 }
3139 }
3140
3141 // Check if there is a path, using single or equal argument phi nodes, from
3142 // First to Second.
singleReachablePHIPath(SmallPtrSet<const MemoryAccess *,8> & Visited,const MemoryAccess * First,const MemoryAccess * Second) const3143 bool NewGVN::singleReachablePHIPath(
3144 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3145 const MemoryAccess *Second) const {
3146 if (First == Second)
3147 return true;
3148 if (MSSA->isLiveOnEntryDef(First))
3149 return false;
3150
3151 // This is not perfect, but as we're just verifying here, we can live with
3152 // the loss of precision. The real solution would be that of doing strongly
3153 // connected component finding in this routine, and it's probably not worth
3154 // the complexity for the time being. So, we just keep a set of visited
3155 // MemoryAccess and return true when we hit a cycle.
3156 if (Visited.count(First))
3157 return true;
3158 Visited.insert(First);
3159
3160 const auto *EndDef = First;
3161 for (auto *ChainDef : optimized_def_chain(First)) {
3162 if (ChainDef == Second)
3163 return true;
3164 if (MSSA->isLiveOnEntryDef(ChainDef))
3165 return false;
3166 EndDef = ChainDef;
3167 }
3168 auto *MP = cast<MemoryPhi>(EndDef);
3169 auto ReachableOperandPred = [&](const Use &U) {
3170 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3171 };
3172 auto FilteredPhiArgs =
3173 make_filter_range(MP->operands(), ReachableOperandPred);
3174 SmallVector<const Value *, 32> OperandList;
3175 std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3176 std::back_inserter(OperandList));
3177 bool Okay = OperandList.size() == 1;
3178 if (!Okay)
3179 Okay =
3180 std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
3181 if (Okay)
3182 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3183 Second);
3184 return false;
3185 }
3186
3187 // Verify the that the memory equivalence table makes sense relative to the
3188 // congruence classes. Note that this checking is not perfect, and is currently
3189 // subject to very rare false negatives. It is only useful for
3190 // testing/debugging.
verifyMemoryCongruency() const3191 void NewGVN::verifyMemoryCongruency() const {
3192 #ifndef NDEBUG
3193 // Verify that the memory table equivalence and memory member set match
3194 for (const auto *CC : CongruenceClasses) {
3195 if (CC == TOPClass || CC->isDead())
3196 continue;
3197 if (CC->getStoreCount() != 0) {
3198 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3199 "Any class with a store as a leader should have a "
3200 "representative stored value");
3201 assert(CC->getMemoryLeader() &&
3202 "Any congruence class with a store should have a "
3203 "representative access");
3204 }
3205
3206 if (CC->getMemoryLeader())
3207 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3208 "Representative MemoryAccess does not appear to be reverse "
3209 "mapped properly");
3210 for (auto M : CC->memory())
3211 assert(MemoryAccessToClass.lookup(M) == CC &&
3212 "Memory member does not appear to be reverse mapped properly");
3213 }
3214
3215 // Anything equivalent in the MemoryAccess table should be in the same
3216 // congruence class.
3217
3218 // Filter out the unreachable and trivially dead entries, because they may
3219 // never have been updated if the instructions were not processed.
3220 auto ReachableAccessPred =
3221 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3222 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3223 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3224 MemoryToDFSNum(Pair.first) == 0)
3225 return false;
3226 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3227 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3228
3229 // We could have phi nodes which operands are all trivially dead,
3230 // so we don't process them.
3231 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3232 for (auto &U : MemPHI->incoming_values()) {
3233 if (auto *I = dyn_cast<Instruction>(&*U)) {
3234 if (!isInstructionTriviallyDead(I))
3235 return true;
3236 }
3237 }
3238 return false;
3239 }
3240
3241 return true;
3242 };
3243
3244 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3245 for (auto KV : Filtered) {
3246 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3247 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3248 if (FirstMUD && SecondMUD) {
3249 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3250 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3251 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3252 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3253 "The instructions for these memory operations should have "
3254 "been in the same congruence class or reachable through"
3255 "a single argument phi");
3256 }
3257 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3258 // We can only sanely verify that MemoryDefs in the operand list all have
3259 // the same class.
3260 auto ReachableOperandPred = [&](const Use &U) {
3261 return ReachableEdges.count(
3262 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3263 isa<MemoryDef>(U);
3264
3265 };
3266 // All arguments should in the same class, ignoring unreachable arguments
3267 auto FilteredPhiArgs =
3268 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3269 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3270 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3271 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3272 const MemoryDef *MD = cast<MemoryDef>(U);
3273 return ValueToClass.lookup(MD->getMemoryInst());
3274 });
3275 assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
3276 PhiOpClasses.begin()) &&
3277 "All MemoryPhi arguments should be in the same class");
3278 }
3279 }
3280 #endif
3281 }
3282
3283 // Verify that the sparse propagation we did actually found the maximal fixpoint
3284 // We do this by storing the value to class mapping, touching all instructions,
3285 // and redoing the iteration to see if anything changed.
verifyIterationSettled(Function & F)3286 void NewGVN::verifyIterationSettled(Function &F) {
3287 #ifndef NDEBUG
3288 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3289 if (DebugCounter::isCounterSet(VNCounter))
3290 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3291
3292 // Note that we have to store the actual classes, as we may change existing
3293 // classes during iteration. This is because our memory iteration propagation
3294 // is not perfect, and so may waste a little work. But it should generate
3295 // exactly the same congruence classes we have now, with different IDs.
3296 std::map<const Value *, CongruenceClass> BeforeIteration;
3297
3298 for (auto &KV : ValueToClass) {
3299 if (auto *I = dyn_cast<Instruction>(KV.first))
3300 // Skip unused/dead instructions.
3301 if (InstrToDFSNum(I) == 0)
3302 continue;
3303 BeforeIteration.insert({KV.first, *KV.second});
3304 }
3305
3306 TouchedInstructions.set();
3307 TouchedInstructions.reset(0);
3308 iterateTouchedInstructions();
3309 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3310 EqualClasses;
3311 for (const auto &KV : ValueToClass) {
3312 if (auto *I = dyn_cast<Instruction>(KV.first))
3313 // Skip unused/dead instructions.
3314 if (InstrToDFSNum(I) == 0)
3315 continue;
3316 // We could sink these uses, but i think this adds a bit of clarity here as
3317 // to what we are comparing.
3318 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3319 auto *AfterCC = KV.second;
3320 // Note that the classes can't change at this point, so we memoize the set
3321 // that are equal.
3322 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3323 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3324 "Value number changed after main loop completed!");
3325 EqualClasses.insert({BeforeCC, AfterCC});
3326 }
3327 }
3328 #endif
3329 }
3330
3331 // Verify that for each store expression in the expression to class mapping,
3332 // only the latest appears, and multiple ones do not appear.
3333 // Because loads do not use the stored value when doing equality with stores,
3334 // if we don't erase the old store expressions from the table, a load can find
3335 // a no-longer valid StoreExpression.
verifyStoreExpressions() const3336 void NewGVN::verifyStoreExpressions() const {
3337 #ifndef NDEBUG
3338 // This is the only use of this, and it's not worth defining a complicated
3339 // densemapinfo hash/equality function for it.
3340 std::set<
3341 std::pair<const Value *,
3342 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3343 StoreExpressionSet;
3344 for (const auto &KV : ExpressionToClass) {
3345 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3346 // Make sure a version that will conflict with loads is not already there
3347 auto Res = StoreExpressionSet.insert(
3348 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3349 SE->getStoredValue())});
3350 bool Okay = Res.second;
3351 // It's okay to have the same expression already in there if it is
3352 // identical in nature.
3353 // This can happen when the leader of the stored value changes over time.
3354 if (!Okay)
3355 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3356 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3357 lookupOperandLeader(SE->getStoredValue()));
3358 assert(Okay && "Stored expression conflict exists in expression table");
3359 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3360 assert(ValueExpr && ValueExpr->equals(*SE) &&
3361 "StoreExpression in ExpressionToClass is not latest "
3362 "StoreExpression for value");
3363 }
3364 }
3365 #endif
3366 }
3367
3368 // This is the main value numbering loop, it iterates over the initial touched
3369 // instruction set, propagating value numbers, marking things touched, etc,
3370 // until the set of touched instructions is completely empty.
iterateTouchedInstructions()3371 void NewGVN::iterateTouchedInstructions() {
3372 unsigned int Iterations = 0;
3373 // Figure out where touchedinstructions starts
3374 int FirstInstr = TouchedInstructions.find_first();
3375 // Nothing set, nothing to iterate, just return.
3376 if (FirstInstr == -1)
3377 return;
3378 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3379 while (TouchedInstructions.any()) {
3380 ++Iterations;
3381 // Walk through all the instructions in all the blocks in RPO.
3382 // TODO: As we hit a new block, we should push and pop equalities into a
3383 // table lookupOperandLeader can use, to catch things PredicateInfo
3384 // might miss, like edge-only equivalences.
3385 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3386
3387 // This instruction was found to be dead. We don't bother looking
3388 // at it again.
3389 if (InstrNum == 0) {
3390 TouchedInstructions.reset(InstrNum);
3391 continue;
3392 }
3393
3394 Value *V = InstrFromDFSNum(InstrNum);
3395 const BasicBlock *CurrBlock = getBlockForValue(V);
3396
3397 // If we hit a new block, do reachability processing.
3398 if (CurrBlock != LastBlock) {
3399 LastBlock = CurrBlock;
3400 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3401 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3402
3403 // If it's not reachable, erase any touched instructions and move on.
3404 if (!BlockReachable) {
3405 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3406 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3407 << getBlockName(CurrBlock)
3408 << " because it is unreachable\n");
3409 continue;
3410 }
3411 updateProcessedCount(CurrBlock);
3412 }
3413 // Reset after processing (because we may mark ourselves as touched when
3414 // we propagate equalities).
3415 TouchedInstructions.reset(InstrNum);
3416
3417 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3418 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3419 valueNumberMemoryPhi(MP);
3420 } else if (auto *I = dyn_cast<Instruction>(V)) {
3421 valueNumberInstruction(I);
3422 } else {
3423 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3424 }
3425 updateProcessedCount(V);
3426 }
3427 }
3428 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3429 }
3430
3431 // This is the main transformation entry point.
runGVN()3432 bool NewGVN::runGVN() {
3433 if (DebugCounter::isCounterSet(VNCounter))
3434 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3435 bool Changed = false;
3436 NumFuncArgs = F.arg_size();
3437 MSSAWalker = MSSA->getWalker();
3438 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3439
3440 // Count number of instructions for sizing of hash tables, and come
3441 // up with a global dfs numbering for instructions.
3442 unsigned ICount = 1;
3443 // Add an empty instruction to account for the fact that we start at 1
3444 DFSToInstr.emplace_back(nullptr);
3445 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3446 // same as dominator tree order, particularly with regard whether backedges
3447 // get visited first or second, given a block with multiple successors.
3448 // If we visit in the wrong order, we will end up performing N times as many
3449 // iterations.
3450 // The dominator tree does guarantee that, for a given dom tree node, it's
3451 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3452 // the siblings.
3453 ReversePostOrderTraversal<Function *> RPOT(&F);
3454 unsigned Counter = 0;
3455 for (auto &B : RPOT) {
3456 auto *Node = DT->getNode(B);
3457 assert(Node && "RPO and Dominator tree should have same reachability");
3458 RPOOrdering[Node] = ++Counter;
3459 }
3460 // Sort dominator tree children arrays into RPO.
3461 for (auto &B : RPOT) {
3462 auto *Node = DT->getNode(B);
3463 if (Node->getChildren().size() > 1)
3464 llvm::sort(Node->begin(), Node->end(),
3465 [&](const DomTreeNode *A, const DomTreeNode *B) {
3466 return RPOOrdering[A] < RPOOrdering[B];
3467 });
3468 }
3469
3470 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3471 for (auto DTN : depth_first(DT->getRootNode())) {
3472 BasicBlock *B = DTN->getBlock();
3473 const auto &BlockRange = assignDFSNumbers(B, ICount);
3474 BlockInstRange.insert({B, BlockRange});
3475 ICount += BlockRange.second - BlockRange.first;
3476 }
3477 initializeCongruenceClasses(F);
3478
3479 TouchedInstructions.resize(ICount);
3480 // Ensure we don't end up resizing the expressionToClass map, as
3481 // that can be quite expensive. At most, we have one expression per
3482 // instruction.
3483 ExpressionToClass.reserve(ICount);
3484
3485 // Initialize the touched instructions to include the entry block.
3486 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3487 TouchedInstructions.set(InstRange.first, InstRange.second);
3488 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3489 << " marked reachable\n");
3490 ReachableBlocks.insert(&F.getEntryBlock());
3491
3492 iterateTouchedInstructions();
3493 verifyMemoryCongruency();
3494 verifyIterationSettled(F);
3495 verifyStoreExpressions();
3496
3497 Changed |= eliminateInstructions(F);
3498
3499 // Delete all instructions marked for deletion.
3500 for (Instruction *ToErase : InstructionsToErase) {
3501 if (!ToErase->use_empty())
3502 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3503
3504 if (ToErase->getParent())
3505 ToErase->eraseFromParent();
3506 }
3507
3508 // Delete all unreachable blocks.
3509 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3510 return !ReachableBlocks.count(&BB);
3511 };
3512
3513 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3514 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3515 << " is unreachable\n");
3516 deleteInstructionsInBlock(&BB);
3517 Changed = true;
3518 }
3519
3520 cleanupTables();
3521 return Changed;
3522 }
3523
3524 struct NewGVN::ValueDFS {
3525 int DFSIn = 0;
3526 int DFSOut = 0;
3527 int LocalNum = 0;
3528
3529 // Only one of Def and U will be set.
3530 // The bool in the Def tells us whether the Def is the stored value of a
3531 // store.
3532 PointerIntPair<Value *, 1, bool> Def;
3533 Use *U = nullptr;
3534
operator <NewGVN::ValueDFS3535 bool operator<(const ValueDFS &Other) const {
3536 // It's not enough that any given field be less than - we have sets
3537 // of fields that need to be evaluated together to give a proper ordering.
3538 // For example, if you have;
3539 // DFS (1, 3)
3540 // Val 0
3541 // DFS (1, 2)
3542 // Val 50
3543 // We want the second to be less than the first, but if we just go field
3544 // by field, we will get to Val 0 < Val 50 and say the first is less than
3545 // the second. We only want it to be less than if the DFS orders are equal.
3546 //
3547 // Each LLVM instruction only produces one value, and thus the lowest-level
3548 // differentiator that really matters for the stack (and what we use as as a
3549 // replacement) is the local dfs number.
3550 // Everything else in the structure is instruction level, and only affects
3551 // the order in which we will replace operands of a given instruction.
3552 //
3553 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3554 // the order of replacement of uses does not matter.
3555 // IE given,
3556 // a = 5
3557 // b = a + a
3558 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3559 // localnum.
3560 // The .val will be the same as well.
3561 // The .u's will be different.
3562 // You will replace both, and it does not matter what order you replace them
3563 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3564 // operand 2).
3565 // Similarly for the case of same dfsin, dfsout, localnum, but different
3566 // .val's
3567 // a = 5
3568 // b = 6
3569 // c = a + b
3570 // in c, we will a valuedfs for a, and one for b,with everything the same
3571 // but .val and .u.
3572 // It does not matter what order we replace these operands in.
3573 // You will always end up with the same IR, and this is guaranteed.
3574 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3575 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3576 Other.U);
3577 }
3578 };
3579
3580 // This function converts the set of members for a congruence class from values,
3581 // to sets of defs and uses with associated DFS info. The total number of
3582 // reachable uses for each value is stored in UseCount, and instructions that
3583 // seem
3584 // dead (have no non-dead uses) are stored in ProbablyDead.
convertClassToDFSOrdered(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & DFSOrderedSet,DenseMap<const Value *,unsigned int> & UseCounts,SmallPtrSetImpl<Instruction * > & ProbablyDead) const3585 void NewGVN::convertClassToDFSOrdered(
3586 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3587 DenseMap<const Value *, unsigned int> &UseCounts,
3588 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3589 for (auto D : Dense) {
3590 // First add the value.
3591 BasicBlock *BB = getBlockForValue(D);
3592 // Constants are handled prior to ever calling this function, so
3593 // we should only be left with instructions as members.
3594 assert(BB && "Should have figured out a basic block for value");
3595 ValueDFS VDDef;
3596 DomTreeNode *DomNode = DT->getNode(BB);
3597 VDDef.DFSIn = DomNode->getDFSNumIn();
3598 VDDef.DFSOut = DomNode->getDFSNumOut();
3599 // If it's a store, use the leader of the value operand, if it's always
3600 // available, or the value operand. TODO: We could do dominance checks to
3601 // find a dominating leader, but not worth it ATM.
3602 if (auto *SI = dyn_cast<StoreInst>(D)) {
3603 auto Leader = lookupOperandLeader(SI->getValueOperand());
3604 if (alwaysAvailable(Leader)) {
3605 VDDef.Def.setPointer(Leader);
3606 } else {
3607 VDDef.Def.setPointer(SI->getValueOperand());
3608 VDDef.Def.setInt(true);
3609 }
3610 } else {
3611 VDDef.Def.setPointer(D);
3612 }
3613 assert(isa<Instruction>(D) &&
3614 "The dense set member should always be an instruction");
3615 Instruction *Def = cast<Instruction>(D);
3616 VDDef.LocalNum = InstrToDFSNum(D);
3617 DFSOrderedSet.push_back(VDDef);
3618 // If there is a phi node equivalent, add it
3619 if (auto *PN = RealToTemp.lookup(Def)) {
3620 auto *PHIE =
3621 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3622 if (PHIE) {
3623 VDDef.Def.setInt(false);
3624 VDDef.Def.setPointer(PN);
3625 VDDef.LocalNum = 0;
3626 DFSOrderedSet.push_back(VDDef);
3627 }
3628 }
3629
3630 unsigned int UseCount = 0;
3631 // Now add the uses.
3632 for (auto &U : Def->uses()) {
3633 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3634 // Don't try to replace into dead uses
3635 if (InstructionsToErase.count(I))
3636 continue;
3637 ValueDFS VDUse;
3638 // Put the phi node uses in the incoming block.
3639 BasicBlock *IBlock;
3640 if (auto *P = dyn_cast<PHINode>(I)) {
3641 IBlock = P->getIncomingBlock(U);
3642 // Make phi node users appear last in the incoming block
3643 // they are from.
3644 VDUse.LocalNum = InstrDFS.size() + 1;
3645 } else {
3646 IBlock = getBlockForValue(I);
3647 VDUse.LocalNum = InstrToDFSNum(I);
3648 }
3649
3650 // Skip uses in unreachable blocks, as we're going
3651 // to delete them.
3652 if (ReachableBlocks.count(IBlock) == 0)
3653 continue;
3654
3655 DomTreeNode *DomNode = DT->getNode(IBlock);
3656 VDUse.DFSIn = DomNode->getDFSNumIn();
3657 VDUse.DFSOut = DomNode->getDFSNumOut();
3658 VDUse.U = &U;
3659 ++UseCount;
3660 DFSOrderedSet.emplace_back(VDUse);
3661 }
3662 }
3663
3664 // If there are no uses, it's probably dead (but it may have side-effects,
3665 // so not definitely dead. Otherwise, store the number of uses so we can
3666 // track if it becomes dead later).
3667 if (UseCount == 0)
3668 ProbablyDead.insert(Def);
3669 else
3670 UseCounts[Def] = UseCount;
3671 }
3672 }
3673
3674 // This function converts the set of members for a congruence class from values,
3675 // to the set of defs for loads and stores, with associated DFS info.
convertClassToLoadsAndStores(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & LoadsAndStores) const3676 void NewGVN::convertClassToLoadsAndStores(
3677 const CongruenceClass &Dense,
3678 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3679 for (auto D : Dense) {
3680 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3681 continue;
3682
3683 BasicBlock *BB = getBlockForValue(D);
3684 ValueDFS VD;
3685 DomTreeNode *DomNode = DT->getNode(BB);
3686 VD.DFSIn = DomNode->getDFSNumIn();
3687 VD.DFSOut = DomNode->getDFSNumOut();
3688 VD.Def.setPointer(D);
3689
3690 // If it's an instruction, use the real local dfs number.
3691 if (auto *I = dyn_cast<Instruction>(D))
3692 VD.LocalNum = InstrToDFSNum(I);
3693 else
3694 llvm_unreachable("Should have been an instruction");
3695
3696 LoadsAndStores.emplace_back(VD);
3697 }
3698 }
3699
patchReplacementInstruction(Instruction * I,Value * Repl)3700 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
3701 auto *ReplInst = dyn_cast<Instruction>(Repl);
3702 if (!ReplInst)
3703 return;
3704
3705 // Patch the replacement so that it is not more restrictive than the value
3706 // being replaced.
3707 // Note that if 'I' is a load being replaced by some operation,
3708 // for example, by an arithmetic operation, then andIRFlags()
3709 // would just erase all math flags from the original arithmetic
3710 // operation, which is clearly not wanted and not needed.
3711 if (!isa<LoadInst>(I))
3712 ReplInst->andIRFlags(I);
3713
3714 // FIXME: If both the original and replacement value are part of the
3715 // same control-flow region (meaning that the execution of one
3716 // guarantees the execution of the other), then we can combine the
3717 // noalias scopes here and do better than the general conservative
3718 // answer used in combineMetadata().
3719
3720 // In general, GVN unifies expressions over different control-flow
3721 // regions, and so we need a conservative combination of the noalias
3722 // scopes.
3723 static const unsigned KnownIDs[] = {
3724 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
3725 LLVMContext::MD_noalias, LLVMContext::MD_range,
3726 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
3727 LLVMContext::MD_invariant_group};
3728 combineMetadata(ReplInst, I, KnownIDs);
3729 }
3730
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)3731 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3732 patchReplacementInstruction(I, Repl);
3733 I->replaceAllUsesWith(Repl);
3734 }
3735
deleteInstructionsInBlock(BasicBlock * BB)3736 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3737 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3738 ++NumGVNBlocksDeleted;
3739
3740 // Delete the instructions backwards, as it has a reduced likelihood of having
3741 // to update as many def-use and use-def chains. Start after the terminator.
3742 auto StartPoint = BB->rbegin();
3743 ++StartPoint;
3744 // Note that we explicitly recalculate BB->rend() on each iteration,
3745 // as it may change when we remove the first instruction.
3746 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3747 Instruction &Inst = *I++;
3748 if (!Inst.use_empty())
3749 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3750 if (isa<LandingPadInst>(Inst))
3751 continue;
3752
3753 Inst.eraseFromParent();
3754 ++NumGVNInstrDeleted;
3755 }
3756 // Now insert something that simplifycfg will turn into an unreachable.
3757 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3758 new StoreInst(UndefValue::get(Int8Ty),
3759 Constant::getNullValue(Int8Ty->getPointerTo()),
3760 BB->getTerminator());
3761 }
3762
markInstructionForDeletion(Instruction * I)3763 void NewGVN::markInstructionForDeletion(Instruction *I) {
3764 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3765 InstructionsToErase.insert(I);
3766 }
3767
replaceInstruction(Instruction * I,Value * V)3768 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3769 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3770 patchAndReplaceAllUsesWith(I, V);
3771 // We save the actual erasing to avoid invalidating memory
3772 // dependencies until we are done with everything.
3773 markInstructionForDeletion(I);
3774 }
3775
3776 namespace {
3777
3778 // This is a stack that contains both the value and dfs info of where
3779 // that value is valid.
3780 class ValueDFSStack {
3781 public:
back() const3782 Value *back() const { return ValueStack.back(); }
dfs_back() const3783 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3784
push_back(Value * V,int DFSIn,int DFSOut)3785 void push_back(Value *V, int DFSIn, int DFSOut) {
3786 ValueStack.emplace_back(V);
3787 DFSStack.emplace_back(DFSIn, DFSOut);
3788 }
3789
empty() const3790 bool empty() const { return DFSStack.empty(); }
3791
isInScope(int DFSIn,int DFSOut) const3792 bool isInScope(int DFSIn, int DFSOut) const {
3793 if (empty())
3794 return false;
3795 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3796 }
3797
popUntilDFSScope(int DFSIn,int DFSOut)3798 void popUntilDFSScope(int DFSIn, int DFSOut) {
3799
3800 // These two should always be in sync at this point.
3801 assert(ValueStack.size() == DFSStack.size() &&
3802 "Mismatch between ValueStack and DFSStack");
3803 while (
3804 !DFSStack.empty() &&
3805 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3806 DFSStack.pop_back();
3807 ValueStack.pop_back();
3808 }
3809 }
3810
3811 private:
3812 SmallVector<Value *, 8> ValueStack;
3813 SmallVector<std::pair<int, int>, 8> DFSStack;
3814 };
3815
3816 } // end anonymous namespace
3817
3818 // Given an expression, get the congruence class for it.
getClassForExpression(const Expression * E) const3819 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3820 if (auto *VE = dyn_cast<VariableExpression>(E))
3821 return ValueToClass.lookup(VE->getVariableValue());
3822 else if (isa<DeadExpression>(E))
3823 return TOPClass;
3824 return ExpressionToClass.lookup(E);
3825 }
3826
3827 // Given a value and a basic block we are trying to see if it is available in,
3828 // see if the value has a leader available in that block.
findPHIOfOpsLeader(const Expression * E,const Instruction * OrigInst,const BasicBlock * BB) const3829 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3830 const Instruction *OrigInst,
3831 const BasicBlock *BB) const {
3832 // It would already be constant if we could make it constant
3833 if (auto *CE = dyn_cast<ConstantExpression>(E))
3834 return CE->getConstantValue();
3835 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3836 auto *V = VE->getVariableValue();
3837 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3838 return VE->getVariableValue();
3839 }
3840
3841 auto *CC = getClassForExpression(E);
3842 if (!CC)
3843 return nullptr;
3844 if (alwaysAvailable(CC->getLeader()))
3845 return CC->getLeader();
3846
3847 for (auto Member : *CC) {
3848 auto *MemberInst = dyn_cast<Instruction>(Member);
3849 if (MemberInst == OrigInst)
3850 continue;
3851 // Anything that isn't an instruction is always available.
3852 if (!MemberInst)
3853 return Member;
3854 if (DT->dominates(getBlockForValue(MemberInst), BB))
3855 return Member;
3856 }
3857 return nullptr;
3858 }
3859
eliminateInstructions(Function & F)3860 bool NewGVN::eliminateInstructions(Function &F) {
3861 // This is a non-standard eliminator. The normal way to eliminate is
3862 // to walk the dominator tree in order, keeping track of available
3863 // values, and eliminating them. However, this is mildly
3864 // pointless. It requires doing lookups on every instruction,
3865 // regardless of whether we will ever eliminate it. For
3866 // instructions part of most singleton congruence classes, we know we
3867 // will never eliminate them.
3868
3869 // Instead, this eliminator looks at the congruence classes directly, sorts
3870 // them into a DFS ordering of the dominator tree, and then we just
3871 // perform elimination straight on the sets by walking the congruence
3872 // class member uses in order, and eliminate the ones dominated by the
3873 // last member. This is worst case O(E log E) where E = number of
3874 // instructions in a single congruence class. In theory, this is all
3875 // instructions. In practice, it is much faster, as most instructions are
3876 // either in singleton congruence classes or can't possibly be eliminated
3877 // anyway (if there are no overlapping DFS ranges in class).
3878 // When we find something not dominated, it becomes the new leader
3879 // for elimination purposes.
3880 // TODO: If we wanted to be faster, We could remove any members with no
3881 // overlapping ranges while sorting, as we will never eliminate anything
3882 // with those members, as they don't dominate anything else in our set.
3883
3884 bool AnythingReplaced = false;
3885
3886 // Since we are going to walk the domtree anyway, and we can't guarantee the
3887 // DFS numbers are updated, we compute some ourselves.
3888 DT->updateDFSNumbers();
3889
3890 // Go through all of our phi nodes, and kill the arguments associated with
3891 // unreachable edges.
3892 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3893 for (auto &Operand : PHI->incoming_values())
3894 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3895 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3896 << " for block "
3897 << getBlockName(PHI->getIncomingBlock(Operand))
3898 << " with undef due to it being unreachable\n");
3899 Operand.set(UndefValue::get(PHI->getType()));
3900 }
3901 };
3902 // Replace unreachable phi arguments.
3903 // At this point, RevisitOnReachabilityChange only contains:
3904 //
3905 // 1. PHIs
3906 // 2. Temporaries that will convert to PHIs
3907 // 3. Operations that are affected by an unreachable edge but do not fit into
3908 // 1 or 2 (rare).
3909 // So it is a slight overshoot of what we want. We could make it exact by
3910 // using two SparseBitVectors per block.
3911 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3912 for (auto &KV : ReachableEdges)
3913 ReachablePredCount[KV.getEnd()]++;
3914 for (auto &BBPair : RevisitOnReachabilityChange) {
3915 for (auto InstNum : BBPair.second) {
3916 auto *Inst = InstrFromDFSNum(InstNum);
3917 auto *PHI = dyn_cast<PHINode>(Inst);
3918 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3919 if (!PHI)
3920 continue;
3921 auto *BB = BBPair.first;
3922 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3923 ReplaceUnreachablePHIArgs(PHI, BB);
3924 }
3925 }
3926
3927 // Map to store the use counts
3928 DenseMap<const Value *, unsigned int> UseCounts;
3929 for (auto *CC : reverse(CongruenceClasses)) {
3930 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3931 << "\n");
3932 // Track the equivalent store info so we can decide whether to try
3933 // dead store elimination.
3934 SmallVector<ValueDFS, 8> PossibleDeadStores;
3935 SmallPtrSet<Instruction *, 8> ProbablyDead;
3936 if (CC->isDead() || CC->empty())
3937 continue;
3938 // Everything still in the TOP class is unreachable or dead.
3939 if (CC == TOPClass) {
3940 for (auto M : *CC) {
3941 auto *VTE = ValueToExpression.lookup(M);
3942 if (VTE && isa<DeadExpression>(VTE))
3943 markInstructionForDeletion(cast<Instruction>(M));
3944 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3945 InstructionsToErase.count(cast<Instruction>(M))) &&
3946 "Everything in TOP should be unreachable or dead at this "
3947 "point");
3948 }
3949 continue;
3950 }
3951
3952 assert(CC->getLeader() && "We should have had a leader");
3953 // If this is a leader that is always available, and it's a
3954 // constant or has no equivalences, just replace everything with
3955 // it. We then update the congruence class with whatever members
3956 // are left.
3957 Value *Leader =
3958 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3959 if (alwaysAvailable(Leader)) {
3960 CongruenceClass::MemberSet MembersLeft;
3961 for (auto M : *CC) {
3962 Value *Member = M;
3963 // Void things have no uses we can replace.
3964 if (Member == Leader || !isa<Instruction>(Member) ||
3965 Member->getType()->isVoidTy()) {
3966 MembersLeft.insert(Member);
3967 continue;
3968 }
3969 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3970 << *Member << "\n");
3971 auto *I = cast<Instruction>(Member);
3972 assert(Leader != I && "About to accidentally remove our leader");
3973 replaceInstruction(I, Leader);
3974 AnythingReplaced = true;
3975 }
3976 CC->swap(MembersLeft);
3977 } else {
3978 // If this is a singleton, we can skip it.
3979 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3980 // This is a stack because equality replacement/etc may place
3981 // constants in the middle of the member list, and we want to use
3982 // those constant values in preference to the current leader, over
3983 // the scope of those constants.
3984 ValueDFSStack EliminationStack;
3985
3986 // Convert the members to DFS ordered sets and then merge them.
3987 SmallVector<ValueDFS, 8> DFSOrderedSet;
3988 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3989
3990 // Sort the whole thing.
3991 llvm::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
3992 for (auto &VD : DFSOrderedSet) {
3993 int MemberDFSIn = VD.DFSIn;
3994 int MemberDFSOut = VD.DFSOut;
3995 Value *Def = VD.Def.getPointer();
3996 bool FromStore = VD.Def.getInt();
3997 Use *U = VD.U;
3998 // We ignore void things because we can't get a value from them.
3999 if (Def && Def->getType()->isVoidTy())
4000 continue;
4001 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
4002 if (DefInst && AllTempInstructions.count(DefInst)) {
4003 auto *PN = cast<PHINode>(DefInst);
4004
4005 // If this is a value phi and that's the expression we used, insert
4006 // it into the program
4007 // remove from temp instruction list.
4008 AllTempInstructions.erase(PN);
4009 auto *DefBlock = getBlockForValue(Def);
4010 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
4011 << " into block "
4012 << getBlockName(getBlockForValue(Def)) << "\n");
4013 PN->insertBefore(&DefBlock->front());
4014 Def = PN;
4015 NumGVNPHIOfOpsEliminations++;
4016 }
4017
4018 if (EliminationStack.empty()) {
4019 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
4020 } else {
4021 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
4022 << EliminationStack.dfs_back().first << ","
4023 << EliminationStack.dfs_back().second << ")\n");
4024 }
4025
4026 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
4027 << MemberDFSOut << ")\n");
4028 // First, we see if we are out of scope or empty. If so,
4029 // and there equivalences, we try to replace the top of
4030 // stack with equivalences (if it's on the stack, it must
4031 // not have been eliminated yet).
4032 // Then we synchronize to our current scope, by
4033 // popping until we are back within a DFS scope that
4034 // dominates the current member.
4035 // Then, what happens depends on a few factors
4036 // If the stack is now empty, we need to push
4037 // If we have a constant or a local equivalence we want to
4038 // start using, we also push.
4039 // Otherwise, we walk along, processing members who are
4040 // dominated by this scope, and eliminate them.
4041 bool ShouldPush = Def && EliminationStack.empty();
4042 bool OutOfScope =
4043 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4044
4045 if (OutOfScope || ShouldPush) {
4046 // Sync to our current scope.
4047 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4048 bool ShouldPush = Def && EliminationStack.empty();
4049 if (ShouldPush) {
4050 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4051 }
4052 }
4053
4054 // Skip the Def's, we only want to eliminate on their uses. But mark
4055 // dominated defs as dead.
4056 if (Def) {
4057 // For anything in this case, what and how we value number
4058 // guarantees that any side-effets that would have occurred (ie
4059 // throwing, etc) can be proven to either still occur (because it's
4060 // dominated by something that has the same side-effects), or never
4061 // occur. Otherwise, we would not have been able to prove it value
4062 // equivalent to something else. For these things, we can just mark
4063 // it all dead. Note that this is different from the "ProbablyDead"
4064 // set, which may not be dominated by anything, and thus, are only
4065 // easy to prove dead if they are also side-effect free. Note that
4066 // because stores are put in terms of the stored value, we skip
4067 // stored values here. If the stored value is really dead, it will
4068 // still be marked for deletion when we process it in its own class.
4069 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4070 isa<Instruction>(Def) && !FromStore)
4071 markInstructionForDeletion(cast<Instruction>(Def));
4072 continue;
4073 }
4074 // At this point, we know it is a Use we are trying to possibly
4075 // replace.
4076
4077 assert(isa<Instruction>(U->get()) &&
4078 "Current def should have been an instruction");
4079 assert(isa<Instruction>(U->getUser()) &&
4080 "Current user should have been an instruction");
4081
4082 // If the thing we are replacing into is already marked to be dead,
4083 // this use is dead. Note that this is true regardless of whether
4084 // we have anything dominating the use or not. We do this here
4085 // because we are already walking all the uses anyway.
4086 Instruction *InstUse = cast<Instruction>(U->getUser());
4087 if (InstructionsToErase.count(InstUse)) {
4088 auto &UseCount = UseCounts[U->get()];
4089 if (--UseCount == 0) {
4090 ProbablyDead.insert(cast<Instruction>(U->get()));
4091 }
4092 }
4093
4094 // If we get to this point, and the stack is empty we must have a use
4095 // with nothing we can use to eliminate this use, so just skip it.
4096 if (EliminationStack.empty())
4097 continue;
4098
4099 Value *DominatingLeader = EliminationStack.back();
4100
4101 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4102 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4103 if (isSSACopy)
4104 DominatingLeader = II->getOperand(0);
4105
4106 // Don't replace our existing users with ourselves.
4107 if (U->get() == DominatingLeader)
4108 continue;
4109 LLVM_DEBUG(dbgs()
4110 << "Found replacement " << *DominatingLeader << " for "
4111 << *U->get() << " in " << *(U->getUser()) << "\n");
4112
4113 // If we replaced something in an instruction, handle the patching of
4114 // metadata. Skip this if we are replacing predicateinfo with its
4115 // original operand, as we already know we can just drop it.
4116 auto *ReplacedInst = cast<Instruction>(U->get());
4117 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4118 if (!PI || DominatingLeader != PI->OriginalOp)
4119 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4120 U->set(DominatingLeader);
4121 // This is now a use of the dominating leader, which means if the
4122 // dominating leader was dead, it's now live!
4123 auto &LeaderUseCount = UseCounts[DominatingLeader];
4124 // It's about to be alive again.
4125 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4126 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4127 // Copy instructions, however, are still dead because we use their
4128 // operand as the leader.
4129 if (LeaderUseCount == 0 && isSSACopy)
4130 ProbablyDead.insert(II);
4131 ++LeaderUseCount;
4132 AnythingReplaced = true;
4133 }
4134 }
4135 }
4136
4137 // At this point, anything still in the ProbablyDead set is actually dead if
4138 // would be trivially dead.
4139 for (auto *I : ProbablyDead)
4140 if (wouldInstructionBeTriviallyDead(I))
4141 markInstructionForDeletion(I);
4142
4143 // Cleanup the congruence class.
4144 CongruenceClass::MemberSet MembersLeft;
4145 for (auto *Member : *CC)
4146 if (!isa<Instruction>(Member) ||
4147 !InstructionsToErase.count(cast<Instruction>(Member)))
4148 MembersLeft.insert(Member);
4149 CC->swap(MembersLeft);
4150
4151 // If we have possible dead stores to look at, try to eliminate them.
4152 if (CC->getStoreCount() > 0) {
4153 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4154 llvm::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
4155 ValueDFSStack EliminationStack;
4156 for (auto &VD : PossibleDeadStores) {
4157 int MemberDFSIn = VD.DFSIn;
4158 int MemberDFSOut = VD.DFSOut;
4159 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4160 if (EliminationStack.empty() ||
4161 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4162 // Sync to our current scope.
4163 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4164 if (EliminationStack.empty()) {
4165 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4166 continue;
4167 }
4168 }
4169 // We already did load elimination, so nothing to do here.
4170 if (isa<LoadInst>(Member))
4171 continue;
4172 assert(!EliminationStack.empty());
4173 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4174 (void)Leader;
4175 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4176 // Member is dominater by Leader, and thus dead
4177 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4178 << " that is dominated by " << *Leader << "\n");
4179 markInstructionForDeletion(Member);
4180 CC->erase(Member);
4181 ++NumGVNDeadStores;
4182 }
4183 }
4184 }
4185 return AnythingReplaced;
4186 }
4187
4188 // This function provides global ranking of operations so that we can place them
4189 // in a canonical order. Note that rank alone is not necessarily enough for a
4190 // complete ordering, as constants all have the same rank. However, generally,
4191 // we will simplify an operation with all constants so that it doesn't matter
4192 // what order they appear in.
getRank(const Value * V) const4193 unsigned int NewGVN::getRank(const Value *V) const {
4194 // Prefer constants to undef to anything else
4195 // Undef is a constant, have to check it first.
4196 // Prefer smaller constants to constantexprs
4197 if (isa<ConstantExpr>(V))
4198 return 2;
4199 if (isa<UndefValue>(V))
4200 return 1;
4201 if (isa<Constant>(V))
4202 return 0;
4203 else if (auto *A = dyn_cast<Argument>(V))
4204 return 3 + A->getArgNo();
4205
4206 // Need to shift the instruction DFS by number of arguments + 3 to account for
4207 // the constant and argument ranking above.
4208 unsigned Result = InstrToDFSNum(V);
4209 if (Result > 0)
4210 return 4 + NumFuncArgs + Result;
4211 // Unreachable or something else, just return a really large number.
4212 return ~0;
4213 }
4214
4215 // This is a function that says whether two commutative operations should
4216 // have their order swapped when canonicalizing.
shouldSwapOperands(const Value * A,const Value * B) const4217 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4218 // Because we only care about a total ordering, and don't rewrite expressions
4219 // in this order, we order by rank, which will give a strict weak ordering to
4220 // everything but constants, and then we order by pointer address.
4221 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4222 }
4223
4224 namespace {
4225
4226 class NewGVNLegacyPass : public FunctionPass {
4227 public:
4228 // Pass identification, replacement for typeid.
4229 static char ID;
4230
NewGVNLegacyPass()4231 NewGVNLegacyPass() : FunctionPass(ID) {
4232 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4233 }
4234
4235 bool runOnFunction(Function &F) override;
4236
4237 private:
getAnalysisUsage(AnalysisUsage & AU) const4238 void getAnalysisUsage(AnalysisUsage &AU) const override {
4239 AU.addRequired<AssumptionCacheTracker>();
4240 AU.addRequired<DominatorTreeWrapperPass>();
4241 AU.addRequired<TargetLibraryInfoWrapperPass>();
4242 AU.addRequired<MemorySSAWrapperPass>();
4243 AU.addRequired<AAResultsWrapperPass>();
4244 AU.addPreserved<DominatorTreeWrapperPass>();
4245 AU.addPreserved<GlobalsAAWrapperPass>();
4246 }
4247 };
4248
4249 } // end anonymous namespace
4250
runOnFunction(Function & F)4251 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4252 if (skipFunction(F))
4253 return false;
4254 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4255 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4256 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
4257 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4258 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4259 F.getParent()->getDataLayout())
4260 .runGVN();
4261 }
4262
4263 char NewGVNLegacyPass::ID = 0;
4264
4265 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4266 false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4267 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4268 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4269 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4270 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4271 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4272 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4273 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4274 false)
4275
4276 // createGVNPass - The public interface to this file.
4277 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4278
run(Function & F,AnalysisManager<Function> & AM)4279 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4280 // Apparently the order in which we get these results matter for
4281 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4282 // the same order here, just in case.
4283 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4284 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4285 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4286 auto &AA = AM.getResult<AAManager>(F);
4287 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4288 bool Changed =
4289 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4290 .runGVN();
4291 if (!Changed)
4292 return PreservedAnalyses::all();
4293 PreservedAnalyses PA;
4294 PA.preserve<DominatorTreeAnalysis>();
4295 PA.preserve<GlobalsAA>();
4296 return PA;
4297 }
4298