• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 ///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Sequence.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CFG.h"
21 #include "llvm/Analysis/CodeMetrics.h"
22 #include "llvm/Analysis/InstructionSimplify.h"
23 #include "llvm/Analysis/LoopAnalysisManager.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/LoopIterator.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/Utils/Local.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Use.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/GenericDomTree.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/Cloning.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/ValueMapper.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <numeric>
54 #include <utility>
55 
56 #define DEBUG_TYPE "simple-loop-unswitch"
57 
58 using namespace llvm;
59 
60 STATISTIC(NumBranches, "Number of branches unswitched");
61 STATISTIC(NumSwitches, "Number of switches unswitched");
62 STATISTIC(NumTrivial, "Number of unswitches that are trivial");
63 
64 static cl::opt<bool> EnableNonTrivialUnswitch(
65     "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
66     cl::desc("Forcibly enables non-trivial loop unswitching rather than "
67              "following the configuration passed into the pass."));
68 
69 static cl::opt<int>
70     UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
71                       cl::desc("The cost threshold for unswitching a loop."));
72 
73 /// Collect all of the loop invariant input values transitively used by the
74 /// homogeneous instruction graph from a given root.
75 ///
76 /// This essentially walks from a root recursively through loop variant operands
77 /// which have the exact same opcode and finds all inputs which are loop
78 /// invariant. For some operations these can be re-associated and unswitched out
79 /// of the loop entirely.
80 static TinyPtrVector<Value *>
collectHomogenousInstGraphLoopInvariants(Loop & L,Instruction & Root,LoopInfo & LI)81 collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
82                                          LoopInfo &LI) {
83   assert(!L.isLoopInvariant(&Root) &&
84          "Only need to walk the graph if root itself is not invariant.");
85   TinyPtrVector<Value *> Invariants;
86 
87   // Build a worklist and recurse through operators collecting invariants.
88   SmallVector<Instruction *, 4> Worklist;
89   SmallPtrSet<Instruction *, 8> Visited;
90   Worklist.push_back(&Root);
91   Visited.insert(&Root);
92   do {
93     Instruction &I = *Worklist.pop_back_val();
94     for (Value *OpV : I.operand_values()) {
95       // Skip constants as unswitching isn't interesting for them.
96       if (isa<Constant>(OpV))
97         continue;
98 
99       // Add it to our result if loop invariant.
100       if (L.isLoopInvariant(OpV)) {
101         Invariants.push_back(OpV);
102         continue;
103       }
104 
105       // If not an instruction with the same opcode, nothing we can do.
106       Instruction *OpI = dyn_cast<Instruction>(OpV);
107       if (!OpI || OpI->getOpcode() != Root.getOpcode())
108         continue;
109 
110       // Visit this operand.
111       if (Visited.insert(OpI).second)
112         Worklist.push_back(OpI);
113     }
114   } while (!Worklist.empty());
115 
116   return Invariants;
117 }
118 
replaceLoopInvariantUses(Loop & L,Value * Invariant,Constant & Replacement)119 static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
120                                      Constant &Replacement) {
121   assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
122 
123   // Replace uses of LIC in the loop with the given constant.
124   for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
125     // Grab the use and walk past it so we can clobber it in the use list.
126     Use *U = &*UI++;
127     Instruction *UserI = dyn_cast<Instruction>(U->getUser());
128 
129     // Replace this use within the loop body.
130     if (UserI && L.contains(UserI))
131       U->set(&Replacement);
132   }
133 }
134 
135 /// Check that all the LCSSA PHI nodes in the loop exit block have trivial
136 /// incoming values along this edge.
areLoopExitPHIsLoopInvariant(Loop & L,BasicBlock & ExitingBB,BasicBlock & ExitBB)137 static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
138                                          BasicBlock &ExitBB) {
139   for (Instruction &I : ExitBB) {
140     auto *PN = dyn_cast<PHINode>(&I);
141     if (!PN)
142       // No more PHIs to check.
143       return true;
144 
145     // If the incoming value for this edge isn't loop invariant the unswitch
146     // won't be trivial.
147     if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
148       return false;
149   }
150   llvm_unreachable("Basic blocks should never be empty!");
151 }
152 
153 /// Insert code to test a set of loop invariant values, and conditionally branch
154 /// on them.
buildPartialUnswitchConditionalBranch(BasicBlock & BB,ArrayRef<Value * > Invariants,bool Direction,BasicBlock & UnswitchedSucc,BasicBlock & NormalSucc)155 static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
156                                                   ArrayRef<Value *> Invariants,
157                                                   bool Direction,
158                                                   BasicBlock &UnswitchedSucc,
159                                                   BasicBlock &NormalSucc) {
160   IRBuilder<> IRB(&BB);
161   Value *Cond = Invariants.front();
162   for (Value *Invariant :
163        make_range(std::next(Invariants.begin()), Invariants.end()))
164     if (Direction)
165       Cond = IRB.CreateOr(Cond, Invariant);
166     else
167       Cond = IRB.CreateAnd(Cond, Invariant);
168 
169   IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
170                    Direction ? &NormalSucc : &UnswitchedSucc);
171 }
172 
173 /// Rewrite the PHI nodes in an unswitched loop exit basic block.
174 ///
175 /// Requires that the loop exit and unswitched basic block are the same, and
176 /// that the exiting block was a unique predecessor of that block. Rewrites the
177 /// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
178 /// PHI nodes from the old preheader that now contains the unswitched
179 /// terminator.
rewritePHINodesForUnswitchedExitBlock(BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH)180 static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
181                                                   BasicBlock &OldExitingBB,
182                                                   BasicBlock &OldPH) {
183   for (PHINode &PN : UnswitchedBB.phis()) {
184     // When the loop exit is directly unswitched we just need to update the
185     // incoming basic block. We loop to handle weird cases with repeated
186     // incoming blocks, but expect to typically only have one operand here.
187     for (auto i : seq<int>(0, PN.getNumOperands())) {
188       assert(PN.getIncomingBlock(i) == &OldExitingBB &&
189              "Found incoming block different from unique predecessor!");
190       PN.setIncomingBlock(i, &OldPH);
191     }
192   }
193 }
194 
195 /// Rewrite the PHI nodes in the loop exit basic block and the split off
196 /// unswitched block.
197 ///
198 /// Because the exit block remains an exit from the loop, this rewrites the
199 /// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
200 /// nodes into the unswitched basic block to select between the value in the
201 /// old preheader and the loop exit.
rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock & ExitBB,BasicBlock & UnswitchedBB,BasicBlock & OldExitingBB,BasicBlock & OldPH,bool FullUnswitch)202 static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
203                                                       BasicBlock &UnswitchedBB,
204                                                       BasicBlock &OldExitingBB,
205                                                       BasicBlock &OldPH,
206                                                       bool FullUnswitch) {
207   assert(&ExitBB != &UnswitchedBB &&
208          "Must have different loop exit and unswitched blocks!");
209   Instruction *InsertPt = &*UnswitchedBB.begin();
210   for (PHINode &PN : ExitBB.phis()) {
211     auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
212                                   PN.getName() + ".split", InsertPt);
213 
214     // Walk backwards over the old PHI node's inputs to minimize the cost of
215     // removing each one. We have to do this weird loop manually so that we
216     // create the same number of new incoming edges in the new PHI as we expect
217     // each case-based edge to be included in the unswitched switch in some
218     // cases.
219     // FIXME: This is really, really gross. It would be much cleaner if LLVM
220     // allowed us to create a single entry for a predecessor block without
221     // having separate entries for each "edge" even though these edges are
222     // required to produce identical results.
223     for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
224       if (PN.getIncomingBlock(i) != &OldExitingBB)
225         continue;
226 
227       Value *Incoming = PN.getIncomingValue(i);
228       if (FullUnswitch)
229         // No more edge from the old exiting block to the exit block.
230         PN.removeIncomingValue(i);
231 
232       NewPN->addIncoming(Incoming, &OldPH);
233     }
234 
235     // Now replace the old PHI with the new one and wire the old one in as an
236     // input to the new one.
237     PN.replaceAllUsesWith(NewPN);
238     NewPN->addIncoming(&PN, &ExitBB);
239   }
240 }
241 
242 /// Hoist the current loop up to the innermost loop containing a remaining exit.
243 ///
244 /// Because we've removed an exit from the loop, we may have changed the set of
245 /// loops reachable and need to move the current loop up the loop nest or even
246 /// to an entirely separate nest.
hoistLoopToNewParent(Loop & L,BasicBlock & Preheader,DominatorTree & DT,LoopInfo & LI)247 static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
248                                  DominatorTree &DT, LoopInfo &LI) {
249   // If the loop is already at the top level, we can't hoist it anywhere.
250   Loop *OldParentL = L.getParentLoop();
251   if (!OldParentL)
252     return;
253 
254   SmallVector<BasicBlock *, 4> Exits;
255   L.getExitBlocks(Exits);
256   Loop *NewParentL = nullptr;
257   for (auto *ExitBB : Exits)
258     if (Loop *ExitL = LI.getLoopFor(ExitBB))
259       if (!NewParentL || NewParentL->contains(ExitL))
260         NewParentL = ExitL;
261 
262   if (NewParentL == OldParentL)
263     return;
264 
265   // The new parent loop (if different) should always contain the old one.
266   if (NewParentL)
267     assert(NewParentL->contains(OldParentL) &&
268            "Can only hoist this loop up the nest!");
269 
270   // The preheader will need to move with the body of this loop. However,
271   // because it isn't in this loop we also need to update the primary loop map.
272   assert(OldParentL == LI.getLoopFor(&Preheader) &&
273          "Parent loop of this loop should contain this loop's preheader!");
274   LI.changeLoopFor(&Preheader, NewParentL);
275 
276   // Remove this loop from its old parent.
277   OldParentL->removeChildLoop(&L);
278 
279   // Add the loop either to the new parent or as a top-level loop.
280   if (NewParentL)
281     NewParentL->addChildLoop(&L);
282   else
283     LI.addTopLevelLoop(&L);
284 
285   // Remove this loops blocks from the old parent and every other loop up the
286   // nest until reaching the new parent. Also update all of these
287   // no-longer-containing loops to reflect the nesting change.
288   for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
289        OldContainingL = OldContainingL->getParentLoop()) {
290     llvm::erase_if(OldContainingL->getBlocksVector(),
291                    [&](const BasicBlock *BB) {
292                      return BB == &Preheader || L.contains(BB);
293                    });
294 
295     OldContainingL->getBlocksSet().erase(&Preheader);
296     for (BasicBlock *BB : L.blocks())
297       OldContainingL->getBlocksSet().erase(BB);
298 
299     // Because we just hoisted a loop out of this one, we have essentially
300     // created new exit paths from it. That means we need to form LCSSA PHI
301     // nodes for values used in the no-longer-nested loop.
302     formLCSSA(*OldContainingL, DT, &LI, nullptr);
303 
304     // We shouldn't need to form dedicated exits because the exit introduced
305     // here is the (just split by unswitching) preheader. As such, it is
306     // necessarily dedicated.
307     assert(OldContainingL->hasDedicatedExits() &&
308            "Unexpected predecessor of hoisted loop preheader!");
309   }
310 }
311 
312 /// Unswitch a trivial branch if the condition is loop invariant.
313 ///
314 /// This routine should only be called when loop code leading to the branch has
315 /// been validated as trivial (no side effects). This routine checks if the
316 /// condition is invariant and one of the successors is a loop exit. This
317 /// allows us to unswitch without duplicating the loop, making it trivial.
318 ///
319 /// If this routine fails to unswitch the branch it returns false.
320 ///
321 /// If the branch can be unswitched, this routine splits the preheader and
322 /// hoists the branch above that split. Preserves loop simplified form
323 /// (splitting the exit block as necessary). It simplifies the branch within
324 /// the loop to an unconditional branch but doesn't remove it entirely. Further
325 /// cleanup can be done with some simplify-cfg like pass.
326 ///
327 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
328 /// invalidated by this.
unswitchTrivialBranch(Loop & L,BranchInst & BI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE)329 static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
330                                   LoopInfo &LI, ScalarEvolution *SE) {
331   assert(BI.isConditional() && "Can only unswitch a conditional branch!");
332   LLVM_DEBUG(dbgs() << "  Trying to unswitch branch: " << BI << "\n");
333 
334   // The loop invariant values that we want to unswitch.
335   TinyPtrVector<Value *> Invariants;
336 
337   // When true, we're fully unswitching the branch rather than just unswitching
338   // some input conditions to the branch.
339   bool FullUnswitch = false;
340 
341   if (L.isLoopInvariant(BI.getCondition())) {
342     Invariants.push_back(BI.getCondition());
343     FullUnswitch = true;
344   } else {
345     if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
346       Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
347     if (Invariants.empty())
348       // Couldn't find invariant inputs!
349       return false;
350   }
351 
352   // Check that one of the branch's successors exits, and which one.
353   bool ExitDirection = true;
354   int LoopExitSuccIdx = 0;
355   auto *LoopExitBB = BI.getSuccessor(0);
356   if (L.contains(LoopExitBB)) {
357     ExitDirection = false;
358     LoopExitSuccIdx = 1;
359     LoopExitBB = BI.getSuccessor(1);
360     if (L.contains(LoopExitBB))
361       return false;
362   }
363   auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
364   auto *ParentBB = BI.getParent();
365   if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
366     return false;
367 
368   // When unswitching only part of the branch's condition, we need the exit
369   // block to be reached directly from the partially unswitched input. This can
370   // be done when the exit block is along the true edge and the branch condition
371   // is a graph of `or` operations, or the exit block is along the false edge
372   // and the condition is a graph of `and` operations.
373   if (!FullUnswitch) {
374     if (ExitDirection) {
375       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
376         return false;
377     } else {
378       if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
379         return false;
380     }
381   }
382 
383   LLVM_DEBUG({
384     dbgs() << "    unswitching trivial invariant conditions for: " << BI
385            << "\n";
386     for (Value *Invariant : Invariants) {
387       dbgs() << "      " << *Invariant << " == true";
388       if (Invariant != Invariants.back())
389         dbgs() << " ||";
390       dbgs() << "\n";
391     }
392   });
393 
394   // If we have scalar evolutions, we need to invalidate them including this
395   // loop and the loop containing the exit block.
396   if (SE) {
397     if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
398       SE->forgetLoop(ExitL);
399     else
400       // Forget the entire nest as this exits the entire nest.
401       SE->forgetTopmostLoop(&L);
402   }
403 
404   // Split the preheader, so that we know that there is a safe place to insert
405   // the conditional branch. We will change the preheader to have a conditional
406   // branch on LoopCond.
407   BasicBlock *OldPH = L.getLoopPreheader();
408   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
409 
410   // Now that we have a place to insert the conditional branch, create a place
411   // to branch to: this is the exit block out of the loop that we are
412   // unswitching. We need to split this if there are other loop predecessors.
413   // Because the loop is in simplified form, *any* other predecessor is enough.
414   BasicBlock *UnswitchedBB;
415   if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
416     assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
417            "A branch's parent isn't a predecessor!");
418     UnswitchedBB = LoopExitBB;
419   } else {
420     UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
421   }
422 
423   // Actually move the invariant uses into the unswitched position. If possible,
424   // we do this by moving the instructions, but when doing partial unswitching
425   // we do it by building a new merge of the values in the unswitched position.
426   OldPH->getTerminator()->eraseFromParent();
427   if (FullUnswitch) {
428     // If fully unswitching, we can use the existing branch instruction.
429     // Splice it into the old PH to gate reaching the new preheader and re-point
430     // its successors.
431     OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
432                                 BI);
433     BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
434     BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
435 
436     // Create a new unconditional branch that will continue the loop as a new
437     // terminator.
438     BranchInst::Create(ContinueBB, ParentBB);
439   } else {
440     // Only unswitching a subset of inputs to the condition, so we will need to
441     // build a new branch that merges the invariant inputs.
442     if (ExitDirection)
443       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
444                  Instruction::Or &&
445              "Must have an `or` of `i1`s for the condition!");
446     else
447       assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
448                  Instruction::And &&
449              "Must have an `and` of `i1`s for the condition!");
450     buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
451                                           *UnswitchedBB, *NewPH);
452   }
453 
454   // Rewrite the relevant PHI nodes.
455   if (UnswitchedBB == LoopExitBB)
456     rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
457   else
458     rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
459                                               *ParentBB, *OldPH, FullUnswitch);
460 
461   // Now we need to update the dominator tree.
462   SmallVector<DominatorTree::UpdateType, 2> DTUpdates;
463   DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
464   if (FullUnswitch)
465     DTUpdates.push_back({DT.Delete, ParentBB, LoopExitBB});
466   DT.applyUpdates(DTUpdates);
467 
468   // The constant we can replace all of our invariants with inside the loop
469   // body. If any of the invariants have a value other than this the loop won't
470   // be entered.
471   ConstantInt *Replacement = ExitDirection
472                                  ? ConstantInt::getFalse(BI.getContext())
473                                  : ConstantInt::getTrue(BI.getContext());
474 
475   // Since this is an i1 condition we can also trivially replace uses of it
476   // within the loop with a constant.
477   for (Value *Invariant : Invariants)
478     replaceLoopInvariantUses(L, Invariant, *Replacement);
479 
480   // If this was full unswitching, we may have changed the nesting relationship
481   // for this loop so hoist it to its correct parent if needed.
482   if (FullUnswitch)
483     hoistLoopToNewParent(L, *NewPH, DT, LI);
484 
485   ++NumTrivial;
486   ++NumBranches;
487   return true;
488 }
489 
490 /// Unswitch a trivial switch if the condition is loop invariant.
491 ///
492 /// This routine should only be called when loop code leading to the switch has
493 /// been validated as trivial (no side effects). This routine checks if the
494 /// condition is invariant and that at least one of the successors is a loop
495 /// exit. This allows us to unswitch without duplicating the loop, making it
496 /// trivial.
497 ///
498 /// If this routine fails to unswitch the switch it returns false.
499 ///
500 /// If the switch can be unswitched, this routine splits the preheader and
501 /// copies the switch above that split. If the default case is one of the
502 /// exiting cases, it copies the non-exiting cases and points them at the new
503 /// preheader. If the default case is not exiting, it copies the exiting cases
504 /// and points the default at the preheader. It preserves loop simplified form
505 /// (splitting the exit blocks as necessary). It simplifies the switch within
506 /// the loop by removing now-dead cases. If the default case is one of those
507 /// unswitched, it replaces its destination with a new basic block containing
508 /// only unreachable. Such basic blocks, while technically loop exits, are not
509 /// considered for unswitching so this is a stable transform and the same
510 /// switch will not be revisited. If after unswitching there is only a single
511 /// in-loop successor, the switch is further simplified to an unconditional
512 /// branch. Still more cleanup can be done with some simplify-cfg like pass.
513 ///
514 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
515 /// invalidated by this.
unswitchTrivialSwitch(Loop & L,SwitchInst & SI,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE)516 static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
517                                   LoopInfo &LI, ScalarEvolution *SE) {
518   LLVM_DEBUG(dbgs() << "  Trying to unswitch switch: " << SI << "\n");
519   Value *LoopCond = SI.getCondition();
520 
521   // If this isn't switching on an invariant condition, we can't unswitch it.
522   if (!L.isLoopInvariant(LoopCond))
523     return false;
524 
525   auto *ParentBB = SI.getParent();
526 
527   SmallVector<int, 4> ExitCaseIndices;
528   for (auto Case : SI.cases()) {
529     auto *SuccBB = Case.getCaseSuccessor();
530     if (!L.contains(SuccBB) &&
531         areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
532       ExitCaseIndices.push_back(Case.getCaseIndex());
533   }
534   BasicBlock *DefaultExitBB = nullptr;
535   if (!L.contains(SI.getDefaultDest()) &&
536       areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
537       !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
538     DefaultExitBB = SI.getDefaultDest();
539   else if (ExitCaseIndices.empty())
540     return false;
541 
542   LLVM_DEBUG(dbgs() << "    unswitching trivial cases...\n");
543 
544   // We may need to invalidate SCEVs for the outermost loop reached by any of
545   // the exits.
546   Loop *OuterL = &L;
547 
548   if (DefaultExitBB) {
549     // Clear out the default destination temporarily to allow accurate
550     // predecessor lists to be examined below.
551     SI.setDefaultDest(nullptr);
552     // Check the loop containing this exit.
553     Loop *ExitL = LI.getLoopFor(DefaultExitBB);
554     if (!ExitL || ExitL->contains(OuterL))
555       OuterL = ExitL;
556   }
557 
558   // Store the exit cases into a separate data structure and remove them from
559   // the switch.
560   SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
561   ExitCases.reserve(ExitCaseIndices.size());
562   // We walk the case indices backwards so that we remove the last case first
563   // and don't disrupt the earlier indices.
564   for (unsigned Index : reverse(ExitCaseIndices)) {
565     auto CaseI = SI.case_begin() + Index;
566     // Compute the outer loop from this exit.
567     Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
568     if (!ExitL || ExitL->contains(OuterL))
569       OuterL = ExitL;
570     // Save the value of this case.
571     ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
572     // Delete the unswitched cases.
573     SI.removeCase(CaseI);
574   }
575 
576   if (SE) {
577     if (OuterL)
578       SE->forgetLoop(OuterL);
579     else
580       SE->forgetTopmostLoop(&L);
581   }
582 
583   // Check if after this all of the remaining cases point at the same
584   // successor.
585   BasicBlock *CommonSuccBB = nullptr;
586   if (SI.getNumCases() > 0 &&
587       std::all_of(std::next(SI.case_begin()), SI.case_end(),
588                   [&SI](const SwitchInst::CaseHandle &Case) {
589                     return Case.getCaseSuccessor() ==
590                            SI.case_begin()->getCaseSuccessor();
591                   }))
592     CommonSuccBB = SI.case_begin()->getCaseSuccessor();
593   if (!DefaultExitBB) {
594     // If we're not unswitching the default, we need it to match any cases to
595     // have a common successor or if we have no cases it is the common
596     // successor.
597     if (SI.getNumCases() == 0)
598       CommonSuccBB = SI.getDefaultDest();
599     else if (SI.getDefaultDest() != CommonSuccBB)
600       CommonSuccBB = nullptr;
601   }
602 
603   // Split the preheader, so that we know that there is a safe place to insert
604   // the switch.
605   BasicBlock *OldPH = L.getLoopPreheader();
606   BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
607   OldPH->getTerminator()->eraseFromParent();
608 
609   // Now add the unswitched switch.
610   auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
611 
612   // Rewrite the IR for the unswitched basic blocks. This requires two steps.
613   // First, we split any exit blocks with remaining in-loop predecessors. Then
614   // we update the PHIs in one of two ways depending on if there was a split.
615   // We walk in reverse so that we split in the same order as the cases
616   // appeared. This is purely for convenience of reading the resulting IR, but
617   // it doesn't cost anything really.
618   SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
619   SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
620   // Handle the default exit if necessary.
621   // FIXME: It'd be great if we could merge this with the loop below but LLVM's
622   // ranges aren't quite powerful enough yet.
623   if (DefaultExitBB) {
624     if (pred_empty(DefaultExitBB)) {
625       UnswitchedExitBBs.insert(DefaultExitBB);
626       rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
627     } else {
628       auto *SplitBB =
629           SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
630       rewritePHINodesForExitAndUnswitchedBlocks(
631           *DefaultExitBB, *SplitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
632       DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
633     }
634   }
635   // Note that we must use a reference in the for loop so that we update the
636   // container.
637   for (auto &CasePair : reverse(ExitCases)) {
638     // Grab a reference to the exit block in the pair so that we can update it.
639     BasicBlock *ExitBB = CasePair.second;
640 
641     // If this case is the last edge into the exit block, we can simply reuse it
642     // as it will no longer be a loop exit. No mapping necessary.
643     if (pred_empty(ExitBB)) {
644       // Only rewrite once.
645       if (UnswitchedExitBBs.insert(ExitBB).second)
646         rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
647       continue;
648     }
649 
650     // Otherwise we need to split the exit block so that we retain an exit
651     // block from the loop and a target for the unswitched condition.
652     BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
653     if (!SplitExitBB) {
654       // If this is the first time we see this, do the split and remember it.
655       SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
656       rewritePHINodesForExitAndUnswitchedBlocks(
657           *ExitBB, *SplitExitBB, *ParentBB, *OldPH, /*FullUnswitch*/ true);
658     }
659     // Update the case pair to point to the split block.
660     CasePair.second = SplitExitBB;
661   }
662 
663   // Now add the unswitched cases. We do this in reverse order as we built them
664   // in reverse order.
665   for (auto CasePair : reverse(ExitCases)) {
666     ConstantInt *CaseVal = CasePair.first;
667     BasicBlock *UnswitchedBB = CasePair.second;
668 
669     NewSI->addCase(CaseVal, UnswitchedBB);
670   }
671 
672   // If the default was unswitched, re-point it and add explicit cases for
673   // entering the loop.
674   if (DefaultExitBB) {
675     NewSI->setDefaultDest(DefaultExitBB);
676 
677     // We removed all the exit cases, so we just copy the cases to the
678     // unswitched switch.
679     for (auto Case : SI.cases())
680       NewSI->addCase(Case.getCaseValue(), NewPH);
681   }
682 
683   // If we ended up with a common successor for every path through the switch
684   // after unswitching, rewrite it to an unconditional branch to make it easy
685   // to recognize. Otherwise we potentially have to recognize the default case
686   // pointing at unreachable and other complexity.
687   if (CommonSuccBB) {
688     BasicBlock *BB = SI.getParent();
689     // We may have had multiple edges to this common successor block, so remove
690     // them as predecessors. We skip the first one, either the default or the
691     // actual first case.
692     bool SkippedFirst = DefaultExitBB == nullptr;
693     for (auto Case : SI.cases()) {
694       assert(Case.getCaseSuccessor() == CommonSuccBB &&
695              "Non-common successor!");
696       (void)Case;
697       if (!SkippedFirst) {
698         SkippedFirst = true;
699         continue;
700       }
701       CommonSuccBB->removePredecessor(BB,
702                                       /*DontDeleteUselessPHIs*/ true);
703     }
704     // Now nuke the switch and replace it with a direct branch.
705     SI.eraseFromParent();
706     BranchInst::Create(CommonSuccBB, BB);
707   } else if (DefaultExitBB) {
708     assert(SI.getNumCases() > 0 &&
709            "If we had no cases we'd have a common successor!");
710     // Move the last case to the default successor. This is valid as if the
711     // default got unswitched it cannot be reached. This has the advantage of
712     // being simple and keeping the number of edges from this switch to
713     // successors the same, and avoiding any PHI update complexity.
714     auto LastCaseI = std::prev(SI.case_end());
715     SI.setDefaultDest(LastCaseI->getCaseSuccessor());
716     SI.removeCase(LastCaseI);
717   }
718 
719   // Walk the unswitched exit blocks and the unswitched split blocks and update
720   // the dominator tree based on the CFG edits. While we are walking unordered
721   // containers here, the API for applyUpdates takes an unordered list of
722   // updates and requires them to not contain duplicates.
723   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
724   for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
725     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
726     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
727   }
728   for (auto SplitUnswitchedPair : SplitExitBBMap) {
729     auto *UnswitchedBB = SplitUnswitchedPair.second;
730     DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedBB});
731     DTUpdates.push_back({DT.Insert, OldPH, UnswitchedBB});
732   }
733   DT.applyUpdates(DTUpdates);
734   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
735 
736   // We may have changed the nesting relationship for this loop so hoist it to
737   // its correct parent if needed.
738   hoistLoopToNewParent(L, *NewPH, DT, LI);
739 
740   ++NumTrivial;
741   ++NumSwitches;
742   return true;
743 }
744 
745 /// This routine scans the loop to find a branch or switch which occurs before
746 /// any side effects occur. These can potentially be unswitched without
747 /// duplicating the loop. If a branch or switch is successfully unswitched the
748 /// scanning continues to see if subsequent branches or switches have become
749 /// trivial. Once all trivial candidates have been unswitched, this routine
750 /// returns.
751 ///
752 /// The return value indicates whether anything was unswitched (and therefore
753 /// changed).
754 ///
755 /// If `SE` is not null, it will be updated based on the potential loop SCEVs
756 /// invalidated by this.
unswitchAllTrivialConditions(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution * SE)757 static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
758                                          LoopInfo &LI, ScalarEvolution *SE) {
759   bool Changed = false;
760 
761   // If loop header has only one reachable successor we should keep looking for
762   // trivial condition candidates in the successor as well. An alternative is
763   // to constant fold conditions and merge successors into loop header (then we
764   // only need to check header's terminator). The reason for not doing this in
765   // LoopUnswitch pass is that it could potentially break LoopPassManager's
766   // invariants. Folding dead branches could either eliminate the current loop
767   // or make other loops unreachable. LCSSA form might also not be preserved
768   // after deleting branches. The following code keeps traversing loop header's
769   // successors until it finds the trivial condition candidate (condition that
770   // is not a constant). Since unswitching generates branches with constant
771   // conditions, this scenario could be very common in practice.
772   BasicBlock *CurrentBB = L.getHeader();
773   SmallPtrSet<BasicBlock *, 8> Visited;
774   Visited.insert(CurrentBB);
775   do {
776     // Check if there are any side-effecting instructions (e.g. stores, calls,
777     // volatile loads) in the part of the loop that the code *would* execute
778     // without unswitching.
779     if (llvm::any_of(*CurrentBB,
780                      [](Instruction &I) { return I.mayHaveSideEffects(); }))
781       return Changed;
782 
783     TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
784 
785     if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
786       // Don't bother trying to unswitch past a switch with a constant
787       // condition. This should be removed prior to running this pass by
788       // simplify-cfg.
789       if (isa<Constant>(SI->getCondition()))
790         return Changed;
791 
792       if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE))
793         // Couldn't unswitch this one so we're done.
794         return Changed;
795 
796       // Mark that we managed to unswitch something.
797       Changed = true;
798 
799       // If unswitching turned the terminator into an unconditional branch then
800       // we can continue. The unswitching logic specifically works to fold any
801       // cases it can into an unconditional branch to make it easier to
802       // recognize here.
803       auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
804       if (!BI || BI->isConditional())
805         return Changed;
806 
807       CurrentBB = BI->getSuccessor(0);
808       continue;
809     }
810 
811     auto *BI = dyn_cast<BranchInst>(CurrentTerm);
812     if (!BI)
813       // We do not understand other terminator instructions.
814       return Changed;
815 
816     // Don't bother trying to unswitch past an unconditional branch or a branch
817     // with a constant value. These should be removed by simplify-cfg prior to
818     // running this pass.
819     if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
820       return Changed;
821 
822     // Found a trivial condition candidate: non-foldable conditional branch. If
823     // we fail to unswitch this, we can't do anything else that is trivial.
824     if (!unswitchTrivialBranch(L, *BI, DT, LI, SE))
825       return Changed;
826 
827     // Mark that we managed to unswitch something.
828     Changed = true;
829 
830     // If we only unswitched some of the conditions feeding the branch, we won't
831     // have collapsed it to a single successor.
832     BI = cast<BranchInst>(CurrentBB->getTerminator());
833     if (BI->isConditional())
834       return Changed;
835 
836     // Follow the newly unconditional branch into its successor.
837     CurrentBB = BI->getSuccessor(0);
838 
839     // When continuing, if we exit the loop or reach a previous visited block,
840     // then we can not reach any trivial condition candidates (unfoldable
841     // branch instructions or switch instructions) and no unswitch can happen.
842   } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
843 
844   return Changed;
845 }
846 
847 /// Build the cloned blocks for an unswitched copy of the given loop.
848 ///
849 /// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
850 /// after the split block (`SplitBB`) that will be used to select between the
851 /// cloned and original loop.
852 ///
853 /// This routine handles cloning all of the necessary loop blocks and exit
854 /// blocks including rewriting their instructions and the relevant PHI nodes.
855 /// Any loop blocks or exit blocks which are dominated by a different successor
856 /// than the one for this clone of the loop blocks can be trivially skipped. We
857 /// use the `DominatingSucc` map to determine whether a block satisfies that
858 /// property with a simple map lookup.
859 ///
860 /// It also correctly creates the unconditional branch in the cloned
861 /// unswitched parent block to only point at the unswitched successor.
862 ///
863 /// This does not handle most of the necessary updates to `LoopInfo`. Only exit
864 /// block splitting is correctly reflected in `LoopInfo`, essentially all of
865 /// the cloned blocks (and their loops) are left without full `LoopInfo`
866 /// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
867 /// blocks to them but doesn't create the cloned `DominatorTree` structure and
868 /// instead the caller must recompute an accurate DT. It *does* correctly
869 /// update the `AssumptionCache` provided in `AC`.
buildClonedLoopBlocks(Loop & L,BasicBlock * LoopPH,BasicBlock * SplitBB,ArrayRef<BasicBlock * > ExitBlocks,BasicBlock * ParentBB,BasicBlock * UnswitchedSuccBB,BasicBlock * ContinueSuccBB,const SmallDenseMap<BasicBlock *,BasicBlock *,16> & DominatingSucc,ValueToValueMapTy & VMap,SmallVectorImpl<DominatorTree::UpdateType> & DTUpdates,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)870 static BasicBlock *buildClonedLoopBlocks(
871     Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
872     ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
873     BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
874     const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
875     ValueToValueMapTy &VMap,
876     SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
877     DominatorTree &DT, LoopInfo &LI) {
878   SmallVector<BasicBlock *, 4> NewBlocks;
879   NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
880 
881   // We will need to clone a bunch of blocks, wrap up the clone operation in
882   // a helper.
883   auto CloneBlock = [&](BasicBlock *OldBB) {
884     // Clone the basic block and insert it before the new preheader.
885     BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
886     NewBB->moveBefore(LoopPH);
887 
888     // Record this block and the mapping.
889     NewBlocks.push_back(NewBB);
890     VMap[OldBB] = NewBB;
891 
892     return NewBB;
893   };
894 
895   // We skip cloning blocks when they have a dominating succ that is not the
896   // succ we are cloning for.
897   auto SkipBlock = [&](BasicBlock *BB) {
898     auto It = DominatingSucc.find(BB);
899     return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
900   };
901 
902   // First, clone the preheader.
903   auto *ClonedPH = CloneBlock(LoopPH);
904 
905   // Then clone all the loop blocks, skipping the ones that aren't necessary.
906   for (auto *LoopBB : L.blocks())
907     if (!SkipBlock(LoopBB))
908       CloneBlock(LoopBB);
909 
910   // Split all the loop exit edges so that when we clone the exit blocks, if
911   // any of the exit blocks are *also* a preheader for some other loop, we
912   // don't create multiple predecessors entering the loop header.
913   for (auto *ExitBB : ExitBlocks) {
914     if (SkipBlock(ExitBB))
915       continue;
916 
917     // When we are going to clone an exit, we don't need to clone all the
918     // instructions in the exit block and we want to ensure we have an easy
919     // place to merge the CFG, so split the exit first. This is always safe to
920     // do because there cannot be any non-loop predecessors of a loop exit in
921     // loop simplified form.
922     auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
923 
924     // Rearrange the names to make it easier to write test cases by having the
925     // exit block carry the suffix rather than the merge block carrying the
926     // suffix.
927     MergeBB->takeName(ExitBB);
928     ExitBB->setName(Twine(MergeBB->getName()) + ".split");
929 
930     // Now clone the original exit block.
931     auto *ClonedExitBB = CloneBlock(ExitBB);
932     assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
933            "Exit block should have been split to have one successor!");
934     assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
935            "Cloned exit block has the wrong successor!");
936 
937     // Remap any cloned instructions and create a merge phi node for them.
938     for (auto ZippedInsts : llvm::zip_first(
939              llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
940              llvm::make_range(ClonedExitBB->begin(),
941                               std::prev(ClonedExitBB->end())))) {
942       Instruction &I = std::get<0>(ZippedInsts);
943       Instruction &ClonedI = std::get<1>(ZippedInsts);
944 
945       // The only instructions in the exit block should be PHI nodes and
946       // potentially a landing pad.
947       assert(
948           (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
949           "Bad instruction in exit block!");
950       // We should have a value map between the instruction and its clone.
951       assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
952 
953       auto *MergePN =
954           PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
955                           &*MergeBB->getFirstInsertionPt());
956       I.replaceAllUsesWith(MergePN);
957       MergePN->addIncoming(&I, ExitBB);
958       MergePN->addIncoming(&ClonedI, ClonedExitBB);
959     }
960   }
961 
962   // Rewrite the instructions in the cloned blocks to refer to the instructions
963   // in the cloned blocks. We have to do this as a second pass so that we have
964   // everything available. Also, we have inserted new instructions which may
965   // include assume intrinsics, so we update the assumption cache while
966   // processing this.
967   for (auto *ClonedBB : NewBlocks)
968     for (Instruction &I : *ClonedBB) {
969       RemapInstruction(&I, VMap,
970                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
971       if (auto *II = dyn_cast<IntrinsicInst>(&I))
972         if (II->getIntrinsicID() == Intrinsic::assume)
973           AC.registerAssumption(II);
974     }
975 
976   // Update any PHI nodes in the cloned successors of the skipped blocks to not
977   // have spurious incoming values.
978   for (auto *LoopBB : L.blocks())
979     if (SkipBlock(LoopBB))
980       for (auto *SuccBB : successors(LoopBB))
981         if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
982           for (PHINode &PN : ClonedSuccBB->phis())
983             PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
984 
985   // Remove the cloned parent as a predecessor of any successor we ended up
986   // cloning other than the unswitched one.
987   auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
988   for (auto *SuccBB : successors(ParentBB)) {
989     if (SuccBB == UnswitchedSuccBB)
990       continue;
991 
992     auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
993     if (!ClonedSuccBB)
994       continue;
995 
996     ClonedSuccBB->removePredecessor(ClonedParentBB,
997                                     /*DontDeleteUselessPHIs*/ true);
998   }
999 
1000   // Replace the cloned branch with an unconditional branch to the cloned
1001   // unswitched successor.
1002   auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
1003   ClonedParentBB->getTerminator()->eraseFromParent();
1004   BranchInst::Create(ClonedSuccBB, ClonedParentBB);
1005 
1006   // If there are duplicate entries in the PHI nodes because of multiple edges
1007   // to the unswitched successor, we need to nuke all but one as we replaced it
1008   // with a direct branch.
1009   for (PHINode &PN : ClonedSuccBB->phis()) {
1010     bool Found = false;
1011     // Loop over the incoming operands backwards so we can easily delete as we
1012     // go without invalidating the index.
1013     for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1014       if (PN.getIncomingBlock(i) != ClonedParentBB)
1015         continue;
1016       if (!Found) {
1017         Found = true;
1018         continue;
1019       }
1020       PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
1021     }
1022   }
1023 
1024   // Record the domtree updates for the new blocks.
1025   SmallPtrSet<BasicBlock *, 4> SuccSet;
1026   for (auto *ClonedBB : NewBlocks) {
1027     for (auto *SuccBB : successors(ClonedBB))
1028       if (SuccSet.insert(SuccBB).second)
1029         DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
1030     SuccSet.clear();
1031   }
1032 
1033   return ClonedPH;
1034 }
1035 
1036 /// Recursively clone the specified loop and all of its children.
1037 ///
1038 /// The target parent loop for the clone should be provided, or can be null if
1039 /// the clone is a top-level loop. While cloning, all the blocks are mapped
1040 /// with the provided value map. The entire original loop must be present in
1041 /// the value map. The cloned loop is returned.
cloneLoopNest(Loop & OrigRootL,Loop * RootParentL,const ValueToValueMapTy & VMap,LoopInfo & LI)1042 static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1043                            const ValueToValueMapTy &VMap, LoopInfo &LI) {
1044   auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1045     assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1046     ClonedL.reserveBlocks(OrigL.getNumBlocks());
1047     for (auto *BB : OrigL.blocks()) {
1048       auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
1049       ClonedL.addBlockEntry(ClonedBB);
1050       if (LI.getLoopFor(BB) == &OrigL)
1051         LI.changeLoopFor(ClonedBB, &ClonedL);
1052     }
1053   };
1054 
1055   // We specially handle the first loop because it may get cloned into
1056   // a different parent and because we most commonly are cloning leaf loops.
1057   Loop *ClonedRootL = LI.AllocateLoop();
1058   if (RootParentL)
1059     RootParentL->addChildLoop(ClonedRootL);
1060   else
1061     LI.addTopLevelLoop(ClonedRootL);
1062   AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1063 
1064   if (OrigRootL.empty())
1065     return ClonedRootL;
1066 
1067   // If we have a nest, we can quickly clone the entire loop nest using an
1068   // iterative approach because it is a tree. We keep the cloned parent in the
1069   // data structure to avoid repeatedly querying through a map to find it.
1070   SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1071   // Build up the loops to clone in reverse order as we'll clone them from the
1072   // back.
1073   for (Loop *ChildL : llvm::reverse(OrigRootL))
1074     LoopsToClone.push_back({ClonedRootL, ChildL});
1075   do {
1076     Loop *ClonedParentL, *L;
1077     std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
1078     Loop *ClonedL = LI.AllocateLoop();
1079     ClonedParentL->addChildLoop(ClonedL);
1080     AddClonedBlocksToLoop(*L, *ClonedL);
1081     for (Loop *ChildL : llvm::reverse(*L))
1082       LoopsToClone.push_back({ClonedL, ChildL});
1083   } while (!LoopsToClone.empty());
1084 
1085   return ClonedRootL;
1086 }
1087 
1088 /// Build the cloned loops of an original loop from unswitching.
1089 ///
1090 /// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1091 /// operation. We need to re-verify that there even is a loop (as the backedge
1092 /// may not have been cloned), and even if there are remaining backedges the
1093 /// backedge set may be different. However, we know that each child loop is
1094 /// undisturbed, we only need to find where to place each child loop within
1095 /// either any parent loop or within a cloned version of the original loop.
1096 ///
1097 /// Because child loops may end up cloned outside of any cloned version of the
1098 /// original loop, multiple cloned sibling loops may be created. All of them
1099 /// are returned so that the newly introduced loop nest roots can be
1100 /// identified.
buildClonedLoops(Loop & OrigL,ArrayRef<BasicBlock * > ExitBlocks,const ValueToValueMapTy & VMap,LoopInfo & LI,SmallVectorImpl<Loop * > & NonChildClonedLoops)1101 static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1102                              const ValueToValueMapTy &VMap, LoopInfo &LI,
1103                              SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1104   Loop *ClonedL = nullptr;
1105 
1106   auto *OrigPH = OrigL.getLoopPreheader();
1107   auto *OrigHeader = OrigL.getHeader();
1108 
1109   auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
1110   auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
1111 
1112   // We need to know the loops of the cloned exit blocks to even compute the
1113   // accurate parent loop. If we only clone exits to some parent of the
1114   // original parent, we want to clone into that outer loop. We also keep track
1115   // of the loops that our cloned exit blocks participate in.
1116   Loop *ParentL = nullptr;
1117   SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1118   SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1119   ClonedExitsInLoops.reserve(ExitBlocks.size());
1120   for (auto *ExitBB : ExitBlocks)
1121     if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
1122       if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1123         ExitLoopMap[ClonedExitBB] = ExitL;
1124         ClonedExitsInLoops.push_back(ClonedExitBB);
1125         if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1126           ParentL = ExitL;
1127       }
1128   assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1129           ParentL->contains(OrigL.getParentLoop())) &&
1130          "The computed parent loop should always contain (or be) the parent of "
1131          "the original loop.");
1132 
1133   // We build the set of blocks dominated by the cloned header from the set of
1134   // cloned blocks out of the original loop. While not all of these will
1135   // necessarily be in the cloned loop, it is enough to establish that they
1136   // aren't in unreachable cycles, etc.
1137   SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1138   for (auto *BB : OrigL.blocks())
1139     if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1140       ClonedLoopBlocks.insert(ClonedBB);
1141 
1142   // Rebuild the set of blocks that will end up in the cloned loop. We may have
1143   // skipped cloning some region of this loop which can in turn skip some of
1144   // the backedges so we have to rebuild the blocks in the loop based on the
1145   // backedges that remain after cloning.
1146   SmallVector<BasicBlock *, 16> Worklist;
1147   SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1148   for (auto *Pred : predecessors(ClonedHeader)) {
1149     // The only possible non-loop header predecessor is the preheader because
1150     // we know we cloned the loop in simplified form.
1151     if (Pred == ClonedPH)
1152       continue;
1153 
1154     // Because the loop was in simplified form, the only non-loop predecessor
1155     // should be the preheader.
1156     assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1157                                            "header other than the preheader "
1158                                            "that is not part of the loop!");
1159 
1160     // Insert this block into the loop set and on the first visit (and if it
1161     // isn't the header we're currently walking) put it into the worklist to
1162     // recurse through.
1163     if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1164       Worklist.push_back(Pred);
1165   }
1166 
1167   // If we had any backedges then there *is* a cloned loop. Put the header into
1168   // the loop set and then walk the worklist backwards to find all the blocks
1169   // that remain within the loop after cloning.
1170   if (!BlocksInClonedLoop.empty()) {
1171     BlocksInClonedLoop.insert(ClonedHeader);
1172 
1173     while (!Worklist.empty()) {
1174       BasicBlock *BB = Worklist.pop_back_val();
1175       assert(BlocksInClonedLoop.count(BB) &&
1176              "Didn't put block into the loop set!");
1177 
1178       // Insert any predecessors that are in the possible set into the cloned
1179       // set, and if the insert is successful, add them to the worklist. Note
1180       // that we filter on the blocks that are definitely reachable via the
1181       // backedge to the loop header so we may prune out dead code within the
1182       // cloned loop.
1183       for (auto *Pred : predecessors(BB))
1184         if (ClonedLoopBlocks.count(Pred) &&
1185             BlocksInClonedLoop.insert(Pred).second)
1186           Worklist.push_back(Pred);
1187     }
1188 
1189     ClonedL = LI.AllocateLoop();
1190     if (ParentL) {
1191       ParentL->addBasicBlockToLoop(ClonedPH, LI);
1192       ParentL->addChildLoop(ClonedL);
1193     } else {
1194       LI.addTopLevelLoop(ClonedL);
1195     }
1196     NonChildClonedLoops.push_back(ClonedL);
1197 
1198     ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1199     // We don't want to just add the cloned loop blocks based on how we
1200     // discovered them. The original order of blocks was carefully built in
1201     // a way that doesn't rely on predecessor ordering. Rather than re-invent
1202     // that logic, we just re-walk the original blocks (and those of the child
1203     // loops) and filter them as we add them into the cloned loop.
1204     for (auto *BB : OrigL.blocks()) {
1205       auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1206       if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1207         continue;
1208 
1209       // Directly add the blocks that are only in this loop.
1210       if (LI.getLoopFor(BB) == &OrigL) {
1211         ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1212         continue;
1213       }
1214 
1215       // We want to manually add it to this loop and parents.
1216       // Registering it with LoopInfo will happen when we clone the top
1217       // loop for this block.
1218       for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1219         PL->addBlockEntry(ClonedBB);
1220     }
1221 
1222     // Now add each child loop whose header remains within the cloned loop. All
1223     // of the blocks within the loop must satisfy the same constraints as the
1224     // header so once we pass the header checks we can just clone the entire
1225     // child loop nest.
1226     for (Loop *ChildL : OrigL) {
1227       auto *ClonedChildHeader =
1228           cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1229       if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1230         continue;
1231 
1232 #ifndef NDEBUG
1233       // We should never have a cloned child loop header but fail to have
1234       // all of the blocks for that child loop.
1235       for (auto *ChildLoopBB : ChildL->blocks())
1236         assert(BlocksInClonedLoop.count(
1237                    cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1238                "Child cloned loop has a header within the cloned outer "
1239                "loop but not all of its blocks!");
1240 #endif
1241 
1242       cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1243     }
1244   }
1245 
1246   // Now that we've handled all the components of the original loop that were
1247   // cloned into a new loop, we still need to handle anything from the original
1248   // loop that wasn't in a cloned loop.
1249 
1250   // Figure out what blocks are left to place within any loop nest containing
1251   // the unswitched loop. If we never formed a loop, the cloned PH is one of
1252   // them.
1253   SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1254   if (BlocksInClonedLoop.empty())
1255     UnloopedBlockSet.insert(ClonedPH);
1256   for (auto *ClonedBB : ClonedLoopBlocks)
1257     if (!BlocksInClonedLoop.count(ClonedBB))
1258       UnloopedBlockSet.insert(ClonedBB);
1259 
1260   // Copy the cloned exits and sort them in ascending loop depth, we'll work
1261   // backwards across these to process them inside out. The order shouldn't
1262   // matter as we're just trying to build up the map from inside-out; we use
1263   // the map in a more stably ordered way below.
1264   auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1265   llvm::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
1266              [&](BasicBlock *LHS, BasicBlock *RHS) {
1267                return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1268                       ExitLoopMap.lookup(RHS)->getLoopDepth();
1269              });
1270 
1271   // Populate the existing ExitLoopMap with everything reachable from each
1272   // exit, starting from the inner most exit.
1273   while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1274     assert(Worklist.empty() && "Didn't clear worklist!");
1275 
1276     BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1277     Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1278 
1279     // Walk the CFG back until we hit the cloned PH adding everything reachable
1280     // and in the unlooped set to this exit block's loop.
1281     Worklist.push_back(ExitBB);
1282     do {
1283       BasicBlock *BB = Worklist.pop_back_val();
1284       // We can stop recursing at the cloned preheader (if we get there).
1285       if (BB == ClonedPH)
1286         continue;
1287 
1288       for (BasicBlock *PredBB : predecessors(BB)) {
1289         // If this pred has already been moved to our set or is part of some
1290         // (inner) loop, no update needed.
1291         if (!UnloopedBlockSet.erase(PredBB)) {
1292           assert(
1293               (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1294               "Predecessor not mapped to a loop!");
1295           continue;
1296         }
1297 
1298         // We just insert into the loop set here. We'll add these blocks to the
1299         // exit loop after we build up the set in an order that doesn't rely on
1300         // predecessor order (which in turn relies on use list order).
1301         bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1302         (void)Inserted;
1303         assert(Inserted && "Should only visit an unlooped block once!");
1304 
1305         // And recurse through to its predecessors.
1306         Worklist.push_back(PredBB);
1307       }
1308     } while (!Worklist.empty());
1309   }
1310 
1311   // Now that the ExitLoopMap gives as  mapping for all the non-looping cloned
1312   // blocks to their outer loops, walk the cloned blocks and the cloned exits
1313   // in their original order adding them to the correct loop.
1314 
1315   // We need a stable insertion order. We use the order of the original loop
1316   // order and map into the correct parent loop.
1317   for (auto *BB : llvm::concat<BasicBlock *const>(
1318            makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1319     if (Loop *OuterL = ExitLoopMap.lookup(BB))
1320       OuterL->addBasicBlockToLoop(BB, LI);
1321 
1322 #ifndef NDEBUG
1323   for (auto &BBAndL : ExitLoopMap) {
1324     auto *BB = BBAndL.first;
1325     auto *OuterL = BBAndL.second;
1326     assert(LI.getLoopFor(BB) == OuterL &&
1327            "Failed to put all blocks into outer loops!");
1328   }
1329 #endif
1330 
1331   // Now that all the blocks are placed into the correct containing loop in the
1332   // absence of child loops, find all the potentially cloned child loops and
1333   // clone them into whatever outer loop we placed their header into.
1334   for (Loop *ChildL : OrigL) {
1335     auto *ClonedChildHeader =
1336         cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1337     if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1338       continue;
1339 
1340 #ifndef NDEBUG
1341     for (auto *ChildLoopBB : ChildL->blocks())
1342       assert(VMap.count(ChildLoopBB) &&
1343              "Cloned a child loop header but not all of that loops blocks!");
1344 #endif
1345 
1346     NonChildClonedLoops.push_back(cloneLoopNest(
1347         *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1348   }
1349 }
1350 
1351 static void
deleteDeadClonedBlocks(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,DominatorTree & DT)1352 deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1353                        ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1354                        DominatorTree &DT) {
1355   // Find all the dead clones, and remove them from their successors.
1356   SmallVector<BasicBlock *, 16> DeadBlocks;
1357   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1358     for (auto &VMap : VMaps)
1359       if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
1360         if (!DT.isReachableFromEntry(ClonedBB)) {
1361           for (BasicBlock *SuccBB : successors(ClonedBB))
1362             SuccBB->removePredecessor(ClonedBB);
1363           DeadBlocks.push_back(ClonedBB);
1364         }
1365 
1366   // Drop any remaining references to break cycles.
1367   for (BasicBlock *BB : DeadBlocks)
1368     BB->dropAllReferences();
1369   // Erase them from the IR.
1370   for (BasicBlock *BB : DeadBlocks)
1371     BB->eraseFromParent();
1372 }
1373 
1374 static void
deleteDeadBlocksFromLoop(Loop & L,SmallVectorImpl<BasicBlock * > & ExitBlocks,DominatorTree & DT,LoopInfo & LI)1375 deleteDeadBlocksFromLoop(Loop &L,
1376                          SmallVectorImpl<BasicBlock *> &ExitBlocks,
1377                          DominatorTree &DT, LoopInfo &LI) {
1378   // Find all the dead blocks, and remove them from their successors.
1379   SmallVector<BasicBlock *, 16> DeadBlocks;
1380   for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
1381     if (!DT.isReachableFromEntry(BB)) {
1382       for (BasicBlock *SuccBB : successors(BB))
1383         SuccBB->removePredecessor(BB);
1384       DeadBlocks.push_back(BB);
1385     }
1386 
1387   SmallPtrSet<BasicBlock *, 16> DeadBlockSet(DeadBlocks.begin(),
1388                                              DeadBlocks.end());
1389 
1390   // Filter out the dead blocks from the exit blocks list so that it can be
1391   // used in the caller.
1392   llvm::erase_if(ExitBlocks,
1393                  [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1394 
1395   // Walk from this loop up through its parents removing all of the dead blocks.
1396   for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1397     for (auto *BB : DeadBlocks)
1398       ParentL->getBlocksSet().erase(BB);
1399     llvm::erase_if(ParentL->getBlocksVector(),
1400                    [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
1401   }
1402 
1403   // Now delete the dead child loops. This raw delete will clear them
1404   // recursively.
1405   llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1406     if (!DeadBlockSet.count(ChildL->getHeader()))
1407       return false;
1408 
1409     assert(llvm::all_of(ChildL->blocks(),
1410                         [&](BasicBlock *ChildBB) {
1411                           return DeadBlockSet.count(ChildBB);
1412                         }) &&
1413            "If the child loop header is dead all blocks in the child loop must "
1414            "be dead as well!");
1415     LI.destroy(ChildL);
1416     return true;
1417   });
1418 
1419   // Remove the loop mappings for the dead blocks and drop all the references
1420   // from these blocks to others to handle cyclic references as we start
1421   // deleting the blocks themselves.
1422   for (auto *BB : DeadBlocks) {
1423     // Check that the dominator tree has already been updated.
1424     assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1425     LI.changeLoopFor(BB, nullptr);
1426     BB->dropAllReferences();
1427   }
1428 
1429   // Actually delete the blocks now that they've been fully unhooked from the
1430   // IR.
1431   for (auto *BB : DeadBlocks)
1432     BB->eraseFromParent();
1433 }
1434 
1435 /// Recompute the set of blocks in a loop after unswitching.
1436 ///
1437 /// This walks from the original headers predecessors to rebuild the loop. We
1438 /// take advantage of the fact that new blocks can't have been added, and so we
1439 /// filter by the original loop's blocks. This also handles potentially
1440 /// unreachable code that we don't want to explore but might be found examining
1441 /// the predecessors of the header.
1442 ///
1443 /// If the original loop is no longer a loop, this will return an empty set. If
1444 /// it remains a loop, all the blocks within it will be added to the set
1445 /// (including those blocks in inner loops).
recomputeLoopBlockSet(Loop & L,LoopInfo & LI)1446 static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1447                                                                  LoopInfo &LI) {
1448   SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1449 
1450   auto *PH = L.getLoopPreheader();
1451   auto *Header = L.getHeader();
1452 
1453   // A worklist to use while walking backwards from the header.
1454   SmallVector<BasicBlock *, 16> Worklist;
1455 
1456   // First walk the predecessors of the header to find the backedges. This will
1457   // form the basis of our walk.
1458   for (auto *Pred : predecessors(Header)) {
1459     // Skip the preheader.
1460     if (Pred == PH)
1461       continue;
1462 
1463     // Because the loop was in simplified form, the only non-loop predecessor
1464     // is the preheader.
1465     assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1466                                "than the preheader that is not part of the "
1467                                "loop!");
1468 
1469     // Insert this block into the loop set and on the first visit and, if it
1470     // isn't the header we're currently walking, put it into the worklist to
1471     // recurse through.
1472     if (LoopBlockSet.insert(Pred).second && Pred != Header)
1473       Worklist.push_back(Pred);
1474   }
1475 
1476   // If no backedges were found, we're done.
1477   if (LoopBlockSet.empty())
1478     return LoopBlockSet;
1479 
1480   // We found backedges, recurse through them to identify the loop blocks.
1481   while (!Worklist.empty()) {
1482     BasicBlock *BB = Worklist.pop_back_val();
1483     assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1484 
1485     // No need to walk past the header.
1486     if (BB == Header)
1487       continue;
1488 
1489     // Because we know the inner loop structure remains valid we can use the
1490     // loop structure to jump immediately across the entire nested loop.
1491     // Further, because it is in loop simplified form, we can directly jump
1492     // to its preheader afterward.
1493     if (Loop *InnerL = LI.getLoopFor(BB))
1494       if (InnerL != &L) {
1495         assert(L.contains(InnerL) &&
1496                "Should not reach a loop *outside* this loop!");
1497         // The preheader is the only possible predecessor of the loop so
1498         // insert it into the set and check whether it was already handled.
1499         auto *InnerPH = InnerL->getLoopPreheader();
1500         assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1501                                       "but not contain the inner loop "
1502                                       "preheader!");
1503         if (!LoopBlockSet.insert(InnerPH).second)
1504           // The only way to reach the preheader is through the loop body
1505           // itself so if it has been visited the loop is already handled.
1506           continue;
1507 
1508         // Insert all of the blocks (other than those already present) into
1509         // the loop set. We expect at least the block that led us to find the
1510         // inner loop to be in the block set, but we may also have other loop
1511         // blocks if they were already enqueued as predecessors of some other
1512         // outer loop block.
1513         for (auto *InnerBB : InnerL->blocks()) {
1514           if (InnerBB == BB) {
1515             assert(LoopBlockSet.count(InnerBB) &&
1516                    "Block should already be in the set!");
1517             continue;
1518           }
1519 
1520           LoopBlockSet.insert(InnerBB);
1521         }
1522 
1523         // Add the preheader to the worklist so we will continue past the
1524         // loop body.
1525         Worklist.push_back(InnerPH);
1526         continue;
1527       }
1528 
1529     // Insert any predecessors that were in the original loop into the new
1530     // set, and if the insert is successful, add them to the worklist.
1531     for (auto *Pred : predecessors(BB))
1532       if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1533         Worklist.push_back(Pred);
1534   }
1535 
1536   assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1537 
1538   // We've found all the blocks participating in the loop, return our completed
1539   // set.
1540   return LoopBlockSet;
1541 }
1542 
1543 /// Rebuild a loop after unswitching removes some subset of blocks and edges.
1544 ///
1545 /// The removal may have removed some child loops entirely but cannot have
1546 /// disturbed any remaining child loops. However, they may need to be hoisted
1547 /// to the parent loop (or to be top-level loops). The original loop may be
1548 /// completely removed.
1549 ///
1550 /// The sibling loops resulting from this update are returned. If the original
1551 /// loop remains a valid loop, it will be the first entry in this list with all
1552 /// of the newly sibling loops following it.
1553 ///
1554 /// Returns true if the loop remains a loop after unswitching, and false if it
1555 /// is no longer a loop after unswitching (and should not continue to be
1556 /// referenced).
rebuildLoopAfterUnswitch(Loop & L,ArrayRef<BasicBlock * > ExitBlocks,LoopInfo & LI,SmallVectorImpl<Loop * > & HoistedLoops)1557 static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1558                                      LoopInfo &LI,
1559                                      SmallVectorImpl<Loop *> &HoistedLoops) {
1560   auto *PH = L.getLoopPreheader();
1561 
1562   // Compute the actual parent loop from the exit blocks. Because we may have
1563   // pruned some exits the loop may be different from the original parent.
1564   Loop *ParentL = nullptr;
1565   SmallVector<Loop *, 4> ExitLoops;
1566   SmallVector<BasicBlock *, 4> ExitsInLoops;
1567   ExitsInLoops.reserve(ExitBlocks.size());
1568   for (auto *ExitBB : ExitBlocks)
1569     if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1570       ExitLoops.push_back(ExitL);
1571       ExitsInLoops.push_back(ExitBB);
1572       if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1573         ParentL = ExitL;
1574     }
1575 
1576   // Recompute the blocks participating in this loop. This may be empty if it
1577   // is no longer a loop.
1578   auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1579 
1580   // If we still have a loop, we need to re-set the loop's parent as the exit
1581   // block set changing may have moved it within the loop nest. Note that this
1582   // can only happen when this loop has a parent as it can only hoist the loop
1583   // *up* the nest.
1584   if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1585     // Remove this loop's (original) blocks from all of the intervening loops.
1586     for (Loop *IL = L.getParentLoop(); IL != ParentL;
1587          IL = IL->getParentLoop()) {
1588       IL->getBlocksSet().erase(PH);
1589       for (auto *BB : L.blocks())
1590         IL->getBlocksSet().erase(BB);
1591       llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1592         return BB == PH || L.contains(BB);
1593       });
1594     }
1595 
1596     LI.changeLoopFor(PH, ParentL);
1597     L.getParentLoop()->removeChildLoop(&L);
1598     if (ParentL)
1599       ParentL->addChildLoop(&L);
1600     else
1601       LI.addTopLevelLoop(&L);
1602   }
1603 
1604   // Now we update all the blocks which are no longer within the loop.
1605   auto &Blocks = L.getBlocksVector();
1606   auto BlocksSplitI =
1607       LoopBlockSet.empty()
1608           ? Blocks.begin()
1609           : std::stable_partition(
1610                 Blocks.begin(), Blocks.end(),
1611                 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1612 
1613   // Before we erase the list of unlooped blocks, build a set of them.
1614   SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1615   if (LoopBlockSet.empty())
1616     UnloopedBlocks.insert(PH);
1617 
1618   // Now erase these blocks from the loop.
1619   for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1620     L.getBlocksSet().erase(BB);
1621   Blocks.erase(BlocksSplitI, Blocks.end());
1622 
1623   // Sort the exits in ascending loop depth, we'll work backwards across these
1624   // to process them inside out.
1625   std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1626                    [&](BasicBlock *LHS, BasicBlock *RHS) {
1627                      return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1628                    });
1629 
1630   // We'll build up a set for each exit loop.
1631   SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1632   Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1633 
1634   auto RemoveUnloopedBlocksFromLoop =
1635       [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1636         for (auto *BB : UnloopedBlocks)
1637           L.getBlocksSet().erase(BB);
1638         llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1639           return UnloopedBlocks.count(BB);
1640         });
1641       };
1642 
1643   SmallVector<BasicBlock *, 16> Worklist;
1644   while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1645     assert(Worklist.empty() && "Didn't clear worklist!");
1646     assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1647 
1648     // Grab the next exit block, in decreasing loop depth order.
1649     BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1650     Loop &ExitL = *LI.getLoopFor(ExitBB);
1651     assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1652 
1653     // Erase all of the unlooped blocks from the loops between the previous
1654     // exit loop and this exit loop. This works because the ExitInLoops list is
1655     // sorted in increasing order of loop depth and thus we visit loops in
1656     // decreasing order of loop depth.
1657     for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1658       RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1659 
1660     // Walk the CFG back until we hit the cloned PH adding everything reachable
1661     // and in the unlooped set to this exit block's loop.
1662     Worklist.push_back(ExitBB);
1663     do {
1664       BasicBlock *BB = Worklist.pop_back_val();
1665       // We can stop recursing at the cloned preheader (if we get there).
1666       if (BB == PH)
1667         continue;
1668 
1669       for (BasicBlock *PredBB : predecessors(BB)) {
1670         // If this pred has already been moved to our set or is part of some
1671         // (inner) loop, no update needed.
1672         if (!UnloopedBlocks.erase(PredBB)) {
1673           assert((NewExitLoopBlocks.count(PredBB) ||
1674                   ExitL.contains(LI.getLoopFor(PredBB))) &&
1675                  "Predecessor not in a nested loop (or already visited)!");
1676           continue;
1677         }
1678 
1679         // We just insert into the loop set here. We'll add these blocks to the
1680         // exit loop after we build up the set in a deterministic order rather
1681         // than the predecessor-influenced visit order.
1682         bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1683         (void)Inserted;
1684         assert(Inserted && "Should only visit an unlooped block once!");
1685 
1686         // And recurse through to its predecessors.
1687         Worklist.push_back(PredBB);
1688       }
1689     } while (!Worklist.empty());
1690 
1691     // If blocks in this exit loop were directly part of the original loop (as
1692     // opposed to a child loop) update the map to point to this exit loop. This
1693     // just updates a map and so the fact that the order is unstable is fine.
1694     for (auto *BB : NewExitLoopBlocks)
1695       if (Loop *BBL = LI.getLoopFor(BB))
1696         if (BBL == &L || !L.contains(BBL))
1697           LI.changeLoopFor(BB, &ExitL);
1698 
1699     // We will remove the remaining unlooped blocks from this loop in the next
1700     // iteration or below.
1701     NewExitLoopBlocks.clear();
1702   }
1703 
1704   // Any remaining unlooped blocks are no longer part of any loop unless they
1705   // are part of some child loop.
1706   for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1707     RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1708   for (auto *BB : UnloopedBlocks)
1709     if (Loop *BBL = LI.getLoopFor(BB))
1710       if (BBL == &L || !L.contains(BBL))
1711         LI.changeLoopFor(BB, nullptr);
1712 
1713   // Sink all the child loops whose headers are no longer in the loop set to
1714   // the parent (or to be top level loops). We reach into the loop and directly
1715   // update its subloop vector to make this batch update efficient.
1716   auto &SubLoops = L.getSubLoopsVector();
1717   auto SubLoopsSplitI =
1718       LoopBlockSet.empty()
1719           ? SubLoops.begin()
1720           : std::stable_partition(
1721                 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1722                   return LoopBlockSet.count(SubL->getHeader());
1723                 });
1724   for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1725     HoistedLoops.push_back(HoistedL);
1726     HoistedL->setParentLoop(nullptr);
1727 
1728     // To compute the new parent of this hoisted loop we look at where we
1729     // placed the preheader above. We can't lookup the header itself because we
1730     // retained the mapping from the header to the hoisted loop. But the
1731     // preheader and header should have the exact same new parent computed
1732     // based on the set of exit blocks from the original loop as the preheader
1733     // is a predecessor of the header and so reached in the reverse walk. And
1734     // because the loops were all in simplified form the preheader of the
1735     // hoisted loop can't be part of some *other* loop.
1736     if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1737       NewParentL->addChildLoop(HoistedL);
1738     else
1739       LI.addTopLevelLoop(HoistedL);
1740   }
1741   SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1742 
1743   // Actually delete the loop if nothing remained within it.
1744   if (Blocks.empty()) {
1745     assert(SubLoops.empty() &&
1746            "Failed to remove all subloops from the original loop!");
1747     if (Loop *ParentL = L.getParentLoop())
1748       ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1749     else
1750       LI.removeLoop(llvm::find(LI, &L));
1751     LI.destroy(&L);
1752     return false;
1753   }
1754 
1755   return true;
1756 }
1757 
1758 /// Helper to visit a dominator subtree, invoking a callable on each node.
1759 ///
1760 /// Returning false at any point will stop walking past that node of the tree.
1761 template <typename CallableT>
visitDomSubTree(DominatorTree & DT,BasicBlock * BB,CallableT Callable)1762 void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1763   SmallVector<DomTreeNode *, 4> DomWorklist;
1764   DomWorklist.push_back(DT[BB]);
1765 #ifndef NDEBUG
1766   SmallPtrSet<DomTreeNode *, 4> Visited;
1767   Visited.insert(DT[BB]);
1768 #endif
1769   do {
1770     DomTreeNode *N = DomWorklist.pop_back_val();
1771 
1772     // Visit this node.
1773     if (!Callable(N->getBlock()))
1774       continue;
1775 
1776     // Accumulate the child nodes.
1777     for (DomTreeNode *ChildN : *N) {
1778       assert(Visited.insert(ChildN).second &&
1779              "Cannot visit a node twice when walking a tree!");
1780       DomWorklist.push_back(ChildN);
1781     }
1782   } while (!DomWorklist.empty());
1783 }
1784 
unswitchNontrivialInvariants(Loop & L,TerminatorInst & TI,ArrayRef<Value * > Invariants,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE)1785 static bool unswitchNontrivialInvariants(
1786     Loop &L, TerminatorInst &TI, ArrayRef<Value *> Invariants,
1787     DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1788     function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
1789     ScalarEvolution *SE) {
1790   auto *ParentBB = TI.getParent();
1791   BranchInst *BI = dyn_cast<BranchInst>(&TI);
1792   SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
1793 
1794   // We can only unswitch switches, conditional branches with an invariant
1795   // condition, or combining invariant conditions with an instruction.
1796   assert((SI || BI->isConditional()) &&
1797          "Can only unswitch switches and conditional branch!");
1798   bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
1799   if (FullUnswitch)
1800     assert(Invariants.size() == 1 &&
1801            "Cannot have other invariants with full unswitching!");
1802   else
1803     assert(isa<Instruction>(BI->getCondition()) &&
1804            "Partial unswitching requires an instruction as the condition!");
1805 
1806   // Constant and BBs tracking the cloned and continuing successor. When we are
1807   // unswitching the entire condition, this can just be trivially chosen to
1808   // unswitch towards `true`. However, when we are unswitching a set of
1809   // invariants combined with `and` or `or`, the combining operation determines
1810   // the best direction to unswitch: we want to unswitch the direction that will
1811   // collapse the branch.
1812   bool Direction = true;
1813   int ClonedSucc = 0;
1814   if (!FullUnswitch) {
1815     if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
1816       assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
1817                  Instruction::And &&
1818              "Only `or` and `and` instructions can combine invariants being "
1819              "unswitched.");
1820       Direction = false;
1821       ClonedSucc = 1;
1822     }
1823   }
1824 
1825   BasicBlock *RetainedSuccBB =
1826       BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
1827   SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
1828   if (BI)
1829     UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
1830   else
1831     for (auto Case : SI->cases())
1832       if (Case.getCaseSuccessor() != RetainedSuccBB)
1833         UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
1834 
1835   assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
1836          "Should not unswitch the same successor we are retaining!");
1837 
1838   // The branch should be in this exact loop. Any inner loop's invariant branch
1839   // should be handled by unswitching that inner loop. The caller of this
1840   // routine should filter out any candidates that remain (but were skipped for
1841   // whatever reason).
1842   assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1843 
1844   SmallVector<BasicBlock *, 4> ExitBlocks;
1845   L.getUniqueExitBlocks(ExitBlocks);
1846 
1847   // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1848   // don't know how to split those exit blocks.
1849   // FIXME: We should teach SplitBlock to handle this and remove this
1850   // restriction.
1851   for (auto *ExitBB : ExitBlocks)
1852     if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1853       return false;
1854 
1855   // Compute the parent loop now before we start hacking on things.
1856   Loop *ParentL = L.getParentLoop();
1857 
1858   // Compute the outer-most loop containing one of our exit blocks. This is the
1859   // furthest up our loopnest which can be mutated, which we will use below to
1860   // update things.
1861   Loop *OuterExitL = &L;
1862   for (auto *ExitBB : ExitBlocks) {
1863     Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1864     if (!NewOuterExitL) {
1865       // We exited the entire nest with this block, so we're done.
1866       OuterExitL = nullptr;
1867       break;
1868     }
1869     if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1870       OuterExitL = NewOuterExitL;
1871   }
1872 
1873   // At this point, we're definitely going to unswitch something so invalidate
1874   // any cached information in ScalarEvolution for the outer most loop
1875   // containing an exit block and all nested loops.
1876   if (SE) {
1877     if (OuterExitL)
1878       SE->forgetLoop(OuterExitL);
1879     else
1880       SE->forgetTopmostLoop(&L);
1881   }
1882 
1883   // If the edge from this terminator to a successor dominates that successor,
1884   // store a map from each block in its dominator subtree to it. This lets us
1885   // tell when cloning for a particular successor if a block is dominated by
1886   // some *other* successor with a single data structure. We use this to
1887   // significantly reduce cloning.
1888   SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
1889   for (auto *SuccBB : llvm::concat<BasicBlock *const>(
1890            makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
1891     if (SuccBB->getUniquePredecessor() ||
1892         llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
1893           return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
1894         }))
1895       visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
1896         DominatingSucc[BB] = SuccBB;
1897         return true;
1898       });
1899 
1900   // Split the preheader, so that we know that there is a safe place to insert
1901   // the conditional branch. We will change the preheader to have a conditional
1902   // branch on LoopCond. The original preheader will become the split point
1903   // between the unswitched versions, and we will have a new preheader for the
1904   // original loop.
1905   BasicBlock *SplitBB = L.getLoopPreheader();
1906   BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1907 
1908   // Keep track of the dominator tree updates needed.
1909   SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
1910 
1911   // Clone the loop for each unswitched successor.
1912   SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
1913   VMaps.reserve(UnswitchedSuccBBs.size());
1914   SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
1915   for (auto *SuccBB : UnswitchedSuccBBs) {
1916     VMaps.emplace_back(new ValueToValueMapTy());
1917     ClonedPHs[SuccBB] = buildClonedLoopBlocks(
1918         L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
1919         DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI);
1920   }
1921 
1922   // The stitching of the branched code back together depends on whether we're
1923   // doing full unswitching or not with the exception that we always want to
1924   // nuke the initial terminator placed in the split block.
1925   SplitBB->getTerminator()->eraseFromParent();
1926   if (FullUnswitch) {
1927     // First we need to unhook the successor relationship as we'll be replacing
1928     // the terminator with a direct branch. This is much simpler for branches
1929     // than switches so we handle those first.
1930     if (BI) {
1931       // Remove the parent as a predecessor of the unswitched successor.
1932       assert(UnswitchedSuccBBs.size() == 1 &&
1933              "Only one possible unswitched block for a branch!");
1934       BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
1935       UnswitchedSuccBB->removePredecessor(ParentBB,
1936                                           /*DontDeleteUselessPHIs*/ true);
1937       DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
1938     } else {
1939       // Note that we actually want to remove the parent block as a predecessor
1940       // of *every* case successor. The case successor is either unswitched,
1941       // completely eliminating an edge from the parent to that successor, or it
1942       // is a duplicate edge to the retained successor as the retained successor
1943       // is always the default successor and as we'll replace this with a direct
1944       // branch we no longer need the duplicate entries in the PHI nodes.
1945       assert(SI->getDefaultDest() == RetainedSuccBB &&
1946              "Not retaining default successor!");
1947       for (auto &Case : SI->cases())
1948         Case.getCaseSuccessor()->removePredecessor(
1949             ParentBB,
1950             /*DontDeleteUselessPHIs*/ true);
1951 
1952       // We need to use the set to populate domtree updates as even when there
1953       // are multiple cases pointing at the same successor we only want to
1954       // remove and insert one edge in the domtree.
1955       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1956         DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
1957     }
1958 
1959     // Now that we've unhooked the successor relationship, splice the terminator
1960     // from the original loop to the split.
1961     SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
1962 
1963     // Now wire up the terminator to the preheaders.
1964     if (BI) {
1965       BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1966       BI->setSuccessor(ClonedSucc, ClonedPH);
1967       BI->setSuccessor(1 - ClonedSucc, LoopPH);
1968       DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
1969     } else {
1970       assert(SI && "Must either be a branch or switch!");
1971 
1972       // Walk the cases and directly update their successors.
1973       SI->setDefaultDest(LoopPH);
1974       for (auto &Case : SI->cases())
1975         if (Case.getCaseSuccessor() == RetainedSuccBB)
1976           Case.setSuccessor(LoopPH);
1977         else
1978           Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
1979 
1980       // We need to use the set to populate domtree updates as even when there
1981       // are multiple cases pointing at the same successor we only want to
1982       // remove and insert one edge in the domtree.
1983       for (BasicBlock *SuccBB : UnswitchedSuccBBs)
1984         DTUpdates.push_back(
1985             {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
1986     }
1987 
1988     // Create a new unconditional branch to the continuing block (as opposed to
1989     // the one cloned).
1990     BranchInst::Create(RetainedSuccBB, ParentBB);
1991   } else {
1992     assert(BI && "Only branches have partial unswitching.");
1993     assert(UnswitchedSuccBBs.size() == 1 &&
1994            "Only one possible unswitched block for a branch!");
1995     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
1996     // When doing a partial unswitch, we have to do a bit more work to build up
1997     // the branch in the split block.
1998     buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
1999                                           *ClonedPH, *LoopPH);
2000     DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
2001   }
2002 
2003   // Apply the updates accumulated above to get an up-to-date dominator tree.
2004   DT.applyUpdates(DTUpdates);
2005 
2006   // Now that we have an accurate dominator tree, first delete the dead cloned
2007   // blocks so that we can accurately build any cloned loops. It is important to
2008   // not delete the blocks from the original loop yet because we still want to
2009   // reference the original loop to understand the cloned loop's structure.
2010   deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT);
2011 
2012   // Build the cloned loop structure itself. This may be substantially
2013   // different from the original structure due to the simplified CFG. This also
2014   // handles inserting all the cloned blocks into the correct loops.
2015   SmallVector<Loop *, 4> NonChildClonedLoops;
2016   for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2017     buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
2018 
2019   // Now that our cloned loops have been built, we can update the original loop.
2020   // First we delete the dead blocks from it and then we rebuild the loop
2021   // structure taking these deletions into account.
2022   deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI);
2023   SmallVector<Loop *, 4> HoistedLoops;
2024   bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
2025 
2026   // This transformation has a high risk of corrupting the dominator tree, and
2027   // the below steps to rebuild loop structures will result in hard to debug
2028   // errors in that case so verify that the dominator tree is sane first.
2029   // FIXME: Remove this when the bugs stop showing up and rely on existing
2030   // verification steps.
2031   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2032 
2033   if (BI) {
2034     // If we unswitched a branch which collapses the condition to a known
2035     // constant we want to replace all the uses of the invariants within both
2036     // the original and cloned blocks. We do this here so that we can use the
2037     // now updated dominator tree to identify which side the users are on.
2038     assert(UnswitchedSuccBBs.size() == 1 &&
2039            "Only one possible unswitched block for a branch!");
2040     BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2041     ConstantInt *UnswitchedReplacement =
2042         Direction ? ConstantInt::getTrue(BI->getContext())
2043                   : ConstantInt::getFalse(BI->getContext());
2044     ConstantInt *ContinueReplacement =
2045         Direction ? ConstantInt::getFalse(BI->getContext())
2046                   : ConstantInt::getTrue(BI->getContext());
2047     for (Value *Invariant : Invariants)
2048       for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
2049            UI != UE;) {
2050         // Grab the use and walk past it so we can clobber it in the use list.
2051         Use *U = &*UI++;
2052         Instruction *UserI = dyn_cast<Instruction>(U->getUser());
2053         if (!UserI)
2054           continue;
2055 
2056         // Replace it with the 'continue' side if in the main loop body, and the
2057         // unswitched if in the cloned blocks.
2058         if (DT.dominates(LoopPH, UserI->getParent()))
2059           U->set(ContinueReplacement);
2060         else if (DT.dominates(ClonedPH, UserI->getParent()))
2061           U->set(UnswitchedReplacement);
2062       }
2063   }
2064 
2065   // We can change which blocks are exit blocks of all the cloned sibling
2066   // loops, the current loop, and any parent loops which shared exit blocks
2067   // with the current loop. As a consequence, we need to re-form LCSSA for
2068   // them. But we shouldn't need to re-form LCSSA for any child loops.
2069   // FIXME: This could be made more efficient by tracking which exit blocks are
2070   // new, and focusing on them, but that isn't likely to be necessary.
2071   //
2072   // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2073   // loop nest and update every loop that could have had its exits changed. We
2074   // also need to cover any intervening loops. We add all of these loops to
2075   // a list and sort them by loop depth to achieve this without updating
2076   // unnecessary loops.
2077   auto UpdateLoop = [&](Loop &UpdateL) {
2078 #ifndef NDEBUG
2079     UpdateL.verifyLoop();
2080     for (Loop *ChildL : UpdateL) {
2081       ChildL->verifyLoop();
2082       assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2083              "Perturbed a child loop's LCSSA form!");
2084     }
2085 #endif
2086     // First build LCSSA for this loop so that we can preserve it when
2087     // forming dedicated exits. We don't want to perturb some other loop's
2088     // LCSSA while doing that CFG edit.
2089     formLCSSA(UpdateL, DT, &LI, nullptr);
2090 
2091     // For loops reached by this loop's original exit blocks we may
2092     // introduced new, non-dedicated exits. At least try to re-form dedicated
2093     // exits for these loops. This may fail if they couldn't have dedicated
2094     // exits to start with.
2095     formDedicatedExitBlocks(&UpdateL, &DT, &LI, /*PreserveLCSSA*/ true);
2096   };
2097 
2098   // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2099   // and we can do it in any order as they don't nest relative to each other.
2100   //
2101   // Also check if any of the loops we have updated have become top-level loops
2102   // as that will necessitate widening the outer loop scope.
2103   for (Loop *UpdatedL :
2104        llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
2105     UpdateLoop(*UpdatedL);
2106     if (!UpdatedL->getParentLoop())
2107       OuterExitL = nullptr;
2108   }
2109   if (IsStillLoop) {
2110     UpdateLoop(L);
2111     if (!L.getParentLoop())
2112       OuterExitL = nullptr;
2113   }
2114 
2115   // If the original loop had exit blocks, walk up through the outer most loop
2116   // of those exit blocks to update LCSSA and form updated dedicated exits.
2117   if (OuterExitL != &L)
2118     for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2119          OuterL = OuterL->getParentLoop())
2120       UpdateLoop(*OuterL);
2121 
2122 #ifndef NDEBUG
2123   // Verify the entire loop structure to catch any incorrect updates before we
2124   // progress in the pass pipeline.
2125   LI.verify(DT);
2126 #endif
2127 
2128   // Now that we've unswitched something, make callbacks to report the changes.
2129   // For that we need to merge together the updated loops and the cloned loops
2130   // and check whether the original loop survived.
2131   SmallVector<Loop *, 4> SibLoops;
2132   for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
2133     if (UpdatedL->getParentLoop() == ParentL)
2134       SibLoops.push_back(UpdatedL);
2135   UnswitchCB(IsStillLoop, SibLoops);
2136 
2137   ++NumBranches;
2138   return true;
2139 }
2140 
2141 /// Recursively compute the cost of a dominator subtree based on the per-block
2142 /// cost map provided.
2143 ///
2144 /// The recursive computation is memozied into the provided DT-indexed cost map
2145 /// to allow querying it for most nodes in the domtree without it becoming
2146 /// quadratic.
2147 static int
computeDomSubtreeCost(DomTreeNode & N,const SmallDenseMap<BasicBlock *,int,4> & BBCostMap,SmallDenseMap<DomTreeNode *,int,4> & DTCostMap)2148 computeDomSubtreeCost(DomTreeNode &N,
2149                       const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
2150                       SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
2151   // Don't accumulate cost (or recurse through) blocks not in our block cost
2152   // map and thus not part of the duplication cost being considered.
2153   auto BBCostIt = BBCostMap.find(N.getBlock());
2154   if (BBCostIt == BBCostMap.end())
2155     return 0;
2156 
2157   // Lookup this node to see if we already computed its cost.
2158   auto DTCostIt = DTCostMap.find(&N);
2159   if (DTCostIt != DTCostMap.end())
2160     return DTCostIt->second;
2161 
2162   // If not, we have to compute it. We can't use insert above and update
2163   // because computing the cost may insert more things into the map.
2164   int Cost = std::accumulate(
2165       N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
2166         return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
2167       });
2168   bool Inserted = DTCostMap.insert({&N, Cost}).second;
2169   (void)Inserted;
2170   assert(Inserted && "Should not insert a node while visiting children!");
2171   return Cost;
2172 }
2173 
2174 static bool
unswitchBestCondition(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,TargetTransformInfo & TTI,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE)2175 unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
2176                       AssumptionCache &AC, TargetTransformInfo &TTI,
2177                       function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2178                       ScalarEvolution *SE) {
2179   // Collect all invariant conditions within this loop (as opposed to an inner
2180   // loop which would be handled when visiting that inner loop).
2181   SmallVector<std::pair<TerminatorInst *, TinyPtrVector<Value *>>, 4>
2182       UnswitchCandidates;
2183   for (auto *BB : L.blocks()) {
2184     if (LI.getLoopFor(BB) != &L)
2185       continue;
2186 
2187     if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
2188       // We can only consider fully loop-invariant switch conditions as we need
2189       // to completely eliminate the switch after unswitching.
2190       if (!isa<Constant>(SI->getCondition()) &&
2191           L.isLoopInvariant(SI->getCondition()))
2192         UnswitchCandidates.push_back({SI, {SI->getCondition()}});
2193       continue;
2194     }
2195 
2196     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
2197     if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
2198         BI->getSuccessor(0) == BI->getSuccessor(1))
2199       continue;
2200 
2201     if (L.isLoopInvariant(BI->getCondition())) {
2202       UnswitchCandidates.push_back({BI, {BI->getCondition()}});
2203       continue;
2204     }
2205 
2206     Instruction &CondI = *cast<Instruction>(BI->getCondition());
2207     if (CondI.getOpcode() != Instruction::And &&
2208       CondI.getOpcode() != Instruction::Or)
2209       continue;
2210 
2211     TinyPtrVector<Value *> Invariants =
2212         collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
2213     if (Invariants.empty())
2214       continue;
2215 
2216     UnswitchCandidates.push_back({BI, std::move(Invariants)});
2217   }
2218 
2219   // If we didn't find any candidates, we're done.
2220   if (UnswitchCandidates.empty())
2221     return false;
2222 
2223   // Check if there are irreducible CFG cycles in this loop. If so, we cannot
2224   // easily unswitch non-trivial edges out of the loop. Doing so might turn the
2225   // irreducible control flow into reducible control flow and introduce new
2226   // loops "out of thin air". If we ever discover important use cases for doing
2227   // this, we can add support to loop unswitch, but it is a lot of complexity
2228   // for what seems little or no real world benefit.
2229   LoopBlocksRPO RPOT(&L);
2230   RPOT.perform(&LI);
2231   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2232     return false;
2233 
2234   LLVM_DEBUG(
2235       dbgs() << "Considering " << UnswitchCandidates.size()
2236              << " non-trivial loop invariant conditions for unswitching.\n");
2237 
2238   // Given that unswitching these terminators will require duplicating parts of
2239   // the loop, so we need to be able to model that cost. Compute the ephemeral
2240   // values and set up a data structure to hold per-BB costs. We cache each
2241   // block's cost so that we don't recompute this when considering different
2242   // subsets of the loop for duplication during unswitching.
2243   SmallPtrSet<const Value *, 4> EphValues;
2244   CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
2245   SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
2246 
2247   // Compute the cost of each block, as well as the total loop cost. Also, bail
2248   // out if we see instructions which are incompatible with loop unswitching
2249   // (convergent, noduplicate, or cross-basic-block tokens).
2250   // FIXME: We might be able to safely handle some of these in non-duplicated
2251   // regions.
2252   int LoopCost = 0;
2253   for (auto *BB : L.blocks()) {
2254     int Cost = 0;
2255     for (auto &I : *BB) {
2256       if (EphValues.count(&I))
2257         continue;
2258 
2259       if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
2260         return false;
2261       if (auto CS = CallSite(&I))
2262         if (CS.isConvergent() || CS.cannotDuplicate())
2263           return false;
2264 
2265       Cost += TTI.getUserCost(&I);
2266     }
2267     assert(Cost >= 0 && "Must not have negative costs!");
2268     LoopCost += Cost;
2269     assert(LoopCost >= 0 && "Must not have negative loop costs!");
2270     BBCostMap[BB] = Cost;
2271   }
2272   LLVM_DEBUG(dbgs() << "  Total loop cost: " << LoopCost << "\n");
2273 
2274   // Now we find the best candidate by searching for the one with the following
2275   // properties in order:
2276   //
2277   // 1) An unswitching cost below the threshold
2278   // 2) The smallest number of duplicated unswitch candidates (to avoid
2279   //    creating redundant subsequent unswitching)
2280   // 3) The smallest cost after unswitching.
2281   //
2282   // We prioritize reducing fanout of unswitch candidates provided the cost
2283   // remains below the threshold because this has a multiplicative effect.
2284   //
2285   // This requires memoizing each dominator subtree to avoid redundant work.
2286   //
2287   // FIXME: Need to actually do the number of candidates part above.
2288   SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2289   // Given a terminator which might be unswitched, computes the non-duplicated
2290   // cost for that terminator.
2291   auto ComputeUnswitchedCost = [&](TerminatorInst &TI, bool FullUnswitch) {
2292     BasicBlock &BB = *TI.getParent();
2293     SmallPtrSet<BasicBlock *, 4> Visited;
2294 
2295     int Cost = LoopCost;
2296     for (BasicBlock *SuccBB : successors(&BB)) {
2297       // Don't count successors more than once.
2298       if (!Visited.insert(SuccBB).second)
2299         continue;
2300 
2301       // If this is a partial unswitch candidate, then it must be a conditional
2302       // branch with a condition of either `or` or `and`. In that case, one of
2303       // the successors is necessarily duplicated, so don't even try to remove
2304       // its cost.
2305       if (!FullUnswitch) {
2306         auto &BI = cast<BranchInst>(TI);
2307         if (cast<Instruction>(BI.getCondition())->getOpcode() ==
2308             Instruction::And) {
2309           if (SuccBB == BI.getSuccessor(1))
2310             continue;
2311         } else {
2312           assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
2313                      Instruction::Or &&
2314                  "Only `and` and `or` conditions can result in a partial "
2315                  "unswitch!");
2316           if (SuccBB == BI.getSuccessor(0))
2317             continue;
2318         }
2319       }
2320 
2321       // This successor's domtree will not need to be duplicated after
2322       // unswitching if the edge to the successor dominates it (and thus the
2323       // entire tree). This essentially means there is no other path into this
2324       // subtree and so it will end up live in only one clone of the loop.
2325       if (SuccBB->getUniquePredecessor() ||
2326           llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2327             return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2328           })) {
2329         Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2330         assert(Cost >= 0 &&
2331                "Non-duplicated cost should never exceed total loop cost!");
2332       }
2333     }
2334 
2335     // Now scale the cost by the number of unique successors minus one. We
2336     // subtract one because there is already at least one copy of the entire
2337     // loop. This is computing the new cost of unswitching a condition.
2338     assert(Visited.size() > 1 &&
2339            "Cannot unswitch a condition without multiple distinct successors!");
2340     return Cost * (Visited.size() - 1);
2341   };
2342   TerminatorInst *BestUnswitchTI = nullptr;
2343   int BestUnswitchCost;
2344   ArrayRef<Value *> BestUnswitchInvariants;
2345   for (auto &TerminatorAndInvariants : UnswitchCandidates) {
2346     TerminatorInst &TI = *TerminatorAndInvariants.first;
2347     ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
2348     BranchInst *BI = dyn_cast<BranchInst>(&TI);
2349     int CandidateCost = ComputeUnswitchedCost(
2350         TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
2351                                      Invariants[0] == BI->getCondition()));
2352     LLVM_DEBUG(dbgs() << "  Computed cost of " << CandidateCost
2353                       << " for unswitch candidate: " << TI << "\n");
2354     if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2355       BestUnswitchTI = &TI;
2356       BestUnswitchCost = CandidateCost;
2357       BestUnswitchInvariants = Invariants;
2358     }
2359   }
2360 
2361   if (BestUnswitchCost >= UnswitchThreshold) {
2362     LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
2363                       << BestUnswitchCost << "\n");
2364     return false;
2365   }
2366 
2367   LLVM_DEBUG(dbgs() << "  Trying to unswitch non-trivial (cost = "
2368                     << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
2369                     << "\n");
2370   return unswitchNontrivialInvariants(
2371       L, *BestUnswitchTI, BestUnswitchInvariants, DT, LI, AC, UnswitchCB, SE);
2372 }
2373 
2374 /// Unswitch control flow predicated on loop invariant conditions.
2375 ///
2376 /// This first hoists all branches or switches which are trivial (IE, do not
2377 /// require duplicating any part of the loop) out of the loop body. It then
2378 /// looks at other loop invariant control flows and tries to unswitch those as
2379 /// well by cloning the loop if the result is small enough.
2380 ///
2381 /// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
2382 /// updated based on the unswitch.
2383 ///
2384 /// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
2385 /// true, we will attempt to do non-trivial unswitching as well as trivial
2386 /// unswitching.
2387 ///
2388 /// The `UnswitchCB` callback provided will be run after unswitching is
2389 /// complete, with the first parameter set to `true` if the provided loop
2390 /// remains a loop, and a list of new sibling loops created.
2391 ///
2392 /// If `SE` is non-null, we will update that analysis based on the unswitching
2393 /// done.
unswitchLoop(Loop & L,DominatorTree & DT,LoopInfo & LI,AssumptionCache & AC,TargetTransformInfo & TTI,bool NonTrivial,function_ref<void (bool,ArrayRef<Loop * >)> UnswitchCB,ScalarEvolution * SE)2394 static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
2395                          AssumptionCache &AC, TargetTransformInfo &TTI,
2396                          bool NonTrivial,
2397                          function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
2398                          ScalarEvolution *SE) {
2399   assert(L.isRecursivelyLCSSAForm(DT, LI) &&
2400          "Loops must be in LCSSA form before unswitching.");
2401   bool Changed = false;
2402 
2403   // Must be in loop simplified form: we need a preheader and dedicated exits.
2404   if (!L.isLoopSimplifyForm())
2405     return false;
2406 
2407   // Try trivial unswitch first before loop over other basic blocks in the loop.
2408   if (unswitchAllTrivialConditions(L, DT, LI, SE)) {
2409     // If we unswitched successfully we will want to clean up the loop before
2410     // processing it further so just mark it as unswitched and return.
2411     UnswitchCB(/*CurrentLoopValid*/ true, {});
2412     return true;
2413   }
2414 
2415   // If we're not doing non-trivial unswitching, we're done. We both accept
2416   // a parameter but also check a local flag that can be used for testing
2417   // a debugging.
2418   if (!NonTrivial && !EnableNonTrivialUnswitch)
2419     return false;
2420 
2421   // For non-trivial unswitching, because it often creates new loops, we rely on
2422   // the pass manager to iterate on the loops rather than trying to immediately
2423   // reach a fixed point. There is no substantial advantage to iterating
2424   // internally, and if any of the new loops are simplified enough to contain
2425   // trivial unswitching we want to prefer those.
2426 
2427   // Try to unswitch the best invariant condition. We prefer this full unswitch to
2428   // a partial unswitch when possible below the threshold.
2429   if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE))
2430     return true;
2431 
2432   // No other opportunities to unswitch.
2433   return Changed;
2434 }
2435 
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & U)2436 PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2437                                               LoopStandardAnalysisResults &AR,
2438                                               LPMUpdater &U) {
2439   Function &F = *L.getHeader()->getParent();
2440   (void)F;
2441 
2442   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
2443                     << "\n");
2444 
2445   // Save the current loop name in a variable so that we can report it even
2446   // after it has been deleted.
2447   std::string LoopName = L.getName();
2448 
2449   auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2450                                         ArrayRef<Loop *> NewLoops) {
2451     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2452     if (!NewLoops.empty())
2453       U.addSiblingLoops(NewLoops);
2454 
2455     // If the current loop remains valid, we should revisit it to catch any
2456     // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2457     if (CurrentLoopValid)
2458       U.revisitCurrentLoop();
2459     else
2460       U.markLoopAsDeleted(L, LoopName);
2461   };
2462 
2463   if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
2464                     &AR.SE))
2465     return PreservedAnalyses::all();
2466 
2467   // Historically this pass has had issues with the dominator tree so verify it
2468   // in asserts builds.
2469   assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
2470   return getLoopPassPreservedAnalyses();
2471 }
2472 
2473 namespace {
2474 
2475 class SimpleLoopUnswitchLegacyPass : public LoopPass {
2476   bool NonTrivial;
2477 
2478 public:
2479   static char ID; // Pass ID, replacement for typeid
2480 
SimpleLoopUnswitchLegacyPass(bool NonTrivial=false)2481   explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2482       : LoopPass(ID), NonTrivial(NonTrivial) {
2483     initializeSimpleLoopUnswitchLegacyPassPass(
2484         *PassRegistry::getPassRegistry());
2485   }
2486 
2487   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2488 
getAnalysisUsage(AnalysisUsage & AU) const2489   void getAnalysisUsage(AnalysisUsage &AU) const override {
2490     AU.addRequired<AssumptionCacheTracker>();
2491     AU.addRequired<TargetTransformInfoWrapperPass>();
2492     getLoopAnalysisUsage(AU);
2493   }
2494 };
2495 
2496 } // end anonymous namespace
2497 
runOnLoop(Loop * L,LPPassManager & LPM)2498 bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2499   if (skipLoop(L))
2500     return false;
2501 
2502   Function &F = *L->getHeader()->getParent();
2503 
2504   LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
2505                     << "\n");
2506 
2507   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2508   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2509   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2510   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2511 
2512   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
2513   auto *SE = SEWP ? &SEWP->getSE() : nullptr;
2514 
2515   auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2516                                ArrayRef<Loop *> NewLoops) {
2517     // If we did a non-trivial unswitch, we have added new (cloned) loops.
2518     for (auto *NewL : NewLoops)
2519       LPM.addLoop(*NewL);
2520 
2521     // If the current loop remains valid, re-add it to the queue. This is
2522     // a little wasteful as we'll finish processing the current loop as well,
2523     // but it is the best we can do in the old PM.
2524     if (CurrentLoopValid)
2525       LPM.addLoop(*L);
2526     else
2527       LPM.markLoopAsDeleted(*L);
2528   };
2529 
2530   bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE);
2531 
2532   // If anything was unswitched, also clear any cached information about this
2533   // loop.
2534   LPM.deleteSimpleAnalysisLoop(L);
2535 
2536   // Historically this pass has had issues with the dominator tree so verify it
2537   // in asserts builds.
2538   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2539 
2540   return Changed;
2541 }
2542 
2543 char SimpleLoopUnswitchLegacyPass::ID = 0;
2544 INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2545                       "Simple unswitch loops", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)2546 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
2547 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2548 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
2549 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2550 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2551 INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2552                     "Simple unswitch loops", false, false)
2553 
2554 Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2555   return new SimpleLoopUnswitchLegacyPass(NonTrivial);
2556 }
2557