1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the declaration of the MachineInstr class, which is the 11 // basic representation for all target dependent machine instructions used by 12 // the back end. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 17 #define LLVM_CODEGEN_MACHINEINSTR_H 18 19 #include "llvm/ADT/DenseMapInfo.h" 20 #include "llvm/ADT/ilist.h" 21 #include "llvm/ADT/ilist_node.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/TargetOpcodes.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/Support/ArrayRecycler.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstdint> 33 #include <utility> 34 35 namespace llvm { 36 37 template <typename T> class ArrayRef; 38 class DIExpression; 39 class DILocalVariable; 40 class MachineBasicBlock; 41 class MachineFunction; 42 class MachineMemOperand; 43 class MachineRegisterInfo; 44 class ModuleSlotTracker; 45 class raw_ostream; 46 template <typename T> class SmallVectorImpl; 47 class SmallBitVector; 48 class StringRef; 49 class TargetInstrInfo; 50 class TargetRegisterClass; 51 class TargetRegisterInfo; 52 53 //===----------------------------------------------------------------------===// 54 /// Representation of each machine instruction. 55 /// 56 /// This class isn't a POD type, but it must have a trivial destructor. When a 57 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 58 /// without having their destructor called. 59 /// 60 class MachineInstr 61 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 62 ilist_sentinel_tracking<true>> { 63 public: 64 using mmo_iterator = MachineMemOperand **; 65 66 /// Flags to specify different kinds of comments to output in 67 /// assembly code. These flags carry semantic information not 68 /// otherwise easily derivable from the IR text. 69 /// 70 enum CommentFlag { 71 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 72 NoSchedComment = 0x2, 73 TAsmComments = 0x4 // Target Asm comments should start from this value. 74 }; 75 76 enum MIFlag { 77 NoFlags = 0, 78 FrameSetup = 1 << 0, // Instruction is used as a part of 79 // function frame setup code. 80 FrameDestroy = 1 << 1, // Instruction is used as a part of 81 // function frame destruction code. 82 BundledPred = 1 << 2, // Instruction has bundled predecessors. 83 BundledSucc = 1 << 3, // Instruction has bundled successors. 84 FmNoNans = 1 << 4, // Instruction does not support Fast 85 // math nan values. 86 FmNoInfs = 1 << 5, // Instruction does not support Fast 87 // math infinity values. 88 FmNsz = 1 << 6, // Instruction is not required to retain 89 // signed zero values. 90 FmArcp = 1 << 7, // Instruction supports Fast math 91 // reciprocal approximations. 92 FmContract = 1 << 8, // Instruction supports Fast math 93 // contraction operations like fma. 94 FmAfn = 1 << 9, // Instruction may map to Fast math 95 // instrinsic approximation. 96 FmReassoc = 1 << 10 // Instruction supports Fast math 97 // reassociation of operand order. 98 }; 99 100 private: 101 const MCInstrDesc *MCID; // Instruction descriptor. 102 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 103 104 // Operands are allocated by an ArrayRecycler. 105 MachineOperand *Operands = nullptr; // Pointer to the first operand. 106 unsigned NumOperands = 0; // Number of operands on instruction. 107 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 108 OperandCapacity CapOperands; // Capacity of the Operands array. 109 110 uint16_t Flags = 0; // Various bits of additional 111 // information about machine 112 // instruction. 113 114 uint8_t AsmPrinterFlags = 0; // Various bits of information used by 115 // the AsmPrinter to emit helpful 116 // comments. This is *not* semantic 117 // information. Do not use this for 118 // anything other than to convey comment 119 // information to AsmPrinter. 120 121 uint8_t NumMemRefs = 0; // Information on memory references. 122 // Note that MemRefs == nullptr, means 'don't know', not 'no memory access'. 123 // Calling code must treat missing information conservatively. If the number 124 // of memory operands required to be precise exceeds the maximum value of 125 // NumMemRefs - currently 256 - we remove the operands entirely. Note also 126 // that this is a non-owning reference to a shared copy on write buffer owned 127 // by the MachineFunction and created via MF.allocateMemRefsArray. 128 mmo_iterator MemRefs = nullptr; 129 130 DebugLoc debugLoc; // Source line information. 131 132 // Intrusive list support 133 friend struct ilist_traits<MachineInstr>; 134 friend struct ilist_callback_traits<MachineBasicBlock>; 135 void setParent(MachineBasicBlock *P) { Parent = P; } 136 137 /// This constructor creates a copy of the given 138 /// MachineInstr in the given MachineFunction. 139 MachineInstr(MachineFunction &, const MachineInstr &); 140 141 /// This constructor create a MachineInstr and add the implicit operands. 142 /// It reserves space for number of operands specified by 143 /// MCInstrDesc. An explicit DebugLoc is supplied. 144 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, 145 bool NoImp = false); 146 147 // MachineInstrs are pool-allocated and owned by MachineFunction. 148 friend class MachineFunction; 149 150 public: 151 MachineInstr(const MachineInstr &) = delete; 152 MachineInstr &operator=(const MachineInstr &) = delete; 153 // Use MachineFunction::DeleteMachineInstr() instead. 154 ~MachineInstr() = delete; 155 156 const MachineBasicBlock* getParent() const { return Parent; } 157 MachineBasicBlock* getParent() { return Parent; } 158 159 /// Return the function that contains the basic block that this instruction 160 /// belongs to. 161 /// 162 /// Note: this is undefined behaviour if the instruction does not have a 163 /// parent. 164 const MachineFunction *getMF() const; 165 MachineFunction *getMF() { 166 return const_cast<MachineFunction *>( 167 static_cast<const MachineInstr *>(this)->getMF()); 168 } 169 170 /// Return the asm printer flags bitvector. 171 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 172 173 /// Clear the AsmPrinter bitvector. 174 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 175 176 /// Return whether an AsmPrinter flag is set. 177 bool getAsmPrinterFlag(CommentFlag Flag) const { 178 return AsmPrinterFlags & Flag; 179 } 180 181 /// Set a flag for the AsmPrinter. 182 void setAsmPrinterFlag(uint8_t Flag) { 183 AsmPrinterFlags |= Flag; 184 } 185 186 /// Clear specific AsmPrinter flags. 187 void clearAsmPrinterFlag(CommentFlag Flag) { 188 AsmPrinterFlags &= ~Flag; 189 } 190 191 /// Return the MI flags bitvector. 192 uint16_t getFlags() const { 193 return Flags; 194 } 195 196 /// Return whether an MI flag is set. 197 bool getFlag(MIFlag Flag) const { 198 return Flags & Flag; 199 } 200 201 /// Set a MI flag. 202 void setFlag(MIFlag Flag) { 203 Flags |= (uint16_t)Flag; 204 } 205 206 void setFlags(unsigned flags) { 207 // Filter out the automatically maintained flags. 208 unsigned Mask = BundledPred | BundledSucc; 209 Flags = (Flags & Mask) | (flags & ~Mask); 210 } 211 212 /// clearFlag - Clear a MI flag. 213 void clearFlag(MIFlag Flag) { 214 Flags &= ~((uint16_t)Flag); 215 } 216 217 /// Return true if MI is in a bundle (but not the first MI in a bundle). 218 /// 219 /// A bundle looks like this before it's finalized: 220 /// ---------------- 221 /// | MI | 222 /// ---------------- 223 /// | 224 /// ---------------- 225 /// | MI * | 226 /// ---------------- 227 /// | 228 /// ---------------- 229 /// | MI * | 230 /// ---------------- 231 /// In this case, the first MI starts a bundle but is not inside a bundle, the 232 /// next 2 MIs are considered "inside" the bundle. 233 /// 234 /// After a bundle is finalized, it looks like this: 235 /// ---------------- 236 /// | Bundle | 237 /// ---------------- 238 /// | 239 /// ---------------- 240 /// | MI * | 241 /// ---------------- 242 /// | 243 /// ---------------- 244 /// | MI * | 245 /// ---------------- 246 /// | 247 /// ---------------- 248 /// | MI * | 249 /// ---------------- 250 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 251 /// a bundle, but the next three MIs are. 252 bool isInsideBundle() const { 253 return getFlag(BundledPred); 254 } 255 256 /// Return true if this instruction part of a bundle. This is true 257 /// if either itself or its following instruction is marked "InsideBundle". 258 bool isBundled() const { 259 return isBundledWithPred() || isBundledWithSucc(); 260 } 261 262 /// Return true if this instruction is part of a bundle, and it is not the 263 /// first instruction in the bundle. 264 bool isBundledWithPred() const { return getFlag(BundledPred); } 265 266 /// Return true if this instruction is part of a bundle, and it is not the 267 /// last instruction in the bundle. 268 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 269 270 /// Bundle this instruction with its predecessor. This can be an unbundled 271 /// instruction, or it can be the first instruction in a bundle. 272 void bundleWithPred(); 273 274 /// Bundle this instruction with its successor. This can be an unbundled 275 /// instruction, or it can be the last instruction in a bundle. 276 void bundleWithSucc(); 277 278 /// Break bundle above this instruction. 279 void unbundleFromPred(); 280 281 /// Break bundle below this instruction. 282 void unbundleFromSucc(); 283 284 /// Returns the debug location id of this MachineInstr. 285 const DebugLoc &getDebugLoc() const { return debugLoc; } 286 287 /// Return the debug variable referenced by 288 /// this DBG_VALUE instruction. 289 const DILocalVariable *getDebugVariable() const; 290 291 /// Return the complex address expression referenced by 292 /// this DBG_VALUE instruction. 293 const DIExpression *getDebugExpression() const; 294 295 /// Return the debug label referenced by 296 /// this DBG_LABEL instruction. 297 const DILabel *getDebugLabel() const; 298 299 /// Emit an error referring to the source location of this instruction. 300 /// This should only be used for inline assembly that is somehow 301 /// impossible to compile. Other errors should have been handled much 302 /// earlier. 303 /// 304 /// If this method returns, the caller should try to recover from the error. 305 void emitError(StringRef Msg) const; 306 307 /// Returns the target instruction descriptor of this MachineInstr. 308 const MCInstrDesc &getDesc() const { return *MCID; } 309 310 /// Returns the opcode of this MachineInstr. 311 unsigned getOpcode() const { return MCID->Opcode; } 312 313 /// Access to explicit operands of the instruction. 314 unsigned getNumOperands() const { return NumOperands; } 315 316 const MachineOperand& getOperand(unsigned i) const { 317 assert(i < getNumOperands() && "getOperand() out of range!"); 318 return Operands[i]; 319 } 320 MachineOperand& getOperand(unsigned i) { 321 assert(i < getNumOperands() && "getOperand() out of range!"); 322 return Operands[i]; 323 } 324 325 /// Returns the total number of definitions. 326 unsigned getNumDefs() const { 327 return getNumExplicitDefs() + MCID->getNumImplicitDefs(); 328 } 329 330 /// Return true if operand \p OpIdx is a subregister index. 331 bool isOperandSubregIdx(unsigned OpIdx) const { 332 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && 333 "Expected MO_Immediate operand type."); 334 if (isExtractSubreg() && OpIdx == 2) 335 return true; 336 if (isInsertSubreg() && OpIdx == 3) 337 return true; 338 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 339 return true; 340 if (isSubregToReg() && OpIdx == 3) 341 return true; 342 return false; 343 } 344 345 /// Returns the number of non-implicit operands. 346 unsigned getNumExplicitOperands() const; 347 348 /// Returns the number of non-implicit definitions. 349 unsigned getNumExplicitDefs() const; 350 351 /// iterator/begin/end - Iterate over all operands of a machine instruction. 352 using mop_iterator = MachineOperand *; 353 using const_mop_iterator = const MachineOperand *; 354 355 mop_iterator operands_begin() { return Operands; } 356 mop_iterator operands_end() { return Operands + NumOperands; } 357 358 const_mop_iterator operands_begin() const { return Operands; } 359 const_mop_iterator operands_end() const { return Operands + NumOperands; } 360 361 iterator_range<mop_iterator> operands() { 362 return make_range(operands_begin(), operands_end()); 363 } 364 iterator_range<const_mop_iterator> operands() const { 365 return make_range(operands_begin(), operands_end()); 366 } 367 iterator_range<mop_iterator> explicit_operands() { 368 return make_range(operands_begin(), 369 operands_begin() + getNumExplicitOperands()); 370 } 371 iterator_range<const_mop_iterator> explicit_operands() const { 372 return make_range(operands_begin(), 373 operands_begin() + getNumExplicitOperands()); 374 } 375 iterator_range<mop_iterator> implicit_operands() { 376 return make_range(explicit_operands().end(), operands_end()); 377 } 378 iterator_range<const_mop_iterator> implicit_operands() const { 379 return make_range(explicit_operands().end(), operands_end()); 380 } 381 /// Returns a range over all explicit operands that are register definitions. 382 /// Implicit definition are not included! 383 iterator_range<mop_iterator> defs() { 384 return make_range(operands_begin(), 385 operands_begin() + getNumExplicitDefs()); 386 } 387 /// \copydoc defs() 388 iterator_range<const_mop_iterator> defs() const { 389 return make_range(operands_begin(), 390 operands_begin() + getNumExplicitDefs()); 391 } 392 /// Returns a range that includes all operands that are register uses. 393 /// This may include unrelated operands which are not register uses. 394 iterator_range<mop_iterator> uses() { 395 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 396 } 397 /// \copydoc uses() 398 iterator_range<const_mop_iterator> uses() const { 399 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 400 } 401 iterator_range<mop_iterator> explicit_uses() { 402 return make_range(operands_begin() + getNumExplicitDefs(), 403 operands_begin() + getNumExplicitOperands()); 404 } 405 iterator_range<const_mop_iterator> explicit_uses() const { 406 return make_range(operands_begin() + getNumExplicitDefs(), 407 operands_begin() + getNumExplicitOperands()); 408 } 409 410 /// Returns the number of the operand iterator \p I points to. 411 unsigned getOperandNo(const_mop_iterator I) const { 412 return I - operands_begin(); 413 } 414 415 /// Access to memory operands of the instruction 416 mmo_iterator memoperands_begin() const { return MemRefs; } 417 mmo_iterator memoperands_end() const { return MemRefs + NumMemRefs; } 418 /// Return true if we don't have any memory operands which described the 419 /// memory access done by this instruction. If this is true, calling code 420 /// must be conservative. 421 bool memoperands_empty() const { return NumMemRefs == 0; } 422 423 iterator_range<mmo_iterator> memoperands() { 424 return make_range(memoperands_begin(), memoperands_end()); 425 } 426 iterator_range<mmo_iterator> memoperands() const { 427 return make_range(memoperands_begin(), memoperands_end()); 428 } 429 430 /// Return true if this instruction has exactly one MachineMemOperand. 431 bool hasOneMemOperand() const { 432 return NumMemRefs == 1; 433 } 434 435 /// Return the number of memory operands. 436 unsigned getNumMemOperands() const { return NumMemRefs; } 437 438 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 439 /// queries but they are bundle aware. 440 441 enum QueryType { 442 IgnoreBundle, // Ignore bundles 443 AnyInBundle, // Return true if any instruction in bundle has property 444 AllInBundle // Return true if all instructions in bundle have property 445 }; 446 447 /// Return true if the instruction (or in the case of a bundle, 448 /// the instructions inside the bundle) has the specified property. 449 /// The first argument is the property being queried. 450 /// The second argument indicates whether the query should look inside 451 /// instruction bundles. 452 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 453 // Inline the fast path for unbundled or bundle-internal instructions. 454 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 455 return getDesc().getFlags() & (1ULL << MCFlag); 456 457 // If this is the first instruction in a bundle, take the slow path. 458 return hasPropertyInBundle(1ULL << MCFlag, Type); 459 } 460 461 /// Return true if this instruction can have a variable number of operands. 462 /// In this case, the variable operands will be after the normal 463 /// operands but before the implicit definitions and uses (if any are 464 /// present). 465 bool isVariadic(QueryType Type = IgnoreBundle) const { 466 return hasProperty(MCID::Variadic, Type); 467 } 468 469 /// Set if this instruction has an optional definition, e.g. 470 /// ARM instructions which can set condition code if 's' bit is set. 471 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 472 return hasProperty(MCID::HasOptionalDef, Type); 473 } 474 475 /// Return true if this is a pseudo instruction that doesn't 476 /// correspond to a real machine instruction. 477 bool isPseudo(QueryType Type = IgnoreBundle) const { 478 return hasProperty(MCID::Pseudo, Type); 479 } 480 481 bool isReturn(QueryType Type = AnyInBundle) const { 482 return hasProperty(MCID::Return, Type); 483 } 484 485 bool isCall(QueryType Type = AnyInBundle) const { 486 return hasProperty(MCID::Call, Type); 487 } 488 489 /// Returns true if the specified instruction stops control flow 490 /// from executing the instruction immediately following it. Examples include 491 /// unconditional branches and return instructions. 492 bool isBarrier(QueryType Type = AnyInBundle) const { 493 return hasProperty(MCID::Barrier, Type); 494 } 495 496 /// Returns true if this instruction part of the terminator for a basic block. 497 /// Typically this is things like return and branch instructions. 498 /// 499 /// Various passes use this to insert code into the bottom of a basic block, 500 /// but before control flow occurs. 501 bool isTerminator(QueryType Type = AnyInBundle) const { 502 return hasProperty(MCID::Terminator, Type); 503 } 504 505 /// Returns true if this is a conditional, unconditional, or indirect branch. 506 /// Predicates below can be used to discriminate between 507 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 508 /// get more information. 509 bool isBranch(QueryType Type = AnyInBundle) const { 510 return hasProperty(MCID::Branch, Type); 511 } 512 513 /// Return true if this is an indirect branch, such as a 514 /// branch through a register. 515 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 516 return hasProperty(MCID::IndirectBranch, Type); 517 } 518 519 /// Return true if this is a branch which may fall 520 /// through to the next instruction or may transfer control flow to some other 521 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 522 /// information about this branch. 523 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 524 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); 525 } 526 527 /// Return true if this is a branch which always 528 /// transfers control flow to some other block. The 529 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 530 /// about this branch. 531 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 532 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); 533 } 534 535 /// Return true if this instruction has a predicate operand that 536 /// controls execution. It may be set to 'always', or may be set to other 537 /// values. There are various methods in TargetInstrInfo that can be used to 538 /// control and modify the predicate in this instruction. 539 bool isPredicable(QueryType Type = AllInBundle) const { 540 // If it's a bundle than all bundled instructions must be predicable for this 541 // to return true. 542 return hasProperty(MCID::Predicable, Type); 543 } 544 545 /// Return true if this instruction is a comparison. 546 bool isCompare(QueryType Type = IgnoreBundle) const { 547 return hasProperty(MCID::Compare, Type); 548 } 549 550 /// Return true if this instruction is a move immediate 551 /// (including conditional moves) instruction. 552 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 553 return hasProperty(MCID::MoveImm, Type); 554 } 555 556 /// Return true if this instruction is a register move. 557 /// (including moving values from subreg to reg) 558 bool isMoveReg(QueryType Type = IgnoreBundle) const { 559 return hasProperty(MCID::MoveReg, Type); 560 } 561 562 /// Return true if this instruction is a bitcast instruction. 563 bool isBitcast(QueryType Type = IgnoreBundle) const { 564 return hasProperty(MCID::Bitcast, Type); 565 } 566 567 /// Return true if this instruction is a select instruction. 568 bool isSelect(QueryType Type = IgnoreBundle) const { 569 return hasProperty(MCID::Select, Type); 570 } 571 572 /// Return true if this instruction cannot be safely duplicated. 573 /// For example, if the instruction has a unique labels attached 574 /// to it, duplicating it would cause multiple definition errors. 575 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 576 return hasProperty(MCID::NotDuplicable, Type); 577 } 578 579 /// Return true if this instruction is convergent. 580 /// Convergent instructions can not be made control-dependent on any 581 /// additional values. 582 bool isConvergent(QueryType Type = AnyInBundle) const { 583 if (isInlineAsm()) { 584 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 585 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 586 return true; 587 } 588 return hasProperty(MCID::Convergent, Type); 589 } 590 591 /// Returns true if the specified instruction has a delay slot 592 /// which must be filled by the code generator. 593 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 594 return hasProperty(MCID::DelaySlot, Type); 595 } 596 597 /// Return true for instructions that can be folded as 598 /// memory operands in other instructions. The most common use for this 599 /// is instructions that are simple loads from memory that don't modify 600 /// the loaded value in any way, but it can also be used for instructions 601 /// that can be expressed as constant-pool loads, such as V_SETALLONES 602 /// on x86, to allow them to be folded when it is beneficial. 603 /// This should only be set on instructions that return a value in their 604 /// only virtual register definition. 605 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 606 return hasProperty(MCID::FoldableAsLoad, Type); 607 } 608 609 /// Return true if this instruction behaves 610 /// the same way as the generic REG_SEQUENCE instructions. 611 /// E.g., on ARM, 612 /// dX VMOVDRR rY, rZ 613 /// is equivalent to 614 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 615 /// 616 /// Note that for the optimizers to be able to take advantage of 617 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 618 /// override accordingly. 619 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 620 return hasProperty(MCID::RegSequence, Type); 621 } 622 623 /// Return true if this instruction behaves 624 /// the same way as the generic EXTRACT_SUBREG instructions. 625 /// E.g., on ARM, 626 /// rX, rY VMOVRRD dZ 627 /// is equivalent to two EXTRACT_SUBREG: 628 /// rX = EXTRACT_SUBREG dZ, ssub_0 629 /// rY = EXTRACT_SUBREG dZ, ssub_1 630 /// 631 /// Note that for the optimizers to be able to take advantage of 632 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 633 /// override accordingly. 634 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 635 return hasProperty(MCID::ExtractSubreg, Type); 636 } 637 638 /// Return true if this instruction behaves 639 /// the same way as the generic INSERT_SUBREG instructions. 640 /// E.g., on ARM, 641 /// dX = VSETLNi32 dY, rZ, Imm 642 /// is equivalent to a INSERT_SUBREG: 643 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 644 /// 645 /// Note that for the optimizers to be able to take advantage of 646 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 647 /// override accordingly. 648 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 649 return hasProperty(MCID::InsertSubreg, Type); 650 } 651 652 //===--------------------------------------------------------------------===// 653 // Side Effect Analysis 654 //===--------------------------------------------------------------------===// 655 656 /// Return true if this instruction could possibly read memory. 657 /// Instructions with this flag set are not necessarily simple load 658 /// instructions, they may load a value and modify it, for example. 659 bool mayLoad(QueryType Type = AnyInBundle) const { 660 if (isInlineAsm()) { 661 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 662 if (ExtraInfo & InlineAsm::Extra_MayLoad) 663 return true; 664 } 665 return hasProperty(MCID::MayLoad, Type); 666 } 667 668 /// Return true if this instruction could possibly modify memory. 669 /// Instructions with this flag set are not necessarily simple store 670 /// instructions, they may store a modified value based on their operands, or 671 /// may not actually modify anything, for example. 672 bool mayStore(QueryType Type = AnyInBundle) const { 673 if (isInlineAsm()) { 674 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 675 if (ExtraInfo & InlineAsm::Extra_MayStore) 676 return true; 677 } 678 return hasProperty(MCID::MayStore, Type); 679 } 680 681 /// Return true if this instruction could possibly read or modify memory. 682 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 683 return mayLoad(Type) || mayStore(Type); 684 } 685 686 //===--------------------------------------------------------------------===// 687 // Flags that indicate whether an instruction can be modified by a method. 688 //===--------------------------------------------------------------------===// 689 690 /// Return true if this may be a 2- or 3-address 691 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 692 /// result if Y and Z are exchanged. If this flag is set, then the 693 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 694 /// instruction. 695 /// 696 /// Note that this flag may be set on instructions that are only commutable 697 /// sometimes. In these cases, the call to commuteInstruction will fail. 698 /// Also note that some instructions require non-trivial modification to 699 /// commute them. 700 bool isCommutable(QueryType Type = IgnoreBundle) const { 701 return hasProperty(MCID::Commutable, Type); 702 } 703 704 /// Return true if this is a 2-address instruction 705 /// which can be changed into a 3-address instruction if needed. Doing this 706 /// transformation can be profitable in the register allocator, because it 707 /// means that the instruction can use a 2-address form if possible, but 708 /// degrade into a less efficient form if the source and dest register cannot 709 /// be assigned to the same register. For example, this allows the x86 710 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 711 /// is the same speed as the shift but has bigger code size. 712 /// 713 /// If this returns true, then the target must implement the 714 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 715 /// is allowed to fail if the transformation isn't valid for this specific 716 /// instruction (e.g. shl reg, 4 on x86). 717 /// 718 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 719 return hasProperty(MCID::ConvertibleTo3Addr, Type); 720 } 721 722 /// Return true if this instruction requires 723 /// custom insertion support when the DAG scheduler is inserting it into a 724 /// machine basic block. If this is true for the instruction, it basically 725 /// means that it is a pseudo instruction used at SelectionDAG time that is 726 /// expanded out into magic code by the target when MachineInstrs are formed. 727 /// 728 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 729 /// is used to insert this into the MachineBasicBlock. 730 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 731 return hasProperty(MCID::UsesCustomInserter, Type); 732 } 733 734 /// Return true if this instruction requires *adjustment* 735 /// after instruction selection by calling a target hook. For example, this 736 /// can be used to fill in ARM 's' optional operand depending on whether 737 /// the conditional flag register is used. 738 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 739 return hasProperty(MCID::HasPostISelHook, Type); 740 } 741 742 /// Returns true if this instruction is a candidate for remat. 743 /// This flag is deprecated, please don't use it anymore. If this 744 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 745 /// verify the instruction is really rematable. 746 bool isRematerializable(QueryType Type = AllInBundle) const { 747 // It's only possible to re-mat a bundle if all bundled instructions are 748 // re-materializable. 749 return hasProperty(MCID::Rematerializable, Type); 750 } 751 752 /// Returns true if this instruction has the same cost (or less) than a move 753 /// instruction. This is useful during certain types of optimizations 754 /// (e.g., remat during two-address conversion or machine licm) 755 /// where we would like to remat or hoist the instruction, but not if it costs 756 /// more than moving the instruction into the appropriate register. Note, we 757 /// are not marking copies from and to the same register class with this flag. 758 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 759 // Only returns true for a bundle if all bundled instructions are cheap. 760 return hasProperty(MCID::CheapAsAMove, Type); 761 } 762 763 /// Returns true if this instruction source operands 764 /// have special register allocation requirements that are not captured by the 765 /// operand register classes. e.g. ARM::STRD's two source registers must be an 766 /// even / odd pair, ARM::STM registers have to be in ascending order. 767 /// Post-register allocation passes should not attempt to change allocations 768 /// for sources of instructions with this flag. 769 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 770 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 771 } 772 773 /// Returns true if this instruction def operands 774 /// have special register allocation requirements that are not captured by the 775 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 776 /// even / odd pair, ARM::LDM registers have to be in ascending order. 777 /// Post-register allocation passes should not attempt to change allocations 778 /// for definitions of instructions with this flag. 779 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 780 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 781 } 782 783 enum MICheckType { 784 CheckDefs, // Check all operands for equality 785 CheckKillDead, // Check all operands including kill / dead markers 786 IgnoreDefs, // Ignore all definitions 787 IgnoreVRegDefs // Ignore virtual register definitions 788 }; 789 790 /// Return true if this instruction is identical to \p Other. 791 /// Two instructions are identical if they have the same opcode and all their 792 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 793 /// Note that this means liveness related flags (dead, undef, kill) do not 794 /// affect the notion of identical. 795 bool isIdenticalTo(const MachineInstr &Other, 796 MICheckType Check = CheckDefs) const; 797 798 /// Unlink 'this' from the containing basic block, and return it without 799 /// deleting it. 800 /// 801 /// This function can not be used on bundled instructions, use 802 /// removeFromBundle() to remove individual instructions from a bundle. 803 MachineInstr *removeFromParent(); 804 805 /// Unlink this instruction from its basic block and return it without 806 /// deleting it. 807 /// 808 /// If the instruction is part of a bundle, the other instructions in the 809 /// bundle remain bundled. 810 MachineInstr *removeFromBundle(); 811 812 /// Unlink 'this' from the containing basic block and delete it. 813 /// 814 /// If this instruction is the header of a bundle, the whole bundle is erased. 815 /// This function can not be used for instructions inside a bundle, use 816 /// eraseFromBundle() to erase individual bundled instructions. 817 void eraseFromParent(); 818 819 /// Unlink 'this' from the containing basic block and delete it. 820 /// 821 /// For all definitions mark their uses in DBG_VALUE nodes 822 /// as undefined. Otherwise like eraseFromParent(). 823 void eraseFromParentAndMarkDBGValuesForRemoval(); 824 825 /// Unlink 'this' form its basic block and delete it. 826 /// 827 /// If the instruction is part of a bundle, the other instructions in the 828 /// bundle remain bundled. 829 void eraseFromBundle(); 830 831 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 832 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 833 bool isAnnotationLabel() const { 834 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 835 } 836 837 /// Returns true if the MachineInstr represents a label. 838 bool isLabel() const { 839 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 840 } 841 842 bool isCFIInstruction() const { 843 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 844 } 845 846 // True if the instruction represents a position in the function. 847 bool isPosition() const { return isLabel() || isCFIInstruction(); } 848 849 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 850 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 851 bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); } 852 853 /// A DBG_VALUE is indirect iff the first operand is a register and 854 /// the second operand is an immediate. 855 bool isIndirectDebugValue() const { 856 return isDebugValue() 857 && getOperand(0).isReg() 858 && getOperand(1).isImm(); 859 } 860 861 bool isPHI() const { 862 return getOpcode() == TargetOpcode::PHI || 863 getOpcode() == TargetOpcode::G_PHI; 864 } 865 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 866 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 867 bool isInlineAsm() const { return getOpcode() == TargetOpcode::INLINEASM; } 868 869 bool isMSInlineAsm() const { 870 return getOpcode() == TargetOpcode::INLINEASM && getInlineAsmDialect(); 871 } 872 873 bool isStackAligningInlineAsm() const; 874 InlineAsm::AsmDialect getInlineAsmDialect() const; 875 876 bool isInsertSubreg() const { 877 return getOpcode() == TargetOpcode::INSERT_SUBREG; 878 } 879 880 bool isSubregToReg() const { 881 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 882 } 883 884 bool isRegSequence() const { 885 return getOpcode() == TargetOpcode::REG_SEQUENCE; 886 } 887 888 bool isBundle() const { 889 return getOpcode() == TargetOpcode::BUNDLE; 890 } 891 892 bool isCopy() const { 893 return getOpcode() == TargetOpcode::COPY; 894 } 895 896 bool isFullCopy() const { 897 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 898 } 899 900 bool isExtractSubreg() const { 901 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 902 } 903 904 /// Return true if the instruction behaves like a copy. 905 /// This does not include native copy instructions. 906 bool isCopyLike() const { 907 return isCopy() || isSubregToReg(); 908 } 909 910 /// Return true is the instruction is an identity copy. 911 bool isIdentityCopy() const { 912 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 913 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 914 } 915 916 /// Return true if this instruction doesn't produce any output in the form of 917 /// executable instructions. 918 bool isMetaInstruction() const { 919 switch (getOpcode()) { 920 default: 921 return false; 922 case TargetOpcode::IMPLICIT_DEF: 923 case TargetOpcode::KILL: 924 case TargetOpcode::CFI_INSTRUCTION: 925 case TargetOpcode::EH_LABEL: 926 case TargetOpcode::GC_LABEL: 927 case TargetOpcode::DBG_VALUE: 928 case TargetOpcode::DBG_LABEL: 929 case TargetOpcode::LIFETIME_START: 930 case TargetOpcode::LIFETIME_END: 931 return true; 932 } 933 } 934 935 /// Return true if this is a transient instruction that is either very likely 936 /// to be eliminated during register allocation (such as copy-like 937 /// instructions), or if this instruction doesn't have an execution-time cost. 938 bool isTransient() const { 939 switch (getOpcode()) { 940 default: 941 return isMetaInstruction(); 942 // Copy-like instructions are usually eliminated during register allocation. 943 case TargetOpcode::PHI: 944 case TargetOpcode::G_PHI: 945 case TargetOpcode::COPY: 946 case TargetOpcode::INSERT_SUBREG: 947 case TargetOpcode::SUBREG_TO_REG: 948 case TargetOpcode::REG_SEQUENCE: 949 return true; 950 } 951 } 952 953 /// Return the number of instructions inside the MI bundle, excluding the 954 /// bundle header. 955 /// 956 /// This is the number of instructions that MachineBasicBlock::iterator 957 /// skips, 0 for unbundled instructions. 958 unsigned getBundleSize() const; 959 960 /// Return true if the MachineInstr reads the specified register. 961 /// If TargetRegisterInfo is passed, then it also checks if there 962 /// is a read of a super-register. 963 /// This does not count partial redefines of virtual registers as reads: 964 /// %reg1024:6 = OP. 965 bool readsRegister(unsigned Reg, 966 const TargetRegisterInfo *TRI = nullptr) const { 967 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 968 } 969 970 /// Return true if the MachineInstr reads the specified virtual register. 971 /// Take into account that a partial define is a 972 /// read-modify-write operation. 973 bool readsVirtualRegister(unsigned Reg) const { 974 return readsWritesVirtualRegister(Reg).first; 975 } 976 977 /// Return a pair of bools (reads, writes) indicating if this instruction 978 /// reads or writes Reg. This also considers partial defines. 979 /// If Ops is not null, all operand indices for Reg are added. 980 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg, 981 SmallVectorImpl<unsigned> *Ops = nullptr) const; 982 983 /// Return true if the MachineInstr kills the specified register. 984 /// If TargetRegisterInfo is passed, then it also checks if there is 985 /// a kill of a super-register. 986 bool killsRegister(unsigned Reg, 987 const TargetRegisterInfo *TRI = nullptr) const { 988 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 989 } 990 991 /// Return true if the MachineInstr fully defines the specified register. 992 /// If TargetRegisterInfo is passed, then it also checks 993 /// if there is a def of a super-register. 994 /// NOTE: It's ignoring subreg indices on virtual registers. 995 bool definesRegister(unsigned Reg, 996 const TargetRegisterInfo *TRI = nullptr) const { 997 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 998 } 999 1000 /// Return true if the MachineInstr modifies (fully define or partially 1001 /// define) the specified register. 1002 /// NOTE: It's ignoring subreg indices on virtual registers. 1003 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const { 1004 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 1005 } 1006 1007 /// Returns true if the register is dead in this machine instruction. 1008 /// If TargetRegisterInfo is passed, then it also checks 1009 /// if there is a dead def of a super-register. 1010 bool registerDefIsDead(unsigned Reg, 1011 const TargetRegisterInfo *TRI = nullptr) const { 1012 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 1013 } 1014 1015 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1016 /// the given register (not considering sub/super-registers). 1017 bool hasRegisterImplicitUseOperand(unsigned Reg) const; 1018 1019 /// Returns the operand index that is a use of the specific register or -1 1020 /// if it is not found. It further tightens the search criteria to a use 1021 /// that kills the register if isKill is true. 1022 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false, 1023 const TargetRegisterInfo *TRI = nullptr) const; 1024 1025 /// Wrapper for findRegisterUseOperandIdx, it returns 1026 /// a pointer to the MachineOperand rather than an index. 1027 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false, 1028 const TargetRegisterInfo *TRI = nullptr) { 1029 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 1030 return (Idx == -1) ? nullptr : &getOperand(Idx); 1031 } 1032 1033 const MachineOperand *findRegisterUseOperand( 1034 unsigned Reg, bool isKill = false, 1035 const TargetRegisterInfo *TRI = nullptr) const { 1036 return const_cast<MachineInstr *>(this)-> 1037 findRegisterUseOperand(Reg, isKill, TRI); 1038 } 1039 1040 /// Returns the operand index that is a def of the specified register or 1041 /// -1 if it is not found. If isDead is true, defs that are not dead are 1042 /// skipped. If Overlap is true, then it also looks for defs that merely 1043 /// overlap the specified register. If TargetRegisterInfo is non-null, 1044 /// then it also checks if there is a def of a super-register. 1045 /// This may also return a register mask operand when Overlap is true. 1046 int findRegisterDefOperandIdx(unsigned Reg, 1047 bool isDead = false, bool Overlap = false, 1048 const TargetRegisterInfo *TRI = nullptr) const; 1049 1050 /// Wrapper for findRegisterDefOperandIdx, it returns 1051 /// a pointer to the MachineOperand rather than an index. 1052 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false, 1053 const TargetRegisterInfo *TRI = nullptr) { 1054 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI); 1055 return (Idx == -1) ? nullptr : &getOperand(Idx); 1056 } 1057 1058 /// Find the index of the first operand in the 1059 /// operand list that is used to represent the predicate. It returns -1 if 1060 /// none is found. 1061 int findFirstPredOperandIdx() const; 1062 1063 /// Find the index of the flag word operand that 1064 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1065 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1066 /// 1067 /// If GroupNo is not NULL, it will receive the number of the operand group 1068 /// containing OpIdx. 1069 /// 1070 /// The flag operand is an immediate that can be decoded with methods like 1071 /// InlineAsm::hasRegClassConstraint(). 1072 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1073 1074 /// Compute the static register class constraint for operand OpIdx. 1075 /// For normal instructions, this is derived from the MCInstrDesc. 1076 /// For inline assembly it is derived from the flag words. 1077 /// 1078 /// Returns NULL if the static register class constraint cannot be 1079 /// determined. 1080 const TargetRegisterClass* 1081 getRegClassConstraint(unsigned OpIdx, 1082 const TargetInstrInfo *TII, 1083 const TargetRegisterInfo *TRI) const; 1084 1085 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1086 /// the given \p CurRC. 1087 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1088 /// instructions inside the bundle will be taken into account. In other words, 1089 /// this method accumulates all the constraints of the operand of this MI and 1090 /// the related bundle if MI is a bundle or inside a bundle. 1091 /// 1092 /// Returns the register class that satisfies both \p CurRC and the 1093 /// constraints set by MI. Returns NULL if such a register class does not 1094 /// exist. 1095 /// 1096 /// \pre CurRC must not be NULL. 1097 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1098 unsigned Reg, const TargetRegisterClass *CurRC, 1099 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1100 bool ExploreBundle = false) const; 1101 1102 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1103 /// to the given \p CurRC. 1104 /// 1105 /// Returns the register class that satisfies both \p CurRC and the 1106 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1107 /// does not exist. 1108 /// 1109 /// \pre CurRC must not be NULL. 1110 /// \pre The operand at \p OpIdx must be a register. 1111 const TargetRegisterClass * 1112 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1113 const TargetInstrInfo *TII, 1114 const TargetRegisterInfo *TRI) const; 1115 1116 /// Add a tie between the register operands at DefIdx and UseIdx. 1117 /// The tie will cause the register allocator to ensure that the two 1118 /// operands are assigned the same physical register. 1119 /// 1120 /// Tied operands are managed automatically for explicit operands in the 1121 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1122 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1123 1124 /// Given the index of a tied register operand, find the 1125 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1126 /// index of the tied operand which must exist. 1127 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1128 1129 /// Given the index of a register def operand, 1130 /// check if the register def is tied to a source operand, due to either 1131 /// two-address elimination or inline assembly constraints. Returns the 1132 /// first tied use operand index by reference if UseOpIdx is not null. 1133 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1134 unsigned *UseOpIdx = nullptr) const { 1135 const MachineOperand &MO = getOperand(DefOpIdx); 1136 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1137 return false; 1138 if (UseOpIdx) 1139 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1140 return true; 1141 } 1142 1143 /// Return true if the use operand of the specified index is tied to a def 1144 /// operand. It also returns the def operand index by reference if DefOpIdx 1145 /// is not null. 1146 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1147 unsigned *DefOpIdx = nullptr) const { 1148 const MachineOperand &MO = getOperand(UseOpIdx); 1149 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1150 return false; 1151 if (DefOpIdx) 1152 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1153 return true; 1154 } 1155 1156 /// Clears kill flags on all operands. 1157 void clearKillInfo(); 1158 1159 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1160 /// properly composing subreg indices where necessary. 1161 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx, 1162 const TargetRegisterInfo &RegInfo); 1163 1164 /// We have determined MI kills a register. Look for the 1165 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1166 /// add a implicit operand if it's not found. Returns true if the operand 1167 /// exists / is added. 1168 bool addRegisterKilled(unsigned IncomingReg, 1169 const TargetRegisterInfo *RegInfo, 1170 bool AddIfNotFound = false); 1171 1172 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1173 /// all aliasing registers. 1174 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo); 1175 1176 /// We have determined MI defined a register without a use. 1177 /// Look for the operand that defines it and mark it as IsDead. If 1178 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1179 /// true if the operand exists / is added. 1180 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo, 1181 bool AddIfNotFound = false); 1182 1183 /// Clear all dead flags on operands defining register @p Reg. 1184 void clearRegisterDeads(unsigned Reg); 1185 1186 /// Mark all subregister defs of register @p Reg with the undef flag. 1187 /// This function is used when we determined to have a subregister def in an 1188 /// otherwise undefined super register. 1189 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true); 1190 1191 /// We have determined MI defines a register. Make sure there is an operand 1192 /// defining Reg. 1193 void addRegisterDefined(unsigned Reg, 1194 const TargetRegisterInfo *RegInfo = nullptr); 1195 1196 /// Mark every physreg used by this instruction as 1197 /// dead except those in the UsedRegs list. 1198 /// 1199 /// On instructions with register mask operands, also add implicit-def 1200 /// operands for all registers in UsedRegs. 1201 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs, 1202 const TargetRegisterInfo &TRI); 1203 1204 /// Return true if it is safe to move this instruction. If 1205 /// SawStore is set to true, it means that there is a store (or call) between 1206 /// the instruction's location and its intended destination. 1207 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const; 1208 1209 /// Returns true if this instruction's memory access aliases the memory 1210 /// access of Other. 1211 // 1212 /// Assumes any physical registers used to compute addresses 1213 /// have the same value for both instructions. Returns false if neither 1214 /// instruction writes to memory. 1215 /// 1216 /// @param AA Optional alias analysis, used to compare memory operands. 1217 /// @param Other MachineInstr to check aliasing against. 1218 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1219 bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA); 1220 1221 /// Return true if this instruction may have an ordered 1222 /// or volatile memory reference, or if the information describing the memory 1223 /// reference is not available. Return false if it is known to have no 1224 /// ordered or volatile memory references. 1225 bool hasOrderedMemoryRef() const; 1226 1227 /// Return true if this load instruction never traps and points to a memory 1228 /// location whose value doesn't change during the execution of this function. 1229 /// 1230 /// Examples include loading a value from the constant pool or from the 1231 /// argument area of a function (if it does not change). If the instruction 1232 /// does multiple loads, this returns true only if all of the loads are 1233 /// dereferenceable and invariant. 1234 bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const; 1235 1236 /// If the specified instruction is a PHI that always merges together the 1237 /// same virtual register, return the register, otherwise return 0. 1238 unsigned isConstantValuePHI() const; 1239 1240 /// Return true if this instruction has side effects that are not modeled 1241 /// by mayLoad / mayStore, etc. 1242 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1243 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1244 /// INLINEASM instruction, in which case the side effect property is encoded 1245 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1246 /// 1247 bool hasUnmodeledSideEffects() const; 1248 1249 /// Returns true if it is illegal to fold a load across this instruction. 1250 bool isLoadFoldBarrier() const; 1251 1252 /// Return true if all the defs of this instruction are dead. 1253 bool allDefsAreDead() const; 1254 1255 /// Copy implicit register operands from specified 1256 /// instruction to this instruction. 1257 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1258 1259 /// Debugging support 1260 /// @{ 1261 /// Determine the generic type to be printed (if needed) on uses and defs. 1262 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1263 const MachineRegisterInfo &MRI) const; 1264 1265 /// Return true when an instruction has tied register that can't be determined 1266 /// by the instruction's descriptor. This is useful for MIR printing, to 1267 /// determine whether we need to print the ties or not. 1268 bool hasComplexRegisterTies() const; 1269 1270 /// Print this MI to \p OS. 1271 /// Don't print information that can be inferred from other instructions if 1272 /// \p IsStandalone is false. It is usually true when only a fragment of the 1273 /// function is printed. 1274 /// Only print the defs and the opcode if \p SkipOpers is true. 1275 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1276 /// Otherwise, also print the debug loc, with a terminating newline. 1277 /// \p TII is used to print the opcode name. If it's not present, but the 1278 /// MI is in a function, the opcode will be printed using the function's TII. 1279 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1280 bool SkipDebugLoc = false, bool AddNewLine = true, 1281 const TargetInstrInfo *TII = nullptr) const; 1282 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1283 bool SkipOpers = false, bool SkipDebugLoc = false, 1284 bool AddNewLine = true, 1285 const TargetInstrInfo *TII = nullptr) const; 1286 void dump() const; 1287 /// @} 1288 1289 //===--------------------------------------------------------------------===// 1290 // Accessors used to build up machine instructions. 1291 1292 /// Add the specified operand to the instruction. If it is an implicit 1293 /// operand, it is added to the end of the operand list. If it is an 1294 /// explicit operand it is added at the end of the explicit operand list 1295 /// (before the first implicit operand). 1296 /// 1297 /// MF must be the machine function that was used to allocate this 1298 /// instruction. 1299 /// 1300 /// MachineInstrBuilder provides a more convenient interface for creating 1301 /// instructions and adding operands. 1302 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1303 1304 /// Add an operand without providing an MF reference. This only works for 1305 /// instructions that are inserted in a basic block. 1306 /// 1307 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1308 /// preferred. 1309 void addOperand(const MachineOperand &Op); 1310 1311 /// Replace the instruction descriptor (thus opcode) of 1312 /// the current instruction with a new one. 1313 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1314 1315 /// Replace current source information with new such. 1316 /// Avoid using this, the constructor argument is preferable. 1317 void setDebugLoc(DebugLoc dl) { 1318 debugLoc = std::move(dl); 1319 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1320 } 1321 1322 /// Erase an operand from an instruction, leaving it with one 1323 /// fewer operand than it started with. 1324 void RemoveOperand(unsigned OpNo); 1325 1326 /// Add a MachineMemOperand to the machine instruction. 1327 /// This function should be used only occasionally. The setMemRefs function 1328 /// is the primary method for setting up a MachineInstr's MemRefs list. 1329 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1330 1331 /// Assign this MachineInstr's memory reference descriptor list. 1332 /// This does not transfer ownership. 1333 void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) { 1334 setMemRefs(std::make_pair(NewMemRefs, NewMemRefsEnd-NewMemRefs)); 1335 } 1336 1337 /// Assign this MachineInstr's memory reference descriptor list. First 1338 /// element in the pair is the begin iterator/pointer to the array; the 1339 /// second is the number of MemoryOperands. This does not transfer ownership 1340 /// of the underlying memory. 1341 void setMemRefs(std::pair<mmo_iterator, unsigned> NewMemRefs) { 1342 MemRefs = NewMemRefs.first; 1343 NumMemRefs = uint8_t(NewMemRefs.second); 1344 assert(NumMemRefs == NewMemRefs.second && 1345 "Too many memrefs - must drop memory operands"); 1346 } 1347 1348 /// Return a set of memrefs (begin iterator, size) which conservatively 1349 /// describe the memory behavior of both MachineInstrs. This is appropriate 1350 /// for use when merging two MachineInstrs into one. This routine does not 1351 /// modify the memrefs of the this MachineInstr. 1352 std::pair<mmo_iterator, unsigned> mergeMemRefsWith(const MachineInstr& Other); 1353 1354 /// Return the MIFlags which represent both MachineInstrs. This 1355 /// should be used when merging two MachineInstrs into one. This routine does 1356 /// not modify the MIFlags of this MachineInstr. 1357 uint16_t mergeFlagsWith(const MachineInstr& Other) const; 1358 1359 /// Clear this MachineInstr's memory reference descriptor list. This resets 1360 /// the memrefs to their most conservative state. This should be used only 1361 /// as a last resort since it greatly pessimizes our knowledge of the memory 1362 /// access performed by the instruction. 1363 void dropMemRefs() { 1364 MemRefs = nullptr; 1365 NumMemRefs = 0; 1366 } 1367 1368 /// Break any tie involving OpIdx. 1369 void untieRegOperand(unsigned OpIdx) { 1370 MachineOperand &MO = getOperand(OpIdx); 1371 if (MO.isReg() && MO.isTied()) { 1372 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1373 MO.TiedTo = 0; 1374 } 1375 } 1376 1377 /// Add all implicit def and use operands to this instruction. 1378 void addImplicitDefUseOperands(MachineFunction &MF); 1379 1380 private: 1381 /// If this instruction is embedded into a MachineFunction, return the 1382 /// MachineRegisterInfo object for the current function, otherwise 1383 /// return null. 1384 MachineRegisterInfo *getRegInfo(); 1385 1386 /// Unlink all of the register operands in this instruction from their 1387 /// respective use lists. This requires that the operands already be on their 1388 /// use lists. 1389 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1390 1391 /// Add all of the register operands in this instruction from their 1392 /// respective use lists. This requires that the operands not be on their 1393 /// use lists yet. 1394 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1395 1396 /// Slow path for hasProperty when we're dealing with a bundle. 1397 bool hasPropertyInBundle(unsigned Mask, QueryType Type) const; 1398 1399 /// Implements the logic of getRegClassConstraintEffectForVReg for the 1400 /// this MI and the given operand index \p OpIdx. 1401 /// If the related operand does not constrained Reg, this returns CurRC. 1402 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1403 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC, 1404 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1405 }; 1406 1407 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1408 /// instruction rather than by pointer value. 1409 /// The hashing and equality testing functions ignore definitions so this is 1410 /// useful for CSE, etc. 1411 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1412 static inline MachineInstr *getEmptyKey() { 1413 return nullptr; 1414 } 1415 1416 static inline MachineInstr *getTombstoneKey() { 1417 return reinterpret_cast<MachineInstr*>(-1); 1418 } 1419 1420 static unsigned getHashValue(const MachineInstr* const &MI); 1421 1422 static bool isEqual(const MachineInstr* const &LHS, 1423 const MachineInstr* const &RHS) { 1424 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1425 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1426 return LHS == RHS; 1427 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1428 } 1429 }; 1430 1431 //===----------------------------------------------------------------------===// 1432 // Debugging Support 1433 1434 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1435 MI.print(OS); 1436 return OS; 1437 } 1438 1439 } // end namespace llvm 1440 1441 #endif // LLVM_CODEGEN_MACHINEINSTR_H 1442