1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 #ifndef TENSORFLOW_C_C_API_H_ 17 #define TENSORFLOW_C_C_API_H_ 18 19 #include <stddef.h> 20 #include <stdint.h> 21 22 // -------------------------------------------------------------------------- 23 // C API for TensorFlow. 24 // 25 // The API leans towards simplicity and uniformity instead of convenience 26 // since most usage will be by language specific wrappers. 27 // 28 // Conventions: 29 // * We use the prefix TF_ for everything in the API. 30 // * Objects are always passed around as pointers to opaque structs 31 // and these structs are allocated/deallocated via the API. 32 // * TF_Status holds error information. It is an object type 33 // and therefore is passed around as a pointer to an opaque 34 // struct as mentioned above. 35 // * Every call that has a TF_Status* argument clears it on success 36 // and fills it with error info on failure. 37 // * unsigned char is used for booleans (instead of the 'bool' type). 38 // In C++ bool is a keyword while in C99 bool is a macro defined 39 // in stdbool.h. It is possible for the two to be inconsistent. 40 // For example, neither the C99 nor the C++11 standard force a byte 41 // size on the bool type, so the macro defined in stdbool.h could 42 // be inconsistent with the bool keyword in C++. Thus, the use 43 // of stdbool.h is avoided and unsigned char is used instead. 44 // * size_t is used to represent byte sizes of objects that are 45 // materialized in the address space of the calling process. 46 // * int is used as an index into arrays. 47 // * Deletion functions are safe to call on nullptr. 48 // 49 // Questions left to address: 50 // * Might at some point need a way for callers to provide their own Env. 51 // * Maybe add TF_TensorShape that encapsulates dimension info. 52 // 53 // Design decisions made: 54 // * Backing store for tensor memory has an associated deallocation 55 // function. This deallocation function will point to client code 56 // for tensors populated by the client. So the client can do things 57 // like shadowing a numpy array. 58 // * We do not provide TF_OK since it is not strictly necessary and we 59 // are not optimizing for convenience. 60 // * We make assumption that one session has one graph. This should be 61 // fine since we have the ability to run sub-graphs. 62 // * We could allow NULL for some arguments (e.g., NULL options arg). 63 // However since convenience is not a primary goal, we don't do this. 64 // * Devices are not in this API. Instead, they are created/used internally 65 // and the API just provides high level controls over the number of 66 // devices of each type. 67 68 // Macro to control visibility of exported symbols in the shared library (.so, 69 // .dylib, .dll). 70 // This duplicates the TF_EXPORT macro definition in 71 // tensorflow/core/platform/macros.h in order to keep this .h file independent 72 // of any other includes.$a 73 #ifdef SWIG 74 #define TF_CAPI_EXPORT 75 #else 76 #if defined(_WIN32) 77 #ifdef TF_COMPILE_LIBRARY 78 #define TF_CAPI_EXPORT __declspec(dllexport) 79 #else 80 #define TF_CAPI_EXPORT __declspec(dllimport) 81 #endif // TF_COMPILE_LIBRARY 82 #else 83 #define TF_CAPI_EXPORT __attribute__((visibility("default"))) 84 #endif // _WIN32 85 #endif // SWIG 86 87 #ifdef __cplusplus 88 extern "C" { 89 #endif 90 91 // -------------------------------------------------------------------------- 92 // TF_Version returns a string describing version information of the 93 // TensorFlow library. TensorFlow using semantic versioning. 94 TF_CAPI_EXPORT extern const char* TF_Version(void); 95 96 // -------------------------------------------------------------------------- 97 // TF_DataType holds the type for a scalar value. E.g., one slot in a tensor. 98 // The enum values here are identical to corresponding values in types.proto. 99 typedef enum TF_DataType { 100 TF_FLOAT = 1, 101 TF_DOUBLE = 2, 102 TF_INT32 = 3, // Int32 tensors are always in 'host' memory. 103 TF_UINT8 = 4, 104 TF_INT16 = 5, 105 TF_INT8 = 6, 106 TF_STRING = 7, 107 TF_COMPLEX64 = 8, // Single-precision complex 108 TF_COMPLEX = 8, // Old identifier kept for API backwards compatibility 109 TF_INT64 = 9, 110 TF_BOOL = 10, 111 TF_QINT8 = 11, // Quantized int8 112 TF_QUINT8 = 12, // Quantized uint8 113 TF_QINT32 = 13, // Quantized int32 114 TF_BFLOAT16 = 14, // Float32 truncated to 16 bits. Only for cast ops. 115 TF_QINT16 = 15, // Quantized int16 116 TF_QUINT16 = 16, // Quantized uint16 117 TF_UINT16 = 17, 118 TF_COMPLEX128 = 18, // Double-precision complex 119 TF_HALF = 19, 120 TF_RESOURCE = 20, 121 TF_VARIANT = 21, 122 TF_UINT32 = 22, 123 TF_UINT64 = 23, 124 } TF_DataType; 125 126 // TF_DataTypeSize returns the sizeof() for the underlying type corresponding 127 // to the given TF_DataType enum value. Returns 0 for variable length types 128 // (eg. TF_STRING) or on failure. 129 TF_CAPI_EXPORT extern size_t TF_DataTypeSize(TF_DataType dt); 130 131 // -------------------------------------------------------------------------- 132 // TF_Code holds an error code. The enum values here are identical to 133 // corresponding values in error_codes.proto. 134 typedef enum TF_Code { 135 TF_OK = 0, 136 TF_CANCELLED = 1, 137 TF_UNKNOWN = 2, 138 TF_INVALID_ARGUMENT = 3, 139 TF_DEADLINE_EXCEEDED = 4, 140 TF_NOT_FOUND = 5, 141 TF_ALREADY_EXISTS = 6, 142 TF_PERMISSION_DENIED = 7, 143 TF_UNAUTHENTICATED = 16, 144 TF_RESOURCE_EXHAUSTED = 8, 145 TF_FAILED_PRECONDITION = 9, 146 TF_ABORTED = 10, 147 TF_OUT_OF_RANGE = 11, 148 TF_UNIMPLEMENTED = 12, 149 TF_INTERNAL = 13, 150 TF_UNAVAILABLE = 14, 151 TF_DATA_LOSS = 15, 152 } TF_Code; 153 154 // -------------------------------------------------------------------------- 155 // TF_Status holds error information. It either has an OK code, or 156 // else an error code with an associated error message. 157 typedef struct TF_Status TF_Status; 158 159 // Return a new status object. 160 TF_CAPI_EXPORT extern TF_Status* TF_NewStatus(void); 161 162 // Delete a previously created status object. 163 TF_CAPI_EXPORT extern void TF_DeleteStatus(TF_Status*); 164 165 // Record <code, msg> in *s. Any previous information is lost. 166 // A common use is to clear a status: TF_SetStatus(s, TF_OK, ""); 167 TF_CAPI_EXPORT extern void TF_SetStatus(TF_Status* s, TF_Code code, 168 const char* msg); 169 170 // Return the code record in *s. 171 TF_CAPI_EXPORT extern TF_Code TF_GetCode(const TF_Status* s); 172 173 // Return a pointer to the (null-terminated) error message in *s. The 174 // return value points to memory that is only usable until the next 175 // mutation to *s. Always returns an empty string if TF_GetCode(s) is 176 // TF_OK. 177 TF_CAPI_EXPORT extern const char* TF_Message(const TF_Status* s); 178 179 // -------------------------------------------------------------------------- 180 // TF_Buffer holds a pointer to a block of data and its associated length. 181 // Typically, the data consists of a serialized protocol buffer, but other data 182 // may also be held in a buffer. 183 // 184 // By default, TF_Buffer itself does not do any memory management of the 185 // pointed-to block. If need be, users of this struct should specify how to 186 // deallocate the block by setting the `data_deallocator` function pointer. 187 typedef struct TF_Buffer { 188 const void* data; 189 size_t length; 190 void (*data_deallocator)(void* data, size_t length); 191 } TF_Buffer; 192 193 // Makes a copy of the input and sets an appropriate deallocator. Useful for 194 // passing in read-only, input protobufs. 195 TF_CAPI_EXPORT extern TF_Buffer* TF_NewBufferFromString(const void* proto, 196 size_t proto_len); 197 198 // Useful for passing *out* a protobuf. 199 TF_CAPI_EXPORT extern TF_Buffer* TF_NewBuffer(void); 200 201 TF_CAPI_EXPORT extern void TF_DeleteBuffer(TF_Buffer*); 202 203 TF_CAPI_EXPORT extern TF_Buffer TF_GetBuffer(TF_Buffer* buffer); 204 205 // -------------------------------------------------------------------------- 206 // TF_Tensor holds a multi-dimensional array of elements of a single data type. 207 // For all types other than TF_STRING, the data buffer stores elements 208 // in row major order. E.g. if data is treated as a vector of TF_DataType: 209 // 210 // element 0: index (0, ..., 0) 211 // element 1: index (0, ..., 1) 212 // ... 213 // 214 // The format for TF_STRING tensors is: 215 // start_offset: array[uint64] 216 // data: byte[...] 217 // 218 // The string length (as a varint), followed by the contents of the string 219 // is encoded at data[start_offset[i]]]. TF_StringEncode and TF_StringDecode 220 // facilitate this encoding. 221 222 typedef struct TF_Tensor TF_Tensor; 223 224 // Return a new tensor that holds the bytes data[0,len-1]. 225 // 226 // The data will be deallocated by a subsequent call to TF_DeleteTensor via: 227 // (*deallocator)(data, len, deallocator_arg) 228 // Clients must provide a custom deallocator function so they can pass in 229 // memory managed by something like numpy. 230 // 231 // May return NULL (and invoke the deallocator) if the provided data buffer 232 // (data, len) is inconsistent with a tensor of the given TF_DataType 233 // and the shape specified by (dima, num_dims). 234 TF_CAPI_EXPORT extern TF_Tensor* TF_NewTensor( 235 TF_DataType, const int64_t* dims, int num_dims, void* data, size_t len, 236 void (*deallocator)(void* data, size_t len, void* arg), 237 void* deallocator_arg); 238 239 // Allocate and return a new Tensor. 240 // 241 // This function is an alternative to TF_NewTensor and should be used when 242 // memory is allocated to pass the Tensor to the C API. The allocated memory 243 // satisfies TensorFlow's memory alignment preferences and should be preferred 244 // over calling malloc and free. 245 // 246 // The caller must set the Tensor values by writing them to the pointer returned 247 // by TF_TensorData with length TF_TensorByteSize. 248 TF_CAPI_EXPORT extern TF_Tensor* TF_AllocateTensor(TF_DataType, 249 const int64_t* dims, 250 int num_dims, size_t len); 251 252 // Deletes `tensor` and returns a new TF_Tensor with the same content if 253 // possible. Returns nullptr and leaves `tensor` untouched if not. 254 TF_CAPI_EXPORT extern TF_Tensor* TF_TensorMaybeMove(TF_Tensor* tensor); 255 256 // Destroy a tensor. 257 TF_CAPI_EXPORT extern void TF_DeleteTensor(TF_Tensor*); 258 259 // Return the type of a tensor element. 260 TF_CAPI_EXPORT extern TF_DataType TF_TensorType(const TF_Tensor*); 261 262 // Return the number of dimensions that the tensor has. 263 TF_CAPI_EXPORT extern int TF_NumDims(const TF_Tensor*); 264 265 // Return the length of the tensor in the "dim_index" dimension. 266 // REQUIRES: 0 <= dim_index < TF_NumDims(tensor) 267 TF_CAPI_EXPORT extern int64_t TF_Dim(const TF_Tensor* tensor, int dim_index); 268 269 // Return the size of the underlying data in bytes. 270 TF_CAPI_EXPORT extern size_t TF_TensorByteSize(const TF_Tensor*); 271 272 // Return a pointer to the underlying data buffer. 273 TF_CAPI_EXPORT extern void* TF_TensorData(const TF_Tensor*); 274 275 // Returns the number of elements in the tensor. 276 TF_CAPI_EXPORT extern int64_t TF_TensorElementCount(const TF_Tensor* tensor); 277 278 // Copy the internal data representation of `from` to `to`. `new_dims` and 279 // `num_new_dims` specify the new shape of the `to` tensor, `type` specifies its 280 // data type. On success, *status is set to TF_OK and the two tensors share the 281 // same data buffer. 282 // 283 // This call requires that the `from` tensor and the given type and shape (dims 284 // and num_dims) are "compatible" (i.e. they occupy the same number of bytes). 285 // Specifically, given from_type_size = TF_DataTypeSize(TF_TensorType(from)): 286 // 287 // ShapeElementCount(dims, num_dims) * TF_DataTypeSize(type) 288 // 289 // must equal 290 // 291 // TF_TensorElementCount(from) * from_type_size 292 // 293 // where TF_ShapeElementCount would be the number of elements in a tensor with 294 // the given shape. 295 // 296 // In addition, this function requires: 297 // * TF_DataTypeSize(TF_TensorType(from)) != 0 298 // * TF_DataTypeSize(type) != 0 299 // 300 // If any of the requirements are not met, *status is set to 301 // TF_INVALID_ARGUMENT. 302 TF_CAPI_EXPORT extern void TF_TensorBitcastFrom(const TF_Tensor* from, 303 TF_DataType type, TF_Tensor* to, 304 const int64_t* new_dims, 305 int num_new_dims, 306 TF_Status* status); 307 308 // -------------------------------------------------------------------------- 309 // Encode the string `src` (`src_len` bytes long) into `dst` in the format 310 // required by TF_STRING tensors. Does not write to memory more than `dst_len` 311 // bytes beyond `*dst`. `dst_len` should be at least 312 // TF_StringEncodedSize(src_len). 313 // 314 // On success returns the size in bytes of the encoded string. 315 // Returns an error into `status` otherwise. 316 TF_CAPI_EXPORT extern size_t TF_StringEncode(const char* src, size_t src_len, 317 char* dst, size_t dst_len, 318 TF_Status* status); 319 320 // Decode a string encoded using TF_StringEncode. 321 // 322 // On success, sets `*dst` to the start of the decoded string and `*dst_len` to 323 // its length. Returns the number of bytes starting at `src` consumed while 324 // decoding. `*dst` points to memory within the encoded buffer. On failure, 325 // `*dst` and `*dst_len` are undefined and an error is set in `status`. 326 // 327 // Does not read memory more than `src_len` bytes beyond `src`. 328 TF_CAPI_EXPORT extern size_t TF_StringDecode(const char* src, size_t src_len, 329 const char** dst, size_t* dst_len, 330 TF_Status* status); 331 332 // Return the size in bytes required to encode a string `len` bytes long into a 333 // TF_STRING tensor. 334 TF_CAPI_EXPORT extern size_t TF_StringEncodedSize(size_t len); 335 336 // -------------------------------------------------------------------------- 337 // TF_SessionOptions holds options that can be passed during session creation. 338 typedef struct TF_SessionOptions TF_SessionOptions; 339 340 // Return a new options object. 341 TF_CAPI_EXPORT extern TF_SessionOptions* TF_NewSessionOptions(void); 342 343 // Set the target in TF_SessionOptions.options. 344 // target can be empty, a single entry, or a comma separated list of entries. 345 // Each entry is in one of the following formats : 346 // "local" 347 // ip:port 348 // host:port 349 TF_CAPI_EXPORT extern void TF_SetTarget(TF_SessionOptions* options, 350 const char* target); 351 352 // Set the config in TF_SessionOptions.options. 353 // config should be a serialized tensorflow.ConfigProto proto. 354 // If config was not parsed successfully as a ConfigProto, record the 355 // error information in *status. 356 TF_CAPI_EXPORT extern void TF_SetConfig(TF_SessionOptions* options, 357 const void* proto, size_t proto_len, 358 TF_Status* status); 359 360 // Destroy an options object. 361 TF_CAPI_EXPORT extern void TF_DeleteSessionOptions(TF_SessionOptions*); 362 363 // TODO(jeff,sanjay): 364 // - export functions to set Config fields 365 366 // -------------------------------------------------------------------------- 367 // The new graph construction API, still under development. 368 369 // Represents a computation graph. Graphs may be shared between sessions. 370 // Graphs are thread-safe when used as directed below. 371 typedef struct TF_Graph TF_Graph; 372 373 // Return a new graph object. 374 TF_CAPI_EXPORT extern TF_Graph* TF_NewGraph(void); 375 376 // Destroy an options object. Graph will be deleted once no more 377 // TFSession's are referencing it. 378 TF_CAPI_EXPORT extern void TF_DeleteGraph(TF_Graph*); 379 380 // Operation being built. The underlying graph must outlive this. 381 typedef struct TF_OperationDescription TF_OperationDescription; 382 383 // Operation that has been added to the graph. Valid until the graph is 384 // deleted -- in particular adding a new operation to the graph does not 385 // invalidate old TF_Operation* pointers. 386 typedef struct TF_Operation TF_Operation; 387 388 // Represents a specific input of an operation. 389 typedef struct TF_Input { 390 TF_Operation* oper; 391 int index; // The index of the input within oper. 392 } TF_Input; 393 394 // Represents a specific output of an operation. 395 typedef struct TF_Output { 396 TF_Operation* oper; 397 int index; // The index of the output within oper. 398 } TF_Output; 399 400 // TF_Function is a grouping of operations with defined inputs and outputs. 401 // Once created and added to graphs, functions can be invoked by creating an 402 // operation whose operation type matches the function name. 403 typedef struct TF_Function TF_Function; 404 405 // Function definition options. TODO(iga): Define and implement 406 typedef struct TF_FunctionOptions TF_FunctionOptions; 407 408 // Sets the shape of the Tensor referenced by `output` in `graph` to 409 // the shape described by `dims` and `num_dims`. 410 // 411 // If the number of dimensions is unknown, `num_dims` must be set to 412 // -1 and `dims` can be null. If a dimension is unknown, the 413 // corresponding entry in the `dims` array must be -1. 414 // 415 // This does not overwrite the existing shape associated with `output`, 416 // but merges the input shape with the existing shape. For example, 417 // setting a shape of [-1, 2] with an existing shape [2, -1] would set 418 // a final shape of [2, 2] based on shape merging semantics. 419 // 420 // Returns an error into `status` if: 421 // * `output` is not in `graph`. 422 // * An invalid shape is being set (e.g., the shape being set 423 // is incompatible with the existing shape). 424 TF_CAPI_EXPORT extern void TF_GraphSetTensorShape(TF_Graph* graph, 425 TF_Output output, 426 const int64_t* dims, 427 const int num_dims, 428 TF_Status* status); 429 430 // Returns the number of dimensions of the Tensor referenced by `output` 431 // in `graph`. 432 // 433 // If the number of dimensions in the shape is unknown, returns -1. 434 // 435 // Returns an error into `status` if: 436 // * `output` is not in `graph`. 437 TF_CAPI_EXPORT extern int TF_GraphGetTensorNumDims(TF_Graph* graph, 438 TF_Output output, 439 TF_Status* status); 440 441 // Returns the shape of the Tensor referenced by `output` in `graph` 442 // into `dims`. `dims` must be an array large enough to hold `num_dims` 443 // entries (e.g., the return value of TF_GraphGetTensorNumDims). 444 // 445 // If the number of dimensions in the shape is unknown or the shape is 446 // a scalar, `dims` will remain untouched. Otherwise, each element of 447 // `dims` will be set corresponding to the size of the dimension. An 448 // unknown dimension is represented by `-1`. 449 // 450 // Returns an error into `status` if: 451 // * `output` is not in `graph`. 452 // * `num_dims` does not match the actual number of dimensions. 453 TF_CAPI_EXPORT extern void TF_GraphGetTensorShape(TF_Graph* graph, 454 TF_Output output, 455 int64_t* dims, int num_dims, 456 TF_Status* status); 457 458 // Operation will only be added to *graph when TF_FinishOperation() is 459 // called (assuming TF_FinishOperation() does not return an error). 460 // *graph must not be deleted until after TF_FinishOperation() is 461 // called. 462 TF_CAPI_EXPORT extern TF_OperationDescription* TF_NewOperation( 463 TF_Graph* graph, const char* op_type, const char* oper_name); 464 465 // Specify the device for `desc`. Defaults to empty, meaning unconstrained. 466 TF_CAPI_EXPORT extern void TF_SetDevice(TF_OperationDescription* desc, 467 const char* device); 468 469 // The calls to TF_AddInput and TF_AddInputList must match (in number, 470 // order, and type) the op declaration. For example, the "Concat" op 471 // has registration: 472 // REGISTER_OP("Concat") 473 // .Input("concat_dim: int32") 474 // .Input("values: N * T") 475 // .Output("output: T") 476 // .Attr("N: int >= 2") 477 // .Attr("T: type"); 478 // that defines two inputs, "concat_dim" and "values" (in that order). 479 // You must use TF_AddInput() for the first input (since it takes a 480 // single tensor), and TF_AddInputList() for the second input (since 481 // it takes a list, even if you were to pass a list with a single 482 // tensor), as in: 483 // TF_OperationDescription* desc = TF_NewOperation(graph, "Concat", "c"); 484 // TF_Output concat_dim_input = {...}; 485 // TF_AddInput(desc, concat_dim_input); 486 // TF_Output values_inputs[5] = {{...}, ..., {...}}; 487 // TF_AddInputList(desc, values_inputs, 5); 488 489 // For inputs that take a single tensor. 490 TF_CAPI_EXPORT extern void TF_AddInput(TF_OperationDescription* desc, 491 TF_Output input); 492 493 // For inputs that take a list of tensors. 494 // inputs must point to TF_Output[num_inputs]. 495 TF_CAPI_EXPORT extern void TF_AddInputList(TF_OperationDescription* desc, 496 const TF_Output* inputs, 497 int num_inputs); 498 499 // Call once per control input to `desc`. 500 TF_CAPI_EXPORT extern void TF_AddControlInput(TF_OperationDescription* desc, 501 TF_Operation* input); 502 503 // Request that `desc` be co-located on the device where `op` 504 // is placed. 505 // 506 // Use of this is discouraged since the implementation of device placement is 507 // subject to change. Primarily intended for internal libraries 508 TF_CAPI_EXPORT extern void TF_ColocateWith(TF_OperationDescription* desc, 509 TF_Operation* op); 510 511 // Call some TF_SetAttr*() function for every attr that is not 512 // inferred from an input and doesn't have a default value you wish to 513 // keep. 514 515 // `value` must point to a string of length `length` bytes. 516 TF_CAPI_EXPORT extern void TF_SetAttrString(TF_OperationDescription* desc, 517 const char* attr_name, 518 const void* value, size_t length); 519 // `values` and `lengths` each must have lengths `num_values`. 520 // `values[i]` must point to a string of length `lengths[i]` bytes. 521 TF_CAPI_EXPORT extern void TF_SetAttrStringList(TF_OperationDescription* desc, 522 const char* attr_name, 523 const void* const* values, 524 const size_t* lengths, 525 int num_values); 526 TF_CAPI_EXPORT extern void TF_SetAttrInt(TF_OperationDescription* desc, 527 const char* attr_name, int64_t value); 528 TF_CAPI_EXPORT extern void TF_SetAttrIntList(TF_OperationDescription* desc, 529 const char* attr_name, 530 const int64_t* values, 531 int num_values); 532 TF_CAPI_EXPORT extern void TF_SetAttrFloat(TF_OperationDescription* desc, 533 const char* attr_name, float value); 534 TF_CAPI_EXPORT extern void TF_SetAttrFloatList(TF_OperationDescription* desc, 535 const char* attr_name, 536 const float* values, 537 int num_values); 538 TF_CAPI_EXPORT extern void TF_SetAttrBool(TF_OperationDescription* desc, 539 const char* attr_name, 540 unsigned char value); 541 TF_CAPI_EXPORT extern void TF_SetAttrBoolList(TF_OperationDescription* desc, 542 const char* attr_name, 543 const unsigned char* values, 544 int num_values); 545 TF_CAPI_EXPORT extern void TF_SetAttrType(TF_OperationDescription* desc, 546 const char* attr_name, 547 TF_DataType value); 548 TF_CAPI_EXPORT extern void TF_SetAttrTypeList(TF_OperationDescription* desc, 549 const char* attr_name, 550 const TF_DataType* values, 551 int num_values); 552 TF_CAPI_EXPORT extern void TF_SetAttrPlaceholder(TF_OperationDescription* desc, 553 const char* attr_name, 554 const char* placeholder); 555 556 // Set a 'func' attribute to the specified name. 557 // `value` must point to a string of length `length` bytes. 558 TF_CAPI_EXPORT extern void TF_SetAttrFuncName(TF_OperationDescription* desc, 559 const char* attr_name, 560 const char* value, size_t length); 561 562 // Set `num_dims` to -1 to represent "unknown rank". Otherwise, 563 // `dims` points to an array of length `num_dims`. `dims[i]` must be 564 // >= -1, with -1 meaning "unknown dimension". 565 TF_CAPI_EXPORT extern void TF_SetAttrShape(TF_OperationDescription* desc, 566 const char* attr_name, 567 const int64_t* dims, int num_dims); 568 // `dims` and `num_dims` must point to arrays of length `num_shapes`. 569 // Set `num_dims[i]` to -1 to represent "unknown rank". Otherwise, 570 // `dims[i]` points to an array of length `num_dims[i]`. `dims[i][j]` 571 // must be >= -1, with -1 meaning "unknown dimension". 572 TF_CAPI_EXPORT extern void TF_SetAttrShapeList(TF_OperationDescription* desc, 573 const char* attr_name, 574 const int64_t* const* dims, 575 const int* num_dims, 576 int num_shapes); 577 // `proto` must point to an array of `proto_len` bytes representing a 578 // binary-serialized TensorShapeProto. 579 TF_CAPI_EXPORT extern void TF_SetAttrTensorShapeProto( 580 TF_OperationDescription* desc, const char* attr_name, const void* proto, 581 size_t proto_len, TF_Status* status); 582 // `protos` and `proto_lens` must point to arrays of length `num_shapes`. 583 // `protos[i]` must point to an array of `proto_lens[i]` bytes 584 // representing a binary-serialized TensorShapeProto. 585 TF_CAPI_EXPORT extern void TF_SetAttrTensorShapeProtoList( 586 TF_OperationDescription* desc, const char* attr_name, 587 const void* const* protos, const size_t* proto_lens, int num_shapes, 588 TF_Status* status); 589 590 TF_CAPI_EXPORT extern void TF_SetAttrTensor(TF_OperationDescription* desc, 591 const char* attr_name, 592 TF_Tensor* value, 593 TF_Status* status); 594 TF_CAPI_EXPORT extern void TF_SetAttrTensorList(TF_OperationDescription* desc, 595 const char* attr_name, 596 TF_Tensor* const* values, 597 int num_values, 598 TF_Status* status); 599 600 // `proto` should point to a sequence of bytes of length `proto_len` 601 // representing a binary serialization of an AttrValue protocol 602 // buffer. 603 TF_CAPI_EXPORT extern void TF_SetAttrValueProto(TF_OperationDescription* desc, 604 const char* attr_name, 605 const void* proto, 606 size_t proto_len, 607 TF_Status* status); 608 609 // If this function succeeds: 610 // * *status is set to an OK value, 611 // * a TF_Operation is added to the graph, 612 // * a non-null value pointing to the added operation is returned -- 613 // this value is valid until the underlying graph is deleted. 614 // Otherwise: 615 // * *status is set to a non-OK value, 616 // * the graph is not modified, 617 // * a null value is returned. 618 // In either case, it deletes `desc`. 619 TF_CAPI_EXPORT extern TF_Operation* TF_FinishOperation( 620 TF_OperationDescription* desc, TF_Status* status); 621 622 // TF_Operation functions. Operations are immutable once created, so 623 // these are all query functions. 624 625 TF_CAPI_EXPORT extern const char* TF_OperationName(TF_Operation* oper); 626 TF_CAPI_EXPORT extern const char* TF_OperationOpType(TF_Operation* oper); 627 TF_CAPI_EXPORT extern const char* TF_OperationDevice(TF_Operation* oper); 628 629 TF_CAPI_EXPORT extern int TF_OperationNumOutputs(TF_Operation* oper); 630 TF_CAPI_EXPORT extern TF_DataType TF_OperationOutputType(TF_Output oper_out); 631 TF_CAPI_EXPORT extern int TF_OperationOutputListLength(TF_Operation* oper, 632 const char* arg_name, 633 TF_Status* status); 634 635 TF_CAPI_EXPORT extern int TF_OperationNumInputs(TF_Operation* oper); 636 TF_CAPI_EXPORT extern TF_DataType TF_OperationInputType(TF_Input oper_in); 637 TF_CAPI_EXPORT extern int TF_OperationInputListLength(TF_Operation* oper, 638 const char* arg_name, 639 TF_Status* status); 640 641 // In this code: 642 // TF_Output producer = TF_OperationInput(consumer); 643 // There is an edge from producer.oper's output (given by 644 // producer.index) to consumer.oper's input (given by consumer.index). 645 TF_CAPI_EXPORT extern TF_Output TF_OperationInput(TF_Input oper_in); 646 647 // Get the number of current consumers of a specific output of an 648 // operation. Note that this number can change when new operations 649 // are added to the graph. 650 TF_CAPI_EXPORT extern int TF_OperationOutputNumConsumers(TF_Output oper_out); 651 652 // Get list of all current consumers of a specific output of an 653 // operation. `consumers` must point to an array of length at least 654 // `max_consumers` (ideally set to 655 // TF_OperationOutputNumConsumers(oper_out)). Beware that a concurrent 656 // modification of the graph can increase the number of consumers of 657 // an operation. Returns the number of output consumers (should match 658 // TF_OperationOutputNumConsumers(oper_out)). 659 TF_CAPI_EXPORT extern int TF_OperationOutputConsumers(TF_Output oper_out, 660 TF_Input* consumers, 661 int max_consumers); 662 663 // Get the number of control inputs to an operation. 664 TF_CAPI_EXPORT extern int TF_OperationNumControlInputs(TF_Operation* oper); 665 666 // Get list of all control inputs to an operation. `control_inputs` must 667 // point to an array of length `max_control_inputs` (ideally set to 668 // TF_OperationNumControlInputs(oper)). Returns the number of control 669 // inputs (should match TF_OperationNumControlInputs(oper)). 670 TF_CAPI_EXPORT extern int TF_OperationGetControlInputs( 671 TF_Operation* oper, TF_Operation** control_inputs, int max_control_inputs); 672 673 // Get the number of operations that have `*oper` as a control input. 674 // Note that this number can change when new operations are added to 675 // the graph. 676 TF_CAPI_EXPORT extern int TF_OperationNumControlOutputs(TF_Operation* oper); 677 678 // Get the list of operations that have `*oper` as a control input. 679 // `control_outputs` must point to an array of length at least 680 // `max_control_outputs` (ideally set to 681 // TF_OperationNumControlOutputs(oper)). Beware that a concurrent 682 // modification of the graph can increase the number of control 683 // outputs. Returns the number of control outputs (should match 684 // TF_OperationNumControlOutputs(oper)). 685 TF_CAPI_EXPORT extern int TF_OperationGetControlOutputs( 686 TF_Operation* oper, TF_Operation** control_outputs, 687 int max_control_outputs); 688 689 // TF_AttrType describes the type of the value of an attribute on an operation. 690 typedef enum TF_AttrType { 691 TF_ATTR_STRING = 0, 692 TF_ATTR_INT = 1, 693 TF_ATTR_FLOAT = 2, 694 TF_ATTR_BOOL = 3, 695 TF_ATTR_TYPE = 4, 696 TF_ATTR_SHAPE = 5, 697 TF_ATTR_TENSOR = 6, 698 TF_ATTR_PLACEHOLDER = 7, 699 TF_ATTR_FUNC = 8, 700 } TF_AttrType; 701 702 // TF_AttrMetadata describes the value of an attribute on an operation. 703 typedef struct TF_AttrMetadata { 704 // A boolean: 1 if the attribute value is a list, 0 otherwise. 705 unsigned char is_list; 706 707 // Length of the list if is_list is true. Undefined otherwise. 708 int64_t list_size; 709 710 // Type of elements of the list if is_list != 0. 711 // Type of the single value stored in the attribute if is_list == 0. 712 TF_AttrType type; 713 714 // Total size the attribute value. 715 // The units of total_size depend on is_list and type. 716 // (1) If type == TF_ATTR_STRING and is_list == 0 717 // then total_size is the byte size of the string 718 // valued attribute. 719 // (2) If type == TF_ATTR_STRING and is_list == 1 720 // then total_size is the cumulative byte size 721 // of all the strings in the list. 722 // (3) If type == TF_ATTR_SHAPE and is_list == 0 723 // then total_size is the number of dimensions 724 // of the shape valued attribute, or -1 725 // if its rank is unknown. 726 // (4) If type == TF_ATTR_SHAPE and is_list == 1 727 // then total_size is the cumulative number 728 // of dimensions of all shapes in the list. 729 // (5) Otherwise, total_size is undefined. 730 int64_t total_size; 731 } TF_AttrMetadata; 732 733 // Returns metadata about the value of the attribute `attr_name` of `oper`. 734 TF_CAPI_EXPORT extern TF_AttrMetadata TF_OperationGetAttrMetadata( 735 TF_Operation* oper, const char* attr_name, TF_Status* status); 736 737 // Fills in `value` with the value of the attribute `attr_name`. `value` must 738 // point to an array of length at least `max_length` (ideally set to 739 // TF_AttrMetadata.total_size from TF_OperationGetAttrMetadata(oper, 740 // attr_name)). 741 TF_CAPI_EXPORT extern void TF_OperationGetAttrString(TF_Operation* oper, 742 const char* attr_name, 743 void* value, 744 size_t max_length, 745 TF_Status* status); 746 747 // Get the list of strings in the value of the attribute `attr_name`. Fills in 748 // `values` and `lengths`, each of which must point to an array of length at 749 // least `max_values`. 750 // 751 // The elements of values will point to addresses in `storage` which must be at 752 // least `storage_size` bytes in length. Ideally, max_values would be set to 753 // TF_AttrMetadata.list_size and `storage` would be at least 754 // TF_AttrMetadata.total_size, obtained from TF_OperationGetAttrMetadata(oper, 755 // attr_name). 756 // 757 // Fails if storage_size is too small to hold the requested number of strings. 758 TF_CAPI_EXPORT extern void TF_OperationGetAttrStringList( 759 TF_Operation* oper, const char* attr_name, void** values, size_t* lengths, 760 int max_values, void* storage, size_t storage_size, TF_Status* status); 761 762 TF_CAPI_EXPORT extern void TF_OperationGetAttrInt(TF_Operation* oper, 763 const char* attr_name, 764 int64_t* value, 765 TF_Status* status); 766 767 // Fills in `values` with the value of the attribute `attr_name` of `oper`. 768 // `values` must point to an array of length at least `max_values` (ideally set 769 // TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper, 770 // attr_name)). 771 TF_CAPI_EXPORT extern void TF_OperationGetAttrIntList(TF_Operation* oper, 772 const char* attr_name, 773 int64_t* values, 774 int max_values, 775 TF_Status* status); 776 777 TF_CAPI_EXPORT extern void TF_OperationGetAttrFloat(TF_Operation* oper, 778 const char* attr_name, 779 float* value, 780 TF_Status* status); 781 782 // Fills in `values` with the value of the attribute `attr_name` of `oper`. 783 // `values` must point to an array of length at least `max_values` (ideally set 784 // to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper, 785 // attr_name)). 786 TF_CAPI_EXPORT extern void TF_OperationGetAttrFloatList(TF_Operation* oper, 787 const char* attr_name, 788 float* values, 789 int max_values, 790 TF_Status* status); 791 792 TF_CAPI_EXPORT extern void TF_OperationGetAttrBool(TF_Operation* oper, 793 const char* attr_name, 794 unsigned char* value, 795 TF_Status* status); 796 797 // Fills in `values` with the value of the attribute `attr_name` of `oper`. 798 // `values` must point to an array of length at least `max_values` (ideally set 799 // to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper, 800 // attr_name)). 801 TF_CAPI_EXPORT extern void TF_OperationGetAttrBoolList(TF_Operation* oper, 802 const char* attr_name, 803 unsigned char* values, 804 int max_values, 805 TF_Status* status); 806 807 TF_CAPI_EXPORT extern void TF_OperationGetAttrType(TF_Operation* oper, 808 const char* attr_name, 809 TF_DataType* value, 810 TF_Status* status); 811 812 // Fills in `values` with the value of the attribute `attr_name` of `oper`. 813 // `values` must point to an array of length at least `max_values` (ideally set 814 // to TF_AttrMetadata.list_size from TF_OperationGetAttrMetadata(oper, 815 // attr_name)). 816 TF_CAPI_EXPORT extern void TF_OperationGetAttrTypeList(TF_Operation* oper, 817 const char* attr_name, 818 TF_DataType* values, 819 int max_values, 820 TF_Status* status); 821 822 // Fills in `value` with the value of the attribute `attr_name` of `oper`. 823 // `values` must point to an array of length at least `num_dims` (ideally set to 824 // TF_Attr_Meta.size from TF_OperationGetAttrMetadata(oper, attr_name)). 825 TF_CAPI_EXPORT extern void TF_OperationGetAttrShape(TF_Operation* oper, 826 const char* attr_name, 827 int64_t* value, 828 int num_dims, 829 TF_Status* status); 830 831 // Fills in `dims` with the list of shapes in the attribute `attr_name` of 832 // `oper` and `num_dims` with the corresponding number of dimensions. On return, 833 // for every i where `num_dims[i]` > 0, `dims[i]` will be an array of 834 // `num_dims[i]` elements. A value of -1 for `num_dims[i]` indicates that the 835 // i-th shape in the list is unknown. 836 // 837 // The elements of `dims` will point to addresses in `storage` which must be 838 // large enough to hold at least `storage_size` int64_ts. Ideally, `num_shapes` 839 // would be set to TF_AttrMetadata.list_size and `storage_size` would be set to 840 // TF_AttrMetadata.total_size from TF_OperationGetAttrMetadata(oper, 841 // attr_name). 842 // 843 // Fails if storage_size is insufficient to hold the requested shapes. 844 TF_CAPI_EXPORT extern void TF_OperationGetAttrShapeList( 845 TF_Operation* oper, const char* attr_name, int64_t** dims, int* num_dims, 846 int num_shapes, int64_t* storage, int storage_size, TF_Status* status); 847 848 // Sets `value` to the binary-serialized TensorShapeProto of the value of 849 // `attr_name` attribute of `oper`'. 850 TF_CAPI_EXPORT extern void TF_OperationGetAttrTensorShapeProto( 851 TF_Operation* oper, const char* attr_name, TF_Buffer* value, 852 TF_Status* status); 853 854 // Fills in `values` with binary-serialized TensorShapeProto values of the 855 // attribute `attr_name` of `oper`. `values` must point to an array of length at 856 // least `num_values` (ideally set to TF_AttrMetadata.list_size from 857 // TF_OperationGetAttrMetadata(oper, attr_name)). 858 TF_CAPI_EXPORT extern void TF_OperationGetAttrTensorShapeProtoList( 859 TF_Operation* oper, const char* attr_name, TF_Buffer** values, 860 int max_values, TF_Status* status); 861 862 // Gets the TF_Tensor valued attribute of `attr_name` of `oper`. 863 // 864 // Allocates a new TF_Tensor which the caller is expected to take 865 // ownership of (and can deallocate using TF_DeleteTensor). 866 TF_CAPI_EXPORT extern void TF_OperationGetAttrTensor(TF_Operation* oper, 867 const char* attr_name, 868 TF_Tensor** value, 869 TF_Status* status); 870 871 // Fills in `values` with the TF_Tensor values of the attribute `attr_name` of 872 // `oper`. `values` must point to an array of TF_Tensor* of length at least 873 // `max_values` (ideally set to TF_AttrMetadata.list_size from 874 // TF_OperationGetAttrMetadata(oper, attr_name)). 875 // 876 // The caller takes ownership of all the non-null TF_Tensor* entries in `values` 877 // (which can be deleted using TF_DeleteTensor(values[i])). 878 TF_CAPI_EXPORT extern void TF_OperationGetAttrTensorList(TF_Operation* oper, 879 const char* attr_name, 880 TF_Tensor** values, 881 int max_values, 882 TF_Status* status); 883 884 // Sets `output_attr_value` to the binary-serialized AttrValue proto 885 // representation of the value of the `attr_name` attr of `oper`. 886 TF_CAPI_EXPORT extern void TF_OperationGetAttrValueProto( 887 TF_Operation* oper, const char* attr_name, TF_Buffer* output_attr_value, 888 TF_Status* status); 889 890 // Returns the operation in the graph with `oper_name`. Returns nullptr if 891 // no operation found. 892 TF_CAPI_EXPORT extern TF_Operation* TF_GraphOperationByName( 893 TF_Graph* graph, const char* oper_name); 894 895 // Iterate through the operations of a graph. To use: 896 // size_t pos = 0; 897 // TF_Operation* oper; 898 // while ((oper = TF_GraphNextOperation(graph, &pos)) != nullptr) { 899 // DoSomethingWithOperation(oper); 900 // } 901 TF_CAPI_EXPORT extern TF_Operation* TF_GraphNextOperation(TF_Graph* graph, 902 size_t* pos); 903 904 // Write out a serialized representation of `graph` (as a GraphDef protocol 905 // message) to `output_graph_def` (allocated by TF_NewBuffer()). 906 // `output_graph_def`'s underlying buffer will be freed when TF_DeleteBuffer() 907 // is called. 908 // 909 // May fail on very large graphs in the future. 910 TF_CAPI_EXPORT extern void TF_GraphToGraphDef(TF_Graph* graph, 911 TF_Buffer* output_graph_def, 912 TF_Status* status); 913 914 // Returns the serialized OpDef proto with name `op_name`, or a bad status if no 915 // such op exists. This can return OpDefs of functions copied into the graph. 916 TF_CAPI_EXPORT extern void TF_GraphGetOpDef(TF_Graph* graph, 917 const char* op_name, 918 TF_Buffer* output_op_def, 919 TF_Status* status); 920 921 // Returns the serialized VersionDef proto for this graph. 922 TF_CAPI_EXPORT extern void TF_GraphVersions(TF_Graph* graph, 923 TF_Buffer* output_version_def, 924 TF_Status* status); 925 926 // TF_ImportGraphDefOptions holds options that can be passed to 927 // TF_GraphImportGraphDef. 928 typedef struct TF_ImportGraphDefOptions TF_ImportGraphDefOptions; 929 930 TF_CAPI_EXPORT extern TF_ImportGraphDefOptions* TF_NewImportGraphDefOptions( 931 void); 932 TF_CAPI_EXPORT extern void TF_DeleteImportGraphDefOptions( 933 TF_ImportGraphDefOptions* opts); 934 935 // Set the prefix to be prepended to the names of nodes in `graph_def` that will 936 // be imported into `graph`. `prefix` is copied and has no lifetime 937 // requirements. 938 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetPrefix( 939 TF_ImportGraphDefOptions* opts, const char* prefix); 940 941 // Set the execution device for nodes in `graph_def`. 942 // Only applies to nodes where a device was not already explicitly specified. 943 // `device` is copied and has no lifetime requirements. 944 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetDefaultDevice( 945 TF_ImportGraphDefOptions* opts, const char* device); 946 947 // Set whether to uniquify imported operation names. If true, imported operation 948 // names will be modified if their name already exists in the graph. If false, 949 // conflicting names will be treated as an error. Note that this option has no 950 // effect if a prefix is set, since the prefix will guarantee all names are 951 // unique. Defaults to false. 952 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetUniquifyNames( 953 TF_ImportGraphDefOptions* opts, unsigned char uniquify_names); 954 955 // If true, the specified prefix will be modified if it already exists as an 956 // operation name or prefix in the graph. If false, a conflicting prefix will be 957 // treated as an error. This option has no effect if no prefix is specified. 958 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsSetUniquifyPrefix( 959 TF_ImportGraphDefOptions* opts, unsigned char uniquify_prefix); 960 961 // Set any imported nodes with input `src_name:src_index` to have that input 962 // replaced with `dst`. `src_name` refers to a node in the graph to be imported, 963 // `dst` references a node already existing in the graph being imported into. 964 // `src_name` is copied and has no lifetime requirements. 965 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddInputMapping( 966 TF_ImportGraphDefOptions* opts, const char* src_name, int src_index, 967 TF_Output dst); 968 969 // Set any imported nodes with control input `src_name` to have that input 970 // replaced with `dst`. `src_name` refers to a node in the graph to be imported, 971 // `dst` references an operation already existing in the graph being imported 972 // into. `src_name` is copied and has no lifetime requirements. 973 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsRemapControlDependency( 974 TF_ImportGraphDefOptions* opts, const char* src_name, TF_Operation* dst); 975 976 // Cause the imported graph to have a control dependency on `oper`. `oper` 977 // should exist in the graph being imported into. 978 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddControlDependency( 979 TF_ImportGraphDefOptions* opts, TF_Operation* oper); 980 981 // Add an output in `graph_def` to be returned via the `return_outputs` output 982 // parameter of TF_GraphImportGraphDef(). If the output is remapped via an input 983 // mapping, the corresponding existing tensor in `graph` will be returned. 984 // `oper_name` is copied and has no lifetime requirements. 985 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddReturnOutput( 986 TF_ImportGraphDefOptions* opts, const char* oper_name, int index); 987 988 // Returns the number of return outputs added via 989 // TF_ImportGraphDefOptionsAddReturnOutput(). 990 TF_CAPI_EXPORT extern int TF_ImportGraphDefOptionsNumReturnOutputs( 991 const TF_ImportGraphDefOptions* opts); 992 993 // Add an operation in `graph_def` to be returned via the `return_opers` output 994 // parameter of TF_GraphImportGraphDef(). `oper_name` is copied and has no 995 // lifetime requirements. 996 TF_CAPI_EXPORT extern void TF_ImportGraphDefOptionsAddReturnOperation( 997 TF_ImportGraphDefOptions* opts, const char* oper_name); 998 999 // Returns the number of return operations added via 1000 // TF_ImportGraphDefOptionsAddReturnOperation(). 1001 TF_CAPI_EXPORT extern int TF_ImportGraphDefOptionsNumReturnOperations( 1002 const TF_ImportGraphDefOptions* opts); 1003 1004 // TF_ImportGraphDefResults holds results that are generated by 1005 // TF_GraphImportGraphDefWithResults(). 1006 typedef struct TF_ImportGraphDefResults TF_ImportGraphDefResults; 1007 1008 // Fetches the return outputs requested via 1009 // TF_ImportGraphDefOptionsAddReturnOutput(). The number of fetched outputs is 1010 // returned in `num_outputs`. The array of return outputs is returned in 1011 // `outputs`. `*outputs` is owned by and has the lifetime of `results`. 1012 TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsReturnOutputs( 1013 TF_ImportGraphDefResults* results, int* num_outputs, TF_Output** outputs); 1014 1015 // Fetches the return operations requested via 1016 // TF_ImportGraphDefOptionsAddReturnOperation(). The number of fetched 1017 // operations is returned in `num_opers`. The array of return operations is 1018 // returned in `opers`. `*opers` is owned by and has the lifetime of `results`. 1019 TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsReturnOperations( 1020 TF_ImportGraphDefResults* results, int* num_opers, TF_Operation*** opers); 1021 1022 // Fetches any input mappings requested via 1023 // TF_ImportGraphDefOptionsAddInputMapping() that didn't appear in the GraphDef 1024 // and weren't used as input to any node in the imported graph def. The number 1025 // of fetched mappings is returned in `num_missing_unused_input_mappings`. The 1026 // array of each mapping's source node name is returned in `src_names`, and the 1027 // array of each mapping's source index is returned in `src_indexes`. 1028 // 1029 // `*src_names`, `*src_indexes`, and the memory backing each string in 1030 // `src_names` are owned by and have the lifetime of `results`. 1031 TF_CAPI_EXPORT extern void TF_ImportGraphDefResultsMissingUnusedInputMappings( 1032 TF_ImportGraphDefResults* results, int* num_missing_unused_input_mappings, 1033 const char*** src_names, int** src_indexes); 1034 1035 // Deletes a results object returned by TF_GraphImportGraphDefWithResults(). 1036 TF_CAPI_EXPORT extern void TF_DeleteImportGraphDefResults( 1037 TF_ImportGraphDefResults* results); 1038 1039 // Import the graph serialized in `graph_def` into `graph`. Returns nullptr and 1040 // a bad status on error. Otherwise, returns a populated 1041 // TF_ImportGraphDefResults instance. The returned instance must be deleted via 1042 // TF_DeleteImportGraphDefResults(). 1043 TF_CAPI_EXPORT extern TF_ImportGraphDefResults* 1044 TF_GraphImportGraphDefWithResults(TF_Graph* graph, const TF_Buffer* graph_def, 1045 const TF_ImportGraphDefOptions* options, 1046 TF_Status* status); 1047 1048 // Import the graph serialized in `graph_def` into `graph`. 1049 // Convenience function for when only return outputs are needed. 1050 // 1051 // `num_return_outputs` must be the number of return outputs added (i.e. the 1052 // result of TF_ImportGraphDefOptionsNumReturnOutputs()). If 1053 // `num_return_outputs` is non-zero, `return_outputs` must be of length 1054 // `num_return_outputs`. Otherwise it can be null. 1055 TF_CAPI_EXPORT extern void TF_GraphImportGraphDefWithReturnOutputs( 1056 TF_Graph* graph, const TF_Buffer* graph_def, 1057 const TF_ImportGraphDefOptions* options, TF_Output* return_outputs, 1058 int num_return_outputs, TF_Status* status); 1059 1060 // Import the graph serialized in `graph_def` into `graph`. 1061 // Convenience function for when no results are needed. 1062 TF_CAPI_EXPORT extern void TF_GraphImportGraphDef( 1063 TF_Graph* graph, const TF_Buffer* graph_def, 1064 const TF_ImportGraphDefOptions* options, TF_Status* status); 1065 1066 // Adds a copy of function `func` and optionally its gradient function `grad` 1067 // to `g`. Once `func`/`grad` is added to `g`, it can be called by creating 1068 // an operation using the function's name. 1069 // Any changes to `func`/`grad` (including deleting it) done after this method 1070 // returns, won't affect the copy of `func`/`grad` in `g`. 1071 // If `func` or `grad` are already in `g`, TF_GraphCopyFunction has no 1072 // effect on them, but can establish the function->gradient relationship 1073 // between them if `func` does not already have a gradient. If `func` already 1074 // has a gradient different from `grad`, an error is returned. 1075 // 1076 // `func` must not be null. 1077 // If `grad` is null and `func` is not in `g`, `func` is added without a 1078 // gradient. 1079 // If `grad` is null and `func` is in `g`, TF_GraphCopyFunction is a noop. 1080 // `grad` must have appropriate signature as described in the doc of 1081 // GradientDef in tensorflow/core/framework/function.proto. 1082 // 1083 // If successful, status is set to OK and `func` and `grad` are added to `g`. 1084 // Otherwise, status is set to the encountered error and `g` is unmodified. 1085 TF_CAPI_EXPORT extern void TF_GraphCopyFunction(TF_Graph* g, 1086 const TF_Function* func, 1087 const TF_Function* grad, 1088 TF_Status* status); 1089 1090 // Returns the number of TF_Functions registered in `g`. 1091 TF_CAPI_EXPORT extern int TF_GraphNumFunctions(TF_Graph* g); 1092 1093 // Fills in `funcs` with the TF_Function* registered in `g`. 1094 // `funcs` must point to an array of TF_Function* of length at least 1095 // `max_func`. In usual usage, max_func should be set to the result of 1096 // TF_GraphNumFunctions(g). In this case, all the functions registered in 1097 // `g` will be returned. Else, an unspecified subset. 1098 // 1099 // If successful, returns the number of TF_Function* successfully set in 1100 // `funcs` and sets status to OK. The caller takes ownership of 1101 // all the returned TF_Functions. They must be deleted with TF_DeleteFunction. 1102 // On error, returns 0, sets status to the encountered error, and the contents 1103 // of funcs will be undefined. 1104 TF_CAPI_EXPORT extern int TF_GraphGetFunctions(TF_Graph* g, TF_Function** funcs, 1105 int max_func, TF_Status* status); 1106 1107 // Note: The following function may fail on very large protos in the future. 1108 1109 TF_CAPI_EXPORT extern void TF_OperationToNodeDef(TF_Operation* oper, 1110 TF_Buffer* output_node_def, 1111 TF_Status* status); 1112 1113 typedef struct TF_WhileParams { 1114 // The number of inputs to the while loop, i.e. the number of loop variables. 1115 // This is the size of cond_inputs, body_inputs, and body_outputs. 1116 const int ninputs; 1117 1118 // The while condition graph. The inputs are the current values of the loop 1119 // variables. The output should be a scalar boolean. 1120 TF_Graph* const cond_graph; 1121 const TF_Output* const cond_inputs; 1122 TF_Output cond_output; 1123 1124 // The loop body graph. The inputs are the current values of the loop 1125 // variables. The outputs are the updated values of the loop variables. 1126 TF_Graph* const body_graph; 1127 const TF_Output* const body_inputs; 1128 TF_Output* const body_outputs; 1129 1130 // Unique null-terminated name for this while loop. This is used as a prefix 1131 // for created operations. 1132 const char* name; 1133 } TF_WhileParams; 1134 1135 // Creates a TF_WhileParams for creating a while loop in `g`. `inputs` are 1136 // outputs that already exist in `g` used as initial values for the loop 1137 // variables. 1138 // 1139 // The returned TF_WhileParams will have all fields initialized except 1140 // `cond_output`, `body_outputs`, and `name`. The `body_outputs` buffer will be 1141 // allocated to size `ninputs`. The caller should build `cond_graph` and 1142 // `body_graph` starting from the inputs, and store the final outputs in 1143 // `cond_output` and `body_outputs`. 1144 // 1145 // If `status` is OK, the caller must call either TF_FinishWhile or 1146 // TF_AbortWhile on the returned TF_WhileParams. If `status` isn't OK, the 1147 // returned TF_WhileParams is not valid, and the caller should not call 1148 // TF_FinishWhile() or TF_AbortWhile(). 1149 // 1150 // Missing functionality (TODO): 1151 // - Gradients 1152 // - Reference-type inputs 1153 // - Directly referencing external tensors from the cond/body graphs (this is 1154 // possible in the Python API) 1155 TF_CAPI_EXPORT extern TF_WhileParams TF_NewWhile(TF_Graph* g, TF_Output* inputs, 1156 int ninputs, 1157 TF_Status* status); 1158 1159 // Builds the while loop specified by `params` and returns the output tensors of 1160 // the while loop in `outputs`. `outputs` should be allocated to size 1161 // `params.ninputs`. 1162 // 1163 // `params` is no longer valid once this returns. 1164 // 1165 // Either this or TF_AbortWhile() must be called after a successful 1166 // TF_NewWhile() call. 1167 TF_CAPI_EXPORT extern void TF_FinishWhile(const TF_WhileParams* params, 1168 TF_Status* status, 1169 TF_Output* outputs); 1170 1171 // Frees `params`s resources without building a while loop. `params` is no 1172 // longer valid after this returns. Either this or TF_FinishWhile() must be 1173 // called after a successful TF_NewWhile() call. 1174 TF_CAPI_EXPORT extern void TF_AbortWhile(const TF_WhileParams* params); 1175 1176 // Adds operations to compute the partial derivatives of sum of `y`s w.r.t `x`s, 1177 // i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2... 1178 // 1179 // `dx` are used as initial gradients (which represent the symbolic partial 1180 // derivatives of some loss function `L` w.r.t. `y`). 1181 // `dx` must be nullptr or have size `ny`. 1182 // If `dx` is nullptr, the implementation will use dx of `OnesLike` for all 1183 // shapes in `y`. 1184 // The partial derivatives are returned in `dy`. `dy` should be allocated to 1185 // size `nx`. 1186 // 1187 // Gradient nodes are automatically named under the "gradients/" prefix. To 1188 // guarantee name uniqueness, subsequent calls to the same graph will 1189 // append an incremental tag to the prefix: "gradients_1/", "gradients_2/", ... 1190 // See TF_AddGradientsWithPrefix, which provides a means to specify a custom 1191 // name prefix for operations added to a graph to compute the gradients. 1192 // 1193 // WARNING: This function does not yet support all the gradients that python 1194 // supports. See 1195 // https://www.tensorflow.org/code/tensorflow/cc/gradients/README.md 1196 // for instructions on how to add C++ more gradients. 1197 TF_CAPI_EXPORT void TF_AddGradients(TF_Graph* g, TF_Output* y, int ny, 1198 TF_Output* x, int nx, TF_Output* dx, 1199 TF_Status* status, TF_Output* dy); 1200 1201 // Adds operations to compute the partial derivatives of sum of `y`s w.r.t `x`s, 1202 // i.e., d(y_1 + y_2 + ...)/dx_1, d(y_1 + y_2 + ...)/dx_2... 1203 // This is a variant of TF_AddGradients that allows to caller to pass a custom 1204 // name prefix to the operations added to a graph to compute the gradients. 1205 // 1206 // `dx` are used as initial gradients (which represent the symbolic partial 1207 // derivatives of some loss function `L` w.r.t. `y`). 1208 // `dx` must be nullptr or have size `ny`. 1209 // If `dx` is nullptr, the implementation will use dx of `OnesLike` for all 1210 // shapes in `y`. 1211 // The partial derivatives are returned in `dy`. `dy` should be allocated to 1212 // size `nx`. 1213 // `prefix` names the scope into which all gradients operations are being added. 1214 // `prefix` must be unique within the provided graph otherwise this operation 1215 // will fail. If `prefix` is nullptr, the default prefixing behaviour takes 1216 // place, see TF_AddGradients for more details. 1217 // 1218 // WARNING: This function does not yet support all the gradients that python 1219 // supports. See 1220 // https://www.tensorflow.org/code/tensorflow/cc/gradients/README.md 1221 // for instructions on how to add C++ more gradients. 1222 TF_CAPI_EXPORT void TF_AddGradientsWithPrefix(TF_Graph* g, const char* prefix, 1223 TF_Output* y, int ny, 1224 TF_Output* x, int nx, 1225 TF_Output* dx, TF_Status* status, 1226 TF_Output* dy); 1227 1228 // Create a TF_Function from a TF_Graph 1229 // 1230 // Params: 1231 // fn_body - the graph whose operations (or subset of whose operations) will be 1232 // converted to TF_Function. 1233 // fn_name - the name of the new TF_Function. Should match the operation 1234 // name (OpDef.name) regexp [A-Z][A-Za-z0-9_.\\-/]*. 1235 // If `append_hash_to_fn_name` is false, `fn_name` must be distinct 1236 // from other function and operation names (at least those 1237 // registered in graphs where this function will be used). 1238 // append_hash_to_fn_name - Must be 0 or 1. If set to 1, the actual name 1239 // of the function will be `fn_name` appended with 1240 // '_<hash_of_this_function's_definition>'. 1241 // If set to 0, the function's name will be `fn_name`. 1242 // num_opers - `num_opers` contains the number of elements in the `opers` array 1243 // or a special value of -1 meaning that no array is given. 1244 // The distinction between an empty array of operations and no 1245 // array of operations is necessary to distinguish the case of 1246 // creating a function with no body (e.g. identity or permutation) 1247 // and the case of creating a function whose body contains all 1248 // the nodes in the graph (except for the automatic skipping, see 1249 // below). 1250 // opers - Array of operations to become the body of the function or null. 1251 // - If no array is given (`num_opers` = -1), all the 1252 // operations in `fn_body` will become part of the function 1253 // except operations referenced in `inputs`. These operations 1254 // must have a single output (these operations are typically 1255 // placeholders created for the sole purpose of representing 1256 // an input. We can relax this constraint if there are 1257 // compelling use cases). 1258 // - If an array is given (`num_opers` >= 0), all operations 1259 // in it will become part of the function. In particular, no 1260 // automatic skipping of dummy input operations is performed. 1261 // ninputs - number of elements in `inputs` array 1262 // inputs - array of TF_Outputs that specify the inputs to the function. 1263 // If `ninputs` is zero (the function takes no inputs), `inputs` 1264 // can be null. The names used for function inputs are normalized 1265 // names of the operations (usually placeholders) pointed to by 1266 // `inputs`. These operation names should start with a letter. 1267 // Normalization will convert all letters to lowercase and 1268 // non-alphanumeric characters to '_' to make resulting names match 1269 // the "[a-z][a-z0-9_]*" pattern for operation argument names. 1270 // `inputs` cannot contain the same tensor twice. 1271 // noutputs - number of elements in `outputs` array 1272 // outputs - array of TF_Outputs that specify the outputs of the function. 1273 // If `noutputs` is zero (the function returns no outputs), `outputs` 1274 // can be null. `outputs` can contain the same tensor more than once. 1275 // output_names - The names of the function's outputs. `output_names` array 1276 // must either have the same length as `outputs` 1277 // (i.e. `noutputs`) or be null. In the former case, 1278 // the names should match the regular expression for ArgDef 1279 // names - "[a-z][a-z0-9_]*". In the latter case, 1280 // names for outputs will be generated automatically. 1281 // opts - various options for the function, e.g. XLA's inlining control. 1282 // description - optional human-readable description of this function. 1283 // status - Set to OK on success and an appropriate error on failure. 1284 // 1285 // Note that when the same TF_Output is listed as both an input and an output, 1286 // the corresponding function's output will equal to this input, 1287 // instead of the original node's output. 1288 // 1289 // Callers must also satisfy the following constraints: 1290 // - `inputs` cannot refer to TF_Outputs within a control flow context. For 1291 // example, one cannot use the output of "switch" node as input. 1292 // - `inputs` and `outputs` cannot have reference types. Reference types are 1293 // not exposed through C API and are being replaced with Resources. We support 1294 // reference types inside function's body to support legacy code. Do not 1295 // use them in new code. 1296 // - Every node in the function's body must have all of its inputs (including 1297 // control inputs). In other words, for every node in the body, each input 1298 // must be either listed in `inputs` or must come from another node in 1299 // the body. In particular, it is an error to have a control edge going from 1300 // a node outside of the body into a node in the body. This applies to control 1301 // edges going from nodes referenced in `inputs` to nodes in the body when 1302 // the former nodes are not in the body (automatically skipped or not 1303 // included in explicitly specified body). 1304 // 1305 // Returns: 1306 // On success, a newly created TF_Function instance. It must be deleted by 1307 // calling TF_DeleteFunction. 1308 // 1309 // On failure, null. 1310 TF_CAPI_EXPORT extern TF_Function* TF_GraphToFunction( 1311 const TF_Graph* fn_body, const char* fn_name, 1312 unsigned char append_hash_to_fn_name, int num_opers, 1313 const TF_Operation* const* opers, int ninputs, const TF_Output* inputs, 1314 int noutputs, const TF_Output* outputs, const char* const* output_names, 1315 const TF_FunctionOptions* opts, const char* description, TF_Status* status); 1316 1317 // Similar to TF_GraphToFunction but allows specifying control outputs of the 1318 // function. 1319 // 1320 // The arguments of TF_GraphToFunction have the same meaning, but the new 1321 // arguments are as follows: 1322 // 1323 // ncontrol_outputs: Number of control outputs of the function. 1324 // control_outputs: vector of TF_Operation objects to be marked as control 1325 // outputs of the function. Operations marked as control outputs are 1326 // guaranteed to execute. 1327 // control_output_names: Optional. If not nullptr, vector of strings, one 1328 // per control output, with their names to be added to the function's 1329 // OpDef. 1330 TF_CAPI_EXPORT extern TF_Function* TF_GraphToFunctionWithControlOutputs( 1331 const TF_Graph* fn_body, const char* fn_name, 1332 unsigned char append_hash_to_fn_name, int num_opers, 1333 const TF_Operation* const* opers, int ninputs, const TF_Output* inputs, 1334 int noutputs, const TF_Output* outputs, const char* const* output_names, 1335 int ncontrol_outputs, const TF_Operation* const* control_outputs, 1336 const char* const* control_output_names, const TF_FunctionOptions* opts, 1337 const char* description, TF_Status* status); 1338 1339 // Returns the name of the graph function. 1340 // The return value points to memory that is only usable until the next 1341 // mutation to *func. 1342 TF_CAPI_EXPORT extern const char* TF_FunctionName(TF_Function* func); 1343 1344 // Write out a serialized representation of `func` (as a FunctionDef protocol 1345 // message) to `output_func_def` (allocated by TF_NewBuffer()). 1346 // `output_func_def`'s underlying buffer will be freed when TF_DeleteBuffer() 1347 // is called. 1348 // 1349 // May fail on very large graphs in the future. 1350 TF_CAPI_EXPORT extern void TF_FunctionToFunctionDef(TF_Function* func, 1351 TF_Buffer* output_func_def, 1352 TF_Status* status); 1353 1354 // Construct and return the function whose FunctionDef representation is 1355 // serialized in `proto`. `proto_len` must equal the number of bytes 1356 // pointed to by `proto`. 1357 // Returns: 1358 // On success, a newly created TF_Function instance. It must be deleted by 1359 // calling TF_DeleteFunction. 1360 // 1361 // On failure, null. 1362 TF_CAPI_EXPORT extern TF_Function* TF_FunctionImportFunctionDef( 1363 const void* proto, size_t proto_len, TF_Status* status); 1364 1365 // Sets function attribute named `attr_name` to value stored in `proto`. 1366 // If this attribute is already set to another value, it is overridden. 1367 // `proto` should point to a sequence of bytes of length `proto_len` 1368 // representing a binary serialization of an AttrValue protocol 1369 // buffer. 1370 TF_CAPI_EXPORT extern void TF_FunctionSetAttrValueProto(TF_Function* func, 1371 const char* attr_name, 1372 const void* proto, 1373 size_t proto_len, 1374 TF_Status* status); 1375 1376 // Sets `output_attr_value` to the binary-serialized AttrValue proto 1377 // representation of the value of the `attr_name` attr of `func`. 1378 // If `attr_name` attribute is not present, status is set to an error. 1379 TF_CAPI_EXPORT extern void TF_FunctionGetAttrValueProto( 1380 TF_Function* func, const char* attr_name, TF_Buffer* output_attr_value, 1381 TF_Status* status); 1382 1383 // Frees the memory used by the `func` struct. 1384 // TF_DeleteFunction is a noop if `func` is null. 1385 // Deleting a function does not remove it from any graphs it was copied to. 1386 TF_CAPI_EXPORT extern void TF_DeleteFunction(TF_Function* func); 1387 1388 // Attempts to evaluate `output`. This will only be possible if `output` doesn't 1389 // depend on any graph inputs (this function is safe to call if this isn't the 1390 // case though). 1391 // 1392 // If the evaluation is successful, this function returns true and `output`s 1393 // value is returned in `result`. Otherwise returns false. An error status is 1394 // returned if something is wrong with the graph or input. Note that this may 1395 // return false even if no error status is set. 1396 TF_CAPI_EXPORT extern unsigned char TF_TryEvaluateConstant(TF_Graph* graph, 1397 TF_Output output, 1398 TF_Tensor** result, 1399 TF_Status* status); 1400 1401 // TODO(josh11b): Register OpDef, available to all operations added 1402 // to this graph. 1403 1404 // -------------------------------------------------------------------------- 1405 // API for driving Graph execution. 1406 1407 typedef struct TF_Session TF_Session; 1408 1409 // Return a new execution session with the associated graph, or NULL on 1410 // error. Does not take ownership of any input parameters. 1411 // 1412 // *`graph` must be a valid graph (not deleted or nullptr). `graph` will be be 1413 // kept alive for the lifetime of the returned TF_Session. New nodes can still 1414 // be added to `graph` after this call. 1415 TF_CAPI_EXPORT extern TF_Session* TF_NewSession(TF_Graph* graph, 1416 const TF_SessionOptions* opts, 1417 TF_Status* status); 1418 1419 // This function creates a new TF_Session (which is created on success) using 1420 // `session_options`, and then initializes state (restoring tensors and other 1421 // assets) using `run_options`. 1422 // 1423 // Any NULL and non-NULL value combinations for (`run_options, `meta_graph_def`) 1424 // are valid. 1425 // 1426 // - `export_dir` must be set to the path of the exported SavedModel. 1427 // - `tags` must include the set of tags used to identify one MetaGraphDef in 1428 // the SavedModel. 1429 // - `graph` must be a graph newly allocated with TF_NewGraph(). 1430 // 1431 // If successful, populates `graph` with the contents of the Graph and 1432 // `meta_graph_def` with the MetaGraphDef of the loaded model. 1433 TF_CAPI_EXPORT extern TF_Session* TF_LoadSessionFromSavedModel( 1434 const TF_SessionOptions* session_options, const TF_Buffer* run_options, 1435 const char* export_dir, const char* const* tags, int tags_len, 1436 TF_Graph* graph, TF_Buffer* meta_graph_def, TF_Status* status); 1437 1438 // Close a session. 1439 // 1440 // Contacts any other processes associated with the session, if applicable. 1441 // May not be called after TF_DeleteSession(). 1442 TF_CAPI_EXPORT extern void TF_CloseSession(TF_Session*, TF_Status* status); 1443 1444 // Destroy a session object. 1445 // 1446 // Even if error information is recorded in *status, this call discards all 1447 // local resources associated with the session. The session may not be used 1448 // during or after this call (and the session drops its reference to the 1449 // corresponding graph). 1450 TF_CAPI_EXPORT extern void TF_DeleteSession(TF_Session*, TF_Status* status); 1451 1452 // Run the graph associated with the session starting with the supplied inputs 1453 // (inputs[0,ninputs-1] with corresponding values in input_values[0,ninputs-1]). 1454 // 1455 // Any NULL and non-NULL value combinations for (`run_options`, 1456 // `run_metadata`) are valid. 1457 // 1458 // - `run_options` may be NULL, in which case it will be ignored; or 1459 // non-NULL, in which case it must point to a `TF_Buffer` containing the 1460 // serialized representation of a `RunOptions` protocol buffer. 1461 // - `run_metadata` may be NULL, in which case it will be ignored; or 1462 // non-NULL, in which case it must point to an empty, freshly allocated 1463 // `TF_Buffer` that may be updated to contain the serialized representation 1464 // of a `RunMetadata` protocol buffer. 1465 // 1466 // The caller retains ownership of `input_values` (which can be deleted using 1467 // TF_DeleteTensor). The caller also retains ownership of `run_options` and/or 1468 // `run_metadata` (when not NULL) and should manually call TF_DeleteBuffer on 1469 // them. 1470 // 1471 // On success, the tensors corresponding to outputs[0,noutputs-1] are placed in 1472 // output_values[]. Ownership of the elements of output_values[] is transferred 1473 // to the caller, which must eventually call TF_DeleteTensor on them. 1474 // 1475 // On failure, output_values[] contains NULLs. 1476 TF_CAPI_EXPORT extern void TF_SessionRun( 1477 TF_Session* session, 1478 // RunOptions 1479 const TF_Buffer* run_options, 1480 // Input tensors 1481 const TF_Output* inputs, TF_Tensor* const* input_values, int ninputs, 1482 // Output tensors 1483 const TF_Output* outputs, TF_Tensor** output_values, int noutputs, 1484 // Target operations 1485 const TF_Operation* const* target_opers, int ntargets, 1486 // RunMetadata 1487 TF_Buffer* run_metadata, 1488 // Output status 1489 TF_Status*); 1490 1491 // Set up the graph with the intended feeds (inputs) and fetches (outputs) for a 1492 // sequence of partial run calls. 1493 // 1494 // On success, returns a handle that is used for subsequent PRun calls. The 1495 // handle should be deleted with TF_DeletePRunHandle when it is no longer 1496 // needed. 1497 // 1498 // On failure, out_status contains a tensorflow::Status with an error 1499 // message. *handle is set to nullptr. 1500 TF_CAPI_EXPORT extern void TF_SessionPRunSetup( 1501 TF_Session*, 1502 // Input names 1503 const TF_Output* inputs, int ninputs, 1504 // Output names 1505 const TF_Output* outputs, int noutputs, 1506 // Target operations 1507 const TF_Operation* const* target_opers, int ntargets, 1508 // Output handle 1509 const char** handle, 1510 // Output status 1511 TF_Status*); 1512 1513 // Continue to run the graph with additional feeds and fetches. The 1514 // execution state is uniquely identified by the handle. 1515 TF_CAPI_EXPORT extern void TF_SessionPRun( 1516 TF_Session*, const char* handle, 1517 // Input tensors 1518 const TF_Output* inputs, TF_Tensor* const* input_values, int ninputs, 1519 // Output tensors 1520 const TF_Output* outputs, TF_Tensor** output_values, int noutputs, 1521 // Target operations 1522 const TF_Operation* const* target_opers, int ntargets, 1523 // Output status 1524 TF_Status*); 1525 1526 // Deletes a handle allocated by TF_SessionPRunSetup. 1527 // Once called, no more calls to TF_SessionPRun should be made. 1528 TF_CAPI_EXPORT extern void TF_DeletePRunHandle(const char* handle); 1529 1530 // -------------------------------------------------------------------------- 1531 // The deprecated session API. Please switch to the above instead of 1532 // TF_ExtendGraph(). This deprecated API can be removed at any time without 1533 // notice. 1534 1535 typedef struct TF_DeprecatedSession TF_DeprecatedSession; 1536 1537 TF_CAPI_EXPORT extern TF_DeprecatedSession* TF_NewDeprecatedSession( 1538 const TF_SessionOptions*, TF_Status* status); 1539 TF_CAPI_EXPORT extern void TF_CloseDeprecatedSession(TF_DeprecatedSession*, 1540 TF_Status* status); 1541 TF_CAPI_EXPORT extern void TF_DeleteDeprecatedSession(TF_DeprecatedSession*, 1542 TF_Status* status); 1543 TF_CAPI_EXPORT extern void TF_Reset(const TF_SessionOptions* opt, 1544 const char** containers, int ncontainers, 1545 TF_Status* status); 1546 // Treat the bytes proto[0,proto_len-1] as a serialized GraphDef and 1547 // add the nodes in that GraphDef to the graph for the session. 1548 // 1549 // Prefer use of TF_Session and TF_GraphImportGraphDef over this. 1550 TF_CAPI_EXPORT extern void TF_ExtendGraph(TF_DeprecatedSession*, 1551 const void* proto, size_t proto_len, 1552 TF_Status*); 1553 1554 // See TF_SessionRun() above. 1555 TF_CAPI_EXPORT extern void TF_Run(TF_DeprecatedSession*, 1556 const TF_Buffer* run_options, 1557 const char** input_names, TF_Tensor** inputs, 1558 int ninputs, const char** output_names, 1559 TF_Tensor** outputs, int noutputs, 1560 const char** target_oper_names, int ntargets, 1561 TF_Buffer* run_metadata, TF_Status*); 1562 1563 // See TF_SessionPRunSetup() above. 1564 TF_CAPI_EXPORT extern void TF_PRunSetup(TF_DeprecatedSession*, 1565 const char** input_names, int ninputs, 1566 const char** output_names, int noutputs, 1567 const char** target_oper_names, 1568 int ntargets, const char** handle, 1569 TF_Status*); 1570 1571 // See TF_SessionPRun above. 1572 TF_CAPI_EXPORT extern void TF_PRun(TF_DeprecatedSession*, const char* handle, 1573 const char** input_names, TF_Tensor** inputs, 1574 int ninputs, const char** output_names, 1575 TF_Tensor** outputs, int noutputs, 1576 const char** target_oper_names, int ntargets, 1577 TF_Status*); 1578 1579 typedef struct TF_DeviceList TF_DeviceList; 1580 1581 // Lists all devices in a TF_Session. 1582 // 1583 // Caller takes ownership of the returned TF_DeviceList* which must eventually 1584 // be freed with a call to TF_DeleteDeviceList. 1585 TF_CAPI_EXPORT extern TF_DeviceList* TF_SessionListDevices(TF_Session* session, 1586 TF_Status* status); 1587 1588 // Lists all devices in a TF_Session. 1589 // 1590 // Caller takes ownership of the returned TF_DeviceList* which must eventually 1591 // be freed with a call to TF_DeleteDeviceList. 1592 TF_CAPI_EXPORT extern TF_DeviceList* TF_DeprecatedSessionListDevices( 1593 TF_DeprecatedSession* session, TF_Status* status); 1594 1595 // Deallocates the device list. 1596 TF_CAPI_EXPORT extern void TF_DeleteDeviceList(TF_DeviceList* list); 1597 1598 // Counts the number of elements in the device list. 1599 TF_CAPI_EXPORT extern int TF_DeviceListCount(const TF_DeviceList* list); 1600 1601 // Retrieves the full name of the device (e.g. /job:worker/replica:0/...) 1602 // The return value will be a pointer to a null terminated string. The caller 1603 // must not modify or delete the string. It will be deallocated upon a call to 1604 // TF_DeleteDeviceList. 1605 // 1606 // If index is out of bounds, an error code will be set in the status object, 1607 // and a null pointer will be returned. 1608 TF_CAPI_EXPORT extern const char* TF_DeviceListName(const TF_DeviceList* list, 1609 int index, 1610 TF_Status* status); 1611 1612 // Retrieves the type of the device at the given index. 1613 // 1614 // The caller must not modify or delete the string. It will be deallocated upon 1615 // a call to TF_DeleteDeviceList. 1616 // 1617 // If index is out of bounds, an error code will be set in the status object, 1618 // and a null pointer will be returned. 1619 TF_CAPI_EXPORT extern const char* TF_DeviceListType(const TF_DeviceList* list, 1620 int index, 1621 TF_Status* status); 1622 1623 // Retrieve the amount of memory associated with a given device. 1624 // 1625 // If index is out of bounds, an error code will be set in the status object, 1626 // and -1 will be returned. 1627 TF_CAPI_EXPORT extern int64_t TF_DeviceListMemoryBytes( 1628 const TF_DeviceList* list, int index, TF_Status* status); 1629 1630 // Retrieve the incarnation number of a given device. 1631 // 1632 // If index is out of bounds, an error code will be set in the status object, 1633 // and 0 will be returned. 1634 TF_CAPI_EXPORT extern uint64_t TF_DeviceListIncarnation( 1635 const TF_DeviceList* list, int index, TF_Status* status); 1636 1637 // -------------------------------------------------------------------------- 1638 // Load plugins containing custom ops and kernels 1639 1640 // TF_Library holds information about dynamically loaded TensorFlow plugins. 1641 typedef struct TF_Library TF_Library; 1642 1643 // Load the library specified by library_filename and register the ops and 1644 // kernels present in that library. 1645 // 1646 // Pass "library_filename" to a platform-specific mechanism for dynamically 1647 // loading a library. The rules for determining the exact location of the 1648 // library are platform-specific and are not documented here. 1649 // 1650 // On success, place OK in status and return the newly created library handle. 1651 // The caller owns the library handle. 1652 // 1653 // On failure, place an error status in status and return NULL. 1654 TF_CAPI_EXPORT extern TF_Library* TF_LoadLibrary(const char* library_filename, 1655 TF_Status* status); 1656 1657 // Get the OpList of OpDefs defined in the library pointed by lib_handle. 1658 // 1659 // Returns a TF_Buffer. The memory pointed to by the result is owned by 1660 // lib_handle. The data in the buffer will be the serialized OpList proto for 1661 // ops defined in the library. 1662 TF_CAPI_EXPORT extern TF_Buffer TF_GetOpList(TF_Library* lib_handle); 1663 1664 // Frees the memory associated with the library handle. 1665 // Does NOT unload the library. 1666 TF_CAPI_EXPORT extern void TF_DeleteLibraryHandle(TF_Library* lib_handle); 1667 1668 // Get the OpList of all OpDefs defined in this address space. 1669 // Returns a TF_Buffer, ownership of which is transferred to the caller 1670 // (and can be freed using TF_DeleteBuffer). 1671 // 1672 // The data in the buffer will be the serialized OpList proto for ops registered 1673 // in this address space. 1674 TF_CAPI_EXPORT extern TF_Buffer* TF_GetAllOpList(void); 1675 1676 // TF_ApiDefMap encapsulates a collection of API definitions for an operation. 1677 // 1678 // This object maps the name of a TensorFlow operation to a description of the 1679 // API to generate for it, as defined by the ApiDef protocol buffer ( 1680 // https://www.tensorflow.org/code/tensorflow/core/framework/api_def.proto) 1681 // 1682 // The ApiDef messages are typically used to generate convenience wrapper 1683 // functions for TensorFlow operations in various language bindings. 1684 typedef struct TF_ApiDefMap TF_ApiDefMap; 1685 1686 // Creates a new TF_ApiDefMap instance. 1687 // 1688 // Params: 1689 // op_list_buffer - TF_Buffer instance containing serialized OpList 1690 // protocol buffer. (See 1691 // https://www.tensorflow.org/code/tensorflow/core/framework/op_def.proto 1692 // for the OpList proto definition). 1693 // status - Set to OK on success and an appropriate error on failure. 1694 TF_CAPI_EXPORT extern TF_ApiDefMap* TF_NewApiDefMap(TF_Buffer* op_list_buffer, 1695 TF_Status* status); 1696 1697 // Deallocates a TF_ApiDefMap. 1698 TF_CAPI_EXPORT extern void TF_DeleteApiDefMap(TF_ApiDefMap* apimap); 1699 1700 // Add ApiDefs to the map. 1701 // 1702 // `text` corresponds to a text representation of an ApiDefs protocol message. 1703 // (https://www.tensorflow.org/code/tensorflow/core/framework/api_def.proto). 1704 // 1705 // The provided ApiDefs will be merged with existing ones in the map, with 1706 // precedence given to the newly added version in case of conflicts with 1707 // previous calls to TF_ApiDefMapPut. 1708 TF_CAPI_EXPORT extern void TF_ApiDefMapPut(TF_ApiDefMap* api_def_map, 1709 const char* text, size_t text_len, 1710 TF_Status* status); 1711 1712 // Returns a serialized ApiDef protocol buffer for the TensorFlow operation 1713 // named `name`. 1714 TF_CAPI_EXPORT extern TF_Buffer* TF_ApiDefMapGet(TF_ApiDefMap* api_def_map, 1715 const char* name, 1716 size_t name_len, 1717 TF_Status* status); 1718 1719 // -------------------------------------------------------------------------- 1720 // Kernel definition information. 1721 1722 // Returns a serialized KernelList protocol buffer containing KernelDefs for all 1723 // registered kernels. 1724 TF_CAPI_EXPORT extern TF_Buffer* TF_GetAllRegisteredKernels(TF_Status* status); 1725 1726 // Returns a serialized KernelList protocol buffer containing KernelDefs for all 1727 // kernels registered for the operation named `name`. 1728 TF_CAPI_EXPORT extern TF_Buffer* TF_GetRegisteredKernelsForOp( 1729 const char* name, TF_Status* status); 1730 1731 // -------------------------------------------------------------------------- 1732 // In-process TensorFlow server functionality, for use in distributed training. 1733 // A Server instance encapsulates a set of devices and a Session target that 1734 // can participate in distributed training. A server belongs to a cluster 1735 // (specified by a ClusterSpec), and corresponds to a particular task in a 1736 // named job. The server can communicate with any other server in the same 1737 // cluster. 1738 1739 // In-process TensorFlow server. 1740 typedef struct TF_Server TF_Server; 1741 1742 // Creates a new in-process TensorFlow server configured using a serialized 1743 // ServerDef protocol buffer provided via `proto` and `proto_len`. 1744 // 1745 // The server will not serve any requests until TF_ServerStart is invoked. 1746 // The server will stop serving requests once TF_ServerStop or 1747 // TF_DeleteServer is invoked. 1748 TF_CAPI_EXPORT extern TF_Server* TF_NewServer(const void* proto, 1749 size_t proto_len, 1750 TF_Status* status); 1751 1752 // Starts an in-process TensorFlow server. 1753 TF_CAPI_EXPORT extern void TF_ServerStart(TF_Server* server, TF_Status* status); 1754 1755 // Stops an in-process TensorFlow server. 1756 TF_CAPI_EXPORT extern void TF_ServerStop(TF_Server* server, TF_Status* status); 1757 1758 // Blocks until the server has been successfully stopped (via TF_ServerStop or 1759 // TF_ServerClose). 1760 TF_CAPI_EXPORT extern void TF_ServerJoin(TF_Server* server, TF_Status* status); 1761 1762 // Returns the target string that can be provided to TF_SetTarget() to connect 1763 // a TF_Session to `server`. 1764 // 1765 // The returned string is valid only until TF_DeleteServer is invoked. 1766 TF_CAPI_EXPORT extern const char* TF_ServerTarget(TF_Server* server); 1767 1768 // Destroy an in-process TensorFlow server, frees memory. If server is running 1769 // it will be stopped and joined. 1770 TF_CAPI_EXPORT extern void TF_DeleteServer(TF_Server* server); 1771 1772 // Register a listener method that processes printed messages. 1773 // 1774 // If any listeners are registered, the print operator will call all listeners 1775 // with the printed messages and immediately return without writing to the 1776 // logs. 1777 TF_CAPI_EXPORT extern void TF_RegisterLogListener( 1778 void (*listener)(const char*)); 1779 1780 #ifdef __cplusplus 1781 } /* end extern "C" */ 1782 #endif 1783 1784 #endif // TENSORFLOW_C_C_API_H_ 1785