1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H
16
17 #include "CGCall.h"
18 #include "clang/AST/GlobalDecl.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "llvm/ADT/DenseMap.h"
21 #include "llvm/IR/Module.h"
22 #include <vector>
23
24 namespace llvm {
25 class FunctionType;
26 class Module;
27 class DataLayout;
28 class Type;
29 class LLVMContext;
30 class StructType;
31 }
32
33 namespace clang {
34 class ASTContext;
35 template <typename> class CanQual;
36 class CXXConstructorDecl;
37 class CXXDestructorDecl;
38 class CXXMethodDecl;
39 class CodeGenOptions;
40 class FieldDecl;
41 class FunctionProtoType;
42 class ObjCInterfaceDecl;
43 class ObjCIvarDecl;
44 class PointerType;
45 class QualType;
46 class RecordDecl;
47 class TagDecl;
48 class TargetInfo;
49 class Type;
50 typedef CanQual<Type> CanQualType;
51
52 namespace CodeGen {
53 class ABIInfo;
54 class CGCXXABI;
55 class CGRecordLayout;
56 class CodeGenModule;
57 class RequiredArgs;
58
59 enum class StructorType {
60 Complete, // constructor or destructor
61 Base, // constructor or destructor
62 Deleting // destructor only
63 };
64
toCXXCtorType(StructorType T)65 inline CXXCtorType toCXXCtorType(StructorType T) {
66 switch (T) {
67 case StructorType::Complete:
68 return Ctor_Complete;
69 case StructorType::Base:
70 return Ctor_Base;
71 case StructorType::Deleting:
72 llvm_unreachable("cannot have a deleting ctor");
73 }
74 llvm_unreachable("not a StructorType");
75 }
76
getFromCtorType(CXXCtorType T)77 inline StructorType getFromCtorType(CXXCtorType T) {
78 switch (T) {
79 case Ctor_Complete:
80 return StructorType::Complete;
81 case Ctor_Base:
82 return StructorType::Base;
83 case Ctor_Comdat:
84 llvm_unreachable("not expecting a COMDAT");
85 case Ctor_CopyingClosure:
86 case Ctor_DefaultClosure:
87 llvm_unreachable("not expecting a closure");
88 }
89 llvm_unreachable("not a CXXCtorType");
90 }
91
toCXXDtorType(StructorType T)92 inline CXXDtorType toCXXDtorType(StructorType T) {
93 switch (T) {
94 case StructorType::Complete:
95 return Dtor_Complete;
96 case StructorType::Base:
97 return Dtor_Base;
98 case StructorType::Deleting:
99 return Dtor_Deleting;
100 }
101 llvm_unreachable("not a StructorType");
102 }
103
getFromDtorType(CXXDtorType T)104 inline StructorType getFromDtorType(CXXDtorType T) {
105 switch (T) {
106 case Dtor_Deleting:
107 return StructorType::Deleting;
108 case Dtor_Complete:
109 return StructorType::Complete;
110 case Dtor_Base:
111 return StructorType::Base;
112 case Dtor_Comdat:
113 llvm_unreachable("not expecting a COMDAT");
114 }
115 llvm_unreachable("not a CXXDtorType");
116 }
117
118 /// This class organizes the cross-module state that is used while lowering
119 /// AST types to LLVM types.
120 class CodeGenTypes {
121 CodeGenModule &CGM;
122 // Some of this stuff should probably be left on the CGM.
123 ASTContext &Context;
124 llvm::Module &TheModule;
125 const TargetInfo &Target;
126 CGCXXABI &TheCXXABI;
127
128 // This should not be moved earlier, since its initialization depends on some
129 // of the previous reference members being already initialized
130 const ABIInfo &TheABIInfo;
131
132 /// The opaque type map for Objective-C interfaces. All direct
133 /// manipulation is done by the runtime interfaces, which are
134 /// responsible for coercing to the appropriate type; these opaque
135 /// types are never refined.
136 llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
137
138 /// Maps clang struct type with corresponding record layout info.
139 llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
140
141 /// Contains the LLVM IR type for any converted RecordDecl.
142 llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
143
144 /// Hold memoized CGFunctionInfo results.
145 llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
146
147 /// This set keeps track of records that we're currently converting
148 /// to an IR type. For example, when converting:
149 /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
150 /// types will be in this set.
151 llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
152
153 llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
154
155 /// True if we didn't layout a function due to a being inside
156 /// a recursive struct conversion, set this to true.
157 bool SkippedLayout;
158
159 SmallVector<const RecordDecl *, 8> DeferredRecords;
160
161 /// This map keeps cache of llvm::Types and maps clang::Type to
162 /// corresponding llvm::Type.
163 llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
164
165 llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers;
166
167 unsigned ClangCallConvToLLVMCallConv(CallingConv CC);
168
169 public:
170 CodeGenTypes(CodeGenModule &cgm);
171 ~CodeGenTypes();
172
getDataLayout()173 const llvm::DataLayout &getDataLayout() const {
174 return TheModule.getDataLayout();
175 }
getContext()176 ASTContext &getContext() const { return Context; }
getABIInfo()177 const ABIInfo &getABIInfo() const { return TheABIInfo; }
getTarget()178 const TargetInfo &getTarget() const { return Target; }
getCXXABI()179 CGCXXABI &getCXXABI() const { return TheCXXABI; }
getLLVMContext()180 llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
181
182 /// ConvertType - Convert type T into a llvm::Type.
183 llvm::Type *ConvertType(QualType T);
184
185 /// \brief Converts the GlobalDecl into an llvm::Type. This should be used
186 /// when we know the target of the function we want to convert. This is
187 /// because some functions (explicitly, those with pass_object_size
188 /// parameters) may not have the same signature as their type portrays, and
189 /// can only be called directly.
190 llvm::Type *ConvertFunctionType(QualType FT,
191 const FunctionDecl *FD = nullptr);
192
193 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from
194 /// ConvertType in that it is used to convert to the memory representation for
195 /// a type. For example, the scalar representation for _Bool is i1, but the
196 /// memory representation is usually i8 or i32, depending on the target.
197 llvm::Type *ConvertTypeForMem(QualType T);
198
199 /// GetFunctionType - Get the LLVM function type for \arg Info.
200 llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
201
202 llvm::FunctionType *GetFunctionType(GlobalDecl GD);
203
204 /// isFuncTypeConvertible - Utility to check whether a function type can
205 /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
206 /// type).
207 bool isFuncTypeConvertible(const FunctionType *FT);
208 bool isFuncParamTypeConvertible(QualType Ty);
209
210 /// Determine if a C++ inheriting constructor should have parameters matching
211 /// those of its inherited constructor.
212 bool inheritingCtorHasParams(const InheritedConstructor &Inherited,
213 CXXCtorType Type);
214
215 /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
216 /// given a CXXMethodDecl. If the method to has an incomplete return type,
217 /// and/or incomplete argument types, this will return the opaque type.
218 llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
219
220 const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
221
222 /// UpdateCompletedType - When we find the full definition for a TagDecl,
223 /// replace the 'opaque' type we previously made for it if applicable.
224 void UpdateCompletedType(const TagDecl *TD);
225
226 /// \brief Remove stale types from the type cache when an inheritance model
227 /// gets assigned to a class.
228 void RefreshTypeCacheForClass(const CXXRecordDecl *RD);
229
230 // The arrangement methods are split into three families:
231 // - those meant to drive the signature and prologue/epilogue
232 // of a function declaration or definition,
233 // - those meant for the computation of the LLVM type for an abstract
234 // appearance of a function, and
235 // - those meant for performing the IR-generation of a call.
236 // They differ mainly in how they deal with optional (i.e. variadic)
237 // arguments, as well as unprototyped functions.
238 //
239 // Key points:
240 // - The CGFunctionInfo for emitting a specific call site must include
241 // entries for the optional arguments.
242 // - The function type used at the call site must reflect the formal
243 // signature of the declaration being called, or else the call will
244 // go awry.
245 // - For the most part, unprototyped functions are called by casting to
246 // a formal signature inferred from the specific argument types used
247 // at the call-site. However, some targets (e.g. x86-64) screw with
248 // this for compatibility reasons.
249
250 const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
251
252 /// Given a function info for a declaration, return the function info
253 /// for a call with the given arguments.
254 ///
255 /// Often this will be able to simply return the declaration info.
256 const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI,
257 const CallArgList &args);
258
259 /// Free functions are functions that are compatible with an ordinary
260 /// C function pointer type.
261 const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
262 const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
263 const FunctionType *Ty,
264 bool ChainCall);
265 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty,
266 const FunctionDecl *FD);
267 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
268
269 /// A nullary function is a freestanding function of type 'void ()'.
270 /// This method works for both calls and declarations.
271 const CGFunctionInfo &arrangeNullaryFunction();
272
273 /// A builtin function is a freestanding function using the default
274 /// C conventions.
275 const CGFunctionInfo &
276 arrangeBuiltinFunctionDeclaration(QualType resultType,
277 const FunctionArgList &args);
278 const CGFunctionInfo &
279 arrangeBuiltinFunctionDeclaration(CanQualType resultType,
280 ArrayRef<CanQualType> argTypes);
281 const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType,
282 const CallArgList &args);
283
284 /// Objective-C methods are C functions with some implicit parameters.
285 const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
286 const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
287 QualType receiverType);
288 const CGFunctionInfo &arrangeUnprototypedObjCMessageSend(
289 QualType returnType,
290 const CallArgList &args);
291
292 /// Block invocation functions are C functions with an implicit parameter.
293 const CGFunctionInfo &arrangeBlockFunctionDeclaration(
294 const FunctionProtoType *type,
295 const FunctionArgList &args);
296 const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
297 const FunctionType *type);
298
299 /// C++ methods have some special rules and also have implicit parameters.
300 const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
301 const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
302 StructorType Type);
303 const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args,
304 const CXXConstructorDecl *D,
305 CXXCtorType CtorKind,
306 unsigned ExtraArgs);
307
308 const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
309 const FunctionProtoType *type,
310 RequiredArgs required);
311 const CGFunctionInfo &arrangeMSMemberPointerThunk(const CXXMethodDecl *MD);
312 const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD,
313 CXXCtorType CT);
314 const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
315 const FunctionProtoType *FTP,
316 const CXXMethodDecl *MD);
317
318 /// "Arrange" the LLVM information for a call or type with the given
319 /// signature. This is largely an internal method; other clients
320 /// should use one of the above routines, which ultimately defer to
321 /// this.
322 ///
323 /// \param argTypes - must all actually be canonical as params
324 const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
325 bool instanceMethod,
326 bool chainCall,
327 ArrayRef<CanQualType> argTypes,
328 FunctionType::ExtInfo info,
329 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
330 RequiredArgs args);
331
332 /// \brief Compute a new LLVM record layout object for the given record.
333 CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
334 llvm::StructType *Ty);
335
336 /// addRecordTypeName - Compute a name from the given record decl with an
337 /// optional suffix and name the given LLVM type using it.
338 void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
339 StringRef suffix);
340
341
342 public: // These are internal details of CGT that shouldn't be used externally.
343 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
344 llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
345
346 /// getExpandedTypes - Expand the type \arg Ty into the LLVM
347 /// argument types it would be passed as. See ABIArgInfo::Expand.
348 void getExpandedTypes(QualType Ty,
349 SmallVectorImpl<llvm::Type *>::iterator &TI);
350
351 /// IsZeroInitializable - Return whether a type can be
352 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
353 bool isZeroInitializable(QualType T);
354
355 /// IsZeroInitializable - Return whether a record type can be
356 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
357 bool isZeroInitializable(const RecordDecl *RD);
358
359 bool isRecordLayoutComplete(const Type *Ty) const;
noRecordsBeingLaidOut()360 bool noRecordsBeingLaidOut() const {
361 return RecordsBeingLaidOut.empty();
362 }
isRecordBeingLaidOut(const Type * Ty)363 bool isRecordBeingLaidOut(const Type *Ty) const {
364 return RecordsBeingLaidOut.count(Ty);
365 }
366
367 };
368
369 } // end namespace CodeGen
370 } // end namespace clang
371
372 #endif
373