1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MutexGuard.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/DynamicLibrary.h"
30 #include "llvm/Support/Host.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cmath>
34 #include <cstring>
35 using namespace llvm;
36
37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
38 STATISTIC(NumGlobals , "Number of global vars initialized");
39
40 ExecutionEngine *(*ExecutionEngine::JITCtor)(
41 Module *M,
42 std::string *ErrorStr,
43 JITMemoryManager *JMM,
44 CodeGenOpt::Level OptLevel,
45 bool GVsWithCode,
46 TargetMachine *TM) = 0;
47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
48 Module *M,
49 std::string *ErrorStr,
50 JITMemoryManager *JMM,
51 CodeGenOpt::Level OptLevel,
52 bool GVsWithCode,
53 TargetMachine *TM) = 0;
54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
55 std::string *ErrorStr) = 0;
56
ExecutionEngine(Module * M)57 ExecutionEngine::ExecutionEngine(Module *M)
58 : EEState(*this),
59 LazyFunctionCreator(0),
60 ExceptionTableRegister(0),
61 ExceptionTableDeregister(0) {
62 CompilingLazily = false;
63 GVCompilationDisabled = false;
64 SymbolSearchingDisabled = false;
65 Modules.push_back(M);
66 assert(M && "Module is null?");
67 }
68
~ExecutionEngine()69 ExecutionEngine::~ExecutionEngine() {
70 clearAllGlobalMappings();
71 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
72 delete Modules[i];
73 }
74
DeregisterAllTables()75 void ExecutionEngine::DeregisterAllTables() {
76 if (ExceptionTableDeregister) {
77 DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
78 DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
79 for (; it != ite; ++it)
80 ExceptionTableDeregister(it->second);
81 AllExceptionTables.clear();
82 }
83 }
84
85 namespace {
86 /// \brief Helper class which uses a value handler to automatically deletes the
87 /// memory block when the GlobalVariable is destroyed.
88 class GVMemoryBlock : public CallbackVH {
GVMemoryBlock(const GlobalVariable * GV)89 GVMemoryBlock(const GlobalVariable *GV)
90 : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
91
92 public:
93 /// \brief Returns the address the GlobalVariable should be written into. The
94 /// GVMemoryBlock object prefixes that.
Create(const GlobalVariable * GV,const TargetData & TD)95 static char *Create(const GlobalVariable *GV, const TargetData& TD) {
96 Type *ElTy = GV->getType()->getElementType();
97 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
98 void *RawMemory = ::operator new(
99 TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
100 TD.getPreferredAlignment(GV))
101 + GVSize);
102 new(RawMemory) GVMemoryBlock(GV);
103 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
104 }
105
deleted()106 virtual void deleted() {
107 // We allocated with operator new and with some extra memory hanging off the
108 // end, so don't just delete this. I'm not sure if this is actually
109 // required.
110 this->~GVMemoryBlock();
111 ::operator delete(this);
112 }
113 };
114 } // anonymous namespace
115
getMemoryForGV(const GlobalVariable * GV)116 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
117 return GVMemoryBlock::Create(GV, *getTargetData());
118 }
119
removeModule(Module * M)120 bool ExecutionEngine::removeModule(Module *M) {
121 for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
122 E = Modules.end(); I != E; ++I) {
123 Module *Found = *I;
124 if (Found == M) {
125 Modules.erase(I);
126 clearGlobalMappingsFromModule(M);
127 return true;
128 }
129 }
130 return false;
131 }
132
FindFunctionNamed(const char * FnName)133 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
134 for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
135 if (Function *F = Modules[i]->getFunction(FnName))
136 return F;
137 }
138 return 0;
139 }
140
141
RemoveMapping(const MutexGuard &,const GlobalValue * ToUnmap)142 void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
143 const GlobalValue *ToUnmap) {
144 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
145 void *OldVal;
146
147 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
148 // GlobalAddressMap.
149 if (I == GlobalAddressMap.end())
150 OldVal = 0;
151 else {
152 OldVal = I->second;
153 GlobalAddressMap.erase(I);
154 }
155
156 GlobalAddressReverseMap.erase(OldVal);
157 return OldVal;
158 }
159
addGlobalMapping(const GlobalValue * GV,void * Addr)160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
161 MutexGuard locked(lock);
162
163 DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
164 << "\' to [" << Addr << "]\n";);
165 void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
166 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
167 CurVal = Addr;
168
169 // If we are using the reverse mapping, add it too.
170 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
171 AssertingVH<const GlobalValue> &V =
172 EEState.getGlobalAddressReverseMap(locked)[Addr];
173 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
174 V = GV;
175 }
176 }
177
clearAllGlobalMappings()178 void ExecutionEngine::clearAllGlobalMappings() {
179 MutexGuard locked(lock);
180
181 EEState.getGlobalAddressMap(locked).clear();
182 EEState.getGlobalAddressReverseMap(locked).clear();
183 }
184
clearGlobalMappingsFromModule(Module * M)185 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
186 MutexGuard locked(lock);
187
188 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
189 EEState.RemoveMapping(locked, FI);
190 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
191 GI != GE; ++GI)
192 EEState.RemoveMapping(locked, GI);
193 }
194
updateGlobalMapping(const GlobalValue * GV,void * Addr)195 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
196 MutexGuard locked(lock);
197
198 ExecutionEngineState::GlobalAddressMapTy &Map =
199 EEState.getGlobalAddressMap(locked);
200
201 // Deleting from the mapping?
202 if (Addr == 0)
203 return EEState.RemoveMapping(locked, GV);
204
205 void *&CurVal = Map[GV];
206 void *OldVal = CurVal;
207
208 if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
209 EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
210 CurVal = Addr;
211
212 // If we are using the reverse mapping, add it too.
213 if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
214 AssertingVH<const GlobalValue> &V =
215 EEState.getGlobalAddressReverseMap(locked)[Addr];
216 assert((V == 0 || GV == 0) && "GlobalMapping already established!");
217 V = GV;
218 }
219 return OldVal;
220 }
221
getPointerToGlobalIfAvailable(const GlobalValue * GV)222 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
223 MutexGuard locked(lock);
224
225 ExecutionEngineState::GlobalAddressMapTy::iterator I =
226 EEState.getGlobalAddressMap(locked).find(GV);
227 return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
228 }
229
getGlobalValueAtAddress(void * Addr)230 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
231 MutexGuard locked(lock);
232
233 // If we haven't computed the reverse mapping yet, do so first.
234 if (EEState.getGlobalAddressReverseMap(locked).empty()) {
235 for (ExecutionEngineState::GlobalAddressMapTy::iterator
236 I = EEState.getGlobalAddressMap(locked).begin(),
237 E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
238 EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
239 I->second, I->first));
240 }
241
242 std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
243 EEState.getGlobalAddressReverseMap(locked).find(Addr);
244 return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
245 }
246
247 namespace {
248 class ArgvArray {
249 char *Array;
250 std::vector<char*> Values;
251 public:
ArgvArray()252 ArgvArray() : Array(NULL) {}
~ArgvArray()253 ~ArgvArray() { clear(); }
clear()254 void clear() {
255 delete[] Array;
256 Array = NULL;
257 for (size_t I = 0, E = Values.size(); I != E; ++I) {
258 delete[] Values[I];
259 }
260 Values.clear();
261 }
262 /// Turn a vector of strings into a nice argv style array of pointers to null
263 /// terminated strings.
264 void *reset(LLVMContext &C, ExecutionEngine *EE,
265 const std::vector<std::string> &InputArgv);
266 };
267 } // anonymous namespace
reset(LLVMContext & C,ExecutionEngine * EE,const std::vector<std::string> & InputArgv)268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
269 const std::vector<std::string> &InputArgv) {
270 clear(); // Free the old contents.
271 unsigned PtrSize = EE->getTargetData()->getPointerSize();
272 Array = new char[(InputArgv.size()+1)*PtrSize];
273
274 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
275 Type *SBytePtr = Type::getInt8PtrTy(C);
276
277 for (unsigned i = 0; i != InputArgv.size(); ++i) {
278 unsigned Size = InputArgv[i].size()+1;
279 char *Dest = new char[Size];
280 Values.push_back(Dest);
281 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
282
283 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
284 Dest[Size-1] = 0;
285
286 // Endian safe: Array[i] = (PointerTy)Dest;
287 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
288 SBytePtr);
289 }
290
291 // Null terminate it
292 EE->StoreValueToMemory(PTOGV(0),
293 (GenericValue*)(Array+InputArgv.size()*PtrSize),
294 SBytePtr);
295 return Array;
296 }
297
runStaticConstructorsDestructors(Module * module,bool isDtors)298 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
299 bool isDtors) {
300 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
301 GlobalVariable *GV = module->getNamedGlobal(Name);
302
303 // If this global has internal linkage, or if it has a use, then it must be
304 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If
305 // this is the case, don't execute any of the global ctors, __main will do
306 // it.
307 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
308
309 // Should be an array of '{ i32, void ()* }' structs. The first value is
310 // the init priority, which we ignore.
311 if (isa<ConstantAggregateZero>(GV->getInitializer()))
312 return;
313 ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
314 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
315 if (isa<ConstantAggregateZero>(InitList->getOperand(i)))
316 continue;
317 ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i));
318
319 Constant *FP = CS->getOperand(1);
320 if (FP->isNullValue())
321 continue; // Found a sentinal value, ignore.
322
323 // Strip off constant expression casts.
324 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
325 if (CE->isCast())
326 FP = CE->getOperand(0);
327
328 // Execute the ctor/dtor function!
329 if (Function *F = dyn_cast<Function>(FP))
330 runFunction(F, std::vector<GenericValue>());
331
332 // FIXME: It is marginally lame that we just do nothing here if we see an
333 // entry we don't recognize. It might not be unreasonable for the verifier
334 // to not even allow this and just assert here.
335 }
336 }
337
runStaticConstructorsDestructors(bool isDtors)338 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
339 // Execute global ctors/dtors for each module in the program.
340 for (unsigned i = 0, e = Modules.size(); i != e; ++i)
341 runStaticConstructorsDestructors(Modules[i], isDtors);
342 }
343
344 #ifndef NDEBUG
345 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
isTargetNullPtr(ExecutionEngine * EE,void * Loc)346 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
347 unsigned PtrSize = EE->getTargetData()->getPointerSize();
348 for (unsigned i = 0; i < PtrSize; ++i)
349 if (*(i + (uint8_t*)Loc))
350 return false;
351 return true;
352 }
353 #endif
354
runFunctionAsMain(Function * Fn,const std::vector<std::string> & argv,const char * const * envp)355 int ExecutionEngine::runFunctionAsMain(Function *Fn,
356 const std::vector<std::string> &argv,
357 const char * const * envp) {
358 std::vector<GenericValue> GVArgs;
359 GenericValue GVArgc;
360 GVArgc.IntVal = APInt(32, argv.size());
361
362 // Check main() type
363 unsigned NumArgs = Fn->getFunctionType()->getNumParams();
364 FunctionType *FTy = Fn->getFunctionType();
365 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
366
367 // Check the argument types.
368 if (NumArgs > 3)
369 report_fatal_error("Invalid number of arguments of main() supplied");
370 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
371 report_fatal_error("Invalid type for third argument of main() supplied");
372 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
373 report_fatal_error("Invalid type for second argument of main() supplied");
374 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
375 report_fatal_error("Invalid type for first argument of main() supplied");
376 if (!FTy->getReturnType()->isIntegerTy() &&
377 !FTy->getReturnType()->isVoidTy())
378 report_fatal_error("Invalid return type of main() supplied");
379
380 ArgvArray CArgv;
381 ArgvArray CEnv;
382 if (NumArgs) {
383 GVArgs.push_back(GVArgc); // Arg #0 = argc.
384 if (NumArgs > 1) {
385 // Arg #1 = argv.
386 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
387 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
388 "argv[0] was null after CreateArgv");
389 if (NumArgs > 2) {
390 std::vector<std::string> EnvVars;
391 for (unsigned i = 0; envp[i]; ++i)
392 EnvVars.push_back(envp[i]);
393 // Arg #2 = envp.
394 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
395 }
396 }
397 }
398
399 return runFunction(Fn, GVArgs).IntVal.getZExtValue();
400 }
401
create(Module * M,bool ForceInterpreter,std::string * ErrorStr,CodeGenOpt::Level OptLevel,bool GVsWithCode)402 ExecutionEngine *ExecutionEngine::create(Module *M,
403 bool ForceInterpreter,
404 std::string *ErrorStr,
405 CodeGenOpt::Level OptLevel,
406 bool GVsWithCode) {
407 return EngineBuilder(M)
408 .setEngineKind(ForceInterpreter
409 ? EngineKind::Interpreter
410 : EngineKind::JIT)
411 .setErrorStr(ErrorStr)
412 .setOptLevel(OptLevel)
413 .setAllocateGVsWithCode(GVsWithCode)
414 .create();
415 }
416
417 /// createJIT - This is the factory method for creating a JIT for the current
418 /// machine, it does not fall back to the interpreter. This takes ownership
419 /// of the module.
createJIT(Module * M,std::string * ErrorStr,JITMemoryManager * JMM,CodeGenOpt::Level OptLevel,bool GVsWithCode,Reloc::Model RM,CodeModel::Model CMM)420 ExecutionEngine *ExecutionEngine::createJIT(Module *M,
421 std::string *ErrorStr,
422 JITMemoryManager *JMM,
423 CodeGenOpt::Level OptLevel,
424 bool GVsWithCode,
425 Reloc::Model RM,
426 CodeModel::Model CMM) {
427 if (ExecutionEngine::JITCtor == 0) {
428 if (ErrorStr)
429 *ErrorStr = "JIT has not been linked in.";
430 return 0;
431 }
432
433 // Use the defaults for extra parameters. Users can use EngineBuilder to
434 // set them.
435 StringRef MArch = "";
436 StringRef MCPU = "";
437 SmallVector<std::string, 1> MAttrs;
438
439 TargetMachine *TM =
440 EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs, RM, CMM, ErrorStr);
441 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
442
443 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel, GVsWithCode, TM);
444 }
445
create()446 ExecutionEngine *EngineBuilder::create() {
447 // Make sure we can resolve symbols in the program as well. The zero arg
448 // to the function tells DynamicLibrary to load the program, not a library.
449 if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
450 return 0;
451
452 // If the user specified a memory manager but didn't specify which engine to
453 // create, we assume they only want the JIT, and we fail if they only want
454 // the interpreter.
455 if (JMM) {
456 if (WhichEngine & EngineKind::JIT)
457 WhichEngine = EngineKind::JIT;
458 else {
459 if (ErrorStr)
460 *ErrorStr = "Cannot create an interpreter with a memory manager.";
461 return 0;
462 }
463 }
464
465 // Unless the interpreter was explicitly selected or the JIT is not linked,
466 // try making a JIT.
467 if (WhichEngine & EngineKind::JIT) {
468 if (TargetMachine *TM = EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs,
469 RelocModel, CMModel,
470 ErrorStr)) {
471 if (UseMCJIT && ExecutionEngine::MCJITCtor) {
472 ExecutionEngine *EE =
473 ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel,
474 AllocateGVsWithCode, TM);
475 if (EE) return EE;
476 } else if (ExecutionEngine::JITCtor) {
477 ExecutionEngine *EE =
478 ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
479 AllocateGVsWithCode, TM);
480 if (EE) return EE;
481 }
482 }
483 }
484
485 // If we can't make a JIT and we didn't request one specifically, try making
486 // an interpreter instead.
487 if (WhichEngine & EngineKind::Interpreter) {
488 if (ExecutionEngine::InterpCtor)
489 return ExecutionEngine::InterpCtor(M, ErrorStr);
490 if (ErrorStr)
491 *ErrorStr = "Interpreter has not been linked in.";
492 return 0;
493 }
494
495 if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
496 if (ErrorStr)
497 *ErrorStr = "JIT has not been linked in.";
498 }
499
500 return 0;
501 }
502
getPointerToGlobal(const GlobalValue * GV)503 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
504 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
505 return getPointerToFunction(F);
506
507 MutexGuard locked(lock);
508 if (void *P = EEState.getGlobalAddressMap(locked)[GV])
509 return P;
510
511 // Global variable might have been added since interpreter started.
512 if (GlobalVariable *GVar =
513 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
514 EmitGlobalVariable(GVar);
515 else
516 llvm_unreachable("Global hasn't had an address allocated yet!");
517
518 return EEState.getGlobalAddressMap(locked)[GV];
519 }
520
521 /// \brief Converts a Constant* into a GenericValue, including handling of
522 /// ConstantExpr values.
getConstantValue(const Constant * C)523 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
524 // If its undefined, return the garbage.
525 if (isa<UndefValue>(C)) {
526 GenericValue Result;
527 switch (C->getType()->getTypeID()) {
528 case Type::IntegerTyID:
529 case Type::X86_FP80TyID:
530 case Type::FP128TyID:
531 case Type::PPC_FP128TyID:
532 // Although the value is undefined, we still have to construct an APInt
533 // with the correct bit width.
534 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
535 break;
536 default:
537 break;
538 }
539 return Result;
540 }
541
542 // Otherwise, if the value is a ConstantExpr...
543 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
544 Constant *Op0 = CE->getOperand(0);
545 switch (CE->getOpcode()) {
546 case Instruction::GetElementPtr: {
547 // Compute the index
548 GenericValue Result = getConstantValue(Op0);
549 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
550 uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices);
551
552 char* tmp = (char*) Result.PointerVal;
553 Result = PTOGV(tmp + Offset);
554 return Result;
555 }
556 case Instruction::Trunc: {
557 GenericValue GV = getConstantValue(Op0);
558 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
559 GV.IntVal = GV.IntVal.trunc(BitWidth);
560 return GV;
561 }
562 case Instruction::ZExt: {
563 GenericValue GV = getConstantValue(Op0);
564 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
565 GV.IntVal = GV.IntVal.zext(BitWidth);
566 return GV;
567 }
568 case Instruction::SExt: {
569 GenericValue GV = getConstantValue(Op0);
570 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
571 GV.IntVal = GV.IntVal.sext(BitWidth);
572 return GV;
573 }
574 case Instruction::FPTrunc: {
575 // FIXME long double
576 GenericValue GV = getConstantValue(Op0);
577 GV.FloatVal = float(GV.DoubleVal);
578 return GV;
579 }
580 case Instruction::FPExt:{
581 // FIXME long double
582 GenericValue GV = getConstantValue(Op0);
583 GV.DoubleVal = double(GV.FloatVal);
584 return GV;
585 }
586 case Instruction::UIToFP: {
587 GenericValue GV = getConstantValue(Op0);
588 if (CE->getType()->isFloatTy())
589 GV.FloatVal = float(GV.IntVal.roundToDouble());
590 else if (CE->getType()->isDoubleTy())
591 GV.DoubleVal = GV.IntVal.roundToDouble();
592 else if (CE->getType()->isX86_FP80Ty()) {
593 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
594 (void)apf.convertFromAPInt(GV.IntVal,
595 false,
596 APFloat::rmNearestTiesToEven);
597 GV.IntVal = apf.bitcastToAPInt();
598 }
599 return GV;
600 }
601 case Instruction::SIToFP: {
602 GenericValue GV = getConstantValue(Op0);
603 if (CE->getType()->isFloatTy())
604 GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
605 else if (CE->getType()->isDoubleTy())
606 GV.DoubleVal = GV.IntVal.signedRoundToDouble();
607 else if (CE->getType()->isX86_FP80Ty()) {
608 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
609 (void)apf.convertFromAPInt(GV.IntVal,
610 true,
611 APFloat::rmNearestTiesToEven);
612 GV.IntVal = apf.bitcastToAPInt();
613 }
614 return GV;
615 }
616 case Instruction::FPToUI: // double->APInt conversion handles sign
617 case Instruction::FPToSI: {
618 GenericValue GV = getConstantValue(Op0);
619 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
620 if (Op0->getType()->isFloatTy())
621 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
622 else if (Op0->getType()->isDoubleTy())
623 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
624 else if (Op0->getType()->isX86_FP80Ty()) {
625 APFloat apf = APFloat(GV.IntVal);
626 uint64_t v;
627 bool ignored;
628 (void)apf.convertToInteger(&v, BitWidth,
629 CE->getOpcode()==Instruction::FPToSI,
630 APFloat::rmTowardZero, &ignored);
631 GV.IntVal = v; // endian?
632 }
633 return GV;
634 }
635 case Instruction::PtrToInt: {
636 GenericValue GV = getConstantValue(Op0);
637 uint32_t PtrWidth = TD->getPointerSizeInBits();
638 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
639 return GV;
640 }
641 case Instruction::IntToPtr: {
642 GenericValue GV = getConstantValue(Op0);
643 uint32_t PtrWidth = TD->getPointerSizeInBits();
644 if (PtrWidth != GV.IntVal.getBitWidth())
645 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
646 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
647 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
648 return GV;
649 }
650 case Instruction::BitCast: {
651 GenericValue GV = getConstantValue(Op0);
652 Type* DestTy = CE->getType();
653 switch (Op0->getType()->getTypeID()) {
654 default: llvm_unreachable("Invalid bitcast operand");
655 case Type::IntegerTyID:
656 assert(DestTy->isFloatingPointTy() && "invalid bitcast");
657 if (DestTy->isFloatTy())
658 GV.FloatVal = GV.IntVal.bitsToFloat();
659 else if (DestTy->isDoubleTy())
660 GV.DoubleVal = GV.IntVal.bitsToDouble();
661 break;
662 case Type::FloatTyID:
663 assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
664 GV.IntVal = APInt::floatToBits(GV.FloatVal);
665 break;
666 case Type::DoubleTyID:
667 assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
668 GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
669 break;
670 case Type::PointerTyID:
671 assert(DestTy->isPointerTy() && "Invalid bitcast");
672 break; // getConstantValue(Op0) above already converted it
673 }
674 return GV;
675 }
676 case Instruction::Add:
677 case Instruction::FAdd:
678 case Instruction::Sub:
679 case Instruction::FSub:
680 case Instruction::Mul:
681 case Instruction::FMul:
682 case Instruction::UDiv:
683 case Instruction::SDiv:
684 case Instruction::URem:
685 case Instruction::SRem:
686 case Instruction::And:
687 case Instruction::Or:
688 case Instruction::Xor: {
689 GenericValue LHS = getConstantValue(Op0);
690 GenericValue RHS = getConstantValue(CE->getOperand(1));
691 GenericValue GV;
692 switch (CE->getOperand(0)->getType()->getTypeID()) {
693 default: llvm_unreachable("Bad add type!");
694 case Type::IntegerTyID:
695 switch (CE->getOpcode()) {
696 default: llvm_unreachable("Invalid integer opcode");
697 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
698 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
699 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
700 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
701 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
702 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
703 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
704 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
705 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break;
706 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
707 }
708 break;
709 case Type::FloatTyID:
710 switch (CE->getOpcode()) {
711 default: llvm_unreachable("Invalid float opcode");
712 case Instruction::FAdd:
713 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
714 case Instruction::FSub:
715 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
716 case Instruction::FMul:
717 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
718 case Instruction::FDiv:
719 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
720 case Instruction::FRem:
721 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
722 }
723 break;
724 case Type::DoubleTyID:
725 switch (CE->getOpcode()) {
726 default: llvm_unreachable("Invalid double opcode");
727 case Instruction::FAdd:
728 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
729 case Instruction::FSub:
730 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
731 case Instruction::FMul:
732 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
733 case Instruction::FDiv:
734 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
735 case Instruction::FRem:
736 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
737 }
738 break;
739 case Type::X86_FP80TyID:
740 case Type::PPC_FP128TyID:
741 case Type::FP128TyID: {
742 APFloat apfLHS = APFloat(LHS.IntVal);
743 switch (CE->getOpcode()) {
744 default: llvm_unreachable("Invalid long double opcode");
745 case Instruction::FAdd:
746 apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
747 GV.IntVal = apfLHS.bitcastToAPInt();
748 break;
749 case Instruction::FSub:
750 apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
751 GV.IntVal = apfLHS.bitcastToAPInt();
752 break;
753 case Instruction::FMul:
754 apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
755 GV.IntVal = apfLHS.bitcastToAPInt();
756 break;
757 case Instruction::FDiv:
758 apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
759 GV.IntVal = apfLHS.bitcastToAPInt();
760 break;
761 case Instruction::FRem:
762 apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
763 GV.IntVal = apfLHS.bitcastToAPInt();
764 break;
765 }
766 }
767 break;
768 }
769 return GV;
770 }
771 default:
772 break;
773 }
774
775 SmallString<256> Msg;
776 raw_svector_ostream OS(Msg);
777 OS << "ConstantExpr not handled: " << *CE;
778 report_fatal_error(OS.str());
779 }
780
781 // Otherwise, we have a simple constant.
782 GenericValue Result;
783 switch (C->getType()->getTypeID()) {
784 case Type::FloatTyID:
785 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
786 break;
787 case Type::DoubleTyID:
788 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
789 break;
790 case Type::X86_FP80TyID:
791 case Type::FP128TyID:
792 case Type::PPC_FP128TyID:
793 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
794 break;
795 case Type::IntegerTyID:
796 Result.IntVal = cast<ConstantInt>(C)->getValue();
797 break;
798 case Type::PointerTyID:
799 if (isa<ConstantPointerNull>(C))
800 Result.PointerVal = 0;
801 else if (const Function *F = dyn_cast<Function>(C))
802 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
803 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
804 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
805 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
806 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
807 BA->getBasicBlock())));
808 else
809 llvm_unreachable("Unknown constant pointer type!");
810 break;
811 default:
812 SmallString<256> Msg;
813 raw_svector_ostream OS(Msg);
814 OS << "ERROR: Constant unimplemented for type: " << *C->getType();
815 report_fatal_error(OS.str());
816 }
817
818 return Result;
819 }
820
821 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
822 /// with the integer held in IntVal.
StoreIntToMemory(const APInt & IntVal,uint8_t * Dst,unsigned StoreBytes)823 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
824 unsigned StoreBytes) {
825 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
826 uint8_t *Src = (uint8_t *)IntVal.getRawData();
827
828 if (sys::isLittleEndianHost()) {
829 // Little-endian host - the source is ordered from LSB to MSB. Order the
830 // destination from LSB to MSB: Do a straight copy.
831 memcpy(Dst, Src, StoreBytes);
832 } else {
833 // Big-endian host - the source is an array of 64 bit words ordered from
834 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination
835 // from MSB to LSB: Reverse the word order, but not the bytes in a word.
836 while (StoreBytes > sizeof(uint64_t)) {
837 StoreBytes -= sizeof(uint64_t);
838 // May not be aligned so use memcpy.
839 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
840 Src += sizeof(uint64_t);
841 }
842
843 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
844 }
845 }
846
StoreValueToMemory(const GenericValue & Val,GenericValue * Ptr,Type * Ty)847 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
848 GenericValue *Ptr, Type *Ty) {
849 const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
850
851 switch (Ty->getTypeID()) {
852 case Type::IntegerTyID:
853 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
854 break;
855 case Type::FloatTyID:
856 *((float*)Ptr) = Val.FloatVal;
857 break;
858 case Type::DoubleTyID:
859 *((double*)Ptr) = Val.DoubleVal;
860 break;
861 case Type::X86_FP80TyID:
862 memcpy(Ptr, Val.IntVal.getRawData(), 10);
863 break;
864 case Type::PointerTyID:
865 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
866 if (StoreBytes != sizeof(PointerTy))
867 memset(&(Ptr->PointerVal), 0, StoreBytes);
868
869 *((PointerTy*)Ptr) = Val.PointerVal;
870 break;
871 default:
872 dbgs() << "Cannot store value of type " << *Ty << "!\n";
873 }
874
875 if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
876 // Host and target are different endian - reverse the stored bytes.
877 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
878 }
879
880 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
881 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
LoadIntFromMemory(APInt & IntVal,uint8_t * Src,unsigned LoadBytes)882 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
883 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
884 uint8_t *Dst = (uint8_t *)IntVal.getRawData();
885
886 if (sys::isLittleEndianHost())
887 // Little-endian host - the destination must be ordered from LSB to MSB.
888 // The source is ordered from LSB to MSB: Do a straight copy.
889 memcpy(Dst, Src, LoadBytes);
890 else {
891 // Big-endian - the destination is an array of 64 bit words ordered from
892 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is
893 // ordered from MSB to LSB: Reverse the word order, but not the bytes in
894 // a word.
895 while (LoadBytes > sizeof(uint64_t)) {
896 LoadBytes -= sizeof(uint64_t);
897 // May not be aligned so use memcpy.
898 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
899 Dst += sizeof(uint64_t);
900 }
901
902 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
903 }
904 }
905
906 /// FIXME: document
907 ///
LoadValueFromMemory(GenericValue & Result,GenericValue * Ptr,Type * Ty)908 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
909 GenericValue *Ptr,
910 Type *Ty) {
911 const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
912
913 switch (Ty->getTypeID()) {
914 case Type::IntegerTyID:
915 // An APInt with all words initially zero.
916 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
917 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
918 break;
919 case Type::FloatTyID:
920 Result.FloatVal = *((float*)Ptr);
921 break;
922 case Type::DoubleTyID:
923 Result.DoubleVal = *((double*)Ptr);
924 break;
925 case Type::PointerTyID:
926 Result.PointerVal = *((PointerTy*)Ptr);
927 break;
928 case Type::X86_FP80TyID: {
929 // This is endian dependent, but it will only work on x86 anyway.
930 // FIXME: Will not trap if loading a signaling NaN.
931 uint64_t y[2];
932 memcpy(y, Ptr, 10);
933 Result.IntVal = APInt(80, y);
934 break;
935 }
936 default:
937 SmallString<256> Msg;
938 raw_svector_ostream OS(Msg);
939 OS << "Cannot load value of type " << *Ty << "!";
940 report_fatal_error(OS.str());
941 }
942 }
943
InitializeMemory(const Constant * Init,void * Addr)944 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
945 DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
946 DEBUG(Init->dump());
947 if (isa<UndefValue>(Init)) {
948 return;
949 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
950 unsigned ElementSize =
951 getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
952 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
953 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
954 return;
955 } else if (isa<ConstantAggregateZero>(Init)) {
956 memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
957 return;
958 } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
959 unsigned ElementSize =
960 getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
961 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
962 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
963 return;
964 } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
965 const StructLayout *SL =
966 getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
967 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
968 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
969 return;
970 } else if (Init->getType()->isFirstClassType()) {
971 GenericValue Val = getConstantValue(Init);
972 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
973 return;
974 }
975
976 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
977 llvm_unreachable("Unknown constant type to initialize memory with!");
978 }
979
980 /// EmitGlobals - Emit all of the global variables to memory, storing their
981 /// addresses into GlobalAddress. This must make sure to copy the contents of
982 /// their initializers into the memory.
emitGlobals()983 void ExecutionEngine::emitGlobals() {
984 // Loop over all of the global variables in the program, allocating the memory
985 // to hold them. If there is more than one module, do a prepass over globals
986 // to figure out how the different modules should link together.
987 std::map<std::pair<std::string, Type*>,
988 const GlobalValue*> LinkedGlobalsMap;
989
990 if (Modules.size() != 1) {
991 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
992 Module &M = *Modules[m];
993 for (Module::const_global_iterator I = M.global_begin(),
994 E = M.global_end(); I != E; ++I) {
995 const GlobalValue *GV = I;
996 if (GV->hasLocalLinkage() || GV->isDeclaration() ||
997 GV->hasAppendingLinkage() || !GV->hasName())
998 continue;// Ignore external globals and globals with internal linkage.
999
1000 const GlobalValue *&GVEntry =
1001 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1002
1003 // If this is the first time we've seen this global, it is the canonical
1004 // version.
1005 if (!GVEntry) {
1006 GVEntry = GV;
1007 continue;
1008 }
1009
1010 // If the existing global is strong, never replace it.
1011 if (GVEntry->hasExternalLinkage() ||
1012 GVEntry->hasDLLImportLinkage() ||
1013 GVEntry->hasDLLExportLinkage())
1014 continue;
1015
1016 // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1017 // symbol. FIXME is this right for common?
1018 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1019 GVEntry = GV;
1020 }
1021 }
1022 }
1023
1024 std::vector<const GlobalValue*> NonCanonicalGlobals;
1025 for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1026 Module &M = *Modules[m];
1027 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1028 I != E; ++I) {
1029 // In the multi-module case, see what this global maps to.
1030 if (!LinkedGlobalsMap.empty()) {
1031 if (const GlobalValue *GVEntry =
1032 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1033 // If something else is the canonical global, ignore this one.
1034 if (GVEntry != &*I) {
1035 NonCanonicalGlobals.push_back(I);
1036 continue;
1037 }
1038 }
1039 }
1040
1041 if (!I->isDeclaration()) {
1042 addGlobalMapping(I, getMemoryForGV(I));
1043 } else {
1044 // External variable reference. Try to use the dynamic loader to
1045 // get a pointer to it.
1046 if (void *SymAddr =
1047 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1048 addGlobalMapping(I, SymAddr);
1049 else {
1050 report_fatal_error("Could not resolve external global address: "
1051 +I->getName());
1052 }
1053 }
1054 }
1055
1056 // If there are multiple modules, map the non-canonical globals to their
1057 // canonical location.
1058 if (!NonCanonicalGlobals.empty()) {
1059 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1060 const GlobalValue *GV = NonCanonicalGlobals[i];
1061 const GlobalValue *CGV =
1062 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1063 void *Ptr = getPointerToGlobalIfAvailable(CGV);
1064 assert(Ptr && "Canonical global wasn't codegen'd!");
1065 addGlobalMapping(GV, Ptr);
1066 }
1067 }
1068
1069 // Now that all of the globals are set up in memory, loop through them all
1070 // and initialize their contents.
1071 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1072 I != E; ++I) {
1073 if (!I->isDeclaration()) {
1074 if (!LinkedGlobalsMap.empty()) {
1075 if (const GlobalValue *GVEntry =
1076 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1077 if (GVEntry != &*I) // Not the canonical variable.
1078 continue;
1079 }
1080 EmitGlobalVariable(I);
1081 }
1082 }
1083 }
1084 }
1085
1086 // EmitGlobalVariable - This method emits the specified global variable to the
1087 // address specified in GlobalAddresses, or allocates new memory if it's not
1088 // already in the map.
EmitGlobalVariable(const GlobalVariable * GV)1089 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1090 void *GA = getPointerToGlobalIfAvailable(GV);
1091
1092 if (GA == 0) {
1093 // If it's not already specified, allocate memory for the global.
1094 GA = getMemoryForGV(GV);
1095 addGlobalMapping(GV, GA);
1096 }
1097
1098 // Don't initialize if it's thread local, let the client do it.
1099 if (!GV->isThreadLocal())
1100 InitializeMemory(GV->getInitializer(), GA);
1101
1102 Type *ElTy = GV->getType()->getElementType();
1103 size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1104 NumInitBytes += (unsigned)GVSize;
1105 ++NumGlobals;
1106 }
1107
ExecutionEngineState(ExecutionEngine & EE)1108 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1109 : EE(EE), GlobalAddressMap(this) {
1110 }
1111
1112 sys::Mutex *
getMutex(ExecutionEngineState * EES)1113 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1114 return &EES->EE.lock;
1115 }
1116
onDelete(ExecutionEngineState * EES,const GlobalValue * Old)1117 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1118 const GlobalValue *Old) {
1119 void *OldVal = EES->GlobalAddressMap.lookup(Old);
1120 EES->GlobalAddressReverseMap.erase(OldVal);
1121 }
1122
onRAUW(ExecutionEngineState *,const GlobalValue *,const GlobalValue *)1123 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1124 const GlobalValue *,
1125 const GlobalValue *) {
1126 assert(false && "The ExecutionEngine doesn't know how to handle a"
1127 " RAUW on a value it has a global mapping for.");
1128 }
1129