1 /*
2 * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/transient/transient_suppressor.h"
12
13 #include <math.h>
14 #include <string.h>
15 #include <cmath>
16 #include <complex>
17 #include <deque>
18 #include <set>
19
20 #include "webrtc/base/scoped_ptr.h"
21 #include "webrtc/common_audio/fft4g.h"
22 #include "webrtc/common_audio/include/audio_util.h"
23 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
24 #include "webrtc/modules/audio_processing/transient/common.h"
25 #include "webrtc/modules/audio_processing/transient/transient_detector.h"
26 #include "webrtc/modules/audio_processing/ns/windows_private.h"
27 #include "webrtc/system_wrappers/include/logging.h"
28 #include "webrtc/typedefs.h"
29
30 namespace webrtc {
31
32 static const float kMeanIIRCoefficient = 0.5f;
33 static const float kVoiceThreshold = 0.02f;
34
35 // TODO(aluebs): Check if these values work also for 48kHz.
36 static const size_t kMinVoiceBin = 3;
37 static const size_t kMaxVoiceBin = 60;
38
39 namespace {
40
ComplexMagnitude(float a,float b)41 float ComplexMagnitude(float a, float b) {
42 return std::abs(a) + std::abs(b);
43 }
44
45 } // namespace
46
TransientSuppressor()47 TransientSuppressor::TransientSuppressor()
48 : data_length_(0),
49 detection_length_(0),
50 analysis_length_(0),
51 buffer_delay_(0),
52 complex_analysis_length_(0),
53 num_channels_(0),
54 window_(NULL),
55 detector_smoothed_(0.f),
56 keypress_counter_(0),
57 chunks_since_keypress_(0),
58 detection_enabled_(false),
59 suppression_enabled_(false),
60 use_hard_restoration_(false),
61 chunks_since_voice_change_(0),
62 seed_(182),
63 using_reference_(false) {
64 }
65
~TransientSuppressor()66 TransientSuppressor::~TransientSuppressor() {}
67
Initialize(int sample_rate_hz,int detection_rate_hz,int num_channels)68 int TransientSuppressor::Initialize(int sample_rate_hz,
69 int detection_rate_hz,
70 int num_channels) {
71 switch (sample_rate_hz) {
72 case ts::kSampleRate8kHz:
73 analysis_length_ = 128u;
74 window_ = kBlocks80w128;
75 break;
76 case ts::kSampleRate16kHz:
77 analysis_length_ = 256u;
78 window_ = kBlocks160w256;
79 break;
80 case ts::kSampleRate32kHz:
81 analysis_length_ = 512u;
82 window_ = kBlocks320w512;
83 break;
84 case ts::kSampleRate48kHz:
85 analysis_length_ = 1024u;
86 window_ = kBlocks480w1024;
87 break;
88 default:
89 return -1;
90 }
91 if (detection_rate_hz != ts::kSampleRate8kHz &&
92 detection_rate_hz != ts::kSampleRate16kHz &&
93 detection_rate_hz != ts::kSampleRate32kHz &&
94 detection_rate_hz != ts::kSampleRate48kHz) {
95 return -1;
96 }
97 if (num_channels <= 0) {
98 return -1;
99 }
100
101 detector_.reset(new TransientDetector(detection_rate_hz));
102 data_length_ = sample_rate_hz * ts::kChunkSizeMs / 1000;
103 if (data_length_ > analysis_length_) {
104 assert(false);
105 return -1;
106 }
107 buffer_delay_ = analysis_length_ - data_length_;
108
109 complex_analysis_length_ = analysis_length_ / 2 + 1;
110 assert(complex_analysis_length_ >= kMaxVoiceBin);
111 num_channels_ = num_channels;
112 in_buffer_.reset(new float[analysis_length_ * num_channels_]);
113 memset(in_buffer_.get(),
114 0,
115 analysis_length_ * num_channels_ * sizeof(in_buffer_[0]));
116 detection_length_ = detection_rate_hz * ts::kChunkSizeMs / 1000;
117 detection_buffer_.reset(new float[detection_length_]);
118 memset(detection_buffer_.get(),
119 0,
120 detection_length_ * sizeof(detection_buffer_[0]));
121 out_buffer_.reset(new float[analysis_length_ * num_channels_]);
122 memset(out_buffer_.get(),
123 0,
124 analysis_length_ * num_channels_ * sizeof(out_buffer_[0]));
125 // ip[0] must be zero to trigger initialization using rdft().
126 size_t ip_length = 2 + sqrtf(analysis_length_);
127 ip_.reset(new size_t[ip_length]());
128 memset(ip_.get(), 0, ip_length * sizeof(ip_[0]));
129 wfft_.reset(new float[complex_analysis_length_ - 1]);
130 memset(wfft_.get(), 0, (complex_analysis_length_ - 1) * sizeof(wfft_[0]));
131 spectral_mean_.reset(new float[complex_analysis_length_ * num_channels_]);
132 memset(spectral_mean_.get(),
133 0,
134 complex_analysis_length_ * num_channels_ * sizeof(spectral_mean_[0]));
135 fft_buffer_.reset(new float[analysis_length_ + 2]);
136 memset(fft_buffer_.get(), 0, (analysis_length_ + 2) * sizeof(fft_buffer_[0]));
137 magnitudes_.reset(new float[complex_analysis_length_]);
138 memset(magnitudes_.get(),
139 0,
140 complex_analysis_length_ * sizeof(magnitudes_[0]));
141 mean_factor_.reset(new float[complex_analysis_length_]);
142
143 static const float kFactorHeight = 10.f;
144 static const float kLowSlope = 1.f;
145 static const float kHighSlope = 0.3f;
146 for (size_t i = 0; i < complex_analysis_length_; ++i) {
147 mean_factor_[i] =
148 kFactorHeight /
149 (1.f + exp(kLowSlope * static_cast<int>(i - kMinVoiceBin))) +
150 kFactorHeight /
151 (1.f + exp(kHighSlope * static_cast<int>(kMaxVoiceBin - i)));
152 }
153 detector_smoothed_ = 0.f;
154 keypress_counter_ = 0;
155 chunks_since_keypress_ = 0;
156 detection_enabled_ = false;
157 suppression_enabled_ = false;
158 use_hard_restoration_ = false;
159 chunks_since_voice_change_ = 0;
160 seed_ = 182;
161 using_reference_ = false;
162 return 0;
163 }
164
Suppress(float * data,size_t data_length,int num_channels,const float * detection_data,size_t detection_length,const float * reference_data,size_t reference_length,float voice_probability,bool key_pressed)165 int TransientSuppressor::Suppress(float* data,
166 size_t data_length,
167 int num_channels,
168 const float* detection_data,
169 size_t detection_length,
170 const float* reference_data,
171 size_t reference_length,
172 float voice_probability,
173 bool key_pressed) {
174 if (!data || data_length != data_length_ || num_channels != num_channels_ ||
175 detection_length != detection_length_ || voice_probability < 0 ||
176 voice_probability > 1) {
177 return -1;
178 }
179
180 UpdateKeypress(key_pressed);
181 UpdateBuffers(data);
182
183 int result = 0;
184 if (detection_enabled_) {
185 UpdateRestoration(voice_probability);
186
187 if (!detection_data) {
188 // Use the input data of the first channel if special detection data is
189 // not supplied.
190 detection_data = &in_buffer_[buffer_delay_];
191 }
192
193 float detector_result = detector_->Detect(
194 detection_data, detection_length, reference_data, reference_length);
195 if (detector_result < 0) {
196 return -1;
197 }
198
199 using_reference_ = detector_->using_reference();
200
201 // |detector_smoothed_| follows the |detector_result| when this last one is
202 // increasing, but has an exponential decaying tail to be able to suppress
203 // the ringing of keyclicks.
204 float smooth_factor = using_reference_ ? 0.6 : 0.1;
205 detector_smoothed_ = detector_result >= detector_smoothed_
206 ? detector_result
207 : smooth_factor * detector_smoothed_ +
208 (1 - smooth_factor) * detector_result;
209
210 for (int i = 0; i < num_channels_; ++i) {
211 Suppress(&in_buffer_[i * analysis_length_],
212 &spectral_mean_[i * complex_analysis_length_],
213 &out_buffer_[i * analysis_length_]);
214 }
215 }
216
217 // If the suppression isn't enabled, we use the in buffer to delay the signal
218 // appropriately. This also gives time for the out buffer to be refreshed with
219 // new data between detection and suppression getting enabled.
220 for (int i = 0; i < num_channels_; ++i) {
221 memcpy(&data[i * data_length_],
222 suppression_enabled_ ? &out_buffer_[i * analysis_length_]
223 : &in_buffer_[i * analysis_length_],
224 data_length_ * sizeof(*data));
225 }
226 return result;
227 }
228
229 // This should only be called when detection is enabled. UpdateBuffers() must
230 // have been called. At return, |out_buffer_| will be filled with the
231 // processed output.
Suppress(float * in_ptr,float * spectral_mean,float * out_ptr)232 void TransientSuppressor::Suppress(float* in_ptr,
233 float* spectral_mean,
234 float* out_ptr) {
235 // Go to frequency domain.
236 for (size_t i = 0; i < analysis_length_; ++i) {
237 // TODO(aluebs): Rename windows
238 fft_buffer_[i] = in_ptr[i] * window_[i];
239 }
240
241 WebRtc_rdft(analysis_length_, 1, fft_buffer_.get(), ip_.get(), wfft_.get());
242
243 // Since WebRtc_rdft puts R[n/2] in fft_buffer_[1], we move it to the end
244 // for convenience.
245 fft_buffer_[analysis_length_] = fft_buffer_[1];
246 fft_buffer_[analysis_length_ + 1] = 0.f;
247 fft_buffer_[1] = 0.f;
248
249 for (size_t i = 0; i < complex_analysis_length_; ++i) {
250 magnitudes_[i] = ComplexMagnitude(fft_buffer_[i * 2],
251 fft_buffer_[i * 2 + 1]);
252 }
253 // Restore audio if necessary.
254 if (suppression_enabled_) {
255 if (use_hard_restoration_) {
256 HardRestoration(spectral_mean);
257 } else {
258 SoftRestoration(spectral_mean);
259 }
260 }
261
262 // Update the spectral mean.
263 for (size_t i = 0; i < complex_analysis_length_; ++i) {
264 spectral_mean[i] = (1 - kMeanIIRCoefficient) * spectral_mean[i] +
265 kMeanIIRCoefficient * magnitudes_[i];
266 }
267
268 // Back to time domain.
269 // Put R[n/2] back in fft_buffer_[1].
270 fft_buffer_[1] = fft_buffer_[analysis_length_];
271
272 WebRtc_rdft(analysis_length_,
273 -1,
274 fft_buffer_.get(),
275 ip_.get(),
276 wfft_.get());
277 const float fft_scaling = 2.f / analysis_length_;
278
279 for (size_t i = 0; i < analysis_length_; ++i) {
280 out_ptr[i] += fft_buffer_[i] * window_[i] * fft_scaling;
281 }
282 }
283
UpdateKeypress(bool key_pressed)284 void TransientSuppressor::UpdateKeypress(bool key_pressed) {
285 const int kKeypressPenalty = 1000 / ts::kChunkSizeMs;
286 const int kIsTypingThreshold = 1000 / ts::kChunkSizeMs;
287 const int kChunksUntilNotTyping = 4000 / ts::kChunkSizeMs; // 4 seconds.
288
289 if (key_pressed) {
290 keypress_counter_ += kKeypressPenalty;
291 chunks_since_keypress_ = 0;
292 detection_enabled_ = true;
293 }
294 keypress_counter_ = std::max(0, keypress_counter_ - 1);
295
296 if (keypress_counter_ > kIsTypingThreshold) {
297 if (!suppression_enabled_) {
298 LOG(LS_INFO) << "[ts] Transient suppression is now enabled.";
299 }
300 suppression_enabled_ = true;
301 keypress_counter_ = 0;
302 }
303
304 if (detection_enabled_ &&
305 ++chunks_since_keypress_ > kChunksUntilNotTyping) {
306 if (suppression_enabled_) {
307 LOG(LS_INFO) << "[ts] Transient suppression is now disabled.";
308 }
309 detection_enabled_ = false;
310 suppression_enabled_ = false;
311 keypress_counter_ = 0;
312 }
313 }
314
UpdateRestoration(float voice_probability)315 void TransientSuppressor::UpdateRestoration(float voice_probability) {
316 const int kHardRestorationOffsetDelay = 3;
317 const int kHardRestorationOnsetDelay = 80;
318
319 bool not_voiced = voice_probability < kVoiceThreshold;
320
321 if (not_voiced == use_hard_restoration_) {
322 chunks_since_voice_change_ = 0;
323 } else {
324 ++chunks_since_voice_change_;
325
326 if ((use_hard_restoration_ &&
327 chunks_since_voice_change_ > kHardRestorationOffsetDelay) ||
328 (!use_hard_restoration_ &&
329 chunks_since_voice_change_ > kHardRestorationOnsetDelay)) {
330 use_hard_restoration_ = not_voiced;
331 chunks_since_voice_change_ = 0;
332 }
333 }
334 }
335
336 // Shift buffers to make way for new data. Must be called after
337 // |detection_enabled_| is updated by UpdateKeypress().
UpdateBuffers(float * data)338 void TransientSuppressor::UpdateBuffers(float* data) {
339 // TODO(aluebs): Change to ring buffer.
340 memmove(in_buffer_.get(),
341 &in_buffer_[data_length_],
342 (buffer_delay_ + (num_channels_ - 1) * analysis_length_) *
343 sizeof(in_buffer_[0]));
344 // Copy new chunk to buffer.
345 for (int i = 0; i < num_channels_; ++i) {
346 memcpy(&in_buffer_[buffer_delay_ + i * analysis_length_],
347 &data[i * data_length_],
348 data_length_ * sizeof(*data));
349 }
350 if (detection_enabled_) {
351 // Shift previous chunk in out buffer.
352 memmove(out_buffer_.get(),
353 &out_buffer_[data_length_],
354 (buffer_delay_ + (num_channels_ - 1) * analysis_length_) *
355 sizeof(out_buffer_[0]));
356 // Initialize new chunk in out buffer.
357 for (int i = 0; i < num_channels_; ++i) {
358 memset(&out_buffer_[buffer_delay_ + i * analysis_length_],
359 0,
360 data_length_ * sizeof(out_buffer_[0]));
361 }
362 }
363 }
364
365 // Restores the unvoiced signal if a click is present.
366 // Attenuates by a certain factor every peak in the |fft_buffer_| that exceeds
367 // the spectral mean. The attenuation depends on |detector_smoothed_|.
368 // If a restoration takes place, the |magnitudes_| are updated to the new value.
HardRestoration(float * spectral_mean)369 void TransientSuppressor::HardRestoration(float* spectral_mean) {
370 const float detector_result =
371 1.f - pow(1.f - detector_smoothed_, using_reference_ ? 200.f : 50.f);
372 // To restore, we get the peaks in the spectrum. If higher than the previous
373 // spectral mean we adjust them.
374 for (size_t i = 0; i < complex_analysis_length_; ++i) {
375 if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0) {
376 // RandU() generates values on [0, int16::max()]
377 const float phase = 2 * ts::kPi * WebRtcSpl_RandU(&seed_) /
378 std::numeric_limits<int16_t>::max();
379 const float scaled_mean = detector_result * spectral_mean[i];
380
381 fft_buffer_[i * 2] = (1 - detector_result) * fft_buffer_[i * 2] +
382 scaled_mean * cosf(phase);
383 fft_buffer_[i * 2 + 1] = (1 - detector_result) * fft_buffer_[i * 2 + 1] +
384 scaled_mean * sinf(phase);
385 magnitudes_[i] = magnitudes_[i] -
386 detector_result * (magnitudes_[i] - spectral_mean[i]);
387 }
388 }
389 }
390
391 // Restores the voiced signal if a click is present.
392 // Attenuates by a certain factor every peak in the |fft_buffer_| that exceeds
393 // the spectral mean and that is lower than some function of the current block
394 // frequency mean. The attenuation depends on |detector_smoothed_|.
395 // If a restoration takes place, the |magnitudes_| are updated to the new value.
SoftRestoration(float * spectral_mean)396 void TransientSuppressor::SoftRestoration(float* spectral_mean) {
397 // Get the spectral magnitude mean of the current block.
398 float block_frequency_mean = 0;
399 for (size_t i = kMinVoiceBin; i < kMaxVoiceBin; ++i) {
400 block_frequency_mean += magnitudes_[i];
401 }
402 block_frequency_mean /= (kMaxVoiceBin - kMinVoiceBin);
403
404 // To restore, we get the peaks in the spectrum. If higher than the
405 // previous spectral mean and lower than a factor of the block mean
406 // we adjust them. The factor is a double sigmoid that has a minimum in the
407 // voice frequency range (300Hz - 3kHz).
408 for (size_t i = 0; i < complex_analysis_length_; ++i) {
409 if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0 &&
410 (using_reference_ ||
411 magnitudes_[i] < block_frequency_mean * mean_factor_[i])) {
412 const float new_magnitude =
413 magnitudes_[i] -
414 detector_smoothed_ * (magnitudes_[i] - spectral_mean[i]);
415 const float magnitude_ratio = new_magnitude / magnitudes_[i];
416
417 fft_buffer_[i * 2] *= magnitude_ratio;
418 fft_buffer_[i * 2 + 1] *= magnitude_ratio;
419 magnitudes_[i] = new_magnitude;
420 }
421 }
422 }
423
424 } // namespace webrtc
425