• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "ssa_liveness_analysis.h"
18 
19 #include "base/bit_vector-inl.h"
20 #include "code_generator.h"
21 #include "linear_order.h"
22 #include "nodes.h"
23 
24 namespace art {
25 
Analyze()26 void SsaLivenessAnalysis::Analyze() {
27   // Compute the linear order directly in the graph's data structure
28   // (there are no more following graph mutations).
29   LinearizeGraph(graph_, &graph_->linear_order_);
30 
31   // Liveness analysis.
32   NumberInstructions();
33   ComputeLiveness();
34 }
35 
NumberInstructions()36 void SsaLivenessAnalysis::NumberInstructions() {
37   int ssa_index = 0;
38   size_t lifetime_position = 0;
39   // Each instruction gets a lifetime position, and a block gets a lifetime
40   // start and end position. Non-phi instructions have a distinct lifetime position than
41   // the block they are in. Phi instructions have the lifetime start of their block as
42   // lifetime position.
43   //
44   // Because the register allocator will insert moves in the graph, we need
45   // to differentiate between the start and end of an instruction. Adding 2 to
46   // the lifetime position for each instruction ensures the start of an
47   // instruction is different than the end of the previous instruction.
48   for (HBasicBlock* block : graph_->GetLinearOrder()) {
49     block->SetLifetimeStart(lifetime_position);
50 
51     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
52       HInstruction* current = inst_it.Current();
53       codegen_->AllocateLocations(current);
54       LocationSummary* locations = current->GetLocations();
55       if (locations != nullptr && locations->Out().IsValid()) {
56         instructions_from_ssa_index_.push_back(current);
57         current->SetSsaIndex(ssa_index++);
58         current->SetLiveInterval(
59             LiveInterval::MakeInterval(allocator_, current->GetType(), current));
60       }
61       current->SetLifetimePosition(lifetime_position);
62     }
63     lifetime_position += 2;
64 
65     // Add a null marker to notify we are starting a block.
66     instructions_from_lifetime_position_.push_back(nullptr);
67 
68     for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
69          inst_it.Advance()) {
70       HInstruction* current = inst_it.Current();
71       codegen_->AllocateLocations(current);
72       LocationSummary* locations = current->GetLocations();
73       if (locations != nullptr && locations->Out().IsValid()) {
74         instructions_from_ssa_index_.push_back(current);
75         current->SetSsaIndex(ssa_index++);
76         current->SetLiveInterval(
77             LiveInterval::MakeInterval(allocator_, current->GetType(), current));
78       }
79       instructions_from_lifetime_position_.push_back(current);
80       current->SetLifetimePosition(lifetime_position);
81       lifetime_position += 2;
82     }
83 
84     block->SetLifetimeEnd(lifetime_position);
85   }
86   number_of_ssa_values_ = ssa_index;
87 }
88 
ComputeLiveness()89 void SsaLivenessAnalysis::ComputeLiveness() {
90   for (HBasicBlock* block : graph_->GetLinearOrder()) {
91     block_infos_[block->GetBlockId()] =
92         new (allocator_) BlockInfo(allocator_, *block, number_of_ssa_values_);
93   }
94 
95   // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
96   // This method does not handle backward branches for the sets, therefore live_in
97   // and live_out sets are not yet correct.
98   ComputeLiveRanges();
99 
100   // Do a fixed point calculation to take into account backward branches,
101   // that will update live_in of loop headers, and therefore live_out and live_in
102   // of blocks in the loop.
103   ComputeLiveInAndLiveOutSets();
104 }
105 
RecursivelyProcessInputs(HInstruction * current,HInstruction * actual_user,BitVector * live_in)106 void SsaLivenessAnalysis::RecursivelyProcessInputs(HInstruction* current,
107                                                    HInstruction* actual_user,
108                                                    BitVector* live_in) {
109   HInputsRef inputs = current->GetInputs();
110   for (size_t i = 0; i < inputs.size(); ++i) {
111     HInstruction* input = inputs[i];
112     bool has_in_location = current->GetLocations()->InAt(i).IsValid();
113     bool has_out_location = input->GetLocations()->Out().IsValid();
114 
115     if (has_in_location) {
116       DCHECK(has_out_location)
117           << "Instruction " << current->DebugName() << current->GetId()
118           << " expects an input value at index " << i << " but "
119           << input->DebugName() << input->GetId() << " does not produce one.";
120       DCHECK(input->HasSsaIndex());
121       // `input` generates a result used by `current`. Add use and update
122       // the live-in set.
123       input->GetLiveInterval()->AddUse(current, /* environment= */ nullptr, i, actual_user);
124       live_in->SetBit(input->GetSsaIndex());
125     } else if (has_out_location) {
126       // `input` generates a result but it is not used by `current`.
127     } else {
128       // `input` is inlined into `current`. Walk over its inputs and record
129       // uses at `current`.
130       DCHECK(input->IsEmittedAtUseSite());
131       // Check that the inlined input is not a phi. Recursing on loop phis could
132       // lead to an infinite loop.
133       DCHECK(!input->IsPhi());
134       DCHECK(!input->HasEnvironment());
135       RecursivelyProcessInputs(input, actual_user, live_in);
136     }
137   }
138 }
139 
ProcessEnvironment(HInstruction * current,HInstruction * actual_user,BitVector * live_in)140 void SsaLivenessAnalysis::ProcessEnvironment(HInstruction* current,
141                                              HInstruction* actual_user,
142                                              BitVector* live_in) {
143   for (HEnvironment* environment = current->GetEnvironment();
144        environment != nullptr;
145        environment = environment->GetParent()) {
146     // Handle environment uses. See statements (b) and (c) of the
147     // SsaLivenessAnalysis.
148     for (size_t i = 0, e = environment->Size(); i < e; ++i) {
149       HInstruction* instruction = environment->GetInstructionAt(i);
150       if (instruction == nullptr) {
151         continue;
152       }
153       bool should_be_live = ShouldBeLiveForEnvironment(current, instruction);
154       // If this environment use does not keep the instruction live, it does not
155       // affect the live range of that instruction.
156       if (should_be_live) {
157         CHECK(instruction->HasSsaIndex()) << instruction->DebugName();
158         live_in->SetBit(instruction->GetSsaIndex());
159         instruction->GetLiveInterval()->AddUse(current,
160                                                environment,
161                                                i,
162                                                actual_user);
163       }
164     }
165   }
166 }
167 
ComputeLiveRanges()168 void SsaLivenessAnalysis::ComputeLiveRanges() {
169   // Do a post order visit, adding inputs of instructions live in the block where
170   // that instruction is defined, and killing instructions that are being visited.
171   for (HBasicBlock* block : ReverseRange(graph_->GetLinearOrder())) {
172     BitVector* kill = GetKillSet(*block);
173     BitVector* live_in = GetLiveInSet(*block);
174 
175     // Set phi inputs of successors of this block corresponding to this block
176     // as live_in.
177     for (HBasicBlock* successor : block->GetSuccessors()) {
178       live_in->Union(GetLiveInSet(*successor));
179       if (successor->IsCatchBlock()) {
180         // Inputs of catch phis will be kept alive through their environment
181         // uses, allowing the runtime to copy their values to the corresponding
182         // catch phi spill slots when an exception is thrown.
183         // The only instructions which may not be recorded in the environments
184         // are constants created by the SSA builder as typed equivalents of
185         // untyped constants from the bytecode, or phis with only such constants
186         // as inputs (verified by GraphChecker). Their raw binary value must
187         // therefore be the same and we only need to keep alive one.
188       } else {
189         size_t phi_input_index = successor->GetPredecessorIndexOf(block);
190         for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
191           HInstruction* phi = phi_it.Current();
192           HInstruction* input = phi->InputAt(phi_input_index);
193           input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
194           // A phi input whose last user is the phi dies at the end of the predecessor block,
195           // and not at the phi's lifetime position.
196           live_in->SetBit(input->GetSsaIndex());
197         }
198       }
199     }
200 
201     // Add a range that covers this block to all instructions live_in because of successors.
202     // Instructions defined in this block will have their start of the range adjusted.
203     for (uint32_t idx : live_in->Indexes()) {
204       HInstruction* current = GetInstructionFromSsaIndex(idx);
205       current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
206     }
207 
208     for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
209          back_it.Advance()) {
210       HInstruction* current = back_it.Current();
211       if (current->HasSsaIndex()) {
212         // Kill the instruction and shorten its interval.
213         kill->SetBit(current->GetSsaIndex());
214         live_in->ClearBit(current->GetSsaIndex());
215         current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
216       }
217 
218       // Process inputs of instructions.
219       if (current->IsEmittedAtUseSite()) {
220         if (kIsDebugBuild) {
221           DCHECK(!current->GetLocations()->Out().IsValid());
222           for (const HUseListNode<HInstruction*>& use : current->GetUses()) {
223             HInstruction* user = use.GetUser();
224             size_t index = use.GetIndex();
225             DCHECK(!user->GetLocations()->InAt(index).IsValid());
226           }
227           DCHECK(!current->HasEnvironmentUses());
228         }
229       } else {
230         // Process the environment first, because we know their uses come after
231         // or at the same liveness position of inputs.
232         ProcessEnvironment(current, current, live_in);
233 
234         // Special case implicit null checks. We want their environment uses to be
235         // emitted at the instruction doing the actual null check.
236         HNullCheck* check = current->GetImplicitNullCheck();
237         if (check != nullptr) {
238           ProcessEnvironment(check, current, live_in);
239         }
240         RecursivelyProcessInputs(current, current, live_in);
241       }
242     }
243 
244     // Kill phis defined in this block.
245     for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
246       HInstruction* current = inst_it.Current();
247       if (current->HasSsaIndex()) {
248         kill->SetBit(current->GetSsaIndex());
249         live_in->ClearBit(current->GetSsaIndex());
250         LiveInterval* interval = current->GetLiveInterval();
251         DCHECK((interval->GetFirstRange() == nullptr)
252                || (interval->GetStart() == current->GetLifetimePosition()));
253         interval->SetFrom(current->GetLifetimePosition());
254       }
255     }
256 
257     if (block->IsLoopHeader()) {
258       if (kIsDebugBuild) {
259         CheckNoLiveInIrreducibleLoop(*block);
260       }
261       size_t last_position = block->GetLoopInformation()->GetLifetimeEnd();
262       // For all live_in instructions at the loop header, we need to create a range
263       // that covers the full loop.
264       for (uint32_t idx : live_in->Indexes()) {
265         HInstruction* current = GetInstructionFromSsaIndex(idx);
266         current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position);
267       }
268     }
269   }
270 }
271 
ComputeLiveInAndLiveOutSets()272 void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
273   bool changed;
274   do {
275     changed = false;
276 
277     for (const HBasicBlock* block : graph_->GetPostOrder()) {
278       // The live_in set depends on the kill set (which does not
279       // change in this loop), and the live_out set.  If the live_out
280       // set does not change, there is no need to update the live_in set.
281       if (UpdateLiveOut(*block) && UpdateLiveIn(*block)) {
282         if (kIsDebugBuild) {
283           CheckNoLiveInIrreducibleLoop(*block);
284         }
285         changed = true;
286       }
287     }
288   } while (changed);
289 }
290 
UpdateLiveOut(const HBasicBlock & block)291 bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
292   BitVector* live_out = GetLiveOutSet(block);
293   bool changed = false;
294   // The live_out set of a block is the union of live_in sets of its successors.
295   for (HBasicBlock* successor : block.GetSuccessors()) {
296     if (live_out->Union(GetLiveInSet(*successor))) {
297       changed = true;
298     }
299   }
300   return changed;
301 }
302 
303 
UpdateLiveIn(const HBasicBlock & block)304 bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
305   BitVector* live_out = GetLiveOutSet(block);
306   BitVector* kill = GetKillSet(block);
307   BitVector* live_in = GetLiveInSet(block);
308   // If live_out is updated (because of backward branches), we need to make
309   // sure instructions in live_out are also in live_in, unless they are killed
310   // by this block.
311   return live_in->UnionIfNotIn(live_out, kill);
312 }
313 
DumpWithContext(std::ostream & stream,const CodeGenerator & codegen) const314 void LiveInterval::DumpWithContext(std::ostream& stream,
315                                    const CodeGenerator& codegen) const {
316   Dump(stream);
317   if (IsFixed()) {
318     stream << ", register:" << GetRegister() << "(";
319     if (IsFloatingPoint()) {
320       codegen.DumpFloatingPointRegister(stream, GetRegister());
321     } else {
322       codegen.DumpCoreRegister(stream, GetRegister());
323     }
324     stream << ")";
325   } else {
326     stream << ", spill slot:" << GetSpillSlot();
327   }
328   stream << ", requires_register:" << (GetDefinedBy() != nullptr && RequiresRegister());
329   if (GetParent()->GetDefinedBy() != nullptr) {
330     stream << ", defined_by:" << GetParent()->GetDefinedBy()->GetKind();
331     stream << "(" << GetParent()->GetDefinedBy()->GetLifetimePosition() << ")";
332   }
333 }
334 
RegisterOrLowRegister(Location location)335 static int RegisterOrLowRegister(Location location) {
336   return location.IsPair() ? location.low() : location.reg();
337 }
338 
FindFirstRegisterHint(size_t * free_until,const SsaLivenessAnalysis & liveness) const339 int LiveInterval::FindFirstRegisterHint(size_t* free_until,
340                                         const SsaLivenessAnalysis& liveness) const {
341   DCHECK(!IsHighInterval());
342   if (IsTemp()) return kNoRegister;
343 
344   if (GetParent() == this && defined_by_ != nullptr) {
345     // This is the first interval for the instruction. Try to find
346     // a register based on its definition.
347     DCHECK_EQ(defined_by_->GetLiveInterval(), this);
348     int hint = FindHintAtDefinition();
349     if (hint != kNoRegister && free_until[hint] > GetStart()) {
350       return hint;
351     }
352   }
353 
354   if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) {
355     // If the start of this interval is at a block boundary, we look at the
356     // location of the interval in blocks preceding the block this interval
357     // starts at. If one location is a register we return it as a hint. This
358     // will avoid a move between the two blocks.
359     HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2);
360     size_t next_register_use = FirstRegisterUse();
361     for (HBasicBlock* predecessor : block->GetPredecessors()) {
362       size_t position = predecessor->GetLifetimeEnd() - 1;
363       // We know positions above GetStart() do not have a location yet.
364       if (position < GetStart()) {
365         LiveInterval* existing = GetParent()->GetSiblingAt(position);
366         if (existing != nullptr
367             && existing->HasRegister()
368             // It's worth using that register if it is available until
369             // the next use.
370             && (free_until[existing->GetRegister()] >= next_register_use)) {
371           return existing->GetRegister();
372         }
373       }
374     }
375   }
376 
377   size_t start = GetStart();
378   size_t end = GetEnd();
379   for (const UsePosition& use : GetUses()) {
380     size_t use_position = use.GetPosition();
381     if (use_position > end) {
382       break;
383     }
384     if (use_position >= start && !use.IsSynthesized()) {
385       HInstruction* user = use.GetUser();
386       size_t input_index = use.GetInputIndex();
387       if (user->IsPhi()) {
388         // If the phi has a register, try to use the same.
389         Location phi_location = user->GetLiveInterval()->ToLocation();
390         if (phi_location.IsRegisterKind()) {
391           DCHECK(SameRegisterKind(phi_location));
392           int reg = RegisterOrLowRegister(phi_location);
393           if (free_until[reg] >= use_position) {
394             return reg;
395           }
396         }
397         // If the instruction dies at the phi assignment, we can try having the
398         // same register.
399         if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) {
400           HInputsRef inputs = user->GetInputs();
401           for (size_t i = 0; i < inputs.size(); ++i) {
402             if (i == input_index) {
403               continue;
404             }
405             Location location = inputs[i]->GetLiveInterval()->GetLocationAt(
406                 user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1);
407             if (location.IsRegisterKind()) {
408               int reg = RegisterOrLowRegister(location);
409               if (free_until[reg] >= use_position) {
410                 return reg;
411               }
412             }
413           }
414         }
415       } else {
416         // If the instruction is expected in a register, try to use it.
417         LocationSummary* locations = user->GetLocations();
418         Location expected = locations->InAt(use.GetInputIndex());
419         // We use the user's lifetime position - 1 (and not `use_position`) because the
420         // register is blocked at the beginning of the user.
421         size_t position = user->GetLifetimePosition() - 1;
422         if (expected.IsRegisterKind()) {
423           DCHECK(SameRegisterKind(expected));
424           int reg = RegisterOrLowRegister(expected);
425           if (free_until[reg] >= position) {
426             return reg;
427           }
428         }
429       }
430     }
431   }
432 
433   return kNoRegister;
434 }
435 
FindHintAtDefinition() const436 int LiveInterval::FindHintAtDefinition() const {
437   if (defined_by_->IsPhi()) {
438     // Try to use the same register as one of the inputs.
439     const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
440     HInputsRef inputs = defined_by_->GetInputs();
441     for (size_t i = 0; i < inputs.size(); ++i) {
442       size_t end = predecessors[i]->GetLifetimeEnd();
443       LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(end - 1);
444       if (input_interval->GetEnd() == end) {
445         // If the input dies at the end of the predecessor, we know its register can
446         // be reused.
447         Location input_location = input_interval->ToLocation();
448         if (input_location.IsRegisterKind()) {
449           DCHECK(SameRegisterKind(input_location));
450           return RegisterOrLowRegister(input_location);
451         }
452       }
453     }
454   } else {
455     LocationSummary* locations = GetDefinedBy()->GetLocations();
456     Location out = locations->Out();
457     if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
458       // Try to use the same register as the first input.
459       LiveInterval* input_interval =
460           GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1);
461       if (input_interval->GetEnd() == GetStart()) {
462         // If the input dies at the start of this instruction, we know its register can
463         // be reused.
464         Location location = input_interval->ToLocation();
465         if (location.IsRegisterKind()) {
466           DCHECK(SameRegisterKind(location));
467           return RegisterOrLowRegister(location);
468         }
469       }
470     }
471   }
472   return kNoRegister;
473 }
474 
SameRegisterKind(Location other) const475 bool LiveInterval::SameRegisterKind(Location other) const {
476   if (IsFloatingPoint()) {
477     if (IsLowInterval() || IsHighInterval()) {
478       return other.IsFpuRegisterPair();
479     } else {
480       return other.IsFpuRegister();
481     }
482   } else {
483     if (IsLowInterval() || IsHighInterval()) {
484       return other.IsRegisterPair();
485     } else {
486       return other.IsRegister();
487     }
488   }
489 }
490 
NumberOfSpillSlotsNeeded() const491 size_t LiveInterval::NumberOfSpillSlotsNeeded() const {
492   // For a SIMD operation, compute the number of needed spill slots.
493   // TODO: do through vector type?
494   HInstruction* definition = GetParent()->GetDefinedBy();
495   if (definition != nullptr && HVecOperation::ReturnsSIMDValue(definition)) {
496     if (definition->IsPhi()) {
497       definition = definition->InputAt(1);  // SIMD always appears on back-edge
498     }
499     return definition->AsVecOperation()->GetVectorNumberOfBytes() / kVRegSize;
500   }
501   // Return number of needed spill slots based on type.
502   return (type_ == DataType::Type::kInt64 || type_ == DataType::Type::kFloat64) ? 2 : 1;
503 }
504 
ToLocation() const505 Location LiveInterval::ToLocation() const {
506   DCHECK(!IsHighInterval());
507   if (HasRegister()) {
508     if (IsFloatingPoint()) {
509       if (HasHighInterval()) {
510         return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
511       } else {
512         return Location::FpuRegisterLocation(GetRegister());
513       }
514     } else {
515       if (HasHighInterval()) {
516         return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
517       } else {
518         return Location::RegisterLocation(GetRegister());
519       }
520     }
521   } else {
522     HInstruction* defined_by = GetParent()->GetDefinedBy();
523     if (defined_by->IsConstant()) {
524       return defined_by->GetLocations()->Out();
525     } else if (GetParent()->HasSpillSlot()) {
526       switch (NumberOfSpillSlotsNeeded()) {
527         case 1: return Location::StackSlot(GetParent()->GetSpillSlot());
528         case 2: return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
529         case 4: return Location::SIMDStackSlot(GetParent()->GetSpillSlot());
530         default: LOG(FATAL) << "Unexpected number of spill slots"; UNREACHABLE();
531       }
532     } else {
533       return Location();
534     }
535   }
536 }
537 
GetLocationAt(size_t position)538 Location LiveInterval::GetLocationAt(size_t position) {
539   LiveInterval* sibling = GetSiblingAt(position);
540   DCHECK(sibling != nullptr);
541   return sibling->ToLocation();
542 }
543 
GetSiblingAt(size_t position)544 LiveInterval* LiveInterval::GetSiblingAt(size_t position) {
545   LiveInterval* current = this;
546   while (current != nullptr && !current->IsDefinedAt(position)) {
547     current = current->GetNextSibling();
548   }
549   return current;
550 }
551 
552 }  // namespace art
553