1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the decoder
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 // Jyrki Alakuijala (jyrki@google.com)
14
15 #include <stdlib.h>
16
17 #include "src/dec/alphai_dec.h"
18 #include "src/dec/vp8li_dec.h"
19 #include "src/dsp/dsp.h"
20 #include "src/dsp/lossless.h"
21 #include "src/dsp/lossless_common.h"
22 #include "src/dsp/yuv.h"
23 #include "src/utils/endian_inl_utils.h"
24 #include "src/utils/huffman_utils.h"
25 #include "src/utils/utils.h"
26
27 #define NUM_ARGB_CACHE_ROWS 16
28
29 static const int kCodeLengthLiterals = 16;
30 static const int kCodeLengthRepeatCode = 16;
31 static const uint8_t kCodeLengthExtraBits[3] = { 2, 3, 7 };
32 static const uint8_t kCodeLengthRepeatOffsets[3] = { 3, 3, 11 };
33
34 // -----------------------------------------------------------------------------
35 // Five Huffman codes are used at each meta code:
36 // 1. green + length prefix codes + color cache codes,
37 // 2. alpha,
38 // 3. red,
39 // 4. blue, and,
40 // 5. distance prefix codes.
41 typedef enum {
42 GREEN = 0,
43 RED = 1,
44 BLUE = 2,
45 ALPHA = 3,
46 DIST = 4
47 } HuffIndex;
48
49 static const uint16_t kAlphabetSize[HUFFMAN_CODES_PER_META_CODE] = {
50 NUM_LITERAL_CODES + NUM_LENGTH_CODES,
51 NUM_LITERAL_CODES, NUM_LITERAL_CODES, NUM_LITERAL_CODES,
52 NUM_DISTANCE_CODES
53 };
54
55 static const uint8_t kLiteralMap[HUFFMAN_CODES_PER_META_CODE] = {
56 0, 1, 1, 1, 0
57 };
58
59 #define NUM_CODE_LENGTH_CODES 19
60 static const uint8_t kCodeLengthCodeOrder[NUM_CODE_LENGTH_CODES] = {
61 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
62 };
63
64 #define CODE_TO_PLANE_CODES 120
65 static const uint8_t kCodeToPlane[CODE_TO_PLANE_CODES] = {
66 0x18, 0x07, 0x17, 0x19, 0x28, 0x06, 0x27, 0x29, 0x16, 0x1a,
67 0x26, 0x2a, 0x38, 0x05, 0x37, 0x39, 0x15, 0x1b, 0x36, 0x3a,
68 0x25, 0x2b, 0x48, 0x04, 0x47, 0x49, 0x14, 0x1c, 0x35, 0x3b,
69 0x46, 0x4a, 0x24, 0x2c, 0x58, 0x45, 0x4b, 0x34, 0x3c, 0x03,
70 0x57, 0x59, 0x13, 0x1d, 0x56, 0x5a, 0x23, 0x2d, 0x44, 0x4c,
71 0x55, 0x5b, 0x33, 0x3d, 0x68, 0x02, 0x67, 0x69, 0x12, 0x1e,
72 0x66, 0x6a, 0x22, 0x2e, 0x54, 0x5c, 0x43, 0x4d, 0x65, 0x6b,
73 0x32, 0x3e, 0x78, 0x01, 0x77, 0x79, 0x53, 0x5d, 0x11, 0x1f,
74 0x64, 0x6c, 0x42, 0x4e, 0x76, 0x7a, 0x21, 0x2f, 0x75, 0x7b,
75 0x31, 0x3f, 0x63, 0x6d, 0x52, 0x5e, 0x00, 0x74, 0x7c, 0x41,
76 0x4f, 0x10, 0x20, 0x62, 0x6e, 0x30, 0x73, 0x7d, 0x51, 0x5f,
77 0x40, 0x72, 0x7e, 0x61, 0x6f, 0x50, 0x71, 0x7f, 0x60, 0x70
78 };
79
80 // Memory needed for lookup tables of one Huffman tree group. Red, blue, alpha
81 // and distance alphabets are constant (256 for red, blue and alpha, 40 for
82 // distance) and lookup table sizes for them in worst case are 630 and 410
83 // respectively. Size of green alphabet depends on color cache size and is equal
84 // to 256 (green component values) + 24 (length prefix values)
85 // + color_cache_size (between 0 and 2048).
86 // All values computed for 8-bit first level lookup with Mark Adler's tool:
87 // http://www.hdfgroup.org/ftp/lib-external/zlib/zlib-1.2.5/examples/enough.c
88 #define FIXED_TABLE_SIZE (630 * 3 + 410)
89 static const uint16_t kTableSize[12] = {
90 FIXED_TABLE_SIZE + 654,
91 FIXED_TABLE_SIZE + 656,
92 FIXED_TABLE_SIZE + 658,
93 FIXED_TABLE_SIZE + 662,
94 FIXED_TABLE_SIZE + 670,
95 FIXED_TABLE_SIZE + 686,
96 FIXED_TABLE_SIZE + 718,
97 FIXED_TABLE_SIZE + 782,
98 FIXED_TABLE_SIZE + 912,
99 FIXED_TABLE_SIZE + 1168,
100 FIXED_TABLE_SIZE + 1680,
101 FIXED_TABLE_SIZE + 2704
102 };
103
104 static int DecodeImageStream(int xsize, int ysize,
105 int is_level0,
106 VP8LDecoder* const dec,
107 uint32_t** const decoded_data);
108
109 //------------------------------------------------------------------------------
110
VP8LCheckSignature(const uint8_t * const data,size_t size)111 int VP8LCheckSignature(const uint8_t* const data, size_t size) {
112 return (size >= VP8L_FRAME_HEADER_SIZE &&
113 data[0] == VP8L_MAGIC_BYTE &&
114 (data[4] >> 5) == 0); // version
115 }
116
ReadImageInfo(VP8LBitReader * const br,int * const width,int * const height,int * const has_alpha)117 static int ReadImageInfo(VP8LBitReader* const br,
118 int* const width, int* const height,
119 int* const has_alpha) {
120 if (VP8LReadBits(br, 8) != VP8L_MAGIC_BYTE) return 0;
121 *width = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
122 *height = VP8LReadBits(br, VP8L_IMAGE_SIZE_BITS) + 1;
123 *has_alpha = VP8LReadBits(br, 1);
124 if (VP8LReadBits(br, VP8L_VERSION_BITS) != 0) return 0;
125 return !br->eos_;
126 }
127
VP8LGetInfo(const uint8_t * data,size_t data_size,int * const width,int * const height,int * const has_alpha)128 int VP8LGetInfo(const uint8_t* data, size_t data_size,
129 int* const width, int* const height, int* const has_alpha) {
130 if (data == NULL || data_size < VP8L_FRAME_HEADER_SIZE) {
131 return 0; // not enough data
132 } else if (!VP8LCheckSignature(data, data_size)) {
133 return 0; // bad signature
134 } else {
135 int w, h, a;
136 VP8LBitReader br;
137 VP8LInitBitReader(&br, data, data_size);
138 if (!ReadImageInfo(&br, &w, &h, &a)) {
139 return 0;
140 }
141 if (width != NULL) *width = w;
142 if (height != NULL) *height = h;
143 if (has_alpha != NULL) *has_alpha = a;
144 return 1;
145 }
146 }
147
148 //------------------------------------------------------------------------------
149
GetCopyDistance(int distance_symbol,VP8LBitReader * const br)150 static WEBP_INLINE int GetCopyDistance(int distance_symbol,
151 VP8LBitReader* const br) {
152 int extra_bits, offset;
153 if (distance_symbol < 4) {
154 return distance_symbol + 1;
155 }
156 extra_bits = (distance_symbol - 2) >> 1;
157 offset = (2 + (distance_symbol & 1)) << extra_bits;
158 return offset + VP8LReadBits(br, extra_bits) + 1;
159 }
160
GetCopyLength(int length_symbol,VP8LBitReader * const br)161 static WEBP_INLINE int GetCopyLength(int length_symbol,
162 VP8LBitReader* const br) {
163 // Length and distance prefixes are encoded the same way.
164 return GetCopyDistance(length_symbol, br);
165 }
166
PlaneCodeToDistance(int xsize,int plane_code)167 static WEBP_INLINE int PlaneCodeToDistance(int xsize, int plane_code) {
168 if (plane_code > CODE_TO_PLANE_CODES) {
169 return plane_code - CODE_TO_PLANE_CODES;
170 } else {
171 const int dist_code = kCodeToPlane[plane_code - 1];
172 const int yoffset = dist_code >> 4;
173 const int xoffset = 8 - (dist_code & 0xf);
174 const int dist = yoffset * xsize + xoffset;
175 return (dist >= 1) ? dist : 1; // dist<1 can happen if xsize is very small
176 }
177 }
178
179 //------------------------------------------------------------------------------
180 // Decodes the next Huffman code from bit-stream.
181 // FillBitWindow(br) needs to be called at minimum every second call
182 // to ReadSymbol, in order to pre-fetch enough bits.
ReadSymbol(const HuffmanCode * table,VP8LBitReader * const br)183 static WEBP_INLINE int ReadSymbol(const HuffmanCode* table,
184 VP8LBitReader* const br) {
185 int nbits;
186 uint32_t val = VP8LPrefetchBits(br);
187 table += val & HUFFMAN_TABLE_MASK;
188 nbits = table->bits - HUFFMAN_TABLE_BITS;
189 if (nbits > 0) {
190 VP8LSetBitPos(br, br->bit_pos_ + HUFFMAN_TABLE_BITS);
191 val = VP8LPrefetchBits(br);
192 table += table->value;
193 table += val & ((1 << nbits) - 1);
194 }
195 VP8LSetBitPos(br, br->bit_pos_ + table->bits);
196 return table->value;
197 }
198
199 // Reads packed symbol depending on GREEN channel
200 #define BITS_SPECIAL_MARKER 0x100 // something large enough (and a bit-mask)
201 #define PACKED_NON_LITERAL_CODE 0 // must be < NUM_LITERAL_CODES
ReadPackedSymbols(const HTreeGroup * group,VP8LBitReader * const br,uint32_t * const dst)202 static WEBP_INLINE int ReadPackedSymbols(const HTreeGroup* group,
203 VP8LBitReader* const br,
204 uint32_t* const dst) {
205 const uint32_t val = VP8LPrefetchBits(br) & (HUFFMAN_PACKED_TABLE_SIZE - 1);
206 const HuffmanCode32 code = group->packed_table[val];
207 assert(group->use_packed_table);
208 if (code.bits < BITS_SPECIAL_MARKER) {
209 VP8LSetBitPos(br, br->bit_pos_ + code.bits);
210 *dst = code.value;
211 return PACKED_NON_LITERAL_CODE;
212 } else {
213 VP8LSetBitPos(br, br->bit_pos_ + code.bits - BITS_SPECIAL_MARKER);
214 assert(code.value >= NUM_LITERAL_CODES);
215 return code.value;
216 }
217 }
218
AccumulateHCode(HuffmanCode hcode,int shift,HuffmanCode32 * const huff)219 static int AccumulateHCode(HuffmanCode hcode, int shift,
220 HuffmanCode32* const huff) {
221 huff->bits += hcode.bits;
222 huff->value |= (uint32_t)hcode.value << shift;
223 assert(huff->bits <= HUFFMAN_TABLE_BITS);
224 return hcode.bits;
225 }
226
BuildPackedTable(HTreeGroup * const htree_group)227 static void BuildPackedTable(HTreeGroup* const htree_group) {
228 uint32_t code;
229 for (code = 0; code < HUFFMAN_PACKED_TABLE_SIZE; ++code) {
230 uint32_t bits = code;
231 HuffmanCode32* const huff = &htree_group->packed_table[bits];
232 HuffmanCode hcode = htree_group->htrees[GREEN][bits];
233 if (hcode.value >= NUM_LITERAL_CODES) {
234 huff->bits = hcode.bits + BITS_SPECIAL_MARKER;
235 huff->value = hcode.value;
236 } else {
237 huff->bits = 0;
238 huff->value = 0;
239 bits >>= AccumulateHCode(hcode, 8, huff);
240 bits >>= AccumulateHCode(htree_group->htrees[RED][bits], 16, huff);
241 bits >>= AccumulateHCode(htree_group->htrees[BLUE][bits], 0, huff);
242 bits >>= AccumulateHCode(htree_group->htrees[ALPHA][bits], 24, huff);
243 (void)bits;
244 }
245 }
246 }
247
ReadHuffmanCodeLengths(VP8LDecoder * const dec,const int * const code_length_code_lengths,int num_symbols,int * const code_lengths)248 static int ReadHuffmanCodeLengths(
249 VP8LDecoder* const dec, const int* const code_length_code_lengths,
250 int num_symbols, int* const code_lengths) {
251 int ok = 0;
252 VP8LBitReader* const br = &dec->br_;
253 int symbol;
254 int max_symbol;
255 int prev_code_len = DEFAULT_CODE_LENGTH;
256 HuffmanCode table[1 << LENGTHS_TABLE_BITS];
257
258 if (!VP8LBuildHuffmanTable(table, LENGTHS_TABLE_BITS,
259 code_length_code_lengths,
260 NUM_CODE_LENGTH_CODES)) {
261 goto End;
262 }
263
264 if (VP8LReadBits(br, 1)) { // use length
265 const int length_nbits = 2 + 2 * VP8LReadBits(br, 3);
266 max_symbol = 2 + VP8LReadBits(br, length_nbits);
267 if (max_symbol > num_symbols) {
268 goto End;
269 }
270 } else {
271 max_symbol = num_symbols;
272 }
273
274 symbol = 0;
275 while (symbol < num_symbols) {
276 const HuffmanCode* p;
277 int code_len;
278 if (max_symbol-- == 0) break;
279 VP8LFillBitWindow(br);
280 p = &table[VP8LPrefetchBits(br) & LENGTHS_TABLE_MASK];
281 VP8LSetBitPos(br, br->bit_pos_ + p->bits);
282 code_len = p->value;
283 if (code_len < kCodeLengthLiterals) {
284 code_lengths[symbol++] = code_len;
285 if (code_len != 0) prev_code_len = code_len;
286 } else {
287 const int use_prev = (code_len == kCodeLengthRepeatCode);
288 const int slot = code_len - kCodeLengthLiterals;
289 const int extra_bits = kCodeLengthExtraBits[slot];
290 const int repeat_offset = kCodeLengthRepeatOffsets[slot];
291 int repeat = VP8LReadBits(br, extra_bits) + repeat_offset;
292 if (symbol + repeat > num_symbols) {
293 goto End;
294 } else {
295 const int length = use_prev ? prev_code_len : 0;
296 while (repeat-- > 0) code_lengths[symbol++] = length;
297 }
298 }
299 }
300 ok = 1;
301
302 End:
303 if (!ok) dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
304 return ok;
305 }
306
307 // 'code_lengths' is pre-allocated temporary buffer, used for creating Huffman
308 // tree.
ReadHuffmanCode(int alphabet_size,VP8LDecoder * const dec,int * const code_lengths,HuffmanCode * const table)309 static int ReadHuffmanCode(int alphabet_size, VP8LDecoder* const dec,
310 int* const code_lengths, HuffmanCode* const table) {
311 int ok = 0;
312 int size = 0;
313 VP8LBitReader* const br = &dec->br_;
314 const int simple_code = VP8LReadBits(br, 1);
315
316 memset(code_lengths, 0, alphabet_size * sizeof(*code_lengths));
317
318 if (simple_code) { // Read symbols, codes & code lengths directly.
319 const int num_symbols = VP8LReadBits(br, 1) + 1;
320 const int first_symbol_len_code = VP8LReadBits(br, 1);
321 // The first code is either 1 bit or 8 bit code.
322 int symbol = VP8LReadBits(br, (first_symbol_len_code == 0) ? 1 : 8);
323 code_lengths[symbol] = 1;
324 // The second code (if present), is always 8 bit long.
325 if (num_symbols == 2) {
326 symbol = VP8LReadBits(br, 8);
327 code_lengths[symbol] = 1;
328 }
329 ok = 1;
330 } else { // Decode Huffman-coded code lengths.
331 int i;
332 int code_length_code_lengths[NUM_CODE_LENGTH_CODES] = { 0 };
333 const int num_codes = VP8LReadBits(br, 4) + 4;
334 if (num_codes > NUM_CODE_LENGTH_CODES) {
335 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
336 return 0;
337 }
338
339 for (i = 0; i < num_codes; ++i) {
340 code_length_code_lengths[kCodeLengthCodeOrder[i]] = VP8LReadBits(br, 3);
341 }
342 ok = ReadHuffmanCodeLengths(dec, code_length_code_lengths, alphabet_size,
343 code_lengths);
344 }
345
346 ok = ok && !br->eos_;
347 if (ok) {
348 size = VP8LBuildHuffmanTable(table, HUFFMAN_TABLE_BITS,
349 code_lengths, alphabet_size);
350 }
351 if (!ok || size == 0) {
352 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
353 return 0;
354 }
355 return size;
356 }
357
ReadHuffmanCodes(VP8LDecoder * const dec,int xsize,int ysize,int color_cache_bits,int allow_recursion)358 static int ReadHuffmanCodes(VP8LDecoder* const dec, int xsize, int ysize,
359 int color_cache_bits, int allow_recursion) {
360 int i, j;
361 VP8LBitReader* const br = &dec->br_;
362 VP8LMetadata* const hdr = &dec->hdr_;
363 uint32_t* huffman_image = NULL;
364 HTreeGroup* htree_groups = NULL;
365 // When reading htrees, some might be unused, as the format allows it.
366 // We will still read them but put them in this htree_group_bogus.
367 HTreeGroup htree_group_bogus;
368 HuffmanCode* huffman_tables = NULL;
369 HuffmanCode* huffman_tables_bogus = NULL;
370 HuffmanCode* next = NULL;
371 int num_htree_groups = 1;
372 int num_htree_groups_max = 1;
373 int max_alphabet_size = 0;
374 int* code_lengths = NULL;
375 const int table_size = kTableSize[color_cache_bits];
376 int* mapping = NULL;
377 int ok = 0;
378
379 if (allow_recursion && VP8LReadBits(br, 1)) {
380 // use meta Huffman codes.
381 const int huffman_precision = VP8LReadBits(br, 3) + 2;
382 const int huffman_xsize = VP8LSubSampleSize(xsize, huffman_precision);
383 const int huffman_ysize = VP8LSubSampleSize(ysize, huffman_precision);
384 const int huffman_pixs = huffman_xsize * huffman_ysize;
385 if (!DecodeImageStream(huffman_xsize, huffman_ysize, 0, dec,
386 &huffman_image)) {
387 goto Error;
388 }
389 hdr->huffman_subsample_bits_ = huffman_precision;
390 for (i = 0; i < huffman_pixs; ++i) {
391 // The huffman data is stored in red and green bytes.
392 const int group = (huffman_image[i] >> 8) & 0xffff;
393 huffman_image[i] = group;
394 if (group >= num_htree_groups_max) {
395 num_htree_groups_max = group + 1;
396 }
397 }
398 // Check the validity of num_htree_groups_max. If it seems too big, use a
399 // smaller value for later. This will prevent big memory allocations to end
400 // up with a bad bitstream anyway.
401 // The value of 1000 is totally arbitrary. We know that num_htree_groups_max
402 // is smaller than (1 << 16) and should be smaller than the number of pixels
403 // (though the format allows it to be bigger).
404 if (num_htree_groups_max > 1000 || num_htree_groups_max > xsize * ysize) {
405 // Create a mapping from the used indices to the minimal set of used
406 // values [0, num_htree_groups)
407 mapping = (int*)WebPSafeMalloc(num_htree_groups_max, sizeof(*mapping));
408 if (mapping == NULL) {
409 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
410 goto Error;
411 }
412 // -1 means a value is unmapped, and therefore unused in the Huffman
413 // image.
414 memset(mapping, 0xff, num_htree_groups_max * sizeof(*mapping));
415 for (num_htree_groups = 0, i = 0; i < huffman_pixs; ++i) {
416 // Get the current mapping for the group and remap the Huffman image.
417 int* const mapped_group = &mapping[huffman_image[i]];
418 if (*mapped_group == -1) *mapped_group = num_htree_groups++;
419 huffman_image[i] = *mapped_group;
420 }
421 huffman_tables_bogus = (HuffmanCode*)WebPSafeMalloc(
422 table_size, sizeof(*huffman_tables_bogus));
423 if (huffman_tables_bogus == NULL) {
424 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
425 goto Error;
426 }
427 } else {
428 num_htree_groups = num_htree_groups_max;
429 }
430 }
431
432 if (br->eos_) goto Error;
433
434 // Find maximum alphabet size for the htree group.
435 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
436 int alphabet_size = kAlphabetSize[j];
437 if (j == 0 && color_cache_bits > 0) {
438 alphabet_size += 1 << color_cache_bits;
439 }
440 if (max_alphabet_size < alphabet_size) {
441 max_alphabet_size = alphabet_size;
442 }
443 }
444
445 code_lengths = (int*)WebPSafeCalloc((uint64_t)max_alphabet_size,
446 sizeof(*code_lengths));
447 huffman_tables = (HuffmanCode*)WebPSafeMalloc(num_htree_groups * table_size,
448 sizeof(*huffman_tables));
449 htree_groups = VP8LHtreeGroupsNew(num_htree_groups);
450
451 if (htree_groups == NULL || code_lengths == NULL || huffman_tables == NULL) {
452 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
453 goto Error;
454 }
455
456 next = huffman_tables;
457 for (i = 0; i < num_htree_groups_max; ++i) {
458 // If the index "i" is unused in the Huffman image, read the coefficients
459 // but store them to a bogus htree_group.
460 const int is_bogus = (mapping != NULL && mapping[i] == -1);
461 HTreeGroup* const htree_group =
462 is_bogus ? &htree_group_bogus :
463 &htree_groups[(mapping == NULL) ? i : mapping[i]];
464 HuffmanCode** const htrees = htree_group->htrees;
465 HuffmanCode* huffman_tables_i = is_bogus ? huffman_tables_bogus : next;
466 int size;
467 int total_size = 0;
468 int is_trivial_literal = 1;
469 int max_bits = 0;
470 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) {
471 int alphabet_size = kAlphabetSize[j];
472 htrees[j] = huffman_tables_i;
473 if (j == 0 && color_cache_bits > 0) {
474 alphabet_size += 1 << color_cache_bits;
475 }
476 size =
477 ReadHuffmanCode(alphabet_size, dec, code_lengths, huffman_tables_i);
478 if (size == 0) {
479 goto Error;
480 }
481 if (is_trivial_literal && kLiteralMap[j] == 1) {
482 is_trivial_literal = (huffman_tables_i->bits == 0);
483 }
484 total_size += huffman_tables_i->bits;
485 huffman_tables_i += size;
486 if (j <= ALPHA) {
487 int local_max_bits = code_lengths[0];
488 int k;
489 for (k = 1; k < alphabet_size; ++k) {
490 if (code_lengths[k] > local_max_bits) {
491 local_max_bits = code_lengths[k];
492 }
493 }
494 max_bits += local_max_bits;
495 }
496 }
497 if (!is_bogus) next = huffman_tables_i;
498 htree_group->is_trivial_literal = is_trivial_literal;
499 htree_group->is_trivial_code = 0;
500 if (is_trivial_literal) {
501 const int red = htrees[RED][0].value;
502 const int blue = htrees[BLUE][0].value;
503 const int alpha = htrees[ALPHA][0].value;
504 htree_group->literal_arb = ((uint32_t)alpha << 24) | (red << 16) | blue;
505 if (total_size == 0 && htrees[GREEN][0].value < NUM_LITERAL_CODES) {
506 htree_group->is_trivial_code = 1;
507 htree_group->literal_arb |= htrees[GREEN][0].value << 8;
508 }
509 }
510 htree_group->use_packed_table =
511 !htree_group->is_trivial_code && (max_bits < HUFFMAN_PACKED_BITS);
512 if (htree_group->use_packed_table) BuildPackedTable(htree_group);
513 }
514 ok = 1;
515
516 // All OK. Finalize pointers.
517 hdr->huffman_image_ = huffman_image;
518 hdr->num_htree_groups_ = num_htree_groups;
519 hdr->htree_groups_ = htree_groups;
520 hdr->huffman_tables_ = huffman_tables;
521
522 Error:
523 WebPSafeFree(code_lengths);
524 WebPSafeFree(huffman_tables_bogus);
525 WebPSafeFree(mapping);
526 if (!ok) {
527 WebPSafeFree(huffman_image);
528 WebPSafeFree(huffman_tables);
529 VP8LHtreeGroupsFree(htree_groups);
530 }
531 return ok;
532 }
533
534 //------------------------------------------------------------------------------
535 // Scaling.
536
537 #if !defined(WEBP_REDUCE_SIZE)
AllocateAndInitRescaler(VP8LDecoder * const dec,VP8Io * const io)538 static int AllocateAndInitRescaler(VP8LDecoder* const dec, VP8Io* const io) {
539 const int num_channels = 4;
540 const int in_width = io->mb_w;
541 const int out_width = io->scaled_width;
542 const int in_height = io->mb_h;
543 const int out_height = io->scaled_height;
544 const uint64_t work_size = 2 * num_channels * (uint64_t)out_width;
545 rescaler_t* work; // Rescaler work area.
546 const uint64_t scaled_data_size = (uint64_t)out_width;
547 uint32_t* scaled_data; // Temporary storage for scaled BGRA data.
548 const uint64_t memory_size = sizeof(*dec->rescaler) +
549 work_size * sizeof(*work) +
550 scaled_data_size * sizeof(*scaled_data);
551 uint8_t* memory = (uint8_t*)WebPSafeMalloc(memory_size, sizeof(*memory));
552 if (memory == NULL) {
553 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
554 return 0;
555 }
556 assert(dec->rescaler_memory == NULL);
557 dec->rescaler_memory = memory;
558
559 dec->rescaler = (WebPRescaler*)memory;
560 memory += sizeof(*dec->rescaler);
561 work = (rescaler_t*)memory;
562 memory += work_size * sizeof(*work);
563 scaled_data = (uint32_t*)memory;
564
565 WebPRescalerInit(dec->rescaler, in_width, in_height, (uint8_t*)scaled_data,
566 out_width, out_height, 0, num_channels, work);
567 return 1;
568 }
569 #endif // WEBP_REDUCE_SIZE
570
571 //------------------------------------------------------------------------------
572 // Export to ARGB
573
574 #if !defined(WEBP_REDUCE_SIZE)
575
576 // We have special "export" function since we need to convert from BGRA
Export(WebPRescaler * const rescaler,WEBP_CSP_MODE colorspace,int rgba_stride,uint8_t * const rgba)577 static int Export(WebPRescaler* const rescaler, WEBP_CSP_MODE colorspace,
578 int rgba_stride, uint8_t* const rgba) {
579 uint32_t* const src = (uint32_t*)rescaler->dst;
580 const int dst_width = rescaler->dst_width;
581 int num_lines_out = 0;
582 while (WebPRescalerHasPendingOutput(rescaler)) {
583 uint8_t* const dst = rgba + num_lines_out * rgba_stride;
584 WebPRescalerExportRow(rescaler);
585 WebPMultARGBRow(src, dst_width, 1);
586 VP8LConvertFromBGRA(src, dst_width, colorspace, dst);
587 ++num_lines_out;
588 }
589 return num_lines_out;
590 }
591
592 // Emit scaled rows.
EmitRescaledRowsRGBA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h,uint8_t * const out,int out_stride)593 static int EmitRescaledRowsRGBA(const VP8LDecoder* const dec,
594 uint8_t* in, int in_stride, int mb_h,
595 uint8_t* const out, int out_stride) {
596 const WEBP_CSP_MODE colorspace = dec->output_->colorspace;
597 int num_lines_in = 0;
598 int num_lines_out = 0;
599 while (num_lines_in < mb_h) {
600 uint8_t* const row_in = in + num_lines_in * in_stride;
601 uint8_t* const row_out = out + num_lines_out * out_stride;
602 const int lines_left = mb_h - num_lines_in;
603 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
604 int lines_imported;
605 assert(needed_lines > 0 && needed_lines <= lines_left);
606 WebPMultARGBRows(row_in, in_stride,
607 dec->rescaler->src_width, needed_lines, 0);
608 lines_imported =
609 WebPRescalerImport(dec->rescaler, lines_left, row_in, in_stride);
610 assert(lines_imported == needed_lines);
611 num_lines_in += lines_imported;
612 num_lines_out += Export(dec->rescaler, colorspace, out_stride, row_out);
613 }
614 return num_lines_out;
615 }
616
617 #endif // WEBP_REDUCE_SIZE
618
619 // Emit rows without any scaling.
EmitRows(WEBP_CSP_MODE colorspace,const uint8_t * row_in,int in_stride,int mb_w,int mb_h,uint8_t * const out,int out_stride)620 static int EmitRows(WEBP_CSP_MODE colorspace,
621 const uint8_t* row_in, int in_stride,
622 int mb_w, int mb_h,
623 uint8_t* const out, int out_stride) {
624 int lines = mb_h;
625 uint8_t* row_out = out;
626 while (lines-- > 0) {
627 VP8LConvertFromBGRA((const uint32_t*)row_in, mb_w, colorspace, row_out);
628 row_in += in_stride;
629 row_out += out_stride;
630 }
631 return mb_h; // Num rows out == num rows in.
632 }
633
634 //------------------------------------------------------------------------------
635 // Export to YUVA
636
ConvertToYUVA(const uint32_t * const src,int width,int y_pos,const WebPDecBuffer * const output)637 static void ConvertToYUVA(const uint32_t* const src, int width, int y_pos,
638 const WebPDecBuffer* const output) {
639 const WebPYUVABuffer* const buf = &output->u.YUVA;
640
641 // first, the luma plane
642 WebPConvertARGBToY(src, buf->y + y_pos * buf->y_stride, width);
643
644 // then U/V planes
645 {
646 uint8_t* const u = buf->u + (y_pos >> 1) * buf->u_stride;
647 uint8_t* const v = buf->v + (y_pos >> 1) * buf->v_stride;
648 // even lines: store values
649 // odd lines: average with previous values
650 WebPConvertARGBToUV(src, u, v, width, !(y_pos & 1));
651 }
652 // Lastly, store alpha if needed.
653 if (buf->a != NULL) {
654 uint8_t* const a = buf->a + y_pos * buf->a_stride;
655 #if defined(WORDS_BIGENDIAN)
656 WebPExtractAlpha((uint8_t*)src + 0, 0, width, 1, a, 0);
657 #else
658 WebPExtractAlpha((uint8_t*)src + 3, 0, width, 1, a, 0);
659 #endif
660 }
661 }
662
ExportYUVA(const VP8LDecoder * const dec,int y_pos)663 static int ExportYUVA(const VP8LDecoder* const dec, int y_pos) {
664 WebPRescaler* const rescaler = dec->rescaler;
665 uint32_t* const src = (uint32_t*)rescaler->dst;
666 const int dst_width = rescaler->dst_width;
667 int num_lines_out = 0;
668 while (WebPRescalerHasPendingOutput(rescaler)) {
669 WebPRescalerExportRow(rescaler);
670 WebPMultARGBRow(src, dst_width, 1);
671 ConvertToYUVA(src, dst_width, y_pos, dec->output_);
672 ++y_pos;
673 ++num_lines_out;
674 }
675 return num_lines_out;
676 }
677
EmitRescaledRowsYUVA(const VP8LDecoder * const dec,uint8_t * in,int in_stride,int mb_h)678 static int EmitRescaledRowsYUVA(const VP8LDecoder* const dec,
679 uint8_t* in, int in_stride, int mb_h) {
680 int num_lines_in = 0;
681 int y_pos = dec->last_out_row_;
682 while (num_lines_in < mb_h) {
683 const int lines_left = mb_h - num_lines_in;
684 const int needed_lines = WebPRescaleNeededLines(dec->rescaler, lines_left);
685 int lines_imported;
686 WebPMultARGBRows(in, in_stride, dec->rescaler->src_width, needed_lines, 0);
687 lines_imported =
688 WebPRescalerImport(dec->rescaler, lines_left, in, in_stride);
689 assert(lines_imported == needed_lines);
690 num_lines_in += lines_imported;
691 in += needed_lines * in_stride;
692 y_pos += ExportYUVA(dec, y_pos);
693 }
694 return y_pos;
695 }
696
EmitRowsYUVA(const VP8LDecoder * const dec,const uint8_t * in,int in_stride,int mb_w,int num_rows)697 static int EmitRowsYUVA(const VP8LDecoder* const dec,
698 const uint8_t* in, int in_stride,
699 int mb_w, int num_rows) {
700 int y_pos = dec->last_out_row_;
701 while (num_rows-- > 0) {
702 ConvertToYUVA((const uint32_t*)in, mb_w, y_pos, dec->output_);
703 in += in_stride;
704 ++y_pos;
705 }
706 return y_pos;
707 }
708
709 //------------------------------------------------------------------------------
710 // Cropping.
711
712 // Sets io->mb_y, io->mb_h & io->mb_w according to start row, end row and
713 // crop options. Also updates the input data pointer, so that it points to the
714 // start of the cropped window. Note that pixels are in ARGB format even if
715 // 'in_data' is uint8_t*.
716 // Returns true if the crop window is not empty.
SetCropWindow(VP8Io * const io,int y_start,int y_end,uint8_t ** const in_data,int pixel_stride)717 static int SetCropWindow(VP8Io* const io, int y_start, int y_end,
718 uint8_t** const in_data, int pixel_stride) {
719 assert(y_start < y_end);
720 assert(io->crop_left < io->crop_right);
721 if (y_end > io->crop_bottom) {
722 y_end = io->crop_bottom; // make sure we don't overflow on last row.
723 }
724 if (y_start < io->crop_top) {
725 const int delta = io->crop_top - y_start;
726 y_start = io->crop_top;
727 *in_data += delta * pixel_stride;
728 }
729 if (y_start >= y_end) return 0; // Crop window is empty.
730
731 *in_data += io->crop_left * sizeof(uint32_t);
732
733 io->mb_y = y_start - io->crop_top;
734 io->mb_w = io->crop_right - io->crop_left;
735 io->mb_h = y_end - y_start;
736 return 1; // Non-empty crop window.
737 }
738
739 //------------------------------------------------------------------------------
740
GetMetaIndex(const uint32_t * const image,int xsize,int bits,int x,int y)741 static WEBP_INLINE int GetMetaIndex(
742 const uint32_t* const image, int xsize, int bits, int x, int y) {
743 if (bits == 0) return 0;
744 return image[xsize * (y >> bits) + (x >> bits)];
745 }
746
GetHtreeGroupForPos(VP8LMetadata * const hdr,int x,int y)747 static WEBP_INLINE HTreeGroup* GetHtreeGroupForPos(VP8LMetadata* const hdr,
748 int x, int y) {
749 const int meta_index = GetMetaIndex(hdr->huffman_image_, hdr->huffman_xsize_,
750 hdr->huffman_subsample_bits_, x, y);
751 assert(meta_index < hdr->num_htree_groups_);
752 return hdr->htree_groups_ + meta_index;
753 }
754
755 //------------------------------------------------------------------------------
756 // Main loop, with custom row-processing function
757
758 typedef void (*ProcessRowsFunc)(VP8LDecoder* const dec, int row);
759
ApplyInverseTransforms(VP8LDecoder * const dec,int num_rows,const uint32_t * const rows)760 static void ApplyInverseTransforms(VP8LDecoder* const dec, int num_rows,
761 const uint32_t* const rows) {
762 int n = dec->next_transform_;
763 const int cache_pixs = dec->width_ * num_rows;
764 const int start_row = dec->last_row_;
765 const int end_row = start_row + num_rows;
766 const uint32_t* rows_in = rows;
767 uint32_t* const rows_out = dec->argb_cache_;
768
769 // Inverse transforms.
770 while (n-- > 0) {
771 VP8LTransform* const transform = &dec->transforms_[n];
772 VP8LInverseTransform(transform, start_row, end_row, rows_in, rows_out);
773 rows_in = rows_out;
774 }
775 if (rows_in != rows_out) {
776 // No transform called, hence just copy.
777 memcpy(rows_out, rows_in, cache_pixs * sizeof(*rows_out));
778 }
779 }
780
781 // Processes (transforms, scales & color-converts) the rows decoded after the
782 // last call.
ProcessRows(VP8LDecoder * const dec,int row)783 static void ProcessRows(VP8LDecoder* const dec, int row) {
784 const uint32_t* const rows = dec->pixels_ + dec->width_ * dec->last_row_;
785 const int num_rows = row - dec->last_row_;
786
787 assert(row <= dec->io_->crop_bottom);
788 // We can't process more than NUM_ARGB_CACHE_ROWS at a time (that's the size
789 // of argb_cache_), but we currently don't need more than that.
790 assert(num_rows <= NUM_ARGB_CACHE_ROWS);
791 if (num_rows > 0) { // Emit output.
792 VP8Io* const io = dec->io_;
793 uint8_t* rows_data = (uint8_t*)dec->argb_cache_;
794 const int in_stride = io->width * sizeof(uint32_t); // in unit of RGBA
795
796 ApplyInverseTransforms(dec, num_rows, rows);
797 if (!SetCropWindow(io, dec->last_row_, row, &rows_data, in_stride)) {
798 // Nothing to output (this time).
799 } else {
800 const WebPDecBuffer* const output = dec->output_;
801 if (WebPIsRGBMode(output->colorspace)) { // convert to RGBA
802 const WebPRGBABuffer* const buf = &output->u.RGBA;
803 uint8_t* const rgba = buf->rgba + dec->last_out_row_ * buf->stride;
804 const int num_rows_out =
805 #if !defined(WEBP_REDUCE_SIZE)
806 io->use_scaling ?
807 EmitRescaledRowsRGBA(dec, rows_data, in_stride, io->mb_h,
808 rgba, buf->stride) :
809 #endif // WEBP_REDUCE_SIZE
810 EmitRows(output->colorspace, rows_data, in_stride,
811 io->mb_w, io->mb_h, rgba, buf->stride);
812 // Update 'last_out_row_'.
813 dec->last_out_row_ += num_rows_out;
814 } else { // convert to YUVA
815 dec->last_out_row_ = io->use_scaling ?
816 EmitRescaledRowsYUVA(dec, rows_data, in_stride, io->mb_h) :
817 EmitRowsYUVA(dec, rows_data, in_stride, io->mb_w, io->mb_h);
818 }
819 assert(dec->last_out_row_ <= output->height);
820 }
821 }
822
823 // Update 'last_row_'.
824 dec->last_row_ = row;
825 assert(dec->last_row_ <= dec->height_);
826 }
827
828 // Row-processing for the special case when alpha data contains only one
829 // transform (color indexing), and trivial non-green literals.
Is8bOptimizable(const VP8LMetadata * const hdr)830 static int Is8bOptimizable(const VP8LMetadata* const hdr) {
831 int i;
832 if (hdr->color_cache_size_ > 0) return 0;
833 // When the Huffman tree contains only one symbol, we can skip the
834 // call to ReadSymbol() for red/blue/alpha channels.
835 for (i = 0; i < hdr->num_htree_groups_; ++i) {
836 HuffmanCode** const htrees = hdr->htree_groups_[i].htrees;
837 if (htrees[RED][0].bits > 0) return 0;
838 if (htrees[BLUE][0].bits > 0) return 0;
839 if (htrees[ALPHA][0].bits > 0) return 0;
840 }
841 return 1;
842 }
843
AlphaApplyFilter(ALPHDecoder * const alph_dec,int first_row,int last_row,uint8_t * out,int stride)844 static void AlphaApplyFilter(ALPHDecoder* const alph_dec,
845 int first_row, int last_row,
846 uint8_t* out, int stride) {
847 if (alph_dec->filter_ != WEBP_FILTER_NONE) {
848 int y;
849 const uint8_t* prev_line = alph_dec->prev_line_;
850 assert(WebPUnfilters[alph_dec->filter_] != NULL);
851 for (y = first_row; y < last_row; ++y) {
852 WebPUnfilters[alph_dec->filter_](prev_line, out, out, stride);
853 prev_line = out;
854 out += stride;
855 }
856 alph_dec->prev_line_ = prev_line;
857 }
858 }
859
ExtractPalettedAlphaRows(VP8LDecoder * const dec,int last_row)860 static void ExtractPalettedAlphaRows(VP8LDecoder* const dec, int last_row) {
861 // For vertical and gradient filtering, we need to decode the part above the
862 // crop_top row, in order to have the correct spatial predictors.
863 ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
864 const int top_row =
865 (alph_dec->filter_ == WEBP_FILTER_NONE ||
866 alph_dec->filter_ == WEBP_FILTER_HORIZONTAL) ? dec->io_->crop_top
867 : dec->last_row_;
868 const int first_row = (dec->last_row_ < top_row) ? top_row : dec->last_row_;
869 assert(last_row <= dec->io_->crop_bottom);
870 if (last_row > first_row) {
871 // Special method for paletted alpha data. We only process the cropped area.
872 const int width = dec->io_->width;
873 uint8_t* out = alph_dec->output_ + width * first_row;
874 const uint8_t* const in =
875 (uint8_t*)dec->pixels_ + dec->width_ * first_row;
876 VP8LTransform* const transform = &dec->transforms_[0];
877 assert(dec->next_transform_ == 1);
878 assert(transform->type_ == COLOR_INDEXING_TRANSFORM);
879 VP8LColorIndexInverseTransformAlpha(transform, first_row, last_row,
880 in, out);
881 AlphaApplyFilter(alph_dec, first_row, last_row, out, width);
882 }
883 dec->last_row_ = dec->last_out_row_ = last_row;
884 }
885
886 //------------------------------------------------------------------------------
887 // Helper functions for fast pattern copy (8b and 32b)
888
889 // cyclic rotation of pattern word
Rotate8b(uint32_t V)890 static WEBP_INLINE uint32_t Rotate8b(uint32_t V) {
891 #if defined(WORDS_BIGENDIAN)
892 return ((V & 0xff000000u) >> 24) | (V << 8);
893 #else
894 return ((V & 0xffu) << 24) | (V >> 8);
895 #endif
896 }
897
898 // copy 1, 2 or 4-bytes pattern
CopySmallPattern8b(const uint8_t * src,uint8_t * dst,int length,uint32_t pattern)899 static WEBP_INLINE void CopySmallPattern8b(const uint8_t* src, uint8_t* dst,
900 int length, uint32_t pattern) {
901 int i;
902 // align 'dst' to 4-bytes boundary. Adjust the pattern along the way.
903 while ((uintptr_t)dst & 3) {
904 *dst++ = *src++;
905 pattern = Rotate8b(pattern);
906 --length;
907 }
908 // Copy the pattern 4 bytes at a time.
909 for (i = 0; i < (length >> 2); ++i) {
910 ((uint32_t*)dst)[i] = pattern;
911 }
912 // Finish with left-overs. 'pattern' is still correctly positioned,
913 // so no Rotate8b() call is needed.
914 for (i <<= 2; i < length; ++i) {
915 dst[i] = src[i];
916 }
917 }
918
CopyBlock8b(uint8_t * const dst,int dist,int length)919 static WEBP_INLINE void CopyBlock8b(uint8_t* const dst, int dist, int length) {
920 const uint8_t* src = dst - dist;
921 if (length >= 8) {
922 uint32_t pattern = 0;
923 switch (dist) {
924 case 1:
925 pattern = src[0];
926 #if defined(__arm__) || defined(_M_ARM) // arm doesn't like multiply that much
927 pattern |= pattern << 8;
928 pattern |= pattern << 16;
929 #elif defined(WEBP_USE_MIPS_DSP_R2)
930 __asm__ volatile ("replv.qb %0, %0" : "+r"(pattern));
931 #else
932 pattern = 0x01010101u * pattern;
933 #endif
934 break;
935 case 2:
936 #if !defined(WORDS_BIGENDIAN)
937 memcpy(&pattern, src, sizeof(uint16_t));
938 #else
939 pattern = ((uint32_t)src[0] << 8) | src[1];
940 #endif
941 #if defined(__arm__) || defined(_M_ARM)
942 pattern |= pattern << 16;
943 #elif defined(WEBP_USE_MIPS_DSP_R2)
944 __asm__ volatile ("replv.ph %0, %0" : "+r"(pattern));
945 #else
946 pattern = 0x00010001u * pattern;
947 #endif
948 break;
949 case 4:
950 memcpy(&pattern, src, sizeof(uint32_t));
951 break;
952 default:
953 goto Copy;
954 break;
955 }
956 CopySmallPattern8b(src, dst, length, pattern);
957 return;
958 }
959 Copy:
960 if (dist >= length) { // no overlap -> use memcpy()
961 memcpy(dst, src, length * sizeof(*dst));
962 } else {
963 int i;
964 for (i = 0; i < length; ++i) dst[i] = src[i];
965 }
966 }
967
968 // copy pattern of 1 or 2 uint32_t's
CopySmallPattern32b(const uint32_t * src,uint32_t * dst,int length,uint64_t pattern)969 static WEBP_INLINE void CopySmallPattern32b(const uint32_t* src,
970 uint32_t* dst,
971 int length, uint64_t pattern) {
972 int i;
973 if ((uintptr_t)dst & 4) { // Align 'dst' to 8-bytes boundary.
974 *dst++ = *src++;
975 pattern = (pattern >> 32) | (pattern << 32);
976 --length;
977 }
978 assert(0 == ((uintptr_t)dst & 7));
979 for (i = 0; i < (length >> 1); ++i) {
980 ((uint64_t*)dst)[i] = pattern; // Copy the pattern 8 bytes at a time.
981 }
982 if (length & 1) { // Finish with left-over.
983 dst[i << 1] = src[i << 1];
984 }
985 }
986
CopyBlock32b(uint32_t * const dst,int dist,int length)987 static WEBP_INLINE void CopyBlock32b(uint32_t* const dst,
988 int dist, int length) {
989 const uint32_t* const src = dst - dist;
990 if (dist <= 2 && length >= 4 && ((uintptr_t)dst & 3) == 0) {
991 uint64_t pattern;
992 if (dist == 1) {
993 pattern = (uint64_t)src[0];
994 pattern |= pattern << 32;
995 } else {
996 memcpy(&pattern, src, sizeof(pattern));
997 }
998 CopySmallPattern32b(src, dst, length, pattern);
999 } else if (dist >= length) { // no overlap
1000 memcpy(dst, src, length * sizeof(*dst));
1001 } else {
1002 int i;
1003 for (i = 0; i < length; ++i) dst[i] = src[i];
1004 }
1005 }
1006
1007 //------------------------------------------------------------------------------
1008
DecodeAlphaData(VP8LDecoder * const dec,uint8_t * const data,int width,int height,int last_row)1009 static int DecodeAlphaData(VP8LDecoder* const dec, uint8_t* const data,
1010 int width, int height, int last_row) {
1011 int ok = 1;
1012 int row = dec->last_pixel_ / width;
1013 int col = dec->last_pixel_ % width;
1014 VP8LBitReader* const br = &dec->br_;
1015 VP8LMetadata* const hdr = &dec->hdr_;
1016 int pos = dec->last_pixel_; // current position
1017 const int end = width * height; // End of data
1018 const int last = width * last_row; // Last pixel to decode
1019 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1020 const int mask = hdr->huffman_mask_;
1021 const HTreeGroup* htree_group =
1022 (pos < last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1023 assert(pos <= end);
1024 assert(last_row <= height);
1025 assert(Is8bOptimizable(hdr));
1026
1027 while (!br->eos_ && pos < last) {
1028 int code;
1029 // Only update when changing tile.
1030 if ((col & mask) == 0) {
1031 htree_group = GetHtreeGroupForPos(hdr, col, row);
1032 }
1033 assert(htree_group != NULL);
1034 VP8LFillBitWindow(br);
1035 code = ReadSymbol(htree_group->htrees[GREEN], br);
1036 if (code < NUM_LITERAL_CODES) { // Literal
1037 data[pos] = code;
1038 ++pos;
1039 ++col;
1040 if (col >= width) {
1041 col = 0;
1042 ++row;
1043 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1044 ExtractPalettedAlphaRows(dec, row);
1045 }
1046 }
1047 } else if (code < len_code_limit) { // Backward reference
1048 int dist_code, dist;
1049 const int length_sym = code - NUM_LITERAL_CODES;
1050 const int length = GetCopyLength(length_sym, br);
1051 const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1052 VP8LFillBitWindow(br);
1053 dist_code = GetCopyDistance(dist_symbol, br);
1054 dist = PlaneCodeToDistance(width, dist_code);
1055 if (pos >= dist && end - pos >= length) {
1056 CopyBlock8b(data + pos, dist, length);
1057 } else {
1058 ok = 0;
1059 goto End;
1060 }
1061 pos += length;
1062 col += length;
1063 while (col >= width) {
1064 col -= width;
1065 ++row;
1066 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1067 ExtractPalettedAlphaRows(dec, row);
1068 }
1069 }
1070 if (pos < last && (col & mask)) {
1071 htree_group = GetHtreeGroupForPos(hdr, col, row);
1072 }
1073 } else { // Not reached
1074 ok = 0;
1075 goto End;
1076 }
1077 br->eos_ = VP8LIsEndOfStream(br);
1078 }
1079 // Process the remaining rows corresponding to last row-block.
1080 ExtractPalettedAlphaRows(dec, row > last_row ? last_row : row);
1081
1082 End:
1083 br->eos_ = VP8LIsEndOfStream(br);
1084 if (!ok || (br->eos_ && pos < end)) {
1085 ok = 0;
1086 dec->status_ = br->eos_ ? VP8_STATUS_SUSPENDED
1087 : VP8_STATUS_BITSTREAM_ERROR;
1088 } else {
1089 dec->last_pixel_ = pos;
1090 }
1091 return ok;
1092 }
1093
SaveState(VP8LDecoder * const dec,int last_pixel)1094 static void SaveState(VP8LDecoder* const dec, int last_pixel) {
1095 assert(dec->incremental_);
1096 dec->saved_br_ = dec->br_;
1097 dec->saved_last_pixel_ = last_pixel;
1098 if (dec->hdr_.color_cache_size_ > 0) {
1099 VP8LColorCacheCopy(&dec->hdr_.color_cache_, &dec->hdr_.saved_color_cache_);
1100 }
1101 }
1102
RestoreState(VP8LDecoder * const dec)1103 static void RestoreState(VP8LDecoder* const dec) {
1104 assert(dec->br_.eos_);
1105 dec->status_ = VP8_STATUS_SUSPENDED;
1106 dec->br_ = dec->saved_br_;
1107 dec->last_pixel_ = dec->saved_last_pixel_;
1108 if (dec->hdr_.color_cache_size_ > 0) {
1109 VP8LColorCacheCopy(&dec->hdr_.saved_color_cache_, &dec->hdr_.color_cache_);
1110 }
1111 }
1112
1113 #define SYNC_EVERY_N_ROWS 8 // minimum number of rows between check-points
DecodeImageData(VP8LDecoder * const dec,uint32_t * const data,int width,int height,int last_row,ProcessRowsFunc process_func)1114 static int DecodeImageData(VP8LDecoder* const dec, uint32_t* const data,
1115 int width, int height, int last_row,
1116 ProcessRowsFunc process_func) {
1117 int row = dec->last_pixel_ / width;
1118 int col = dec->last_pixel_ % width;
1119 VP8LBitReader* const br = &dec->br_;
1120 VP8LMetadata* const hdr = &dec->hdr_;
1121 uint32_t* src = data + dec->last_pixel_;
1122 uint32_t* last_cached = src;
1123 uint32_t* const src_end = data + width * height; // End of data
1124 uint32_t* const src_last = data + width * last_row; // Last pixel to decode
1125 const int len_code_limit = NUM_LITERAL_CODES + NUM_LENGTH_CODES;
1126 const int color_cache_limit = len_code_limit + hdr->color_cache_size_;
1127 int next_sync_row = dec->incremental_ ? row : 1 << 24;
1128 VP8LColorCache* const color_cache =
1129 (hdr->color_cache_size_ > 0) ? &hdr->color_cache_ : NULL;
1130 const int mask = hdr->huffman_mask_;
1131 const HTreeGroup* htree_group =
1132 (src < src_last) ? GetHtreeGroupForPos(hdr, col, row) : NULL;
1133 assert(dec->last_row_ < last_row);
1134 assert(src_last <= src_end);
1135
1136 while (src < src_last) {
1137 int code;
1138 if (row >= next_sync_row) {
1139 SaveState(dec, (int)(src - data));
1140 next_sync_row = row + SYNC_EVERY_N_ROWS;
1141 }
1142 // Only update when changing tile. Note we could use this test:
1143 // if "((((prev_col ^ col) | prev_row ^ row)) > mask)" -> tile changed
1144 // but that's actually slower and needs storing the previous col/row.
1145 if ((col & mask) == 0) {
1146 htree_group = GetHtreeGroupForPos(hdr, col, row);
1147 }
1148 assert(htree_group != NULL);
1149 if (htree_group->is_trivial_code) {
1150 *src = htree_group->literal_arb;
1151 goto AdvanceByOne;
1152 }
1153 VP8LFillBitWindow(br);
1154 if (htree_group->use_packed_table) {
1155 code = ReadPackedSymbols(htree_group, br, src);
1156 if (VP8LIsEndOfStream(br)) break;
1157 if (code == PACKED_NON_LITERAL_CODE) goto AdvanceByOne;
1158 } else {
1159 code = ReadSymbol(htree_group->htrees[GREEN], br);
1160 }
1161 if (VP8LIsEndOfStream(br)) break;
1162 if (code < NUM_LITERAL_CODES) { // Literal
1163 if (htree_group->is_trivial_literal) {
1164 *src = htree_group->literal_arb | (code << 8);
1165 } else {
1166 int red, blue, alpha;
1167 red = ReadSymbol(htree_group->htrees[RED], br);
1168 VP8LFillBitWindow(br);
1169 blue = ReadSymbol(htree_group->htrees[BLUE], br);
1170 alpha = ReadSymbol(htree_group->htrees[ALPHA], br);
1171 if (VP8LIsEndOfStream(br)) break;
1172 *src = ((uint32_t)alpha << 24) | (red << 16) | (code << 8) | blue;
1173 }
1174 AdvanceByOne:
1175 ++src;
1176 ++col;
1177 if (col >= width) {
1178 col = 0;
1179 ++row;
1180 if (process_func != NULL) {
1181 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1182 process_func(dec, row);
1183 }
1184 }
1185 if (color_cache != NULL) {
1186 while (last_cached < src) {
1187 VP8LColorCacheInsert(color_cache, *last_cached++);
1188 }
1189 }
1190 }
1191 } else if (code < len_code_limit) { // Backward reference
1192 int dist_code, dist;
1193 const int length_sym = code - NUM_LITERAL_CODES;
1194 const int length = GetCopyLength(length_sym, br);
1195 const int dist_symbol = ReadSymbol(htree_group->htrees[DIST], br);
1196 VP8LFillBitWindow(br);
1197 dist_code = GetCopyDistance(dist_symbol, br);
1198 dist = PlaneCodeToDistance(width, dist_code);
1199 if (VP8LIsEndOfStream(br)) break;
1200 if (src - data < (ptrdiff_t)dist || src_end - src < (ptrdiff_t)length) {
1201 goto Error;
1202 } else {
1203 CopyBlock32b(src, dist, length);
1204 }
1205 src += length;
1206 col += length;
1207 while (col >= width) {
1208 col -= width;
1209 ++row;
1210 if (process_func != NULL) {
1211 if (row <= last_row && (row % NUM_ARGB_CACHE_ROWS == 0)) {
1212 process_func(dec, row);
1213 }
1214 }
1215 }
1216 // Because of the check done above (before 'src' was incremented by
1217 // 'length'), the following holds true.
1218 assert(src <= src_end);
1219 if (col & mask) htree_group = GetHtreeGroupForPos(hdr, col, row);
1220 if (color_cache != NULL) {
1221 while (last_cached < src) {
1222 VP8LColorCacheInsert(color_cache, *last_cached++);
1223 }
1224 }
1225 } else if (code < color_cache_limit) { // Color cache
1226 const int key = code - len_code_limit;
1227 assert(color_cache != NULL);
1228 while (last_cached < src) {
1229 VP8LColorCacheInsert(color_cache, *last_cached++);
1230 }
1231 *src = VP8LColorCacheLookup(color_cache, key);
1232 goto AdvanceByOne;
1233 } else { // Not reached
1234 goto Error;
1235 }
1236 }
1237
1238 br->eos_ = VP8LIsEndOfStream(br);
1239 if (dec->incremental_ && br->eos_ && src < src_end) {
1240 RestoreState(dec);
1241 } else if (!br->eos_) {
1242 // Process the remaining rows corresponding to last row-block.
1243 if (process_func != NULL) {
1244 process_func(dec, row > last_row ? last_row : row);
1245 }
1246 dec->status_ = VP8_STATUS_OK;
1247 dec->last_pixel_ = (int)(src - data); // end-of-scan marker
1248 } else {
1249 // if not incremental, and we are past the end of buffer (eos_=1), then this
1250 // is a real bitstream error.
1251 goto Error;
1252 }
1253 return 1;
1254
1255 Error:
1256 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1257 return 0;
1258 }
1259
1260 // -----------------------------------------------------------------------------
1261 // VP8LTransform
1262
ClearTransform(VP8LTransform * const transform)1263 static void ClearTransform(VP8LTransform* const transform) {
1264 WebPSafeFree(transform->data_);
1265 transform->data_ = NULL;
1266 }
1267
1268 // For security reason, we need to remap the color map to span
1269 // the total possible bundled values, and not just the num_colors.
ExpandColorMap(int num_colors,VP8LTransform * const transform)1270 static int ExpandColorMap(int num_colors, VP8LTransform* const transform) {
1271 int i;
1272 const int final_num_colors = 1 << (8 >> transform->bits_);
1273 uint32_t* const new_color_map =
1274 (uint32_t*)WebPSafeMalloc((uint64_t)final_num_colors,
1275 sizeof(*new_color_map));
1276 if (new_color_map == NULL) {
1277 return 0;
1278 } else {
1279 uint8_t* const data = (uint8_t*)transform->data_;
1280 uint8_t* const new_data = (uint8_t*)new_color_map;
1281 new_color_map[0] = transform->data_[0];
1282 for (i = 4; i < 4 * num_colors; ++i) {
1283 // Equivalent to AddPixelEq(), on a byte-basis.
1284 new_data[i] = (data[i] + new_data[i - 4]) & 0xff;
1285 }
1286 for (; i < 4 * final_num_colors; ++i) {
1287 new_data[i] = 0; // black tail.
1288 }
1289 WebPSafeFree(transform->data_);
1290 transform->data_ = new_color_map;
1291 }
1292 return 1;
1293 }
1294
ReadTransform(int * const xsize,int const * ysize,VP8LDecoder * const dec)1295 static int ReadTransform(int* const xsize, int const* ysize,
1296 VP8LDecoder* const dec) {
1297 int ok = 1;
1298 VP8LBitReader* const br = &dec->br_;
1299 VP8LTransform* transform = &dec->transforms_[dec->next_transform_];
1300 const VP8LImageTransformType type =
1301 (VP8LImageTransformType)VP8LReadBits(br, 2);
1302
1303 // Each transform type can only be present once in the stream.
1304 if (dec->transforms_seen_ & (1U << type)) {
1305 return 0; // Already there, let's not accept the second same transform.
1306 }
1307 dec->transforms_seen_ |= (1U << type);
1308
1309 transform->type_ = type;
1310 transform->xsize_ = *xsize;
1311 transform->ysize_ = *ysize;
1312 transform->data_ = NULL;
1313 ++dec->next_transform_;
1314 assert(dec->next_transform_ <= NUM_TRANSFORMS);
1315
1316 switch (type) {
1317 case PREDICTOR_TRANSFORM:
1318 case CROSS_COLOR_TRANSFORM:
1319 transform->bits_ = VP8LReadBits(br, 3) + 2;
1320 ok = DecodeImageStream(VP8LSubSampleSize(transform->xsize_,
1321 transform->bits_),
1322 VP8LSubSampleSize(transform->ysize_,
1323 transform->bits_),
1324 0, dec, &transform->data_);
1325 break;
1326 case COLOR_INDEXING_TRANSFORM: {
1327 const int num_colors = VP8LReadBits(br, 8) + 1;
1328 const int bits = (num_colors > 16) ? 0
1329 : (num_colors > 4) ? 1
1330 : (num_colors > 2) ? 2
1331 : 3;
1332 *xsize = VP8LSubSampleSize(transform->xsize_, bits);
1333 transform->bits_ = bits;
1334 ok = DecodeImageStream(num_colors, 1, 0, dec, &transform->data_);
1335 ok = ok && ExpandColorMap(num_colors, transform);
1336 break;
1337 }
1338 case SUBTRACT_GREEN:
1339 break;
1340 default:
1341 assert(0); // can't happen
1342 break;
1343 }
1344
1345 return ok;
1346 }
1347
1348 // -----------------------------------------------------------------------------
1349 // VP8LMetadata
1350
InitMetadata(VP8LMetadata * const hdr)1351 static void InitMetadata(VP8LMetadata* const hdr) {
1352 assert(hdr != NULL);
1353 memset(hdr, 0, sizeof(*hdr));
1354 }
1355
ClearMetadata(VP8LMetadata * const hdr)1356 static void ClearMetadata(VP8LMetadata* const hdr) {
1357 assert(hdr != NULL);
1358
1359 WebPSafeFree(hdr->huffman_image_);
1360 WebPSafeFree(hdr->huffman_tables_);
1361 VP8LHtreeGroupsFree(hdr->htree_groups_);
1362 VP8LColorCacheClear(&hdr->color_cache_);
1363 VP8LColorCacheClear(&hdr->saved_color_cache_);
1364 InitMetadata(hdr);
1365 }
1366
1367 // -----------------------------------------------------------------------------
1368 // VP8LDecoder
1369
VP8LNew(void)1370 VP8LDecoder* VP8LNew(void) {
1371 VP8LDecoder* const dec = (VP8LDecoder*)WebPSafeCalloc(1ULL, sizeof(*dec));
1372 if (dec == NULL) return NULL;
1373 dec->status_ = VP8_STATUS_OK;
1374 dec->state_ = READ_DIM;
1375
1376 VP8LDspInit(); // Init critical function pointers.
1377
1378 return dec;
1379 }
1380
VP8LClear(VP8LDecoder * const dec)1381 void VP8LClear(VP8LDecoder* const dec) {
1382 int i;
1383 if (dec == NULL) return;
1384 ClearMetadata(&dec->hdr_);
1385
1386 WebPSafeFree(dec->pixels_);
1387 dec->pixels_ = NULL;
1388 for (i = 0; i < dec->next_transform_; ++i) {
1389 ClearTransform(&dec->transforms_[i]);
1390 }
1391 dec->next_transform_ = 0;
1392 dec->transforms_seen_ = 0;
1393
1394 WebPSafeFree(dec->rescaler_memory);
1395 dec->rescaler_memory = NULL;
1396
1397 dec->output_ = NULL; // leave no trace behind
1398 }
1399
VP8LDelete(VP8LDecoder * const dec)1400 void VP8LDelete(VP8LDecoder* const dec) {
1401 if (dec != NULL) {
1402 VP8LClear(dec);
1403 WebPSafeFree(dec);
1404 }
1405 }
1406
UpdateDecoder(VP8LDecoder * const dec,int width,int height)1407 static void UpdateDecoder(VP8LDecoder* const dec, int width, int height) {
1408 VP8LMetadata* const hdr = &dec->hdr_;
1409 const int num_bits = hdr->huffman_subsample_bits_;
1410 dec->width_ = width;
1411 dec->height_ = height;
1412
1413 hdr->huffman_xsize_ = VP8LSubSampleSize(width, num_bits);
1414 hdr->huffman_mask_ = (num_bits == 0) ? ~0 : (1 << num_bits) - 1;
1415 }
1416
DecodeImageStream(int xsize,int ysize,int is_level0,VP8LDecoder * const dec,uint32_t ** const decoded_data)1417 static int DecodeImageStream(int xsize, int ysize,
1418 int is_level0,
1419 VP8LDecoder* const dec,
1420 uint32_t** const decoded_data) {
1421 int ok = 1;
1422 int transform_xsize = xsize;
1423 int transform_ysize = ysize;
1424 VP8LBitReader* const br = &dec->br_;
1425 VP8LMetadata* const hdr = &dec->hdr_;
1426 uint32_t* data = NULL;
1427 int color_cache_bits = 0;
1428
1429 // Read the transforms (may recurse).
1430 if (is_level0) {
1431 while (ok && VP8LReadBits(br, 1)) {
1432 ok = ReadTransform(&transform_xsize, &transform_ysize, dec);
1433 }
1434 }
1435
1436 // Color cache
1437 if (ok && VP8LReadBits(br, 1)) {
1438 color_cache_bits = VP8LReadBits(br, 4);
1439 ok = (color_cache_bits >= 1 && color_cache_bits <= MAX_CACHE_BITS);
1440 if (!ok) {
1441 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1442 goto End;
1443 }
1444 }
1445
1446 // Read the Huffman codes (may recurse).
1447 ok = ok && ReadHuffmanCodes(dec, transform_xsize, transform_ysize,
1448 color_cache_bits, is_level0);
1449 if (!ok) {
1450 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1451 goto End;
1452 }
1453
1454 // Finish setting up the color-cache
1455 if (color_cache_bits > 0) {
1456 hdr->color_cache_size_ = 1 << color_cache_bits;
1457 if (!VP8LColorCacheInit(&hdr->color_cache_, color_cache_bits)) {
1458 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1459 ok = 0;
1460 goto End;
1461 }
1462 } else {
1463 hdr->color_cache_size_ = 0;
1464 }
1465 UpdateDecoder(dec, transform_xsize, transform_ysize);
1466
1467 if (is_level0) { // level 0 complete
1468 dec->state_ = READ_HDR;
1469 goto End;
1470 }
1471
1472 {
1473 const uint64_t total_size = (uint64_t)transform_xsize * transform_ysize;
1474 data = (uint32_t*)WebPSafeMalloc(total_size, sizeof(*data));
1475 if (data == NULL) {
1476 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1477 ok = 0;
1478 goto End;
1479 }
1480 }
1481
1482 // Use the Huffman trees to decode the LZ77 encoded data.
1483 ok = DecodeImageData(dec, data, transform_xsize, transform_ysize,
1484 transform_ysize, NULL);
1485 ok = ok && !br->eos_;
1486
1487 End:
1488 if (!ok) {
1489 WebPSafeFree(data);
1490 ClearMetadata(hdr);
1491 } else {
1492 if (decoded_data != NULL) {
1493 *decoded_data = data;
1494 } else {
1495 // We allocate image data in this function only for transforms. At level 0
1496 // (that is: not the transforms), we shouldn't have allocated anything.
1497 assert(data == NULL);
1498 assert(is_level0);
1499 }
1500 dec->last_pixel_ = 0; // Reset for future DECODE_DATA_FUNC() calls.
1501 if (!is_level0) ClearMetadata(hdr); // Clean up temporary data behind.
1502 }
1503 return ok;
1504 }
1505
1506 //------------------------------------------------------------------------------
1507 // Allocate internal buffers dec->pixels_ and dec->argb_cache_.
AllocateInternalBuffers32b(VP8LDecoder * const dec,int final_width)1508 static int AllocateInternalBuffers32b(VP8LDecoder* const dec, int final_width) {
1509 const uint64_t num_pixels = (uint64_t)dec->width_ * dec->height_;
1510 // Scratch buffer corresponding to top-prediction row for transforming the
1511 // first row in the row-blocks. Not needed for paletted alpha.
1512 const uint64_t cache_top_pixels = (uint16_t)final_width;
1513 // Scratch buffer for temporary BGRA storage. Not needed for paletted alpha.
1514 const uint64_t cache_pixels = (uint64_t)final_width * NUM_ARGB_CACHE_ROWS;
1515 const uint64_t total_num_pixels =
1516 num_pixels + cache_top_pixels + cache_pixels;
1517
1518 assert(dec->width_ <= final_width);
1519 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint32_t));
1520 if (dec->pixels_ == NULL) {
1521 dec->argb_cache_ = NULL; // for sanity check
1522 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1523 return 0;
1524 }
1525 dec->argb_cache_ = dec->pixels_ + num_pixels + cache_top_pixels;
1526 return 1;
1527 }
1528
AllocateInternalBuffers8b(VP8LDecoder * const dec)1529 static int AllocateInternalBuffers8b(VP8LDecoder* const dec) {
1530 const uint64_t total_num_pixels = (uint64_t)dec->width_ * dec->height_;
1531 dec->argb_cache_ = NULL; // for sanity check
1532 dec->pixels_ = (uint32_t*)WebPSafeMalloc(total_num_pixels, sizeof(uint8_t));
1533 if (dec->pixels_ == NULL) {
1534 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1535 return 0;
1536 }
1537 return 1;
1538 }
1539
1540 //------------------------------------------------------------------------------
1541
1542 // Special row-processing that only stores the alpha data.
ExtractAlphaRows(VP8LDecoder * const dec,int last_row)1543 static void ExtractAlphaRows(VP8LDecoder* const dec, int last_row) {
1544 int cur_row = dec->last_row_;
1545 int num_rows = last_row - cur_row;
1546 const uint32_t* in = dec->pixels_ + dec->width_ * cur_row;
1547
1548 assert(last_row <= dec->io_->crop_bottom);
1549 while (num_rows > 0) {
1550 const int num_rows_to_process =
1551 (num_rows > NUM_ARGB_CACHE_ROWS) ? NUM_ARGB_CACHE_ROWS : num_rows;
1552 // Extract alpha (which is stored in the green plane).
1553 ALPHDecoder* const alph_dec = (ALPHDecoder*)dec->io_->opaque;
1554 uint8_t* const output = alph_dec->output_;
1555 const int width = dec->io_->width; // the final width (!= dec->width_)
1556 const int cache_pixs = width * num_rows_to_process;
1557 uint8_t* const dst = output + width * cur_row;
1558 const uint32_t* const src = dec->argb_cache_;
1559 ApplyInverseTransforms(dec, num_rows_to_process, in);
1560 WebPExtractGreen(src, dst, cache_pixs);
1561 AlphaApplyFilter(alph_dec,
1562 cur_row, cur_row + num_rows_to_process, dst, width);
1563 num_rows -= num_rows_to_process;
1564 in += num_rows_to_process * dec->width_;
1565 cur_row += num_rows_to_process;
1566 }
1567 assert(cur_row == last_row);
1568 dec->last_row_ = dec->last_out_row_ = last_row;
1569 }
1570
VP8LDecodeAlphaHeader(ALPHDecoder * const alph_dec,const uint8_t * const data,size_t data_size)1571 int VP8LDecodeAlphaHeader(ALPHDecoder* const alph_dec,
1572 const uint8_t* const data, size_t data_size) {
1573 int ok = 0;
1574 VP8LDecoder* dec = VP8LNew();
1575
1576 if (dec == NULL) return 0;
1577
1578 assert(alph_dec != NULL);
1579
1580 dec->width_ = alph_dec->width_;
1581 dec->height_ = alph_dec->height_;
1582 dec->io_ = &alph_dec->io_;
1583 dec->io_->opaque = alph_dec;
1584 dec->io_->width = alph_dec->width_;
1585 dec->io_->height = alph_dec->height_;
1586
1587 dec->status_ = VP8_STATUS_OK;
1588 VP8LInitBitReader(&dec->br_, data, data_size);
1589
1590 if (!DecodeImageStream(alph_dec->width_, alph_dec->height_, 1, dec, NULL)) {
1591 goto Err;
1592 }
1593
1594 // Special case: if alpha data uses only the color indexing transform and
1595 // doesn't use color cache (a frequent case), we will use DecodeAlphaData()
1596 // method that only needs allocation of 1 byte per pixel (alpha channel).
1597 if (dec->next_transform_ == 1 &&
1598 dec->transforms_[0].type_ == COLOR_INDEXING_TRANSFORM &&
1599 Is8bOptimizable(&dec->hdr_)) {
1600 alph_dec->use_8b_decode_ = 1;
1601 ok = AllocateInternalBuffers8b(dec);
1602 } else {
1603 // Allocate internal buffers (note that dec->width_ may have changed here).
1604 alph_dec->use_8b_decode_ = 0;
1605 ok = AllocateInternalBuffers32b(dec, alph_dec->width_);
1606 }
1607
1608 if (!ok) goto Err;
1609
1610 // Only set here, once we are sure it is valid (to avoid thread races).
1611 alph_dec->vp8l_dec_ = dec;
1612 return 1;
1613
1614 Err:
1615 VP8LDelete(dec);
1616 return 0;
1617 }
1618
VP8LDecodeAlphaImageStream(ALPHDecoder * const alph_dec,int last_row)1619 int VP8LDecodeAlphaImageStream(ALPHDecoder* const alph_dec, int last_row) {
1620 VP8LDecoder* const dec = alph_dec->vp8l_dec_;
1621 assert(dec != NULL);
1622 assert(last_row <= dec->height_);
1623
1624 if (dec->last_row_ >= last_row) {
1625 return 1; // done
1626 }
1627
1628 if (!alph_dec->use_8b_decode_) WebPInitAlphaProcessing();
1629
1630 // Decode (with special row processing).
1631 return alph_dec->use_8b_decode_ ?
1632 DecodeAlphaData(dec, (uint8_t*)dec->pixels_, dec->width_, dec->height_,
1633 last_row) :
1634 DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1635 last_row, ExtractAlphaRows);
1636 }
1637
1638 //------------------------------------------------------------------------------
1639
VP8LDecodeHeader(VP8LDecoder * const dec,VP8Io * const io)1640 int VP8LDecodeHeader(VP8LDecoder* const dec, VP8Io* const io) {
1641 int width, height, has_alpha;
1642
1643 if (dec == NULL) return 0;
1644 if (io == NULL) {
1645 dec->status_ = VP8_STATUS_INVALID_PARAM;
1646 return 0;
1647 }
1648
1649 dec->io_ = io;
1650 dec->status_ = VP8_STATUS_OK;
1651 VP8LInitBitReader(&dec->br_, io->data, io->data_size);
1652 if (!ReadImageInfo(&dec->br_, &width, &height, &has_alpha)) {
1653 dec->status_ = VP8_STATUS_BITSTREAM_ERROR;
1654 goto Error;
1655 }
1656 dec->state_ = READ_DIM;
1657 io->width = width;
1658 io->height = height;
1659
1660 if (!DecodeImageStream(width, height, 1, dec, NULL)) goto Error;
1661 return 1;
1662
1663 Error:
1664 VP8LClear(dec);
1665 assert(dec->status_ != VP8_STATUS_OK);
1666 return 0;
1667 }
1668
VP8LDecodeImage(VP8LDecoder * const dec)1669 int VP8LDecodeImage(VP8LDecoder* const dec) {
1670 VP8Io* io = NULL;
1671 WebPDecParams* params = NULL;
1672
1673 // Sanity checks.
1674 if (dec == NULL) return 0;
1675
1676 assert(dec->hdr_.huffman_tables_ != NULL);
1677 assert(dec->hdr_.htree_groups_ != NULL);
1678 assert(dec->hdr_.num_htree_groups_ > 0);
1679
1680 io = dec->io_;
1681 assert(io != NULL);
1682 params = (WebPDecParams*)io->opaque;
1683 assert(params != NULL);
1684
1685 // Initialization.
1686 if (dec->state_ != READ_DATA) {
1687 dec->output_ = params->output;
1688 assert(dec->output_ != NULL);
1689
1690 if (!WebPIoInitFromOptions(params->options, io, MODE_BGRA)) {
1691 dec->status_ = VP8_STATUS_INVALID_PARAM;
1692 goto Err;
1693 }
1694
1695 if (!AllocateInternalBuffers32b(dec, io->width)) goto Err;
1696
1697 #if !defined(WEBP_REDUCE_SIZE)
1698 if (io->use_scaling && !AllocateAndInitRescaler(dec, io)) goto Err;
1699 #else
1700 if (io->use_scaling) {
1701 dec->status_ = VP8_STATUS_INVALID_PARAM;
1702 goto Err;
1703 }
1704 #endif
1705 if (io->use_scaling || WebPIsPremultipliedMode(dec->output_->colorspace)) {
1706 // need the alpha-multiply functions for premultiplied output or rescaling
1707 WebPInitAlphaProcessing();
1708 }
1709
1710 if (!WebPIsRGBMode(dec->output_->colorspace)) {
1711 WebPInitConvertARGBToYUV();
1712 if (dec->output_->u.YUVA.a != NULL) WebPInitAlphaProcessing();
1713 }
1714 if (dec->incremental_) {
1715 if (dec->hdr_.color_cache_size_ > 0 &&
1716 dec->hdr_.saved_color_cache_.colors_ == NULL) {
1717 if (!VP8LColorCacheInit(&dec->hdr_.saved_color_cache_,
1718 dec->hdr_.color_cache_.hash_bits_)) {
1719 dec->status_ = VP8_STATUS_OUT_OF_MEMORY;
1720 goto Err;
1721 }
1722 }
1723 }
1724 dec->state_ = READ_DATA;
1725 }
1726
1727 // Decode.
1728 if (!DecodeImageData(dec, dec->pixels_, dec->width_, dec->height_,
1729 io->crop_bottom, ProcessRows)) {
1730 goto Err;
1731 }
1732
1733 params->last_y = dec->last_out_row_;
1734 return 1;
1735
1736 Err:
1737 VP8LClear(dec);
1738 assert(dec->status_ != VP8_STATUS_OK);
1739 return 0;
1740 }
1741
1742 //------------------------------------------------------------------------------
1743