1 // Copyright 2015 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 variant of methods for lossless encoder
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13
14 #include "src/dsp/dsp.h"
15
16 #if defined(WEBP_USE_SSE2)
17 #include <assert.h>
18 #include <emmintrin.h>
19 #include "src/dsp/lossless.h"
20 #include "src/dsp/common_sse2.h"
21 #include "src/dsp/lossless_common.h"
22
23 // For sign-extended multiplying constants, pre-shifted by 5:
24 #define CST_5b(X) (((int16_t)((uint16_t)(X) << 8)) >> 5)
25
26 //------------------------------------------------------------------------------
27 // Subtract-Green Transform
28
SubtractGreenFromBlueAndRed_SSE2(uint32_t * argb_data,int num_pixels)29 static void SubtractGreenFromBlueAndRed_SSE2(uint32_t* argb_data,
30 int num_pixels) {
31 int i;
32 for (i = 0; i + 4 <= num_pixels; i += 4) {
33 const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
34 const __m128i A = _mm_srli_epi16(in, 8); // 0 a 0 g
35 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
36 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // 0g0g
37 const __m128i out = _mm_sub_epi8(in, C);
38 _mm_storeu_si128((__m128i*)&argb_data[i], out);
39 }
40 // fallthrough and finish off with plain-C
41 if (i != num_pixels) {
42 VP8LSubtractGreenFromBlueAndRed_C(argb_data + i, num_pixels - i);
43 }
44 }
45
46 //------------------------------------------------------------------------------
47 // Color Transform
48
49 #define MK_CST_16(HI, LO) \
50 _mm_set1_epi32((int)(((uint32_t)(HI) << 16) | ((LO) & 0xffff)))
51
TransformColor_SSE2(const VP8LMultipliers * const m,uint32_t * argb_data,int num_pixels)52 static void TransformColor_SSE2(const VP8LMultipliers* const m,
53 uint32_t* argb_data, int num_pixels) {
54 const __m128i mults_rb = MK_CST_16(CST_5b(m->green_to_red_),
55 CST_5b(m->green_to_blue_));
56 const __m128i mults_b2 = MK_CST_16(CST_5b(m->red_to_blue_), 0);
57 const __m128i mask_ag = _mm_set1_epi32(0xff00ff00); // alpha-green masks
58 const __m128i mask_rb = _mm_set1_epi32(0x00ff00ff); // red-blue masks
59 int i;
60 for (i = 0; i + 4 <= num_pixels; i += 4) {
61 const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); // argb
62 const __m128i A = _mm_and_si128(in, mask_ag); // a 0 g 0
63 const __m128i B = _mm_shufflelo_epi16(A, _MM_SHUFFLE(2, 2, 0, 0));
64 const __m128i C = _mm_shufflehi_epi16(B, _MM_SHUFFLE(2, 2, 0, 0)); // g0g0
65 const __m128i D = _mm_mulhi_epi16(C, mults_rb); // x dr x db1
66 const __m128i E = _mm_slli_epi16(in, 8); // r 0 b 0
67 const __m128i F = _mm_mulhi_epi16(E, mults_b2); // x db2 0 0
68 const __m128i G = _mm_srli_epi32(F, 16); // 0 0 x db2
69 const __m128i H = _mm_add_epi8(G, D); // x dr x db
70 const __m128i I = _mm_and_si128(H, mask_rb); // 0 dr 0 db
71 const __m128i out = _mm_sub_epi8(in, I);
72 _mm_storeu_si128((__m128i*)&argb_data[i], out);
73 }
74 // fallthrough and finish off with plain-C
75 if (i != num_pixels) {
76 VP8LTransformColor_C(m, argb_data + i, num_pixels - i);
77 }
78 }
79
80 //------------------------------------------------------------------------------
81 #define SPAN 8
CollectColorBlueTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_blue,int red_to_blue,int histo[])82 static void CollectColorBlueTransforms_SSE2(const uint32_t* argb, int stride,
83 int tile_width, int tile_height,
84 int green_to_blue, int red_to_blue,
85 int histo[]) {
86 const __m128i mults_r = MK_CST_16(CST_5b(red_to_blue), 0);
87 const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_blue));
88 const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
89 const __m128i mask_b = _mm_set1_epi32(0x0000ff); // blue mask
90 int y;
91 for (y = 0; y < tile_height; ++y) {
92 const uint32_t* const src = argb + y * stride;
93 int i, x;
94 for (x = 0; x + SPAN <= tile_width; x += SPAN) {
95 uint16_t values[SPAN];
96 const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
97 const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
98 const __m128i A0 = _mm_slli_epi16(in0, 8); // r 0 | b 0
99 const __m128i A1 = _mm_slli_epi16(in1, 8);
100 const __m128i B0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0
101 const __m128i B1 = _mm_and_si128(in1, mask_g);
102 const __m128i C0 = _mm_mulhi_epi16(A0, mults_r); // x db | 0 0
103 const __m128i C1 = _mm_mulhi_epi16(A1, mults_r);
104 const __m128i D0 = _mm_mulhi_epi16(B0, mults_g); // 0 0 | x db
105 const __m128i D1 = _mm_mulhi_epi16(B1, mults_g);
106 const __m128i E0 = _mm_sub_epi8(in0, D0); // x x | x b'
107 const __m128i E1 = _mm_sub_epi8(in1, D1);
108 const __m128i F0 = _mm_srli_epi32(C0, 16); // 0 0 | x db
109 const __m128i F1 = _mm_srli_epi32(C1, 16);
110 const __m128i G0 = _mm_sub_epi8(E0, F0); // 0 0 | x b'
111 const __m128i G1 = _mm_sub_epi8(E1, F1);
112 const __m128i H0 = _mm_and_si128(G0, mask_b); // 0 0 | 0 b
113 const __m128i H1 = _mm_and_si128(G1, mask_b);
114 const __m128i I = _mm_packs_epi32(H0, H1); // 0 b' | 0 b'
115 _mm_storeu_si128((__m128i*)values, I);
116 for (i = 0; i < SPAN; ++i) ++histo[values[i]];
117 }
118 }
119 {
120 const int left_over = tile_width & (SPAN - 1);
121 if (left_over > 0) {
122 VP8LCollectColorBlueTransforms_C(argb + tile_width - left_over, stride,
123 left_over, tile_height,
124 green_to_blue, red_to_blue, histo);
125 }
126 }
127 }
128
CollectColorRedTransforms_SSE2(const uint32_t * argb,int stride,int tile_width,int tile_height,int green_to_red,int histo[])129 static void CollectColorRedTransforms_SSE2(const uint32_t* argb, int stride,
130 int tile_width, int tile_height,
131 int green_to_red, int histo[]) {
132 const __m128i mults_g = MK_CST_16(0, CST_5b(green_to_red));
133 const __m128i mask_g = _mm_set1_epi32(0x00ff00); // green mask
134 const __m128i mask = _mm_set1_epi32(0xff);
135
136 int y;
137 for (y = 0; y < tile_height; ++y) {
138 const uint32_t* const src = argb + y * stride;
139 int i, x;
140 for (x = 0; x + SPAN <= tile_width; x += SPAN) {
141 uint16_t values[SPAN];
142 const __m128i in0 = _mm_loadu_si128((__m128i*)&src[x + 0]);
143 const __m128i in1 = _mm_loadu_si128((__m128i*)&src[x + SPAN / 2]);
144 const __m128i A0 = _mm_and_si128(in0, mask_g); // 0 0 | g 0
145 const __m128i A1 = _mm_and_si128(in1, mask_g);
146 const __m128i B0 = _mm_srli_epi32(in0, 16); // 0 0 | x r
147 const __m128i B1 = _mm_srli_epi32(in1, 16);
148 const __m128i C0 = _mm_mulhi_epi16(A0, mults_g); // 0 0 | x dr
149 const __m128i C1 = _mm_mulhi_epi16(A1, mults_g);
150 const __m128i E0 = _mm_sub_epi8(B0, C0); // x x | x r'
151 const __m128i E1 = _mm_sub_epi8(B1, C1);
152 const __m128i F0 = _mm_and_si128(E0, mask); // 0 0 | 0 r'
153 const __m128i F1 = _mm_and_si128(E1, mask);
154 const __m128i I = _mm_packs_epi32(F0, F1);
155 _mm_storeu_si128((__m128i*)values, I);
156 for (i = 0; i < SPAN; ++i) ++histo[values[i]];
157 }
158 }
159 {
160 const int left_over = tile_width & (SPAN - 1);
161 if (left_over > 0) {
162 VP8LCollectColorRedTransforms_C(argb + tile_width - left_over, stride,
163 left_over, tile_height,
164 green_to_red, histo);
165 }
166 }
167 }
168 #undef SPAN
169 #undef MK_CST_16
170
171 //------------------------------------------------------------------------------
172
173 // Note we are adding uint32_t's as *signed* int32's (using _mm_add_epi32). But
174 // that's ok since the histogram values are less than 1<<28 (max picture size).
175 #define LINE_SIZE 16 // 8 or 16
AddVector_SSE2(const uint32_t * a,const uint32_t * b,uint32_t * out,int size)176 static void AddVector_SSE2(const uint32_t* a, const uint32_t* b, uint32_t* out,
177 int size) {
178 int i;
179 for (i = 0; i + LINE_SIZE <= size; i += LINE_SIZE) {
180 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
181 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
182 #if (LINE_SIZE == 16)
183 const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]);
184 const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
185 #endif
186 const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[i + 0]);
187 const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[i + 4]);
188 #if (LINE_SIZE == 16)
189 const __m128i b2 = _mm_loadu_si128((const __m128i*)&b[i + 8]);
190 const __m128i b3 = _mm_loadu_si128((const __m128i*)&b[i + 12]);
191 #endif
192 _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
193 _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
194 #if (LINE_SIZE == 16)
195 _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2));
196 _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
197 #endif
198 }
199 for (; i < size; ++i) {
200 out[i] = a[i] + b[i];
201 }
202 }
203
AddVectorEq_SSE2(const uint32_t * a,uint32_t * out,int size)204 static void AddVectorEq_SSE2(const uint32_t* a, uint32_t* out, int size) {
205 int i;
206 for (i = 0; i + LINE_SIZE <= size; i += LINE_SIZE) {
207 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[i + 0]);
208 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[i + 4]);
209 #if (LINE_SIZE == 16)
210 const __m128i a2 = _mm_loadu_si128((const __m128i*)&a[i + 8]);
211 const __m128i a3 = _mm_loadu_si128((const __m128i*)&a[i + 12]);
212 #endif
213 const __m128i b0 = _mm_loadu_si128((const __m128i*)&out[i + 0]);
214 const __m128i b1 = _mm_loadu_si128((const __m128i*)&out[i + 4]);
215 #if (LINE_SIZE == 16)
216 const __m128i b2 = _mm_loadu_si128((const __m128i*)&out[i + 8]);
217 const __m128i b3 = _mm_loadu_si128((const __m128i*)&out[i + 12]);
218 #endif
219 _mm_storeu_si128((__m128i*)&out[i + 0], _mm_add_epi32(a0, b0));
220 _mm_storeu_si128((__m128i*)&out[i + 4], _mm_add_epi32(a1, b1));
221 #if (LINE_SIZE == 16)
222 _mm_storeu_si128((__m128i*)&out[i + 8], _mm_add_epi32(a2, b2));
223 _mm_storeu_si128((__m128i*)&out[i + 12], _mm_add_epi32(a3, b3));
224 #endif
225 }
226 for (; i < size; ++i) {
227 out[i] += a[i];
228 }
229 }
230 #undef LINE_SIZE
231
232 //------------------------------------------------------------------------------
233 // Entropy
234
235 // Checks whether the X or Y contribution is worth computing and adding.
236 // Used in loop unrolling.
237 #define ANALYZE_X_OR_Y(x_or_y, j) \
238 do { \
239 if ((x_or_y)[i + (j)] != 0) retval -= VP8LFastSLog2((x_or_y)[i + (j)]); \
240 } while (0)
241
242 // Checks whether the X + Y contribution is worth computing and adding.
243 // Used in loop unrolling.
244 #define ANALYZE_XY(j) \
245 do { \
246 if (tmp[j] != 0) { \
247 retval -= VP8LFastSLog2(tmp[j]); \
248 ANALYZE_X_OR_Y(X, j); \
249 } \
250 } while (0)
251
CombinedShannonEntropy_SSE2(const int X[256],const int Y[256])252 static float CombinedShannonEntropy_SSE2(const int X[256], const int Y[256]) {
253 int i;
254 double retval = 0.;
255 int sumX, sumXY;
256 int32_t tmp[4];
257 __m128i zero = _mm_setzero_si128();
258 // Sums up X + Y, 4 ints at a time (and will merge it at the end for sumXY).
259 __m128i sumXY_128 = zero;
260 __m128i sumX_128 = zero;
261
262 for (i = 0; i < 256; i += 4) {
263 const __m128i x = _mm_loadu_si128((const __m128i*)(X + i));
264 const __m128i y = _mm_loadu_si128((const __m128i*)(Y + i));
265
266 // Check if any X is non-zero: this actually provides a speedup as X is
267 // usually sparse.
268 if (_mm_movemask_epi8(_mm_cmpeq_epi32(x, zero)) != 0xFFFF) {
269 const __m128i xy_128 = _mm_add_epi32(x, y);
270 sumXY_128 = _mm_add_epi32(sumXY_128, xy_128);
271
272 sumX_128 = _mm_add_epi32(sumX_128, x);
273
274 // Analyze the different X + Y.
275 _mm_storeu_si128((__m128i*)tmp, xy_128);
276
277 ANALYZE_XY(0);
278 ANALYZE_XY(1);
279 ANALYZE_XY(2);
280 ANALYZE_XY(3);
281 } else {
282 // X is fully 0, so only deal with Y.
283 sumXY_128 = _mm_add_epi32(sumXY_128, y);
284
285 ANALYZE_X_OR_Y(Y, 0);
286 ANALYZE_X_OR_Y(Y, 1);
287 ANALYZE_X_OR_Y(Y, 2);
288 ANALYZE_X_OR_Y(Y, 3);
289 }
290 }
291
292 // Sum up sumX_128 to get sumX.
293 _mm_storeu_si128((__m128i*)tmp, sumX_128);
294 sumX = tmp[3] + tmp[2] + tmp[1] + tmp[0];
295
296 // Sum up sumXY_128 to get sumXY.
297 _mm_storeu_si128((__m128i*)tmp, sumXY_128);
298 sumXY = tmp[3] + tmp[2] + tmp[1] + tmp[0];
299
300 retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY);
301 return (float)retval;
302 }
303 #undef ANALYZE_X_OR_Y
304 #undef ANALYZE_XY
305
306 //------------------------------------------------------------------------------
307
VectorMismatch_SSE2(const uint32_t * const array1,const uint32_t * const array2,int length)308 static int VectorMismatch_SSE2(const uint32_t* const array1,
309 const uint32_t* const array2, int length) {
310 int match_len;
311
312 if (length >= 12) {
313 __m128i A0 = _mm_loadu_si128((const __m128i*)&array1[0]);
314 __m128i A1 = _mm_loadu_si128((const __m128i*)&array2[0]);
315 match_len = 0;
316 do {
317 // Loop unrolling and early load both provide a speedup of 10% for the
318 // current function. Also, max_limit can be MAX_LENGTH=4096 at most.
319 const __m128i cmpA = _mm_cmpeq_epi32(A0, A1);
320 const __m128i B0 =
321 _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
322 const __m128i B1 =
323 _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
324 if (_mm_movemask_epi8(cmpA) != 0xffff) break;
325 match_len += 4;
326
327 {
328 const __m128i cmpB = _mm_cmpeq_epi32(B0, B1);
329 A0 = _mm_loadu_si128((const __m128i*)&array1[match_len + 4]);
330 A1 = _mm_loadu_si128((const __m128i*)&array2[match_len + 4]);
331 if (_mm_movemask_epi8(cmpB) != 0xffff) break;
332 match_len += 4;
333 }
334 } while (match_len + 12 < length);
335 } else {
336 match_len = 0;
337 // Unroll the potential first two loops.
338 if (length >= 4 &&
339 _mm_movemask_epi8(_mm_cmpeq_epi32(
340 _mm_loadu_si128((const __m128i*)&array1[0]),
341 _mm_loadu_si128((const __m128i*)&array2[0]))) == 0xffff) {
342 match_len = 4;
343 if (length >= 8 &&
344 _mm_movemask_epi8(_mm_cmpeq_epi32(
345 _mm_loadu_si128((const __m128i*)&array1[4]),
346 _mm_loadu_si128((const __m128i*)&array2[4]))) == 0xffff) {
347 match_len = 8;
348 }
349 }
350 }
351
352 while (match_len < length && array1[match_len] == array2[match_len]) {
353 ++match_len;
354 }
355 return match_len;
356 }
357
358 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel.
BundleColorMap_SSE2(const uint8_t * const row,int width,int xbits,uint32_t * dst)359 static void BundleColorMap_SSE2(const uint8_t* const row, int width, int xbits,
360 uint32_t* dst) {
361 int x;
362 assert(xbits >= 0);
363 assert(xbits <= 3);
364 switch (xbits) {
365 case 0: {
366 const __m128i ff = _mm_set1_epi16(0xff00);
367 const __m128i zero = _mm_setzero_si128();
368 // Store 0xff000000 | (row[x] << 8).
369 for (x = 0; x + 16 <= width; x += 16, dst += 16) {
370 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
371 const __m128i in_lo = _mm_unpacklo_epi8(zero, in);
372 const __m128i dst0 = _mm_unpacklo_epi16(in_lo, ff);
373 const __m128i dst1 = _mm_unpackhi_epi16(in_lo, ff);
374 const __m128i in_hi = _mm_unpackhi_epi8(zero, in);
375 const __m128i dst2 = _mm_unpacklo_epi16(in_hi, ff);
376 const __m128i dst3 = _mm_unpackhi_epi16(in_hi, ff);
377 _mm_storeu_si128((__m128i*)&dst[0], dst0);
378 _mm_storeu_si128((__m128i*)&dst[4], dst1);
379 _mm_storeu_si128((__m128i*)&dst[8], dst2);
380 _mm_storeu_si128((__m128i*)&dst[12], dst3);
381 }
382 break;
383 }
384 case 1: {
385 const __m128i ff = _mm_set1_epi16(0xff00);
386 const __m128i mul = _mm_set1_epi16(0x110);
387 for (x = 0; x + 16 <= width; x += 16, dst += 8) {
388 // 0a0b | (where a/b are 4 bits).
389 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
390 const __m128i tmp = _mm_mullo_epi16(in, mul); // aba0
391 const __m128i pack = _mm_and_si128(tmp, ff); // ab00
392 const __m128i dst0 = _mm_unpacklo_epi16(pack, ff);
393 const __m128i dst1 = _mm_unpackhi_epi16(pack, ff);
394 _mm_storeu_si128((__m128i*)&dst[0], dst0);
395 _mm_storeu_si128((__m128i*)&dst[4], dst1);
396 }
397 break;
398 }
399 case 2: {
400 const __m128i mask_or = _mm_set1_epi32(0xff000000);
401 const __m128i mul_cst = _mm_set1_epi16(0x0104);
402 const __m128i mask_mul = _mm_set1_epi16(0x0f00);
403 for (x = 0; x + 16 <= width; x += 16, dst += 4) {
404 // 000a000b000c000d | (where a/b/c/d are 2 bits).
405 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
406 const __m128i mul = _mm_mullo_epi16(in, mul_cst); // 00ab00b000cd00d0
407 const __m128i tmp = _mm_and_si128(mul, mask_mul); // 00ab000000cd0000
408 const __m128i shift = _mm_srli_epi32(tmp, 12); // 00000000ab000000
409 const __m128i pack = _mm_or_si128(shift, tmp); // 00000000abcd0000
410 // Convert to 0xff00**00.
411 const __m128i res = _mm_or_si128(pack, mask_or);
412 _mm_storeu_si128((__m128i*)dst, res);
413 }
414 break;
415 }
416 default: {
417 assert(xbits == 3);
418 for (x = 0; x + 16 <= width; x += 16, dst += 2) {
419 // 0000000a00000000b... | (where a/b are 1 bit).
420 const __m128i in = _mm_loadu_si128((const __m128i*)&row[x]);
421 const __m128i shift = _mm_slli_epi64(in, 7);
422 const uint32_t move = _mm_movemask_epi8(shift);
423 dst[0] = 0xff000000 | ((move & 0xff) << 8);
424 dst[1] = 0xff000000 | (move & 0xff00);
425 }
426 break;
427 }
428 }
429 if (x != width) {
430 VP8LBundleColorMap_C(row + x, width - x, xbits, dst);
431 }
432 }
433
434 //------------------------------------------------------------------------------
435 // Batch version of Predictor Transform subtraction
436
Average2_m128i(const __m128i * const a0,const __m128i * const a1,__m128i * const avg)437 static WEBP_INLINE void Average2_m128i(const __m128i* const a0,
438 const __m128i* const a1,
439 __m128i* const avg) {
440 // (a + b) >> 1 = ((a + b + 1) >> 1) - ((a ^ b) & 1)
441 const __m128i ones = _mm_set1_epi8(1);
442 const __m128i avg1 = _mm_avg_epu8(*a0, *a1);
443 const __m128i one = _mm_and_si128(_mm_xor_si128(*a0, *a1), ones);
444 *avg = _mm_sub_epi8(avg1, one);
445 }
446
447 // Predictor0: ARGB_BLACK.
PredictorSub0_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)448 static void PredictorSub0_SSE2(const uint32_t* in, const uint32_t* upper,
449 int num_pixels, uint32_t* out) {
450 int i;
451 const __m128i black = _mm_set1_epi32(ARGB_BLACK);
452 for (i = 0; i + 4 <= num_pixels; i += 4) {
453 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
454 const __m128i res = _mm_sub_epi8(src, black);
455 _mm_storeu_si128((__m128i*)&out[i], res);
456 }
457 if (i != num_pixels) {
458 VP8LPredictorsSub_C[0](in + i, upper + i, num_pixels - i, out + i);
459 }
460 }
461
462 #define GENERATE_PREDICTOR_1(X, IN) \
463 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
464 int num_pixels, uint32_t* out) { \
465 int i; \
466 for (i = 0; i + 4 <= num_pixels; i += 4) { \
467 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
468 const __m128i pred = _mm_loadu_si128((const __m128i*)&(IN)); \
469 const __m128i res = _mm_sub_epi8(src, pred); \
470 _mm_storeu_si128((__m128i*)&out[i], res); \
471 } \
472 if (i != num_pixels) { \
473 VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
474 } \
475 }
476
477 GENERATE_PREDICTOR_1(1, in[i - 1]) // Predictor1: L
478 GENERATE_PREDICTOR_1(2, upper[i]) // Predictor2: T
479 GENERATE_PREDICTOR_1(3, upper[i + 1]) // Predictor3: TR
480 GENERATE_PREDICTOR_1(4, upper[i - 1]) // Predictor4: TL
481 #undef GENERATE_PREDICTOR_1
482
483 // Predictor5: avg2(avg2(L, TR), T)
PredictorSub5_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)484 static void PredictorSub5_SSE2(const uint32_t* in, const uint32_t* upper,
485 int num_pixels, uint32_t* out) {
486 int i;
487 for (i = 0; i + 4 <= num_pixels; i += 4) {
488 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
489 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
490 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
491 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
492 __m128i avg, pred, res;
493 Average2_m128i(&L, &TR, &avg);
494 Average2_m128i(&avg, &T, &pred);
495 res = _mm_sub_epi8(src, pred);
496 _mm_storeu_si128((__m128i*)&out[i], res);
497 }
498 if (i != num_pixels) {
499 VP8LPredictorsSub_C[5](in + i, upper + i, num_pixels - i, out + i);
500 }
501 }
502
503 #define GENERATE_PREDICTOR_2(X, A, B) \
504 static void PredictorSub##X##_SSE2(const uint32_t* in, const uint32_t* upper, \
505 int num_pixels, uint32_t* out) { \
506 int i; \
507 for (i = 0; i + 4 <= num_pixels; i += 4) { \
508 const __m128i tA = _mm_loadu_si128((const __m128i*)&(A)); \
509 const __m128i tB = _mm_loadu_si128((const __m128i*)&(B)); \
510 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]); \
511 __m128i pred, res; \
512 Average2_m128i(&tA, &tB, &pred); \
513 res = _mm_sub_epi8(src, pred); \
514 _mm_storeu_si128((__m128i*)&out[i], res); \
515 } \
516 if (i != num_pixels) { \
517 VP8LPredictorsSub_C[(X)](in + i, upper + i, num_pixels - i, out + i); \
518 } \
519 }
520
521 GENERATE_PREDICTOR_2(6, in[i - 1], upper[i - 1]) // Predictor6: avg(L, TL)
522 GENERATE_PREDICTOR_2(7, in[i - 1], upper[i]) // Predictor7: avg(L, T)
523 GENERATE_PREDICTOR_2(8, upper[i - 1], upper[i]) // Predictor8: avg(TL, T)
524 GENERATE_PREDICTOR_2(9, upper[i], upper[i + 1]) // Predictor9: average(T, TR)
525 #undef GENERATE_PREDICTOR_2
526
527 // Predictor10: avg(avg(L,TL), avg(T, TR)).
PredictorSub10_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)528 static void PredictorSub10_SSE2(const uint32_t* in, const uint32_t* upper,
529 int num_pixels, uint32_t* out) {
530 int i;
531 for (i = 0; i + 4 <= num_pixels; i += 4) {
532 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
533 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
534 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
535 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
536 const __m128i TR = _mm_loadu_si128((const __m128i*)&upper[i + 1]);
537 __m128i avgTTR, avgLTL, avg, res;
538 Average2_m128i(&T, &TR, &avgTTR);
539 Average2_m128i(&L, &TL, &avgLTL);
540 Average2_m128i(&avgTTR, &avgLTL, &avg);
541 res = _mm_sub_epi8(src, avg);
542 _mm_storeu_si128((__m128i*)&out[i], res);
543 }
544 if (i != num_pixels) {
545 VP8LPredictorsSub_C[10](in + i, upper + i, num_pixels - i, out + i);
546 }
547 }
548
549 // Predictor11: select.
GetSumAbsDiff32_SSE2(const __m128i * const A,const __m128i * const B,__m128i * const out)550 static void GetSumAbsDiff32_SSE2(const __m128i* const A, const __m128i* const B,
551 __m128i* const out) {
552 // We can unpack with any value on the upper 32 bits, provided it's the same
553 // on both operands (to that their sum of abs diff is zero). Here we use *A.
554 const __m128i A_lo = _mm_unpacklo_epi32(*A, *A);
555 const __m128i B_lo = _mm_unpacklo_epi32(*B, *A);
556 const __m128i A_hi = _mm_unpackhi_epi32(*A, *A);
557 const __m128i B_hi = _mm_unpackhi_epi32(*B, *A);
558 const __m128i s_lo = _mm_sad_epu8(A_lo, B_lo);
559 const __m128i s_hi = _mm_sad_epu8(A_hi, B_hi);
560 *out = _mm_packs_epi32(s_lo, s_hi);
561 }
562
PredictorSub11_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)563 static void PredictorSub11_SSE2(const uint32_t* in, const uint32_t* upper,
564 int num_pixels, uint32_t* out) {
565 int i;
566 for (i = 0; i + 4 <= num_pixels; i += 4) {
567 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
568 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
569 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
570 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
571 __m128i pa, pb;
572 GetSumAbsDiff32_SSE2(&T, &TL, &pa); // pa = sum |T-TL|
573 GetSumAbsDiff32_SSE2(&L, &TL, &pb); // pb = sum |L-TL|
574 {
575 const __m128i mask = _mm_cmpgt_epi32(pb, pa);
576 const __m128i A = _mm_and_si128(mask, L);
577 const __m128i B = _mm_andnot_si128(mask, T);
578 const __m128i pred = _mm_or_si128(A, B); // pred = (L > T)? L : T
579 const __m128i res = _mm_sub_epi8(src, pred);
580 _mm_storeu_si128((__m128i*)&out[i], res);
581 }
582 }
583 if (i != num_pixels) {
584 VP8LPredictorsSub_C[11](in + i, upper + i, num_pixels - i, out + i);
585 }
586 }
587
588 // Predictor12: ClampedSubSubtractFull.
PredictorSub12_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)589 static void PredictorSub12_SSE2(const uint32_t* in, const uint32_t* upper,
590 int num_pixels, uint32_t* out) {
591 int i;
592 const __m128i zero = _mm_setzero_si128();
593 for (i = 0; i + 4 <= num_pixels; i += 4) {
594 const __m128i src = _mm_loadu_si128((const __m128i*)&in[i]);
595 const __m128i L = _mm_loadu_si128((const __m128i*)&in[i - 1]);
596 const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
597 const __m128i L_hi = _mm_unpackhi_epi8(L, zero);
598 const __m128i T = _mm_loadu_si128((const __m128i*)&upper[i]);
599 const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
600 const __m128i T_hi = _mm_unpackhi_epi8(T, zero);
601 const __m128i TL = _mm_loadu_si128((const __m128i*)&upper[i - 1]);
602 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
603 const __m128i TL_hi = _mm_unpackhi_epi8(TL, zero);
604 const __m128i diff_lo = _mm_sub_epi16(T_lo, TL_lo);
605 const __m128i diff_hi = _mm_sub_epi16(T_hi, TL_hi);
606 const __m128i pred_lo = _mm_add_epi16(L_lo, diff_lo);
607 const __m128i pred_hi = _mm_add_epi16(L_hi, diff_hi);
608 const __m128i pred = _mm_packus_epi16(pred_lo, pred_hi);
609 const __m128i res = _mm_sub_epi8(src, pred);
610 _mm_storeu_si128((__m128i*)&out[i], res);
611 }
612 if (i != num_pixels) {
613 VP8LPredictorsSub_C[12](in + i, upper + i, num_pixels - i, out + i);
614 }
615 }
616
617 // Predictors13: ClampedAddSubtractHalf
PredictorSub13_SSE2(const uint32_t * in,const uint32_t * upper,int num_pixels,uint32_t * out)618 static void PredictorSub13_SSE2(const uint32_t* in, const uint32_t* upper,
619 int num_pixels, uint32_t* out) {
620 int i;
621 const __m128i zero = _mm_setzero_si128();
622 for (i = 0; i + 2 <= num_pixels; i += 2) {
623 // we can only process two pixels at a time
624 const __m128i L = _mm_loadl_epi64((const __m128i*)&in[i - 1]);
625 const __m128i src = _mm_loadl_epi64((const __m128i*)&in[i]);
626 const __m128i T = _mm_loadl_epi64((const __m128i*)&upper[i]);
627 const __m128i TL = _mm_loadl_epi64((const __m128i*)&upper[i - 1]);
628 const __m128i L_lo = _mm_unpacklo_epi8(L, zero);
629 const __m128i T_lo = _mm_unpacklo_epi8(T, zero);
630 const __m128i TL_lo = _mm_unpacklo_epi8(TL, zero);
631 const __m128i sum = _mm_add_epi16(T_lo, L_lo);
632 const __m128i avg = _mm_srli_epi16(sum, 1);
633 const __m128i A1 = _mm_sub_epi16(avg, TL_lo);
634 const __m128i bit_fix = _mm_cmpgt_epi16(TL_lo, avg);
635 const __m128i A2 = _mm_sub_epi16(A1, bit_fix);
636 const __m128i A3 = _mm_srai_epi16(A2, 1);
637 const __m128i A4 = _mm_add_epi16(avg, A3);
638 const __m128i pred = _mm_packus_epi16(A4, A4);
639 const __m128i res = _mm_sub_epi8(src, pred);
640 _mm_storel_epi64((__m128i*)&out[i], res);
641 }
642 if (i != num_pixels) {
643 VP8LPredictorsSub_C[13](in + i, upper + i, num_pixels - i, out + i);
644 }
645 }
646
647 //------------------------------------------------------------------------------
648 // Entry point
649
650 extern void VP8LEncDspInitSSE2(void);
651
VP8LEncDspInitSSE2(void)652 WEBP_TSAN_IGNORE_FUNCTION void VP8LEncDspInitSSE2(void) {
653 VP8LSubtractGreenFromBlueAndRed = SubtractGreenFromBlueAndRed_SSE2;
654 VP8LTransformColor = TransformColor_SSE2;
655 VP8LCollectColorBlueTransforms = CollectColorBlueTransforms_SSE2;
656 VP8LCollectColorRedTransforms = CollectColorRedTransforms_SSE2;
657 VP8LAddVector = AddVector_SSE2;
658 VP8LAddVectorEq = AddVectorEq_SSE2;
659 VP8LCombinedShannonEntropy = CombinedShannonEntropy_SSE2;
660 VP8LVectorMismatch = VectorMismatch_SSE2;
661 VP8LBundleColorMap = BundleColorMap_SSE2;
662
663 VP8LPredictorsSub[0] = PredictorSub0_SSE2;
664 VP8LPredictorsSub[1] = PredictorSub1_SSE2;
665 VP8LPredictorsSub[2] = PredictorSub2_SSE2;
666 VP8LPredictorsSub[3] = PredictorSub3_SSE2;
667 VP8LPredictorsSub[4] = PredictorSub4_SSE2;
668 VP8LPredictorsSub[5] = PredictorSub5_SSE2;
669 VP8LPredictorsSub[6] = PredictorSub6_SSE2;
670 VP8LPredictorsSub[7] = PredictorSub7_SSE2;
671 VP8LPredictorsSub[8] = PredictorSub8_SSE2;
672 VP8LPredictorsSub[9] = PredictorSub9_SSE2;
673 VP8LPredictorsSub[10] = PredictorSub10_SSE2;
674 VP8LPredictorsSub[11] = PredictorSub11_SSE2;
675 VP8LPredictorsSub[12] = PredictorSub12_SSE2;
676 VP8LPredictorsSub[13] = PredictorSub13_SSE2;
677 VP8LPredictorsSub[14] = PredictorSub0_SSE2; // <- padding security sentinels
678 VP8LPredictorsSub[15] = PredictorSub0_SSE2;
679 }
680
681 #else // !WEBP_USE_SSE2
682
683 WEBP_DSP_INIT_STUB(VP8LEncDspInitSSE2)
684
685 #endif // WEBP_USE_SSE2
686