1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the lossless encoder.
11 //
12 // Author: Vikas Arora (vikaas.arora@gmail.com)
13 //
14
15 #include <assert.h>
16 #include <stdlib.h>
17
18 #include "src/enc/backward_references_enc.h"
19 #include "src/enc/histogram_enc.h"
20 #include "src/enc/vp8i_enc.h"
21 #include "src/enc/vp8li_enc.h"
22 #include "src/dsp/lossless.h"
23 #include "src/dsp/lossless_common.h"
24 #include "src/utils/bit_writer_utils.h"
25 #include "src/utils/huffman_encode_utils.h"
26 #include "src/utils/utils.h"
27 #include "src/webp/format_constants.h"
28
29 // Maximum number of histogram images (sub-blocks).
30 #define MAX_HUFF_IMAGE_SIZE 2600
31
32 // Palette reordering for smaller sum of deltas (and for smaller storage).
33
PaletteCompareColorsForQsort(const void * p1,const void * p2)34 static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
35 const uint32_t a = WebPMemToUint32((uint8_t*)p1);
36 const uint32_t b = WebPMemToUint32((uint8_t*)p2);
37 assert(a != b);
38 return (a < b) ? -1 : 1;
39 }
40
PaletteComponentDistance(uint32_t v)41 static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
42 return (v <= 128) ? v : (256 - v);
43 }
44
45 // Computes a value that is related to the entropy created by the
46 // palette entry diff.
47 //
48 // Note that the last & 0xff is a no-operation in the next statement, but
49 // removed by most compilers and is here only for regularity of the code.
PaletteColorDistance(uint32_t col1,uint32_t col2)50 static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
51 const uint32_t diff = VP8LSubPixels(col1, col2);
52 const int kMoreWeightForRGBThanForAlpha = 9;
53 uint32_t score;
54 score = PaletteComponentDistance((diff >> 0) & 0xff);
55 score += PaletteComponentDistance((diff >> 8) & 0xff);
56 score += PaletteComponentDistance((diff >> 16) & 0xff);
57 score *= kMoreWeightForRGBThanForAlpha;
58 score += PaletteComponentDistance((diff >> 24) & 0xff);
59 return score;
60 }
61
SwapColor(uint32_t * const col1,uint32_t * const col2)62 static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
63 const uint32_t tmp = *col1;
64 *col1 = *col2;
65 *col2 = tmp;
66 }
67
GreedyMinimizeDeltas(uint32_t palette[],int num_colors)68 static void GreedyMinimizeDeltas(uint32_t palette[], int num_colors) {
69 // Find greedily always the closest color of the predicted color to minimize
70 // deltas in the palette. This reduces storage needs since the
71 // palette is stored with delta encoding.
72 uint32_t predict = 0x00000000;
73 int i, k;
74 for (i = 0; i < num_colors; ++i) {
75 int best_ix = i;
76 uint32_t best_score = ~0U;
77 for (k = i; k < num_colors; ++k) {
78 const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
79 if (best_score > cur_score) {
80 best_score = cur_score;
81 best_ix = k;
82 }
83 }
84 SwapColor(&palette[best_ix], &palette[i]);
85 predict = palette[i];
86 }
87 }
88
89 // The palette has been sorted by alpha. This function checks if the other
90 // components of the palette have a monotonic development with regards to
91 // position in the palette. If all have monotonic development, there is
92 // no benefit to re-organize them greedily. A monotonic development
93 // would be spotted in green-only situations (like lossy alpha) or gray-scale
94 // images.
PaletteHasNonMonotonousDeltas(uint32_t palette[],int num_colors)95 static int PaletteHasNonMonotonousDeltas(uint32_t palette[], int num_colors) {
96 uint32_t predict = 0x000000;
97 int i;
98 uint8_t sign_found = 0x00;
99 for (i = 0; i < num_colors; ++i) {
100 const uint32_t diff = VP8LSubPixels(palette[i], predict);
101 const uint8_t rd = (diff >> 16) & 0xff;
102 const uint8_t gd = (diff >> 8) & 0xff;
103 const uint8_t bd = (diff >> 0) & 0xff;
104 if (rd != 0x00) {
105 sign_found |= (rd < 0x80) ? 1 : 2;
106 }
107 if (gd != 0x00) {
108 sign_found |= (gd < 0x80) ? 8 : 16;
109 }
110 if (bd != 0x00) {
111 sign_found |= (bd < 0x80) ? 64 : 128;
112 }
113 predict = palette[i];
114 }
115 return (sign_found & (sign_found << 1)) != 0; // two consequent signs.
116 }
117
118 // -----------------------------------------------------------------------------
119 // Palette
120
121 // If number of colors in the image is less than or equal to MAX_PALETTE_SIZE,
122 // creates a palette and returns true, else returns false.
AnalyzeAndCreatePalette(const WebPPicture * const pic,int low_effort,uint32_t palette[MAX_PALETTE_SIZE],int * const palette_size)123 static int AnalyzeAndCreatePalette(const WebPPicture* const pic,
124 int low_effort,
125 uint32_t palette[MAX_PALETTE_SIZE],
126 int* const palette_size) {
127 const int num_colors = WebPGetColorPalette(pic, palette);
128 if (num_colors > MAX_PALETTE_SIZE) {
129 *palette_size = 0;
130 return 0;
131 }
132 *palette_size = num_colors;
133 qsort(palette, num_colors, sizeof(*palette), PaletteCompareColorsForQsort);
134 if (!low_effort && PaletteHasNonMonotonousDeltas(palette, num_colors)) {
135 GreedyMinimizeDeltas(palette, num_colors);
136 }
137 return 1;
138 }
139
140 // These five modes are evaluated and their respective entropy is computed.
141 typedef enum {
142 kDirect = 0,
143 kSpatial = 1,
144 kSubGreen = 2,
145 kSpatialSubGreen = 3,
146 kPalette = 4,
147 kNumEntropyIx = 5
148 } EntropyIx;
149
150 typedef enum {
151 kHistoAlpha = 0,
152 kHistoAlphaPred,
153 kHistoGreen,
154 kHistoGreenPred,
155 kHistoRed,
156 kHistoRedPred,
157 kHistoBlue,
158 kHistoBluePred,
159 kHistoRedSubGreen,
160 kHistoRedPredSubGreen,
161 kHistoBlueSubGreen,
162 kHistoBluePredSubGreen,
163 kHistoPalette,
164 kHistoTotal // Must be last.
165 } HistoIx;
166
AddSingleSubGreen(int p,uint32_t * const r,uint32_t * const b)167 static void AddSingleSubGreen(int p, uint32_t* const r, uint32_t* const b) {
168 const int green = p >> 8; // The upper bits are masked away later.
169 ++r[((p >> 16) - green) & 0xff];
170 ++b[((p >> 0) - green) & 0xff];
171 }
172
AddSingle(uint32_t p,uint32_t * const a,uint32_t * const r,uint32_t * const g,uint32_t * const b)173 static void AddSingle(uint32_t p,
174 uint32_t* const a, uint32_t* const r,
175 uint32_t* const g, uint32_t* const b) {
176 ++a[(p >> 24) & 0xff];
177 ++r[(p >> 16) & 0xff];
178 ++g[(p >> 8) & 0xff];
179 ++b[(p >> 0) & 0xff];
180 }
181
HashPix(uint32_t pix)182 static WEBP_INLINE uint32_t HashPix(uint32_t pix) {
183 // Note that masking with 0xffffffffu is for preventing an
184 // 'unsigned int overflow' warning. Doesn't impact the compiled code.
185 return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24;
186 }
187
AnalyzeEntropy(const uint32_t * argb,int width,int height,int argb_stride,int use_palette,int palette_size,int transform_bits,EntropyIx * const min_entropy_ix,int * const red_and_blue_always_zero)188 static int AnalyzeEntropy(const uint32_t* argb,
189 int width, int height, int argb_stride,
190 int use_palette,
191 int palette_size, int transform_bits,
192 EntropyIx* const min_entropy_ix,
193 int* const red_and_blue_always_zero) {
194 // Allocate histogram set with cache_bits = 0.
195 uint32_t* histo;
196
197 if (use_palette && palette_size <= 16) {
198 // In the case of small palettes, we pack 2, 4 or 8 pixels together. In
199 // practice, small palettes are better than any other transform.
200 *min_entropy_ix = kPalette;
201 *red_and_blue_always_zero = 1;
202 return 1;
203 }
204 histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256);
205 if (histo != NULL) {
206 int i, x, y;
207 const uint32_t* prev_row = NULL;
208 const uint32_t* curr_row = argb;
209 uint32_t pix_prev = argb[0]; // Skip the first pixel.
210 for (y = 0; y < height; ++y) {
211 for (x = 0; x < width; ++x) {
212 const uint32_t pix = curr_row[x];
213 const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev);
214 pix_prev = pix;
215 if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) {
216 continue;
217 }
218 AddSingle(pix,
219 &histo[kHistoAlpha * 256],
220 &histo[kHistoRed * 256],
221 &histo[kHistoGreen * 256],
222 &histo[kHistoBlue * 256]);
223 AddSingle(pix_diff,
224 &histo[kHistoAlphaPred * 256],
225 &histo[kHistoRedPred * 256],
226 &histo[kHistoGreenPred * 256],
227 &histo[kHistoBluePred * 256]);
228 AddSingleSubGreen(pix,
229 &histo[kHistoRedSubGreen * 256],
230 &histo[kHistoBlueSubGreen * 256]);
231 AddSingleSubGreen(pix_diff,
232 &histo[kHistoRedPredSubGreen * 256],
233 &histo[kHistoBluePredSubGreen * 256]);
234 {
235 // Approximate the palette by the entropy of the multiplicative hash.
236 const uint32_t hash = HashPix(pix);
237 ++histo[kHistoPalette * 256 + hash];
238 }
239 }
240 prev_row = curr_row;
241 curr_row += argb_stride;
242 }
243 {
244 double entropy_comp[kHistoTotal];
245 double entropy[kNumEntropyIx];
246 int k;
247 int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen;
248 int j;
249 // Let's add one zero to the predicted histograms. The zeros are removed
250 // too efficiently by the pix_diff == 0 comparison, at least one of the
251 // zeros is likely to exist.
252 ++histo[kHistoRedPredSubGreen * 256];
253 ++histo[kHistoBluePredSubGreen * 256];
254 ++histo[kHistoRedPred * 256];
255 ++histo[kHistoGreenPred * 256];
256 ++histo[kHistoBluePred * 256];
257 ++histo[kHistoAlphaPred * 256];
258
259 for (j = 0; j < kHistoTotal; ++j) {
260 entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256);
261 }
262 entropy[kDirect] = entropy_comp[kHistoAlpha] +
263 entropy_comp[kHistoRed] +
264 entropy_comp[kHistoGreen] +
265 entropy_comp[kHistoBlue];
266 entropy[kSpatial] = entropy_comp[kHistoAlphaPred] +
267 entropy_comp[kHistoRedPred] +
268 entropy_comp[kHistoGreenPred] +
269 entropy_comp[kHistoBluePred];
270 entropy[kSubGreen] = entropy_comp[kHistoAlpha] +
271 entropy_comp[kHistoRedSubGreen] +
272 entropy_comp[kHistoGreen] +
273 entropy_comp[kHistoBlueSubGreen];
274 entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] +
275 entropy_comp[kHistoRedPredSubGreen] +
276 entropy_comp[kHistoGreenPred] +
277 entropy_comp[kHistoBluePredSubGreen];
278 entropy[kPalette] = entropy_comp[kHistoPalette];
279
280 // When including transforms, there is an overhead in bits from
281 // storing them. This overhead is small but matters for small images.
282 // For spatial, there are 14 transformations.
283 entropy[kSpatial] += VP8LSubSampleSize(width, transform_bits) *
284 VP8LSubSampleSize(height, transform_bits) *
285 VP8LFastLog2(14);
286 // For color transforms: 24 as only 3 channels are considered in a
287 // ColorTransformElement.
288 entropy[kSpatialSubGreen] += VP8LSubSampleSize(width, transform_bits) *
289 VP8LSubSampleSize(height, transform_bits) *
290 VP8LFastLog2(24);
291 // For palettes, add the cost of storing the palette.
292 // We empirically estimate the cost of a compressed entry as 8 bits.
293 // The palette is differential-coded when compressed hence a much
294 // lower cost than sizeof(uint32_t)*8.
295 entropy[kPalette] += palette_size * 8;
296
297 *min_entropy_ix = kDirect;
298 for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) {
299 if (entropy[*min_entropy_ix] > entropy[k]) {
300 *min_entropy_ix = (EntropyIx)k;
301 }
302 }
303 assert((int)*min_entropy_ix <= last_mode_to_analyze);
304 *red_and_blue_always_zero = 1;
305 // Let's check if the histogram of the chosen entropy mode has
306 // non-zero red and blue values. If all are zero, we can later skip
307 // the cross color optimization.
308 {
309 static const uint8_t kHistoPairs[5][2] = {
310 { kHistoRed, kHistoBlue },
311 { kHistoRedPred, kHistoBluePred },
312 { kHistoRedSubGreen, kHistoBlueSubGreen },
313 { kHistoRedPredSubGreen, kHistoBluePredSubGreen },
314 { kHistoRed, kHistoBlue }
315 };
316 const uint32_t* const red_histo =
317 &histo[256 * kHistoPairs[*min_entropy_ix][0]];
318 const uint32_t* const blue_histo =
319 &histo[256 * kHistoPairs[*min_entropy_ix][1]];
320 for (i = 1; i < 256; ++i) {
321 if ((red_histo[i] | blue_histo[i]) != 0) {
322 *red_and_blue_always_zero = 0;
323 break;
324 }
325 }
326 }
327 }
328 WebPSafeFree(histo);
329 return 1;
330 } else {
331 return 0;
332 }
333 }
334
GetHistoBits(int method,int use_palette,int width,int height)335 static int GetHistoBits(int method, int use_palette, int width, int height) {
336 // Make tile size a function of encoding method (Range: 0 to 6).
337 int histo_bits = (use_palette ? 9 : 7) - method;
338 while (1) {
339 const int huff_image_size = VP8LSubSampleSize(width, histo_bits) *
340 VP8LSubSampleSize(height, histo_bits);
341 if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break;
342 ++histo_bits;
343 }
344 return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS :
345 (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits;
346 }
347
GetTransformBits(int method,int histo_bits)348 static int GetTransformBits(int method, int histo_bits) {
349 const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5;
350 const int res =
351 (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits;
352 assert(res <= MAX_TRANSFORM_BITS);
353 return res;
354 }
355
356 // Set of parameters to be used in each iteration of the cruncher.
357 #define CRUNCH_CONFIGS_LZ77_MAX 2
358 typedef struct {
359 int entropy_idx_;
360 int lz77s_types_to_try_[CRUNCH_CONFIGS_LZ77_MAX];
361 int lz77s_types_to_try_size_;
362 } CrunchConfig;
363
364 #define CRUNCH_CONFIGS_MAX kNumEntropyIx
365
EncoderAnalyze(VP8LEncoder * const enc,CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],int * const crunch_configs_size,int * const red_and_blue_always_zero)366 static int EncoderAnalyze(VP8LEncoder* const enc,
367 CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
368 int* const crunch_configs_size,
369 int* const red_and_blue_always_zero) {
370 const WebPPicture* const pic = enc->pic_;
371 const int width = pic->width;
372 const int height = pic->height;
373 const WebPConfig* const config = enc->config_;
374 const int method = config->method;
375 const int low_effort = (config->method == 0);
376 int i;
377 int use_palette;
378 int n_lz77s;
379 assert(pic != NULL && pic->argb != NULL);
380
381 use_palette =
382 AnalyzeAndCreatePalette(pic, low_effort,
383 enc->palette_, &enc->palette_size_);
384
385 // Empirical bit sizes.
386 enc->histo_bits_ = GetHistoBits(method, use_palette,
387 pic->width, pic->height);
388 enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_);
389
390 if (low_effort) {
391 // AnalyzeEntropy is somewhat slow.
392 crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
393 n_lz77s = 1;
394 *crunch_configs_size = 1;
395 } else {
396 EntropyIx min_entropy_ix;
397 // Try out multiple LZ77 on images with few colors.
398 n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1;
399 if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette,
400 enc->palette_size_, enc->transform_bits_,
401 &min_entropy_ix, red_and_blue_always_zero)) {
402 return 0;
403 }
404 if (method == 6 && config->quality == 100) {
405 // Go brute force on all transforms.
406 *crunch_configs_size = 0;
407 for (i = 0; i < kNumEntropyIx; ++i) {
408 if (i != kPalette || use_palette) {
409 assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
410 crunch_configs[(*crunch_configs_size)++].entropy_idx_ = i;
411 }
412 }
413 } else {
414 // Only choose the guessed best transform.
415 *crunch_configs_size = 1;
416 crunch_configs[0].entropy_idx_ = min_entropy_ix;
417 }
418 }
419 // Fill in the different LZ77s.
420 assert(n_lz77s <= CRUNCH_CONFIGS_LZ77_MAX);
421 for (i = 0; i < *crunch_configs_size; ++i) {
422 int j;
423 for (j = 0; j < n_lz77s; ++j) {
424 crunch_configs[i].lz77s_types_to_try_[j] =
425 (j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box;
426 }
427 crunch_configs[i].lz77s_types_to_try_size_ = n_lz77s;
428 }
429 return 1;
430 }
431
EncoderInit(VP8LEncoder * const enc)432 static int EncoderInit(VP8LEncoder* const enc) {
433 const WebPPicture* const pic = enc->pic_;
434 const int width = pic->width;
435 const int height = pic->height;
436 const int pix_cnt = width * height;
437 // we round the block size up, so we're guaranteed to have
438 // at most MAX_REFS_BLOCK_PER_IMAGE blocks used:
439 const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1;
440 int i;
441 if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
442
443 for (i = 0; i < 3; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
444
445 return 1;
446 }
447
448 // Returns false in case of memory error.
GetHuffBitLengthsAndCodes(const VP8LHistogramSet * const histogram_image,HuffmanTreeCode * const huffman_codes)449 static int GetHuffBitLengthsAndCodes(
450 const VP8LHistogramSet* const histogram_image,
451 HuffmanTreeCode* const huffman_codes) {
452 int i, k;
453 int ok = 0;
454 uint64_t total_length_size = 0;
455 uint8_t* mem_buf = NULL;
456 const int histogram_image_size = histogram_image->size;
457 int max_num_symbols = 0;
458 uint8_t* buf_rle = NULL;
459 HuffmanTree* huff_tree = NULL;
460
461 // Iterate over all histograms and get the aggregate number of codes used.
462 for (i = 0; i < histogram_image_size; ++i) {
463 const VP8LHistogram* const histo = histogram_image->histograms[i];
464 HuffmanTreeCode* const codes = &huffman_codes[5 * i];
465 assert(histo != NULL);
466 for (k = 0; k < 5; ++k) {
467 const int num_symbols =
468 (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) :
469 (k == 4) ? NUM_DISTANCE_CODES : 256;
470 codes[k].num_symbols = num_symbols;
471 total_length_size += num_symbols;
472 }
473 }
474
475 // Allocate and Set Huffman codes.
476 {
477 uint16_t* codes;
478 uint8_t* lengths;
479 mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size,
480 sizeof(*lengths) + sizeof(*codes));
481 if (mem_buf == NULL) goto End;
482
483 codes = (uint16_t*)mem_buf;
484 lengths = (uint8_t*)&codes[total_length_size];
485 for (i = 0; i < 5 * histogram_image_size; ++i) {
486 const int bit_length = huffman_codes[i].num_symbols;
487 huffman_codes[i].codes = codes;
488 huffman_codes[i].code_lengths = lengths;
489 codes += bit_length;
490 lengths += bit_length;
491 if (max_num_symbols < bit_length) {
492 max_num_symbols = bit_length;
493 }
494 }
495 }
496
497 buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols);
498 huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols,
499 sizeof(*huff_tree));
500 if (buf_rle == NULL || huff_tree == NULL) goto End;
501
502 // Create Huffman trees.
503 for (i = 0; i < histogram_image_size; ++i) {
504 HuffmanTreeCode* const codes = &huffman_codes[5 * i];
505 VP8LHistogram* const histo = histogram_image->histograms[i];
506 VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0);
507 VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1);
508 VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2);
509 VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3);
510 VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4);
511 }
512 ok = 1;
513 End:
514 WebPSafeFree(huff_tree);
515 WebPSafeFree(buf_rle);
516 if (!ok) {
517 WebPSafeFree(mem_buf);
518 memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes));
519 }
520 return ok;
521 }
522
StoreHuffmanTreeOfHuffmanTreeToBitMask(VP8LBitWriter * const bw,const uint8_t * code_length_bitdepth)523 static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
524 VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
525 // RFC 1951 will calm you down if you are worried about this funny sequence.
526 // This sequence is tuned from that, but more weighted for lower symbol count,
527 // and more spiking histograms.
528 static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
529 17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
530 };
531 int i;
532 // Throw away trailing zeros:
533 int codes_to_store = CODE_LENGTH_CODES;
534 for (; codes_to_store > 4; --codes_to_store) {
535 if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
536 break;
537 }
538 }
539 VP8LPutBits(bw, codes_to_store - 4, 4);
540 for (i = 0; i < codes_to_store; ++i) {
541 VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3);
542 }
543 }
544
ClearHuffmanTreeIfOnlyOneSymbol(HuffmanTreeCode * const huffman_code)545 static void ClearHuffmanTreeIfOnlyOneSymbol(
546 HuffmanTreeCode* const huffman_code) {
547 int k;
548 int count = 0;
549 for (k = 0; k < huffman_code->num_symbols; ++k) {
550 if (huffman_code->code_lengths[k] != 0) {
551 ++count;
552 if (count > 1) return;
553 }
554 }
555 for (k = 0; k < huffman_code->num_symbols; ++k) {
556 huffman_code->code_lengths[k] = 0;
557 huffman_code->codes[k] = 0;
558 }
559 }
560
StoreHuffmanTreeToBitMask(VP8LBitWriter * const bw,const HuffmanTreeToken * const tokens,const int num_tokens,const HuffmanTreeCode * const huffman_code)561 static void StoreHuffmanTreeToBitMask(
562 VP8LBitWriter* const bw,
563 const HuffmanTreeToken* const tokens, const int num_tokens,
564 const HuffmanTreeCode* const huffman_code) {
565 int i;
566 for (i = 0; i < num_tokens; ++i) {
567 const int ix = tokens[i].code;
568 const int extra_bits = tokens[i].extra_bits;
569 VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]);
570 switch (ix) {
571 case 16:
572 VP8LPutBits(bw, extra_bits, 2);
573 break;
574 case 17:
575 VP8LPutBits(bw, extra_bits, 3);
576 break;
577 case 18:
578 VP8LPutBits(bw, extra_bits, 7);
579 break;
580 }
581 }
582 }
583
584 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreFullHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const tree)585 static void StoreFullHuffmanCode(VP8LBitWriter* const bw,
586 HuffmanTree* const huff_tree,
587 HuffmanTreeToken* const tokens,
588 const HuffmanTreeCode* const tree) {
589 uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 };
590 uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 };
591 const int max_tokens = tree->num_symbols;
592 int num_tokens;
593 HuffmanTreeCode huffman_code;
594 huffman_code.num_symbols = CODE_LENGTH_CODES;
595 huffman_code.code_lengths = code_length_bitdepth;
596 huffman_code.codes = code_length_bitdepth_symbols;
597
598 VP8LPutBits(bw, 0, 1);
599 num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens);
600 {
601 uint32_t histogram[CODE_LENGTH_CODES] = { 0 };
602 uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 };
603 int i;
604 for (i = 0; i < num_tokens; ++i) {
605 ++histogram[tokens[i].code];
606 }
607
608 VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code);
609 }
610
611 StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
612 ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code);
613 {
614 int trailing_zero_bits = 0;
615 int trimmed_length = num_tokens;
616 int write_trimmed_length;
617 int length;
618 int i = num_tokens;
619 while (i-- > 0) {
620 const int ix = tokens[i].code;
621 if (ix == 0 || ix == 17 || ix == 18) {
622 --trimmed_length; // discount trailing zeros
623 trailing_zero_bits += code_length_bitdepth[ix];
624 if (ix == 17) {
625 trailing_zero_bits += 3;
626 } else if (ix == 18) {
627 trailing_zero_bits += 7;
628 }
629 } else {
630 break;
631 }
632 }
633 write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12);
634 length = write_trimmed_length ? trimmed_length : num_tokens;
635 VP8LPutBits(bw, write_trimmed_length, 1);
636 if (write_trimmed_length) {
637 if (trimmed_length == 2) {
638 VP8LPutBits(bw, 0, 3 + 2); // nbitpairs=1, trimmed_length=2
639 } else {
640 const int nbits = BitsLog2Floor(trimmed_length - 2);
641 const int nbitpairs = nbits / 2 + 1;
642 assert(trimmed_length > 2);
643 assert(nbitpairs - 1 < 8);
644 VP8LPutBits(bw, nbitpairs - 1, 3);
645 VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2);
646 }
647 }
648 StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code);
649 }
650 }
651
652 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const huffman_code)653 static void StoreHuffmanCode(VP8LBitWriter* const bw,
654 HuffmanTree* const huff_tree,
655 HuffmanTreeToken* const tokens,
656 const HuffmanTreeCode* const huffman_code) {
657 int i;
658 int count = 0;
659 int symbols[2] = { 0, 0 };
660 const int kMaxBits = 8;
661 const int kMaxSymbol = 1 << kMaxBits;
662
663 // Check whether it's a small tree.
664 for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) {
665 if (huffman_code->code_lengths[i] != 0) {
666 if (count < 2) symbols[count] = i;
667 ++count;
668 }
669 }
670
671 if (count == 0) { // emit minimal tree for empty cases
672 // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0
673 VP8LPutBits(bw, 0x01, 4);
674 } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) {
675 VP8LPutBits(bw, 1, 1); // Small tree marker to encode 1 or 2 symbols.
676 VP8LPutBits(bw, count - 1, 1);
677 if (symbols[0] <= 1) {
678 VP8LPutBits(bw, 0, 1); // Code bit for small (1 bit) symbol value.
679 VP8LPutBits(bw, symbols[0], 1);
680 } else {
681 VP8LPutBits(bw, 1, 1);
682 VP8LPutBits(bw, symbols[0], 8);
683 }
684 if (count == 2) {
685 VP8LPutBits(bw, symbols[1], 8);
686 }
687 } else {
688 StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code);
689 }
690 }
691
WriteHuffmanCode(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index)692 static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw,
693 const HuffmanTreeCode* const code,
694 int code_index) {
695 const int depth = code->code_lengths[code_index];
696 const int symbol = code->codes[code_index];
697 VP8LPutBits(bw, symbol, depth);
698 }
699
WriteHuffmanCodeWithExtraBits(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index,int bits,int n_bits)700 static WEBP_INLINE void WriteHuffmanCodeWithExtraBits(
701 VP8LBitWriter* const bw,
702 const HuffmanTreeCode* const code,
703 int code_index,
704 int bits,
705 int n_bits) {
706 const int depth = code->code_lengths[code_index];
707 const int symbol = code->codes[code_index];
708 VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits);
709 }
710
StoreImageToBitMask(VP8LBitWriter * const bw,int width,int histo_bits,const VP8LBackwardRefs * const refs,const uint16_t * histogram_symbols,const HuffmanTreeCode * const huffman_codes)711 static WebPEncodingError StoreImageToBitMask(
712 VP8LBitWriter* const bw, int width, int histo_bits,
713 const VP8LBackwardRefs* const refs,
714 const uint16_t* histogram_symbols,
715 const HuffmanTreeCode* const huffman_codes) {
716 const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
717 const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits);
718 // x and y trace the position in the image.
719 int x = 0;
720 int y = 0;
721 int tile_x = x & tile_mask;
722 int tile_y = y & tile_mask;
723 int histogram_ix = histogram_symbols[0];
724 const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix;
725 VP8LRefsCursor c = VP8LRefsCursorInit(refs);
726 while (VP8LRefsCursorOk(&c)) {
727 const PixOrCopy* const v = c.cur_pos;
728 if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) {
729 tile_x = x & tile_mask;
730 tile_y = y & tile_mask;
731 histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize +
732 (x >> histo_bits)];
733 codes = huffman_codes + 5 * histogram_ix;
734 }
735 if (PixOrCopyIsLiteral(v)) {
736 static const uint8_t order[] = { 1, 2, 0, 3 };
737 int k;
738 for (k = 0; k < 4; ++k) {
739 const int code = PixOrCopyLiteral(v, order[k]);
740 WriteHuffmanCode(bw, codes + k, code);
741 }
742 } else if (PixOrCopyIsCacheIdx(v)) {
743 const int code = PixOrCopyCacheIdx(v);
744 const int literal_ix = 256 + NUM_LENGTH_CODES + code;
745 WriteHuffmanCode(bw, codes, literal_ix);
746 } else {
747 int bits, n_bits;
748 int code;
749
750 const int distance = PixOrCopyDistance(v);
751 VP8LPrefixEncode(v->len, &code, &n_bits, &bits);
752 WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits);
753
754 // Don't write the distance with the extra bits code since
755 // the distance can be up to 18 bits of extra bits, and the prefix
756 // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
757 VP8LPrefixEncode(distance, &code, &n_bits, &bits);
758 WriteHuffmanCode(bw, codes + 4, code);
759 VP8LPutBits(bw, bits, n_bits);
760 }
761 x += PixOrCopyLength(v);
762 while (x >= width) {
763 x -= width;
764 ++y;
765 }
766 VP8LRefsCursorNext(&c);
767 }
768 return bw->error_ ? VP8_ENC_ERROR_OUT_OF_MEMORY : VP8_ENC_OK;
769 }
770
771 // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31
EncodeImageNoHuffman(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_tmp1,VP8LBackwardRefs * const refs_tmp2,int width,int height,int quality,int low_effort)772 static WebPEncodingError EncodeImageNoHuffman(VP8LBitWriter* const bw,
773 const uint32_t* const argb,
774 VP8LHashChain* const hash_chain,
775 VP8LBackwardRefs* const refs_tmp1,
776 VP8LBackwardRefs* const refs_tmp2,
777 int width, int height,
778 int quality, int low_effort) {
779 int i;
780 int max_tokens = 0;
781 WebPEncodingError err = VP8_ENC_OK;
782 VP8LBackwardRefs* refs;
783 HuffmanTreeToken* tokens = NULL;
784 HuffmanTreeCode huffman_codes[5] = { { 0, NULL, NULL } };
785 const uint16_t histogram_symbols[1] = { 0 }; // only one tree, one symbol
786 int cache_bits = 0;
787 VP8LHistogramSet* histogram_image = NULL;
788 HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
789 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
790 if (huff_tree == NULL) {
791 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
792 goto Error;
793 }
794
795 // Calculate backward references from ARGB image.
796 if (!VP8LHashChainFill(hash_chain, quality, argb, width, height,
797 low_effort)) {
798 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
799 goto Error;
800 }
801 refs = VP8LGetBackwardReferences(width, height, argb, quality, 0,
802 kLZ77Standard | kLZ77RLE, &cache_bits,
803 hash_chain, refs_tmp1, refs_tmp2);
804 if (refs == NULL) {
805 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
806 goto Error;
807 }
808 histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
809 if (histogram_image == NULL) {
810 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
811 goto Error;
812 }
813 VP8LHistogramSetClear(histogram_image);
814
815 // Build histogram image and symbols from backward references.
816 VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]);
817
818 // Create Huffman bit lengths and codes for each histogram image.
819 assert(histogram_image->size == 1);
820 if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
821 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
822 goto Error;
823 }
824
825 // No color cache, no Huffman image.
826 VP8LPutBits(bw, 0, 1);
827
828 // Find maximum number of symbols for the huffman tree-set.
829 for (i = 0; i < 5; ++i) {
830 HuffmanTreeCode* const codes = &huffman_codes[i];
831 if (max_tokens < codes->num_symbols) {
832 max_tokens = codes->num_symbols;
833 }
834 }
835
836 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
837 if (tokens == NULL) {
838 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
839 goto Error;
840 }
841
842 // Store Huffman codes.
843 for (i = 0; i < 5; ++i) {
844 HuffmanTreeCode* const codes = &huffman_codes[i];
845 StoreHuffmanCode(bw, huff_tree, tokens, codes);
846 ClearHuffmanTreeIfOnlyOneSymbol(codes);
847 }
848
849 // Store actual literals.
850 err = StoreImageToBitMask(bw, width, 0, refs, histogram_symbols,
851 huffman_codes);
852
853 Error:
854 WebPSafeFree(tokens);
855 WebPSafeFree(huff_tree);
856 VP8LFreeHistogramSet(histogram_image);
857 WebPSafeFree(huffman_codes[0].codes);
858 return err;
859 }
860
EncodeImageInternal(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs refs_array[3],int width,int height,int quality,int low_effort,int use_cache,const CrunchConfig * const config,int * cache_bits,int histogram_bits,size_t init_byte_position,int * const hdr_size,int * const data_size)861 static WebPEncodingError EncodeImageInternal(
862 VP8LBitWriter* const bw, const uint32_t* const argb,
863 VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[3], int width,
864 int height, int quality, int low_effort, int use_cache,
865 const CrunchConfig* const config, int* cache_bits, int histogram_bits,
866 size_t init_byte_position, int* const hdr_size, int* const data_size) {
867 WebPEncodingError err = VP8_ENC_OK;
868 const uint32_t histogram_image_xysize =
869 VP8LSubSampleSize(width, histogram_bits) *
870 VP8LSubSampleSize(height, histogram_bits);
871 VP8LHistogramSet* histogram_image = NULL;
872 VP8LHistogram* tmp_histo = NULL;
873 int histogram_image_size = 0;
874 size_t bit_array_size = 0;
875 HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
876 3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
877 HuffmanTreeToken* tokens = NULL;
878 HuffmanTreeCode* huffman_codes = NULL;
879 VP8LBackwardRefs* refs_best;
880 VP8LBackwardRefs* refs_tmp;
881 uint16_t* const histogram_symbols =
882 (uint16_t*)WebPSafeMalloc(histogram_image_xysize,
883 sizeof(*histogram_symbols));
884 int lz77s_idx;
885 VP8LBitWriter bw_init = *bw, bw_best;
886 int hdr_size_tmp;
887 assert(histogram_bits >= MIN_HUFFMAN_BITS);
888 assert(histogram_bits <= MAX_HUFFMAN_BITS);
889 assert(hdr_size != NULL);
890 assert(data_size != NULL);
891
892 if (histogram_symbols == NULL) {
893 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
894 goto Error;
895 }
896
897 if (use_cache) {
898 // If the value is different from zero, it has been set during the
899 // palette analysis.
900 if (*cache_bits == 0) *cache_bits = MAX_COLOR_CACHE_BITS;
901 } else {
902 *cache_bits = 0;
903 }
904 // 'best_refs' is the reference to the best backward refs and points to one
905 // of refs_array[0] or refs_array[1].
906 // Calculate backward references from ARGB image.
907 if (huff_tree == NULL ||
908 !VP8LHashChainFill(hash_chain, quality, argb, width, height,
909 low_effort) ||
910 !VP8LBitWriterInit(&bw_best, 0) ||
911 (config->lz77s_types_to_try_size_ > 1 &&
912 !VP8LBitWriterClone(bw, &bw_best))) {
913 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
914 goto Error;
915 }
916 for (lz77s_idx = 0; lz77s_idx < config->lz77s_types_to_try_size_;
917 ++lz77s_idx) {
918 refs_best = VP8LGetBackwardReferences(
919 width, height, argb, quality, low_effort,
920 config->lz77s_types_to_try_[lz77s_idx], cache_bits, hash_chain,
921 &refs_array[0], &refs_array[1]);
922 if (refs_best == NULL) {
923 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
924 goto Error;
925 }
926 // Keep the best references aside and use the other element from the first
927 // two as a temporary for later usage.
928 refs_tmp = &refs_array[refs_best == &refs_array[0] ? 1 : 0];
929
930 histogram_image =
931 VP8LAllocateHistogramSet(histogram_image_xysize, *cache_bits);
932 tmp_histo = VP8LAllocateHistogram(*cache_bits);
933 if (histogram_image == NULL || tmp_histo == NULL) {
934 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
935 goto Error;
936 }
937
938 // Build histogram image and symbols from backward references.
939 if (!VP8LGetHistoImageSymbols(width, height, refs_best, quality, low_effort,
940 histogram_bits, *cache_bits, histogram_image,
941 tmp_histo, histogram_symbols)) {
942 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
943 goto Error;
944 }
945 // Create Huffman bit lengths and codes for each histogram image.
946 histogram_image_size = histogram_image->size;
947 bit_array_size = 5 * histogram_image_size;
948 huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
949 sizeof(*huffman_codes));
950 // Note: some histogram_image entries may point to tmp_histos[], so the
951 // latter need to outlive the following call to GetHuffBitLengthsAndCodes().
952 if (huffman_codes == NULL ||
953 !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
954 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
955 goto Error;
956 }
957 // Free combined histograms.
958 VP8LFreeHistogramSet(histogram_image);
959 histogram_image = NULL;
960
961 // Free scratch histograms.
962 VP8LFreeHistogram(tmp_histo);
963 tmp_histo = NULL;
964
965 // Color Cache parameters.
966 if (*cache_bits > 0) {
967 VP8LPutBits(bw, 1, 1);
968 VP8LPutBits(bw, *cache_bits, 4);
969 } else {
970 VP8LPutBits(bw, 0, 1);
971 }
972
973 // Huffman image + meta huffman.
974 {
975 const int write_histogram_image = (histogram_image_size > 1);
976 VP8LPutBits(bw, write_histogram_image, 1);
977 if (write_histogram_image) {
978 uint32_t* const histogram_argb =
979 (uint32_t*)WebPSafeMalloc(histogram_image_xysize,
980 sizeof(*histogram_argb));
981 int max_index = 0;
982 uint32_t i;
983 if (histogram_argb == NULL) {
984 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
985 goto Error;
986 }
987 for (i = 0; i < histogram_image_xysize; ++i) {
988 const int symbol_index = histogram_symbols[i] & 0xffff;
989 histogram_argb[i] = (symbol_index << 8);
990 if (symbol_index >= max_index) {
991 max_index = symbol_index + 1;
992 }
993 }
994 histogram_image_size = max_index;
995
996 VP8LPutBits(bw, histogram_bits - 2, 3);
997 err = EncodeImageNoHuffman(
998 bw, histogram_argb, hash_chain, refs_tmp, &refs_array[2],
999 VP8LSubSampleSize(width, histogram_bits),
1000 VP8LSubSampleSize(height, histogram_bits), quality, low_effort);
1001 WebPSafeFree(histogram_argb);
1002 if (err != VP8_ENC_OK) goto Error;
1003 }
1004 }
1005
1006 // Store Huffman codes.
1007 {
1008 int i;
1009 int max_tokens = 0;
1010 // Find maximum number of symbols for the huffman tree-set.
1011 for (i = 0; i < 5 * histogram_image_size; ++i) {
1012 HuffmanTreeCode* const codes = &huffman_codes[i];
1013 if (max_tokens < codes->num_symbols) {
1014 max_tokens = codes->num_symbols;
1015 }
1016 }
1017 tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
1018 if (tokens == NULL) {
1019 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1020 goto Error;
1021 }
1022 for (i = 0; i < 5 * histogram_image_size; ++i) {
1023 HuffmanTreeCode* const codes = &huffman_codes[i];
1024 StoreHuffmanCode(bw, huff_tree, tokens, codes);
1025 ClearHuffmanTreeIfOnlyOneSymbol(codes);
1026 }
1027 }
1028 // Store actual literals.
1029 hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
1030 err = StoreImageToBitMask(bw, width, histogram_bits, refs_best,
1031 histogram_symbols, huffman_codes);
1032 // Keep track of the smallest image so far.
1033 if (lz77s_idx == 0 ||
1034 VP8LBitWriterNumBytes(bw) < VP8LBitWriterNumBytes(&bw_best)) {
1035 *hdr_size = hdr_size_tmp;
1036 *data_size =
1037 (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
1038 VP8LBitWriterSwap(bw, &bw_best);
1039 }
1040 // Reset the bit writer for the following iteration if any.
1041 if (config->lz77s_types_to_try_size_ > 1) VP8LBitWriterReset(&bw_init, bw);
1042 WebPSafeFree(tokens);
1043 tokens = NULL;
1044 if (huffman_codes != NULL) {
1045 WebPSafeFree(huffman_codes->codes);
1046 WebPSafeFree(huffman_codes);
1047 huffman_codes = NULL;
1048 }
1049 }
1050 VP8LBitWriterSwap(bw, &bw_best);
1051
1052 Error:
1053 WebPSafeFree(tokens);
1054 WebPSafeFree(huff_tree);
1055 VP8LFreeHistogramSet(histogram_image);
1056 VP8LFreeHistogram(tmp_histo);
1057 if (huffman_codes != NULL) {
1058 WebPSafeFree(huffman_codes->codes);
1059 WebPSafeFree(huffman_codes);
1060 }
1061 WebPSafeFree(histogram_symbols);
1062 VP8LBitWriterWipeOut(&bw_best);
1063 return err;
1064 }
1065
1066 // -----------------------------------------------------------------------------
1067 // Transforms
1068
ApplySubtractGreen(VP8LEncoder * const enc,int width,int height,VP8LBitWriter * const bw)1069 static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height,
1070 VP8LBitWriter* const bw) {
1071 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1072 VP8LPutBits(bw, SUBTRACT_GREEN, 2);
1073 VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
1074 }
1075
ApplyPredictFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,int used_subtract_green,VP8LBitWriter * const bw)1076 static WebPEncodingError ApplyPredictFilter(const VP8LEncoder* const enc,
1077 int width, int height,
1078 int quality, int low_effort,
1079 int used_subtract_green,
1080 VP8LBitWriter* const bw) {
1081 const int pred_bits = enc->transform_bits_;
1082 const int transform_width = VP8LSubSampleSize(width, pred_bits);
1083 const int transform_height = VP8LSubSampleSize(height, pred_bits);
1084 // we disable near-lossless quantization if palette is used.
1085 const int near_lossless_strength = enc->use_palette_ ? 100
1086 : enc->config_->near_lossless;
1087
1088 VP8LResidualImage(width, height, pred_bits, low_effort, enc->argb_,
1089 enc->argb_scratch_, enc->transform_data_,
1090 near_lossless_strength, enc->config_->exact,
1091 used_subtract_green);
1092 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1093 VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
1094 assert(pred_bits >= 2);
1095 VP8LPutBits(bw, pred_bits - 2, 3);
1096 return EncodeImageNoHuffman(
1097 bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1098 (VP8LBackwardRefs*)&enc->refs_[0], // cast const away
1099 (VP8LBackwardRefs*)&enc->refs_[1], transform_width, transform_height,
1100 quality, low_effort);
1101 }
1102
ApplyCrossColorFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,VP8LBitWriter * const bw)1103 static WebPEncodingError ApplyCrossColorFilter(const VP8LEncoder* const enc,
1104 int width, int height,
1105 int quality, int low_effort,
1106 VP8LBitWriter* const bw) {
1107 const int ccolor_transform_bits = enc->transform_bits_;
1108 const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits);
1109 const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits);
1110
1111 VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality,
1112 enc->argb_, enc->transform_data_);
1113 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1114 VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2);
1115 assert(ccolor_transform_bits >= 2);
1116 VP8LPutBits(bw, ccolor_transform_bits - 2, 3);
1117 return EncodeImageNoHuffman(
1118 bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1119 (VP8LBackwardRefs*)&enc->refs_[0], // cast const away
1120 (VP8LBackwardRefs*)&enc->refs_[1], transform_width, transform_height,
1121 quality, low_effort);
1122 }
1123
1124 // -----------------------------------------------------------------------------
1125
WriteRiffHeader(const WebPPicture * const pic,size_t riff_size,size_t vp8l_size)1126 static WebPEncodingError WriteRiffHeader(const WebPPicture* const pic,
1127 size_t riff_size, size_t vp8l_size) {
1128 uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = {
1129 'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
1130 'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE,
1131 };
1132 PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
1133 PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
1134 if (!pic->writer(riff, sizeof(riff), pic)) {
1135 return VP8_ENC_ERROR_BAD_WRITE;
1136 }
1137 return VP8_ENC_OK;
1138 }
1139
WriteImageSize(const WebPPicture * const pic,VP8LBitWriter * const bw)1140 static int WriteImageSize(const WebPPicture* const pic,
1141 VP8LBitWriter* const bw) {
1142 const int width = pic->width - 1;
1143 const int height = pic->height - 1;
1144 assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
1145
1146 VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS);
1147 VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS);
1148 return !bw->error_;
1149 }
1150
WriteRealAlphaAndVersion(VP8LBitWriter * const bw,int has_alpha)1151 static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) {
1152 VP8LPutBits(bw, has_alpha, 1);
1153 VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS);
1154 return !bw->error_;
1155 }
1156
WriteImage(const WebPPicture * const pic,VP8LBitWriter * const bw,size_t * const coded_size)1157 static WebPEncodingError WriteImage(const WebPPicture* const pic,
1158 VP8LBitWriter* const bw,
1159 size_t* const coded_size) {
1160 WebPEncodingError err = VP8_ENC_OK;
1161 const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
1162 const size_t webpll_size = VP8LBitWriterNumBytes(bw);
1163 const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size;
1164 const size_t pad = vp8l_size & 1;
1165 const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad;
1166
1167 err = WriteRiffHeader(pic, riff_size, vp8l_size);
1168 if (err != VP8_ENC_OK) goto Error;
1169
1170 if (!pic->writer(webpll_data, webpll_size, pic)) {
1171 err = VP8_ENC_ERROR_BAD_WRITE;
1172 goto Error;
1173 }
1174
1175 if (pad) {
1176 const uint8_t pad_byte[1] = { 0 };
1177 if (!pic->writer(pad_byte, 1, pic)) {
1178 err = VP8_ENC_ERROR_BAD_WRITE;
1179 goto Error;
1180 }
1181 }
1182 *coded_size = CHUNK_HEADER_SIZE + riff_size;
1183 return VP8_ENC_OK;
1184
1185 Error:
1186 return err;
1187 }
1188
1189 // -----------------------------------------------------------------------------
1190
ClearTransformBuffer(VP8LEncoder * const enc)1191 static void ClearTransformBuffer(VP8LEncoder* const enc) {
1192 WebPSafeFree(enc->transform_mem_);
1193 enc->transform_mem_ = NULL;
1194 enc->transform_mem_size_ = 0;
1195 }
1196
1197 // Allocates the memory for argb (W x H) buffer, 2 rows of context for
1198 // prediction and transform data.
1199 // Flags influencing the memory allocated:
1200 // enc->transform_bits_
1201 // enc->use_predict_, enc->use_cross_color_
AllocateTransformBuffer(VP8LEncoder * const enc,int width,int height)1202 static WebPEncodingError AllocateTransformBuffer(VP8LEncoder* const enc,
1203 int width, int height) {
1204 WebPEncodingError err = VP8_ENC_OK;
1205 const uint64_t image_size = width * height;
1206 // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra
1207 // pixel in each, plus 2 regular scanlines of bytes.
1208 // TODO(skal): Clean up by using arithmetic in bytes instead of words.
1209 const uint64_t argb_scratch_size =
1210 enc->use_predict_
1211 ? (width + 1) * 2 +
1212 (width * 2 + sizeof(uint32_t) - 1) / sizeof(uint32_t)
1213 : 0;
1214 const uint64_t transform_data_size =
1215 (enc->use_predict_ || enc->use_cross_color_)
1216 ? VP8LSubSampleSize(width, enc->transform_bits_) *
1217 VP8LSubSampleSize(height, enc->transform_bits_)
1218 : 0;
1219 const uint64_t max_alignment_in_words =
1220 (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t);
1221 const uint64_t mem_size =
1222 image_size + max_alignment_in_words +
1223 argb_scratch_size + max_alignment_in_words +
1224 transform_data_size;
1225 uint32_t* mem = enc->transform_mem_;
1226 if (mem == NULL || mem_size > enc->transform_mem_size_) {
1227 ClearTransformBuffer(enc);
1228 mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem));
1229 if (mem == NULL) {
1230 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1231 goto Error;
1232 }
1233 enc->transform_mem_ = mem;
1234 enc->transform_mem_size_ = (size_t)mem_size;
1235 enc->argb_content_ = kEncoderNone;
1236 }
1237 enc->argb_ = mem;
1238 mem = (uint32_t*)WEBP_ALIGN(mem + image_size);
1239 enc->argb_scratch_ = mem;
1240 mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size);
1241 enc->transform_data_ = mem;
1242
1243 enc->current_width_ = width;
1244 Error:
1245 return err;
1246 }
1247
MakeInputImageCopy(VP8LEncoder * const enc)1248 static WebPEncodingError MakeInputImageCopy(VP8LEncoder* const enc) {
1249 WebPEncodingError err = VP8_ENC_OK;
1250 const WebPPicture* const picture = enc->pic_;
1251 const int width = picture->width;
1252 const int height = picture->height;
1253
1254 err = AllocateTransformBuffer(enc, width, height);
1255 if (err != VP8_ENC_OK) return err;
1256 if (enc->argb_content_ == kEncoderARGB) return VP8_ENC_OK;
1257
1258 {
1259 uint32_t* dst = enc->argb_;
1260 const uint32_t* src = picture->argb;
1261 int y;
1262 for (y = 0; y < height; ++y) {
1263 memcpy(dst, src, width * sizeof(*dst));
1264 dst += width;
1265 src += picture->argb_stride;
1266 }
1267 }
1268 enc->argb_content_ = kEncoderARGB;
1269 assert(enc->current_width_ == width);
1270 return VP8_ENC_OK;
1271 }
1272
1273 // -----------------------------------------------------------------------------
1274
SearchColorNoIdx(const uint32_t sorted[],uint32_t color,int hi)1275 static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
1276 int hi) {
1277 int low = 0;
1278 if (sorted[low] == color) return low; // loop invariant: sorted[low] != color
1279 while (1) {
1280 const int mid = (low + hi) >> 1;
1281 if (sorted[mid] == color) {
1282 return mid;
1283 } else if (sorted[mid] < color) {
1284 low = mid;
1285 } else {
1286 hi = mid;
1287 }
1288 }
1289 }
1290
1291 #define APPLY_PALETTE_GREEDY_MAX 4
1292
SearchColorGreedy(const uint32_t palette[],int palette_size,uint32_t color)1293 static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
1294 int palette_size,
1295 uint32_t color) {
1296 (void)palette_size;
1297 assert(palette_size < APPLY_PALETTE_GREEDY_MAX);
1298 assert(3 == APPLY_PALETTE_GREEDY_MAX - 1);
1299 if (color == palette[0]) return 0;
1300 if (color == palette[1]) return 1;
1301 if (color == palette[2]) return 2;
1302 return 3;
1303 }
1304
ApplyPaletteHash0(uint32_t color)1305 static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) {
1306 // Focus on the green color.
1307 return (color >> 8) & 0xff;
1308 }
1309
1310 #define PALETTE_INV_SIZE_BITS 11
1311 #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS)
1312
ApplyPaletteHash1(uint32_t color)1313 static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) {
1314 // Forget about alpha.
1315 return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >>
1316 (32 - PALETTE_INV_SIZE_BITS);
1317 }
1318
ApplyPaletteHash2(uint32_t color)1319 static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
1320 // Forget about alpha.
1321 return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >>
1322 (32 - PALETTE_INV_SIZE_BITS);
1323 }
1324
1325 // Sort palette in increasing order and prepare an inverse mapping array.
PrepareMapToPalette(const uint32_t palette[],int num_colors,uint32_t sorted[],uint32_t idx_map[])1326 static void PrepareMapToPalette(const uint32_t palette[], int num_colors,
1327 uint32_t sorted[], uint32_t idx_map[]) {
1328 int i;
1329 memcpy(sorted, palette, num_colors * sizeof(*sorted));
1330 qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
1331 for (i = 0; i < num_colors; ++i) {
1332 idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
1333 }
1334 }
1335
1336 // Use 1 pixel cache for ARGB pixels.
1337 #define APPLY_PALETTE_FOR(COLOR_INDEX) do { \
1338 uint32_t prev_pix = palette[0]; \
1339 uint32_t prev_idx = 0; \
1340 for (y = 0; y < height; ++y) { \
1341 for (x = 0; x < width; ++x) { \
1342 const uint32_t pix = src[x]; \
1343 if (pix != prev_pix) { \
1344 prev_idx = COLOR_INDEX; \
1345 prev_pix = pix; \
1346 } \
1347 tmp_row[x] = prev_idx; \
1348 } \
1349 VP8LBundleColorMap(tmp_row, width, xbits, dst); \
1350 src += src_stride; \
1351 dst += dst_stride; \
1352 } \
1353 } while (0)
1354
1355 // Remap argb values in src[] to packed palettes entries in dst[]
1356 // using 'row' as a temporary buffer of size 'width'.
1357 // We assume that all src[] values have a corresponding entry in the palette.
1358 // Note: src[] can be the same as dst[]
ApplyPalette(const uint32_t * src,uint32_t src_stride,uint32_t * dst,uint32_t dst_stride,const uint32_t * palette,int palette_size,int width,int height,int xbits)1359 static WebPEncodingError ApplyPalette(const uint32_t* src, uint32_t src_stride,
1360 uint32_t* dst, uint32_t dst_stride,
1361 const uint32_t* palette, int palette_size,
1362 int width, int height, int xbits) {
1363 // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be
1364 // made to work in-place.
1365 uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
1366 int x, y;
1367
1368 if (tmp_row == NULL) return VP8_ENC_ERROR_OUT_OF_MEMORY;
1369
1370 if (palette_size < APPLY_PALETTE_GREEDY_MAX) {
1371 APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix));
1372 } else {
1373 int i, j;
1374 uint16_t buffer[PALETTE_INV_SIZE];
1375 uint32_t (*const hash_functions[])(uint32_t) = {
1376 ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2
1377 };
1378
1379 // Try to find a perfect hash function able to go from a color to an index
1380 // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go
1381 // from color to index in palette.
1382 for (i = 0; i < 3; ++i) {
1383 int use_LUT = 1;
1384 // Set each element in buffer to max uint16_t.
1385 memset(buffer, 0xff, sizeof(buffer));
1386 for (j = 0; j < palette_size; ++j) {
1387 const uint32_t ind = hash_functions[i](palette[j]);
1388 if (buffer[ind] != 0xffffu) {
1389 use_LUT = 0;
1390 break;
1391 } else {
1392 buffer[ind] = j;
1393 }
1394 }
1395 if (use_LUT) break;
1396 }
1397
1398 if (i == 0) {
1399 APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]);
1400 } else if (i == 1) {
1401 APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]);
1402 } else if (i == 2) {
1403 APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]);
1404 } else {
1405 uint32_t idx_map[MAX_PALETTE_SIZE];
1406 uint32_t palette_sorted[MAX_PALETTE_SIZE];
1407 PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map);
1408 APPLY_PALETTE_FOR(
1409 idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]);
1410 }
1411 }
1412 WebPSafeFree(tmp_row);
1413 return VP8_ENC_OK;
1414 }
1415 #undef APPLY_PALETTE_FOR
1416 #undef PALETTE_INV_SIZE_BITS
1417 #undef PALETTE_INV_SIZE
1418 #undef APPLY_PALETTE_GREEDY_MAX
1419
1420 // Note: Expects "enc->palette_" to be set properly.
MapImageFromPalette(VP8LEncoder * const enc,int in_place)1421 static WebPEncodingError MapImageFromPalette(VP8LEncoder* const enc,
1422 int in_place) {
1423 WebPEncodingError err = VP8_ENC_OK;
1424 const WebPPicture* const pic = enc->pic_;
1425 const int width = pic->width;
1426 const int height = pic->height;
1427 const uint32_t* const palette = enc->palette_;
1428 const uint32_t* src = in_place ? enc->argb_ : pic->argb;
1429 const int src_stride = in_place ? enc->current_width_ : pic->argb_stride;
1430 const int palette_size = enc->palette_size_;
1431 int xbits;
1432
1433 // Replace each input pixel by corresponding palette index.
1434 // This is done line by line.
1435 if (palette_size <= 4) {
1436 xbits = (palette_size <= 2) ? 3 : 2;
1437 } else {
1438 xbits = (palette_size <= 16) ? 1 : 0;
1439 }
1440
1441 err = AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height);
1442 if (err != VP8_ENC_OK) return err;
1443
1444 err = ApplyPalette(src, src_stride,
1445 enc->argb_, enc->current_width_,
1446 palette, palette_size, width, height, xbits);
1447 enc->argb_content_ = kEncoderPalette;
1448 return err;
1449 }
1450
1451 // Save palette_[] to bitstream.
EncodePalette(VP8LBitWriter * const bw,int low_effort,VP8LEncoder * const enc)1452 static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort,
1453 VP8LEncoder* const enc) {
1454 int i;
1455 uint32_t tmp_palette[MAX_PALETTE_SIZE];
1456 const int palette_size = enc->palette_size_;
1457 const uint32_t* const palette = enc->palette_;
1458 VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1459 VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2);
1460 assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE);
1461 VP8LPutBits(bw, palette_size - 1, 8);
1462 for (i = palette_size - 1; i >= 1; --i) {
1463 tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
1464 }
1465 tmp_palette[0] = palette[0];
1466 return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_,
1467 &enc->refs_[0], &enc->refs_[1], palette_size, 1,
1468 20 /* quality */, low_effort);
1469 }
1470
1471 // -----------------------------------------------------------------------------
1472 // VP8LEncoder
1473
VP8LEncoderNew(const WebPConfig * const config,const WebPPicture * const picture)1474 static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config,
1475 const WebPPicture* const picture) {
1476 VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc));
1477 if (enc == NULL) {
1478 WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1479 return NULL;
1480 }
1481 enc->config_ = config;
1482 enc->pic_ = picture;
1483 enc->argb_content_ = kEncoderNone;
1484
1485 VP8LEncDspInit();
1486
1487 return enc;
1488 }
1489
VP8LEncoderDelete(VP8LEncoder * enc)1490 static void VP8LEncoderDelete(VP8LEncoder* enc) {
1491 if (enc != NULL) {
1492 int i;
1493 VP8LHashChainClear(&enc->hash_chain_);
1494 for (i = 0; i < 3; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
1495 ClearTransformBuffer(enc);
1496 WebPSafeFree(enc);
1497 }
1498 }
1499
1500 // -----------------------------------------------------------------------------
1501 // Main call
1502
1503 typedef struct {
1504 const WebPConfig* config_;
1505 const WebPPicture* picture_;
1506 VP8LBitWriter* bw_;
1507 VP8LEncoder* enc_;
1508 int use_cache_;
1509 CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX];
1510 int num_crunch_configs_;
1511 int red_and_blue_always_zero_;
1512 WebPEncodingError err_;
1513 WebPAuxStats* stats_;
1514 } StreamEncodeContext;
1515
EncodeStreamHook(void * input,void * data2)1516 static int EncodeStreamHook(void* input, void* data2) {
1517 StreamEncodeContext* const params = (StreamEncodeContext*)input;
1518 const WebPConfig* const config = params->config_;
1519 const WebPPicture* const picture = params->picture_;
1520 VP8LBitWriter* const bw = params->bw_;
1521 VP8LEncoder* const enc = params->enc_;
1522 const int use_cache = params->use_cache_;
1523 const CrunchConfig* const crunch_configs = params->crunch_configs_;
1524 const int num_crunch_configs = params->num_crunch_configs_;
1525 const int red_and_blue_always_zero = params->red_and_blue_always_zero_;
1526 #if !defined(WEBP_DISABLE_STATS)
1527 WebPAuxStats* const stats = params->stats_;
1528 #endif
1529 WebPEncodingError err = VP8_ENC_OK;
1530 const int quality = (int)config->quality;
1531 const int low_effort = (config->method == 0);
1532 #if (WEBP_NEAR_LOSSLESS == 1)
1533 const int width = picture->width;
1534 #endif
1535 const int height = picture->height;
1536 const size_t byte_position = VP8LBitWriterNumBytes(bw);
1537 #if (WEBP_NEAR_LOSSLESS == 1)
1538 int use_near_lossless = 0;
1539 #endif
1540 int hdr_size = 0;
1541 int data_size = 0;
1542 int use_delta_palette = 0;
1543 int idx;
1544 size_t best_size = 0;
1545 VP8LBitWriter bw_init = *bw, bw_best;
1546 (void)data2;
1547
1548 if (!VP8LBitWriterInit(&bw_best, 0) ||
1549 (num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) {
1550 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1551 goto Error;
1552 }
1553
1554 for (idx = 0; idx < num_crunch_configs; ++idx) {
1555 const int entropy_idx = crunch_configs[idx].entropy_idx_;
1556 enc->use_palette_ = (entropy_idx == kPalette);
1557 enc->use_subtract_green_ =
1558 (entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen);
1559 enc->use_predict_ =
1560 (entropy_idx == kSpatial) || (entropy_idx == kSpatialSubGreen);
1561 if (low_effort) {
1562 enc->use_cross_color_ = 0;
1563 } else {
1564 enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
1565 }
1566 // Reset any parameter in the encoder that is set in the previous iteration.
1567 enc->cache_bits_ = 0;
1568 VP8LBackwardRefsClear(&enc->refs_[0]);
1569 VP8LBackwardRefsClear(&enc->refs_[1]);
1570
1571 #if (WEBP_NEAR_LOSSLESS == 1)
1572 // Apply near-lossless preprocessing.
1573 use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ &&
1574 !enc->use_predict_;
1575 if (use_near_lossless) {
1576 err = AllocateTransformBuffer(enc, width, height);
1577 if (err != VP8_ENC_OK) goto Error;
1578 if ((enc->argb_content_ != kEncoderNearLossless) &&
1579 !VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) {
1580 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1581 goto Error;
1582 }
1583 enc->argb_content_ = kEncoderNearLossless;
1584 } else {
1585 enc->argb_content_ = kEncoderNone;
1586 }
1587 #else
1588 enc->argb_content_ = kEncoderNone;
1589 #endif
1590
1591 // Encode palette
1592 if (enc->use_palette_) {
1593 err = EncodePalette(bw, low_effort, enc);
1594 if (err != VP8_ENC_OK) goto Error;
1595 err = MapImageFromPalette(enc, use_delta_palette);
1596 if (err != VP8_ENC_OK) goto Error;
1597 // If using a color cache, do not have it bigger than the number of
1598 // colors.
1599 if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) {
1600 enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1;
1601 }
1602 }
1603 if (!use_delta_palette) {
1604 // In case image is not packed.
1605 if (enc->argb_content_ != kEncoderNearLossless &&
1606 enc->argb_content_ != kEncoderPalette) {
1607 err = MakeInputImageCopy(enc);
1608 if (err != VP8_ENC_OK) goto Error;
1609 }
1610
1611 // -----------------------------------------------------------------------
1612 // Apply transforms and write transform data.
1613
1614 if (enc->use_subtract_green_) {
1615 ApplySubtractGreen(enc, enc->current_width_, height, bw);
1616 }
1617
1618 if (enc->use_predict_) {
1619 err = ApplyPredictFilter(enc, enc->current_width_, height, quality,
1620 low_effort, enc->use_subtract_green_, bw);
1621 if (err != VP8_ENC_OK) goto Error;
1622 }
1623
1624 if (enc->use_cross_color_) {
1625 err = ApplyCrossColorFilter(enc, enc->current_width_, height, quality,
1626 low_effort, bw);
1627 if (err != VP8_ENC_OK) goto Error;
1628 }
1629 }
1630
1631 VP8LPutBits(bw, !TRANSFORM_PRESENT, 1); // No more transforms.
1632
1633 // -------------------------------------------------------------------------
1634 // Encode and write the transformed image.
1635 err = EncodeImageInternal(bw, enc->argb_, &enc->hash_chain_, enc->refs_,
1636 enc->current_width_, height, quality, low_effort,
1637 use_cache, &crunch_configs[idx],
1638 &enc->cache_bits_, enc->histo_bits_,
1639 byte_position, &hdr_size, &data_size);
1640 if (err != VP8_ENC_OK) goto Error;
1641
1642 // If we are better than what we already have.
1643 if (idx == 0 || VP8LBitWriterNumBytes(bw) < best_size) {
1644 best_size = VP8LBitWriterNumBytes(bw);
1645 // Store the BitWriter.
1646 VP8LBitWriterSwap(bw, &bw_best);
1647 #if !defined(WEBP_DISABLE_STATS)
1648 // Update the stats.
1649 if (stats != NULL) {
1650 stats->lossless_features = 0;
1651 if (enc->use_predict_) stats->lossless_features |= 1;
1652 if (enc->use_cross_color_) stats->lossless_features |= 2;
1653 if (enc->use_subtract_green_) stats->lossless_features |= 4;
1654 if (enc->use_palette_) stats->lossless_features |= 8;
1655 stats->histogram_bits = enc->histo_bits_;
1656 stats->transform_bits = enc->transform_bits_;
1657 stats->cache_bits = enc->cache_bits_;
1658 stats->palette_size = enc->palette_size_;
1659 stats->lossless_size = (int)(best_size - byte_position);
1660 stats->lossless_hdr_size = hdr_size;
1661 stats->lossless_data_size = data_size;
1662 }
1663 #endif
1664 }
1665 // Reset the bit writer for the following iteration if any.
1666 if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw);
1667 }
1668 VP8LBitWriterSwap(&bw_best, bw);
1669
1670 Error:
1671 VP8LBitWriterWipeOut(&bw_best);
1672 params->err_ = err;
1673 // The hook should return false in case of error.
1674 return (err == VP8_ENC_OK);
1675 }
1676
VP8LEncodeStream(const WebPConfig * const config,const WebPPicture * const picture,VP8LBitWriter * const bw_main,int use_cache)1677 WebPEncodingError VP8LEncodeStream(const WebPConfig* const config,
1678 const WebPPicture* const picture,
1679 VP8LBitWriter* const bw_main,
1680 int use_cache) {
1681 WebPEncodingError err = VP8_ENC_OK;
1682 VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture);
1683 VP8LEncoder* enc_side = NULL;
1684 CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX];
1685 int num_crunch_configs_main, num_crunch_configs_side = 0;
1686 int idx;
1687 int red_and_blue_always_zero = 0;
1688 WebPWorker worker_main, worker_side;
1689 StreamEncodeContext params_main, params_side;
1690 // The main thread uses picture->stats, the side thread uses stats_side.
1691 WebPAuxStats stats_side;
1692 VP8LBitWriter bw_side;
1693 const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface();
1694 int ok_main;
1695
1696 // Analyze image (entropy, num_palettes etc)
1697 if (enc_main == NULL ||
1698 !EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main,
1699 &red_and_blue_always_zero) ||
1700 !EncoderInit(enc_main) || !VP8LBitWriterInit(&bw_side, 0)) {
1701 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1702 goto Error;
1703 }
1704
1705 // Split the configs between the main and side threads (if any).
1706 if (config->thread_level > 0) {
1707 num_crunch_configs_side = num_crunch_configs_main / 2;
1708 for (idx = 0; idx < num_crunch_configs_side; ++idx) {
1709 params_side.crunch_configs_[idx] =
1710 crunch_configs[num_crunch_configs_main - num_crunch_configs_side +
1711 idx];
1712 }
1713 params_side.num_crunch_configs_ = num_crunch_configs_side;
1714 }
1715 num_crunch_configs_main -= num_crunch_configs_side;
1716 for (idx = 0; idx < num_crunch_configs_main; ++idx) {
1717 params_main.crunch_configs_[idx] = crunch_configs[idx];
1718 }
1719 params_main.num_crunch_configs_ = num_crunch_configs_main;
1720
1721 // Fill in the parameters for the thread workers.
1722 {
1723 const int params_size = (num_crunch_configs_side > 0) ? 2 : 1;
1724 for (idx = 0; idx < params_size; ++idx) {
1725 // Create the parameters for each worker.
1726 WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side;
1727 StreamEncodeContext* const param =
1728 (idx == 0) ? ¶ms_main : ¶ms_side;
1729 param->config_ = config;
1730 param->picture_ = picture;
1731 param->use_cache_ = use_cache;
1732 param->red_and_blue_always_zero_ = red_and_blue_always_zero;
1733 if (idx == 0) {
1734 param->stats_ = picture->stats;
1735 param->bw_ = bw_main;
1736 param->enc_ = enc_main;
1737 } else {
1738 param->stats_ = (picture->stats == NULL) ? NULL : &stats_side;
1739 // Create a side bit writer.
1740 if (!VP8LBitWriterClone(bw_main, &bw_side)) {
1741 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1742 goto Error;
1743 }
1744 param->bw_ = &bw_side;
1745 // Create a side encoder.
1746 enc_side = VP8LEncoderNew(config, picture);
1747 if (enc_side == NULL || !EncoderInit(enc_side)) {
1748 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1749 goto Error;
1750 }
1751 // Copy the values that were computed for the main encoder.
1752 enc_side->histo_bits_ = enc_main->histo_bits_;
1753 enc_side->transform_bits_ = enc_main->transform_bits_;
1754 enc_side->palette_size_ = enc_main->palette_size_;
1755 memcpy(enc_side->palette_, enc_main->palette_,
1756 sizeof(enc_main->palette_));
1757 param->enc_ = enc_side;
1758 }
1759 // Create the workers.
1760 worker_interface->Init(worker);
1761 worker->data1 = param;
1762 worker->data2 = NULL;
1763 worker->hook = EncodeStreamHook;
1764 }
1765 }
1766
1767 // Start the second thread if needed.
1768 if (num_crunch_configs_side != 0) {
1769 if (!worker_interface->Reset(&worker_side)) {
1770 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1771 goto Error;
1772 }
1773 #if !defined(WEBP_DISABLE_STATS)
1774 // This line is here and not in the param initialization above to remove a
1775 // Clang static analyzer warning.
1776 if (picture->stats != NULL) {
1777 memcpy(&stats_side, picture->stats, sizeof(stats_side));
1778 }
1779 #endif
1780 // This line is only useful to remove a Clang static analyzer warning.
1781 params_side.err_ = VP8_ENC_OK;
1782 worker_interface->Launch(&worker_side);
1783 }
1784 // Execute the main thread.
1785 worker_interface->Execute(&worker_main);
1786 ok_main = worker_interface->Sync(&worker_main);
1787 worker_interface->End(&worker_main);
1788 if (num_crunch_configs_side != 0) {
1789 // Wait for the second thread.
1790 const int ok_side = worker_interface->Sync(&worker_side);
1791 worker_interface->End(&worker_side);
1792 if (!ok_main || !ok_side) {
1793 err = ok_main ? params_side.err_ : params_main.err_;
1794 goto Error;
1795 }
1796 if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) {
1797 VP8LBitWriterSwap(bw_main, &bw_side);
1798 #if !defined(WEBP_DISABLE_STATS)
1799 if (picture->stats != NULL) {
1800 memcpy(picture->stats, &stats_side, sizeof(*picture->stats));
1801 }
1802 #endif
1803 }
1804 } else {
1805 if (!ok_main) {
1806 err = params_main.err_;
1807 goto Error;
1808 }
1809 }
1810
1811 Error:
1812 VP8LBitWriterWipeOut(&bw_side);
1813 VP8LEncoderDelete(enc_main);
1814 VP8LEncoderDelete(enc_side);
1815 return err;
1816 }
1817
1818 #undef CRUNCH_CONFIGS_MAX
1819 #undef CRUNCH_CONFIGS_LZ77_MAX
1820
VP8LEncodeImage(const WebPConfig * const config,const WebPPicture * const picture)1821 int VP8LEncodeImage(const WebPConfig* const config,
1822 const WebPPicture* const picture) {
1823 int width, height;
1824 int has_alpha;
1825 size_t coded_size;
1826 int percent = 0;
1827 int initial_size;
1828 WebPEncodingError err = VP8_ENC_OK;
1829 VP8LBitWriter bw;
1830
1831 if (picture == NULL) return 0;
1832
1833 if (config == NULL || picture->argb == NULL) {
1834 err = VP8_ENC_ERROR_NULL_PARAMETER;
1835 WebPEncodingSetError(picture, err);
1836 return 0;
1837 }
1838
1839 width = picture->width;
1840 height = picture->height;
1841 // Initialize BitWriter with size corresponding to 16 bpp to photo images and
1842 // 8 bpp for graphical images.
1843 initial_size = (config->image_hint == WEBP_HINT_GRAPH) ?
1844 width * height : width * height * 2;
1845 if (!VP8LBitWriterInit(&bw, initial_size)) {
1846 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1847 goto Error;
1848 }
1849
1850 if (!WebPReportProgress(picture, 1, &percent)) {
1851 UserAbort:
1852 err = VP8_ENC_ERROR_USER_ABORT;
1853 goto Error;
1854 }
1855 // Reset stats (for pure lossless coding)
1856 if (picture->stats != NULL) {
1857 WebPAuxStats* const stats = picture->stats;
1858 memset(stats, 0, sizeof(*stats));
1859 stats->PSNR[0] = 99.f;
1860 stats->PSNR[1] = 99.f;
1861 stats->PSNR[2] = 99.f;
1862 stats->PSNR[3] = 99.f;
1863 stats->PSNR[4] = 99.f;
1864 }
1865
1866 // Write image size.
1867 if (!WriteImageSize(picture, &bw)) {
1868 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1869 goto Error;
1870 }
1871
1872 has_alpha = WebPPictureHasTransparency(picture);
1873 // Write the non-trivial Alpha flag and lossless version.
1874 if (!WriteRealAlphaAndVersion(&bw, has_alpha)) {
1875 err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1876 goto Error;
1877 }
1878
1879 if (!WebPReportProgress(picture, 5, &percent)) goto UserAbort;
1880
1881 // Encode main image stream.
1882 err = VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/);
1883 if (err != VP8_ENC_OK) goto Error;
1884
1885 if (!WebPReportProgress(picture, 90, &percent)) goto UserAbort;
1886
1887 // Finish the RIFF chunk.
1888 err = WriteImage(picture, &bw, &coded_size);
1889 if (err != VP8_ENC_OK) goto Error;
1890
1891 if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort;
1892
1893 #if !defined(WEBP_DISABLE_STATS)
1894 // Save size.
1895 if (picture->stats != NULL) {
1896 picture->stats->coded_size += (int)coded_size;
1897 picture->stats->lossless_size = (int)coded_size;
1898 }
1899 #endif
1900
1901 if (picture->extra_info != NULL) {
1902 const int mb_w = (width + 15) >> 4;
1903 const int mb_h = (height + 15) >> 4;
1904 memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
1905 }
1906
1907 Error:
1908 if (bw.error_) err = VP8_ENC_ERROR_OUT_OF_MEMORY;
1909 VP8LBitWriterWipeOut(&bw);
1910 if (err != VP8_ENC_OK) {
1911 WebPEncodingSetError(picture, err);
1912 return 0;
1913 }
1914 return 1;
1915 }
1916
1917 //------------------------------------------------------------------------------
1918