1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Image transforms and color space conversion methods for lossless decoder.
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 // Jyrki Alakuijala (jyrki@google.com)
14 // Urvang Joshi (urvang@google.com)
15
16 #include "src/dsp/dsp.h"
17
18 #include <assert.h>
19 #include <math.h>
20 #include <stdlib.h>
21 #include "src/dec/vp8li_dec.h"
22 #include "src/utils/endian_inl_utils.h"
23 #include "src/dsp/lossless.h"
24 #include "src/dsp/lossless_common.h"
25
26 //------------------------------------------------------------------------------
27 // Image transforms.
28
Average2(uint32_t a0,uint32_t a1)29 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) {
30 return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1);
31 }
32
Average3(uint32_t a0,uint32_t a1,uint32_t a2)33 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) {
34 return Average2(Average2(a0, a2), a1);
35 }
36
Average4(uint32_t a0,uint32_t a1,uint32_t a2,uint32_t a3)37 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1,
38 uint32_t a2, uint32_t a3) {
39 return Average2(Average2(a0, a1), Average2(a2, a3));
40 }
41
Clip255(uint32_t a)42 static WEBP_INLINE uint32_t Clip255(uint32_t a) {
43 if (a < 256) {
44 return a;
45 }
46 // return 0, when a is a negative integer.
47 // return 255, when a is positive.
48 return ~a >> 24;
49 }
50
AddSubtractComponentFull(int a,int b,int c)51 static WEBP_INLINE int AddSubtractComponentFull(int a, int b, int c) {
52 return Clip255(a + b - c);
53 }
54
ClampedAddSubtractFull(uint32_t c0,uint32_t c1,uint32_t c2)55 static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1,
56 uint32_t c2) {
57 const int a = AddSubtractComponentFull(c0 >> 24, c1 >> 24, c2 >> 24);
58 const int r = AddSubtractComponentFull((c0 >> 16) & 0xff,
59 (c1 >> 16) & 0xff,
60 (c2 >> 16) & 0xff);
61 const int g = AddSubtractComponentFull((c0 >> 8) & 0xff,
62 (c1 >> 8) & 0xff,
63 (c2 >> 8) & 0xff);
64 const int b = AddSubtractComponentFull(c0 & 0xff, c1 & 0xff, c2 & 0xff);
65 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
66 }
67
AddSubtractComponentHalf(int a,int b)68 static WEBP_INLINE int AddSubtractComponentHalf(int a, int b) {
69 return Clip255(a + (a - b) / 2);
70 }
71
ClampedAddSubtractHalf(uint32_t c0,uint32_t c1,uint32_t c2)72 static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1,
73 uint32_t c2) {
74 const uint32_t ave = Average2(c0, c1);
75 const int a = AddSubtractComponentHalf(ave >> 24, c2 >> 24);
76 const int r = AddSubtractComponentHalf((ave >> 16) & 0xff, (c2 >> 16) & 0xff);
77 const int g = AddSubtractComponentHalf((ave >> 8) & 0xff, (c2 >> 8) & 0xff);
78 const int b = AddSubtractComponentHalf((ave >> 0) & 0xff, (c2 >> 0) & 0xff);
79 return ((uint32_t)a << 24) | (r << 16) | (g << 8) | b;
80 }
81
82 // gcc <= 4.9 on ARM generates incorrect code in Select() when Sub3() is
83 // inlined.
84 #if defined(__arm__) && LOCAL_GCC_VERSION <= 0x409
85 # define LOCAL_INLINE __attribute__ ((noinline))
86 #else
87 # define LOCAL_INLINE WEBP_INLINE
88 #endif
89
Sub3(int a,int b,int c)90 static LOCAL_INLINE int Sub3(int a, int b, int c) {
91 const int pb = b - c;
92 const int pa = a - c;
93 return abs(pb) - abs(pa);
94 }
95
96 #undef LOCAL_INLINE
97
Select(uint32_t a,uint32_t b,uint32_t c)98 static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) {
99 const int pa_minus_pb =
100 Sub3((a >> 24) , (b >> 24) , (c >> 24) ) +
101 Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) +
102 Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) +
103 Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff);
104 return (pa_minus_pb <= 0) ? a : b;
105 }
106
107 //------------------------------------------------------------------------------
108 // Predictors
109
Predictor0_C(uint32_t left,const uint32_t * const top)110 static uint32_t Predictor0_C(uint32_t left, const uint32_t* const top) {
111 (void)top;
112 (void)left;
113 return ARGB_BLACK;
114 }
Predictor1_C(uint32_t left,const uint32_t * const top)115 static uint32_t Predictor1_C(uint32_t left, const uint32_t* const top) {
116 (void)top;
117 return left;
118 }
Predictor2_C(uint32_t left,const uint32_t * const top)119 static uint32_t Predictor2_C(uint32_t left, const uint32_t* const top) {
120 (void)left;
121 return top[0];
122 }
Predictor3_C(uint32_t left,const uint32_t * const top)123 static uint32_t Predictor3_C(uint32_t left, const uint32_t* const top) {
124 (void)left;
125 return top[1];
126 }
Predictor4_C(uint32_t left,const uint32_t * const top)127 static uint32_t Predictor4_C(uint32_t left, const uint32_t* const top) {
128 (void)left;
129 return top[-1];
130 }
Predictor5_C(uint32_t left,const uint32_t * const top)131 static uint32_t Predictor5_C(uint32_t left, const uint32_t* const top) {
132 const uint32_t pred = Average3(left, top[0], top[1]);
133 return pred;
134 }
Predictor6_C(uint32_t left,const uint32_t * const top)135 static uint32_t Predictor6_C(uint32_t left, const uint32_t* const top) {
136 const uint32_t pred = Average2(left, top[-1]);
137 return pred;
138 }
Predictor7_C(uint32_t left,const uint32_t * const top)139 static uint32_t Predictor7_C(uint32_t left, const uint32_t* const top) {
140 const uint32_t pred = Average2(left, top[0]);
141 return pred;
142 }
Predictor8_C(uint32_t left,const uint32_t * const top)143 static uint32_t Predictor8_C(uint32_t left, const uint32_t* const top) {
144 const uint32_t pred = Average2(top[-1], top[0]);
145 (void)left;
146 return pred;
147 }
Predictor9_C(uint32_t left,const uint32_t * const top)148 static uint32_t Predictor9_C(uint32_t left, const uint32_t* const top) {
149 const uint32_t pred = Average2(top[0], top[1]);
150 (void)left;
151 return pred;
152 }
Predictor10_C(uint32_t left,const uint32_t * const top)153 static uint32_t Predictor10_C(uint32_t left, const uint32_t* const top) {
154 const uint32_t pred = Average4(left, top[-1], top[0], top[1]);
155 return pred;
156 }
Predictor11_C(uint32_t left,const uint32_t * const top)157 static uint32_t Predictor11_C(uint32_t left, const uint32_t* const top) {
158 const uint32_t pred = Select(top[0], left, top[-1]);
159 return pred;
160 }
Predictor12_C(uint32_t left,const uint32_t * const top)161 static uint32_t Predictor12_C(uint32_t left, const uint32_t* const top) {
162 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]);
163 return pred;
164 }
Predictor13_C(uint32_t left,const uint32_t * const top)165 static uint32_t Predictor13_C(uint32_t left, const uint32_t* const top) {
166 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]);
167 return pred;
168 }
169
GENERATE_PREDICTOR_ADD(Predictor0_C,PredictorAdd0_C)170 GENERATE_PREDICTOR_ADD(Predictor0_C, PredictorAdd0_C)
171 static void PredictorAdd1_C(const uint32_t* in, const uint32_t* upper,
172 int num_pixels, uint32_t* out) {
173 int i;
174 uint32_t left = out[-1];
175 for (i = 0; i < num_pixels; ++i) {
176 out[i] = left = VP8LAddPixels(in[i], left);
177 }
178 (void)upper;
179 }
GENERATE_PREDICTOR_ADD(Predictor2_C,PredictorAdd2_C)180 GENERATE_PREDICTOR_ADD(Predictor2_C, PredictorAdd2_C)
181 GENERATE_PREDICTOR_ADD(Predictor3_C, PredictorAdd3_C)
182 GENERATE_PREDICTOR_ADD(Predictor4_C, PredictorAdd4_C)
183 GENERATE_PREDICTOR_ADD(Predictor5_C, PredictorAdd5_C)
184 GENERATE_PREDICTOR_ADD(Predictor6_C, PredictorAdd6_C)
185 GENERATE_PREDICTOR_ADD(Predictor7_C, PredictorAdd7_C)
186 GENERATE_PREDICTOR_ADD(Predictor8_C, PredictorAdd8_C)
187 GENERATE_PREDICTOR_ADD(Predictor9_C, PredictorAdd9_C)
188 GENERATE_PREDICTOR_ADD(Predictor10_C, PredictorAdd10_C)
189 GENERATE_PREDICTOR_ADD(Predictor11_C, PredictorAdd11_C)
190 GENERATE_PREDICTOR_ADD(Predictor12_C, PredictorAdd12_C)
191 GENERATE_PREDICTOR_ADD(Predictor13_C, PredictorAdd13_C)
192
193 //------------------------------------------------------------------------------
194
195 // Inverse prediction.
196 static void PredictorInverseTransform_C(const VP8LTransform* const transform,
197 int y_start, int y_end,
198 const uint32_t* in, uint32_t* out) {
199 const int width = transform->xsize_;
200 if (y_start == 0) { // First Row follows the L (mode=1) mode.
201 PredictorAdd0_C(in, NULL, 1, out);
202 PredictorAdd1_C(in + 1, NULL, width - 1, out + 1);
203 in += width;
204 out += width;
205 ++y_start;
206 }
207
208 {
209 int y = y_start;
210 const int tile_width = 1 << transform->bits_;
211 const int mask = tile_width - 1;
212 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
213 const uint32_t* pred_mode_base =
214 transform->data_ + (y >> transform->bits_) * tiles_per_row;
215
216 while (y < y_end) {
217 const uint32_t* pred_mode_src = pred_mode_base;
218 int x = 1;
219 // First pixel follows the T (mode=2) mode.
220 PredictorAdd2_C(in, out - width, 1, out);
221 // .. the rest:
222 while (x < width) {
223 const VP8LPredictorAddSubFunc pred_func =
224 VP8LPredictorsAdd[((*pred_mode_src++) >> 8) & 0xf];
225 int x_end = (x & ~mask) + tile_width;
226 if (x_end > width) x_end = width;
227 pred_func(in + x, out + x - width, x_end - x, out + x);
228 x = x_end;
229 }
230 in += width;
231 out += width;
232 ++y;
233 if ((y & mask) == 0) { // Use the same mask, since tiles are squares.
234 pred_mode_base += tiles_per_row;
235 }
236 }
237 }
238 }
239
240 // Add green to blue and red channels (i.e. perform the inverse transform of
241 // 'subtract green').
VP8LAddGreenToBlueAndRed_C(const uint32_t * src,int num_pixels,uint32_t * dst)242 void VP8LAddGreenToBlueAndRed_C(const uint32_t* src, int num_pixels,
243 uint32_t* dst) {
244 int i;
245 for (i = 0; i < num_pixels; ++i) {
246 const uint32_t argb = src[i];
247 const uint32_t green = ((argb >> 8) & 0xff);
248 uint32_t red_blue = (argb & 0x00ff00ffu);
249 red_blue += (green << 16) | green;
250 red_blue &= 0x00ff00ffu;
251 dst[i] = (argb & 0xff00ff00u) | red_blue;
252 }
253 }
254
ColorTransformDelta(int8_t color_pred,int8_t color)255 static WEBP_INLINE int ColorTransformDelta(int8_t color_pred,
256 int8_t color) {
257 return ((int)color_pred * color) >> 5;
258 }
259
ColorCodeToMultipliers(uint32_t color_code,VP8LMultipliers * const m)260 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
261 VP8LMultipliers* const m) {
262 m->green_to_red_ = (color_code >> 0) & 0xff;
263 m->green_to_blue_ = (color_code >> 8) & 0xff;
264 m->red_to_blue_ = (color_code >> 16) & 0xff;
265 }
266
VP8LTransformColorInverse_C(const VP8LMultipliers * const m,const uint32_t * src,int num_pixels,uint32_t * dst)267 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m,
268 const uint32_t* src, int num_pixels,
269 uint32_t* dst) {
270 int i;
271 for (i = 0; i < num_pixels; ++i) {
272 const uint32_t argb = src[i];
273 const uint32_t green = argb >> 8;
274 const uint32_t red = argb >> 16;
275 int new_red = red & 0xff;
276 int new_blue = argb & 0xff;
277 new_red += ColorTransformDelta(m->green_to_red_, green);
278 new_red &= 0xff;
279 new_blue += ColorTransformDelta(m->green_to_blue_, green);
280 new_blue += ColorTransformDelta(m->red_to_blue_, new_red);
281 new_blue &= 0xff;
282 dst[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue);
283 }
284 }
285
286 // Color space inverse transform.
ColorSpaceInverseTransform_C(const VP8LTransform * const transform,int y_start,int y_end,const uint32_t * src,uint32_t * dst)287 static void ColorSpaceInverseTransform_C(const VP8LTransform* const transform,
288 int y_start, int y_end,
289 const uint32_t* src, uint32_t* dst) {
290 const int width = transform->xsize_;
291 const int tile_width = 1 << transform->bits_;
292 const int mask = tile_width - 1;
293 const int safe_width = width & ~mask;
294 const int remaining_width = width - safe_width;
295 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_);
296 int y = y_start;
297 const uint32_t* pred_row =
298 transform->data_ + (y >> transform->bits_) * tiles_per_row;
299
300 while (y < y_end) {
301 const uint32_t* pred = pred_row;
302 VP8LMultipliers m = { 0, 0, 0 };
303 const uint32_t* const src_safe_end = src + safe_width;
304 const uint32_t* const src_end = src + width;
305 while (src < src_safe_end) {
306 ColorCodeToMultipliers(*pred++, &m);
307 VP8LTransformColorInverse(&m, src, tile_width, dst);
308 src += tile_width;
309 dst += tile_width;
310 }
311 if (src < src_end) { // Left-overs using C-version.
312 ColorCodeToMultipliers(*pred++, &m);
313 VP8LTransformColorInverse(&m, src, remaining_width, dst);
314 src += remaining_width;
315 dst += remaining_width;
316 }
317 ++y;
318 if ((y & mask) == 0) pred_row += tiles_per_row;
319 }
320 }
321
322 // Separate out pixels packed together using pixel-bundling.
323 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t).
324 #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \
325 GET_INDEX, GET_VALUE) \
326 static void F_NAME(const TYPE* src, const uint32_t* const color_map, \
327 TYPE* dst, int y_start, int y_end, int width) { \
328 int y; \
329 for (y = y_start; y < y_end; ++y) { \
330 int x; \
331 for (x = 0; x < width; ++x) { \
332 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \
333 } \
334 } \
335 } \
336 STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \
337 int y_start, int y_end, const TYPE* src, \
338 TYPE* dst) { \
339 int y; \
340 const int bits_per_pixel = 8 >> transform->bits_; \
341 const int width = transform->xsize_; \
342 const uint32_t* const color_map = transform->data_; \
343 if (bits_per_pixel < 8) { \
344 const int pixels_per_byte = 1 << transform->bits_; \
345 const int count_mask = pixels_per_byte - 1; \
346 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \
347 for (y = y_start; y < y_end; ++y) { \
348 uint32_t packed_pixels = 0; \
349 int x; \
350 for (x = 0; x < width; ++x) { \
351 /* We need to load fresh 'packed_pixels' once every */ \
352 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \
353 /* is a power of 2, so can just use a mask for that, instead of */ \
354 /* decrementing a counter. */ \
355 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \
356 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \
357 packed_pixels >>= bits_per_pixel; \
358 } \
359 } \
360 } else { \
361 VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \
362 } \
363 }
364
365 COLOR_INDEX_INVERSE(ColorIndexInverseTransform_C, MapARGB_C, static,
366 uint32_t, 32b, VP8GetARGBIndex, VP8GetARGBValue)
367 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha_C, ,
368 uint8_t, 8b, VP8GetAlphaIndex, VP8GetAlphaValue)
369
370 #undef COLOR_INDEX_INVERSE
371
VP8LInverseTransform(const VP8LTransform * const transform,int row_start,int row_end,const uint32_t * const in,uint32_t * const out)372 void VP8LInverseTransform(const VP8LTransform* const transform,
373 int row_start, int row_end,
374 const uint32_t* const in, uint32_t* const out) {
375 const int width = transform->xsize_;
376 assert(row_start < row_end);
377 assert(row_end <= transform->ysize_);
378 switch (transform->type_) {
379 case SUBTRACT_GREEN:
380 VP8LAddGreenToBlueAndRed(in, (row_end - row_start) * width, out);
381 break;
382 case PREDICTOR_TRANSFORM:
383 PredictorInverseTransform_C(transform, row_start, row_end, in, out);
384 if (row_end != transform->ysize_) {
385 // The last predicted row in this iteration will be the top-pred row
386 // for the first row in next iteration.
387 memcpy(out - width, out + (row_end - row_start - 1) * width,
388 width * sizeof(*out));
389 }
390 break;
391 case CROSS_COLOR_TRANSFORM:
392 ColorSpaceInverseTransform_C(transform, row_start, row_end, in, out);
393 break;
394 case COLOR_INDEXING_TRANSFORM:
395 if (in == out && transform->bits_ > 0) {
396 // Move packed pixels to the end of unpacked region, so that unpacking
397 // can occur seamlessly.
398 // Also, note that this is the only transform that applies on
399 // the effective width of VP8LSubSampleSize(xsize_, bits_). All other
400 // transforms work on effective width of xsize_.
401 const int out_stride = (row_end - row_start) * width;
402 const int in_stride = (row_end - row_start) *
403 VP8LSubSampleSize(transform->xsize_, transform->bits_);
404 uint32_t* const src = out + out_stride - in_stride;
405 memmove(src, out, in_stride * sizeof(*src));
406 ColorIndexInverseTransform_C(transform, row_start, row_end, src, out);
407 } else {
408 ColorIndexInverseTransform_C(transform, row_start, row_end, in, out);
409 }
410 break;
411 }
412 }
413
414 //------------------------------------------------------------------------------
415 // Color space conversion.
416
is_big_endian(void)417 static int is_big_endian(void) {
418 static const union {
419 uint16_t w;
420 uint8_t b[2];
421 } tmp = { 1 };
422 return (tmp.b[0] != 1);
423 }
424
VP8LConvertBGRAToRGB_C(const uint32_t * src,int num_pixels,uint8_t * dst)425 void VP8LConvertBGRAToRGB_C(const uint32_t* src,
426 int num_pixels, uint8_t* dst) {
427 const uint32_t* const src_end = src + num_pixels;
428 while (src < src_end) {
429 const uint32_t argb = *src++;
430 *dst++ = (argb >> 16) & 0xff;
431 *dst++ = (argb >> 8) & 0xff;
432 *dst++ = (argb >> 0) & 0xff;
433 }
434 }
435
VP8LConvertBGRAToRGBA_C(const uint32_t * src,int num_pixels,uint8_t * dst)436 void VP8LConvertBGRAToRGBA_C(const uint32_t* src,
437 int num_pixels, uint8_t* dst) {
438 const uint32_t* const src_end = src + num_pixels;
439 while (src < src_end) {
440 const uint32_t argb = *src++;
441 *dst++ = (argb >> 16) & 0xff;
442 *dst++ = (argb >> 8) & 0xff;
443 *dst++ = (argb >> 0) & 0xff;
444 *dst++ = (argb >> 24) & 0xff;
445 }
446 }
447
VP8LConvertBGRAToRGBA4444_C(const uint32_t * src,int num_pixels,uint8_t * dst)448 void VP8LConvertBGRAToRGBA4444_C(const uint32_t* src,
449 int num_pixels, uint8_t* dst) {
450 const uint32_t* const src_end = src + num_pixels;
451 while (src < src_end) {
452 const uint32_t argb = *src++;
453 const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf);
454 const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf);
455 #if (WEBP_SWAP_16BIT_CSP == 1)
456 *dst++ = ba;
457 *dst++ = rg;
458 #else
459 *dst++ = rg;
460 *dst++ = ba;
461 #endif
462 }
463 }
464
VP8LConvertBGRAToRGB565_C(const uint32_t * src,int num_pixels,uint8_t * dst)465 void VP8LConvertBGRAToRGB565_C(const uint32_t* src,
466 int num_pixels, uint8_t* dst) {
467 const uint32_t* const src_end = src + num_pixels;
468 while (src < src_end) {
469 const uint32_t argb = *src++;
470 const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7);
471 const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f);
472 #if (WEBP_SWAP_16BIT_CSP == 1)
473 *dst++ = gb;
474 *dst++ = rg;
475 #else
476 *dst++ = rg;
477 *dst++ = gb;
478 #endif
479 }
480 }
481
VP8LConvertBGRAToBGR_C(const uint32_t * src,int num_pixels,uint8_t * dst)482 void VP8LConvertBGRAToBGR_C(const uint32_t* src,
483 int num_pixels, uint8_t* dst) {
484 const uint32_t* const src_end = src + num_pixels;
485 while (src < src_end) {
486 const uint32_t argb = *src++;
487 *dst++ = (argb >> 0) & 0xff;
488 *dst++ = (argb >> 8) & 0xff;
489 *dst++ = (argb >> 16) & 0xff;
490 }
491 }
492
CopyOrSwap(const uint32_t * src,int num_pixels,uint8_t * dst,int swap_on_big_endian)493 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst,
494 int swap_on_big_endian) {
495 if (is_big_endian() == swap_on_big_endian) {
496 const uint32_t* const src_end = src + num_pixels;
497 while (src < src_end) {
498 const uint32_t argb = *src++;
499 WebPUint32ToMem(dst, BSwap32(argb));
500 dst += sizeof(argb);
501 }
502 } else {
503 memcpy(dst, src, num_pixels * sizeof(*src));
504 }
505 }
506
VP8LConvertFromBGRA(const uint32_t * const in_data,int num_pixels,WEBP_CSP_MODE out_colorspace,uint8_t * const rgba)507 void VP8LConvertFromBGRA(const uint32_t* const in_data, int num_pixels,
508 WEBP_CSP_MODE out_colorspace, uint8_t* const rgba) {
509 switch (out_colorspace) {
510 case MODE_RGB:
511 VP8LConvertBGRAToRGB(in_data, num_pixels, rgba);
512 break;
513 case MODE_RGBA:
514 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
515 break;
516 case MODE_rgbA:
517 VP8LConvertBGRAToRGBA(in_data, num_pixels, rgba);
518 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
519 break;
520 case MODE_BGR:
521 VP8LConvertBGRAToBGR(in_data, num_pixels, rgba);
522 break;
523 case MODE_BGRA:
524 CopyOrSwap(in_data, num_pixels, rgba, 1);
525 break;
526 case MODE_bgrA:
527 CopyOrSwap(in_data, num_pixels, rgba, 1);
528 WebPApplyAlphaMultiply(rgba, 0, num_pixels, 1, 0);
529 break;
530 case MODE_ARGB:
531 CopyOrSwap(in_data, num_pixels, rgba, 0);
532 break;
533 case MODE_Argb:
534 CopyOrSwap(in_data, num_pixels, rgba, 0);
535 WebPApplyAlphaMultiply(rgba, 1, num_pixels, 1, 0);
536 break;
537 case MODE_RGBA_4444:
538 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
539 break;
540 case MODE_rgbA_4444:
541 VP8LConvertBGRAToRGBA4444(in_data, num_pixels, rgba);
542 WebPApplyAlphaMultiply4444(rgba, num_pixels, 1, 0);
543 break;
544 case MODE_RGB_565:
545 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba);
546 break;
547 default:
548 assert(0); // Code flow should not reach here.
549 }
550 }
551
552 //------------------------------------------------------------------------------
553
554 VP8LProcessDecBlueAndRedFunc VP8LAddGreenToBlueAndRed;
555 VP8LPredictorAddSubFunc VP8LPredictorsAdd[16];
556 VP8LPredictorFunc VP8LPredictors[16];
557
558 // exposed plain-C implementations
559 VP8LPredictorAddSubFunc VP8LPredictorsAdd_C[16];
560 VP8LPredictorFunc VP8LPredictors_C[16];
561
562 VP8LTransformColorInverseFunc VP8LTransformColorInverse;
563
564 VP8LConvertFunc VP8LConvertBGRAToRGB;
565 VP8LConvertFunc VP8LConvertBGRAToRGBA;
566 VP8LConvertFunc VP8LConvertBGRAToRGBA4444;
567 VP8LConvertFunc VP8LConvertBGRAToRGB565;
568 VP8LConvertFunc VP8LConvertBGRAToBGR;
569
570 VP8LMapARGBFunc VP8LMapColor32b;
571 VP8LMapAlphaFunc VP8LMapColor8b;
572
573 extern void VP8LDspInitSSE2(void);
574 extern void VP8LDspInitNEON(void);
575 extern void VP8LDspInitMIPSdspR2(void);
576 extern void VP8LDspInitMSA(void);
577
578 #define COPY_PREDICTOR_ARRAY(IN, OUT) do { \
579 (OUT)[0] = IN##0_C; \
580 (OUT)[1] = IN##1_C; \
581 (OUT)[2] = IN##2_C; \
582 (OUT)[3] = IN##3_C; \
583 (OUT)[4] = IN##4_C; \
584 (OUT)[5] = IN##5_C; \
585 (OUT)[6] = IN##6_C; \
586 (OUT)[7] = IN##7_C; \
587 (OUT)[8] = IN##8_C; \
588 (OUT)[9] = IN##9_C; \
589 (OUT)[10] = IN##10_C; \
590 (OUT)[11] = IN##11_C; \
591 (OUT)[12] = IN##12_C; \
592 (OUT)[13] = IN##13_C; \
593 (OUT)[14] = IN##0_C; /* <- padding security sentinels*/ \
594 (OUT)[15] = IN##0_C; \
595 } while (0);
596
WEBP_DSP_INIT_FUNC(VP8LDspInit)597 WEBP_DSP_INIT_FUNC(VP8LDspInit) {
598 COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors)
599 COPY_PREDICTOR_ARRAY(Predictor, VP8LPredictors_C)
600 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd)
601 COPY_PREDICTOR_ARRAY(PredictorAdd, VP8LPredictorsAdd_C)
602
603 #if !WEBP_NEON_OMIT_C_CODE
604 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C;
605
606 VP8LTransformColorInverse = VP8LTransformColorInverse_C;
607
608 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C;
609 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C;
610 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C;
611 #endif
612
613 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C;
614 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C;
615
616 VP8LMapColor32b = MapARGB_C;
617 VP8LMapColor8b = MapAlpha_C;
618
619 // If defined, use CPUInfo() to overwrite some pointers with faster versions.
620 if (VP8GetCPUInfo != NULL) {
621 #if defined(WEBP_USE_SSE2)
622 if (VP8GetCPUInfo(kSSE2)) {
623 VP8LDspInitSSE2();
624 }
625 #endif
626 #if defined(WEBP_USE_MIPS_DSP_R2)
627 if (VP8GetCPUInfo(kMIPSdspR2)) {
628 VP8LDspInitMIPSdspR2();
629 }
630 #endif
631 #if defined(WEBP_USE_MSA)
632 if (VP8GetCPUInfo(kMSA)) {
633 VP8LDspInitMSA();
634 }
635 #endif
636 }
637
638 #if defined(WEBP_USE_NEON)
639 if (WEBP_NEON_OMIT_C_CODE ||
640 (VP8GetCPUInfo != NULL && VP8GetCPUInfo(kNEON))) {
641 VP8LDspInitNEON();
642 }
643 #endif
644
645 assert(VP8LAddGreenToBlueAndRed != NULL);
646 assert(VP8LTransformColorInverse != NULL);
647 assert(VP8LConvertBGRAToRGBA != NULL);
648 assert(VP8LConvertBGRAToRGB != NULL);
649 assert(VP8LConvertBGRAToBGR != NULL);
650 assert(VP8LConvertBGRAToRGBA4444 != NULL);
651 assert(VP8LConvertBGRAToRGB565 != NULL);
652 assert(VP8LMapColor32b != NULL);
653 assert(VP8LMapColor8b != NULL);
654 }
655 #undef COPY_PREDICTOR_ARRAY
656
657 //------------------------------------------------------------------------------
658