1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16
17 #include "llvm-c/Types.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/IR/Use.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
22 #include <cassert>
23 #include <iterator>
24 #include <memory>
25
26 namespace llvm {
27
28 class APInt;
29 class Argument;
30 class BasicBlock;
31 class Constant;
32 class ConstantData;
33 class ConstantAggregate;
34 class DataLayout;
35 class Function;
36 class GlobalAlias;
37 class GlobalIFunc;
38 class GlobalIndirectSymbol;
39 class GlobalObject;
40 class GlobalValue;
41 class GlobalVariable;
42 class InlineAsm;
43 class Instruction;
44 class LLVMContext;
45 class Module;
46 class ModuleSlotTracker;
47 class raw_ostream;
48 template<typename ValueTy> class StringMapEntry;
49 class StringRef;
50 class Twine;
51 class Type;
52 class User;
53
54 using ValueName = StringMapEntry<Value *>;
55
56 //===----------------------------------------------------------------------===//
57 // Value Class
58 //===----------------------------------------------------------------------===//
59
60 /// LLVM Value Representation
61 ///
62 /// This is a very important LLVM class. It is the base class of all values
63 /// computed by a program that may be used as operands to other values. Value is
64 /// the super class of other important classes such as Instruction and Function.
65 /// All Values have a Type. Type is not a subclass of Value. Some values can
66 /// have a name and they belong to some Module. Setting the name on the Value
67 /// automatically updates the module's symbol table.
68 ///
69 /// Every value has a "use list" that keeps track of which other Values are
70 /// using this Value. A Value can also have an arbitrary number of ValueHandle
71 /// objects that watch it and listen to RAUW and Destroy events. See
72 /// llvm/IR/ValueHandle.h for details.
73 class Value {
74 // The least-significant bit of the first word of Value *must* be zero:
75 // http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
76 Type *VTy;
77 Use *UseList;
78
79 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
80 friend class ValueHandleBase;
81
82 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
83 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
84
85 protected:
86 /// Hold subclass data that can be dropped.
87 ///
88 /// This member is similar to SubclassData, however it is for holding
89 /// information which may be used to aid optimization, but which may be
90 /// cleared to zero without affecting conservative interpretation.
91 unsigned char SubclassOptionalData : 7;
92
93 private:
94 /// Hold arbitrary subclass data.
95 ///
96 /// This member is defined by this class, but is not used for anything.
97 /// Subclasses can use it to hold whatever state they find useful. This
98 /// field is initialized to zero by the ctor.
99 unsigned short SubclassData;
100
101 protected:
102 /// The number of operands in the subclass.
103 ///
104 /// This member is defined by this class, but not used for anything.
105 /// Subclasses can use it to store their number of operands, if they have
106 /// any.
107 ///
108 /// This is stored here to save space in User on 64-bit hosts. Since most
109 /// instances of Value have operands, 32-bit hosts aren't significantly
110 /// affected.
111 ///
112 /// Note, this should *NOT* be used directly by any class other than User.
113 /// User uses this value to find the Use list.
114 enum : unsigned { NumUserOperandsBits = 28 };
115 unsigned NumUserOperands : NumUserOperandsBits;
116
117 // Use the same type as the bitfield above so that MSVC will pack them.
118 unsigned IsUsedByMD : 1;
119 unsigned HasName : 1;
120 unsigned HasHungOffUses : 1;
121 unsigned HasDescriptor : 1;
122
123 private:
124 template <typename UseT> // UseT == 'Use' or 'const Use'
125 class use_iterator_impl
126 : public std::iterator<std::forward_iterator_tag, UseT *> {
127 friend class Value;
128
129 UseT *U;
130
use_iterator_impl(UseT * u)131 explicit use_iterator_impl(UseT *u) : U(u) {}
132
133 public:
use_iterator_impl()134 use_iterator_impl() : U() {}
135
136 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
137 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
138
139 use_iterator_impl &operator++() { // Preincrement
140 assert(U && "Cannot increment end iterator!");
141 U = U->getNext();
142 return *this;
143 }
144
145 use_iterator_impl operator++(int) { // Postincrement
146 auto tmp = *this;
147 ++*this;
148 return tmp;
149 }
150
151 UseT &operator*() const {
152 assert(U && "Cannot dereference end iterator!");
153 return *U;
154 }
155
156 UseT *operator->() const { return &operator*(); }
157
158 operator use_iterator_impl<const UseT>() const {
159 return use_iterator_impl<const UseT>(U);
160 }
161 };
162
163 template <typename UserTy> // UserTy == 'User' or 'const User'
164 class user_iterator_impl
165 : public std::iterator<std::forward_iterator_tag, UserTy *> {
166 use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)167 explicit user_iterator_impl(Use *U) : UI(U) {}
168 friend class Value;
169
170 public:
171 user_iterator_impl() = default;
172
173 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
174 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
175
176 /// Returns true if this iterator is equal to user_end() on the value.
atEnd()177 bool atEnd() const { return *this == user_iterator_impl(); }
178
179 user_iterator_impl &operator++() { // Preincrement
180 ++UI;
181 return *this;
182 }
183
184 user_iterator_impl operator++(int) { // Postincrement
185 auto tmp = *this;
186 ++*this;
187 return tmp;
188 }
189
190 // Retrieve a pointer to the current User.
191 UserTy *operator*() const {
192 return UI->getUser();
193 }
194
195 UserTy *operator->() const { return operator*(); }
196
197 operator user_iterator_impl<const UserTy>() const {
198 return user_iterator_impl<const UserTy>(*UI);
199 }
200
getUse()201 Use &getUse() const { return *UI; }
202 };
203
204 protected:
205 Value(Type *Ty, unsigned scid);
206
207 /// Value's destructor should be virtual by design, but that would require
208 /// that Value and all of its subclasses have a vtable that effectively
209 /// duplicates the information in the value ID. As a size optimization, the
210 /// destructor has been protected, and the caller should manually call
211 /// deleteValue.
212 ~Value(); // Use deleteValue() to delete a generic Value.
213
214 public:
215 Value(const Value &) = delete;
216 Value &operator=(const Value &) = delete;
217
218 /// Delete a pointer to a generic Value.
219 void deleteValue();
220
221 /// Support for debugging, callable in GDB: V->dump()
222 void dump() const;
223
224 /// Implement operator<< on Value.
225 /// @{
226 void print(raw_ostream &O, bool IsForDebug = false) const;
227 void print(raw_ostream &O, ModuleSlotTracker &MST,
228 bool IsForDebug = false) const;
229 /// @}
230
231 /// Print the name of this Value out to the specified raw_ostream.
232 ///
233 /// This is useful when you just want to print 'int %reg126', not the
234 /// instruction that generated it. If you specify a Module for context, then
235 /// even constanst get pretty-printed; for example, the type of a null
236 /// pointer is printed symbolically.
237 /// @{
238 void printAsOperand(raw_ostream &O, bool PrintType = true,
239 const Module *M = nullptr) const;
240 void printAsOperand(raw_ostream &O, bool PrintType,
241 ModuleSlotTracker &MST) const;
242 /// @}
243
244 /// All values are typed, get the type of this value.
getType()245 Type *getType() const { return VTy; }
246
247 /// All values hold a context through their type.
248 LLVMContext &getContext() const;
249
250 // All values can potentially be named.
hasName()251 bool hasName() const { return HasName; }
252 ValueName *getValueName() const;
253 void setValueName(ValueName *VN);
254
255 private:
256 void destroyValueName();
257 void doRAUW(Value *New, bool NoMetadata);
258 void setNameImpl(const Twine &Name);
259
260 public:
261 /// Return a constant reference to the value's name.
262 ///
263 /// This guaranteed to return the same reference as long as the value is not
264 /// modified. If the value has a name, this does a hashtable lookup, so it's
265 /// not free.
266 StringRef getName() const;
267
268 /// Change the name of the value.
269 ///
270 /// Choose a new unique name if the provided name is taken.
271 ///
272 /// \param Name The new name; or "" if the value's name should be removed.
273 void setName(const Twine &Name);
274
275 /// Transfer the name from V to this value.
276 ///
277 /// After taking V's name, sets V's name to empty.
278 ///
279 /// \note It is an error to call V->takeName(V).
280 void takeName(Value *V);
281
282 /// Change all uses of this to point to a new Value.
283 ///
284 /// Go through the uses list for this definition and make each use point to
285 /// "V" instead of "this". After this completes, 'this's use list is
286 /// guaranteed to be empty.
287 void replaceAllUsesWith(Value *V);
288
289 /// Change non-metadata uses of this to point to a new Value.
290 ///
291 /// Go through the uses list for this definition and make each use point to
292 /// "V" instead of "this". This function skips metadata entries in the list.
293 void replaceNonMetadataUsesWith(Value *V);
294
295 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
296 /// make each use point to "V" instead of "this" when the use is outside the
297 /// block. 'This's use list is expected to have at least one element.
298 /// Unlike replaceAllUsesWith this function does not support basic block
299 /// values or constant users.
300 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
301
302 //----------------------------------------------------------------------
303 // Methods for handling the chain of uses of this Value.
304 //
305 // Materializing a function can introduce new uses, so these methods come in
306 // two variants:
307 // The methods that start with materialized_ check the uses that are
308 // currently known given which functions are materialized. Be very careful
309 // when using them since you might not get all uses.
310 // The methods that don't start with materialized_ assert that modules is
311 // fully materialized.
312 void assertModuleIsMaterializedImpl() const;
313 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
314 // around in release builds of Value.cpp to be linked with other code built
315 // in debug mode. But this avoids calling it in any of the release built code.
assertModuleIsMaterialized()316 void assertModuleIsMaterialized() const {
317 #ifndef NDEBUG
318 assertModuleIsMaterializedImpl();
319 #endif
320 }
321
use_empty()322 bool use_empty() const {
323 assertModuleIsMaterialized();
324 return UseList == nullptr;
325 }
326
materialized_use_empty()327 bool materialized_use_empty() const {
328 return UseList == nullptr;
329 }
330
331 using use_iterator = use_iterator_impl<Use>;
332 using const_use_iterator = use_iterator_impl<const Use>;
333
materialized_use_begin()334 use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()335 const_use_iterator materialized_use_begin() const {
336 return const_use_iterator(UseList);
337 }
use_begin()338 use_iterator use_begin() {
339 assertModuleIsMaterialized();
340 return materialized_use_begin();
341 }
use_begin()342 const_use_iterator use_begin() const {
343 assertModuleIsMaterialized();
344 return materialized_use_begin();
345 }
use_end()346 use_iterator use_end() { return use_iterator(); }
use_end()347 const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()348 iterator_range<use_iterator> materialized_uses() {
349 return make_range(materialized_use_begin(), use_end());
350 }
materialized_uses()351 iterator_range<const_use_iterator> materialized_uses() const {
352 return make_range(materialized_use_begin(), use_end());
353 }
uses()354 iterator_range<use_iterator> uses() {
355 assertModuleIsMaterialized();
356 return materialized_uses();
357 }
uses()358 iterator_range<const_use_iterator> uses() const {
359 assertModuleIsMaterialized();
360 return materialized_uses();
361 }
362
user_empty()363 bool user_empty() const {
364 assertModuleIsMaterialized();
365 return UseList == nullptr;
366 }
367
368 using user_iterator = user_iterator_impl<User>;
369 using const_user_iterator = user_iterator_impl<const User>;
370
materialized_user_begin()371 user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()372 const_user_iterator materialized_user_begin() const {
373 return const_user_iterator(UseList);
374 }
user_begin()375 user_iterator user_begin() {
376 assertModuleIsMaterialized();
377 return materialized_user_begin();
378 }
user_begin()379 const_user_iterator user_begin() const {
380 assertModuleIsMaterialized();
381 return materialized_user_begin();
382 }
user_end()383 user_iterator user_end() { return user_iterator(); }
user_end()384 const_user_iterator user_end() const { return const_user_iterator(); }
user_back()385 User *user_back() {
386 assertModuleIsMaterialized();
387 return *materialized_user_begin();
388 }
user_back()389 const User *user_back() const {
390 assertModuleIsMaterialized();
391 return *materialized_user_begin();
392 }
materialized_users()393 iterator_range<user_iterator> materialized_users() {
394 return make_range(materialized_user_begin(), user_end());
395 }
materialized_users()396 iterator_range<const_user_iterator> materialized_users() const {
397 return make_range(materialized_user_begin(), user_end());
398 }
users()399 iterator_range<user_iterator> users() {
400 assertModuleIsMaterialized();
401 return materialized_users();
402 }
users()403 iterator_range<const_user_iterator> users() const {
404 assertModuleIsMaterialized();
405 return materialized_users();
406 }
407
408 /// Return true if there is exactly one user of this value.
409 ///
410 /// This is specialized because it is a common request and does not require
411 /// traversing the whole use list.
hasOneUse()412 bool hasOneUse() const {
413 const_use_iterator I = use_begin(), E = use_end();
414 if (I == E) return false;
415 return ++I == E;
416 }
417
418 /// Return true if this Value has exactly N users.
419 bool hasNUses(unsigned N) const;
420
421 /// Return true if this value has N users or more.
422 ///
423 /// This is logically equivalent to getNumUses() >= N.
424 bool hasNUsesOrMore(unsigned N) const;
425
426 /// Check if this value is used in the specified basic block.
427 bool isUsedInBasicBlock(const BasicBlock *BB) const;
428
429 /// This method computes the number of uses of this Value.
430 ///
431 /// This is a linear time operation. Use hasOneUse, hasNUses, or
432 /// hasNUsesOrMore to check for specific values.
433 unsigned getNumUses() const;
434
435 /// This method should only be used by the Use class.
addUse(Use & U)436 void addUse(Use &U) { U.addToList(&UseList); }
437
438 /// Concrete subclass of this.
439 ///
440 /// An enumeration for keeping track of the concrete subclass of Value that
441 /// is actually instantiated. Values of this enumeration are kept in the
442 /// Value classes SubclassID field. They are used for concrete type
443 /// identification.
444 enum ValueTy {
445 #define HANDLE_VALUE(Name) Name##Val,
446 #include "llvm/IR/Value.def"
447
448 // Markers:
449 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
450 #include "llvm/IR/Value.def"
451 };
452
453 /// Return an ID for the concrete type of this object.
454 ///
455 /// This is used to implement the classof checks. This should not be used
456 /// for any other purpose, as the values may change as LLVM evolves. Also,
457 /// note that for instructions, the Instruction's opcode is added to
458 /// InstructionVal. So this means three things:
459 /// # there is no value with code InstructionVal (no opcode==0).
460 /// # there are more possible values for the value type than in ValueTy enum.
461 /// # the InstructionVal enumerator must be the highest valued enumerator in
462 /// the ValueTy enum.
getValueID()463 unsigned getValueID() const {
464 return SubclassID;
465 }
466
467 /// Return the raw optional flags value contained in this value.
468 ///
469 /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()470 unsigned getRawSubclassOptionalData() const {
471 return SubclassOptionalData;
472 }
473
474 /// Clear the optional flags contained in this value.
clearSubclassOptionalData()475 void clearSubclassOptionalData() {
476 SubclassOptionalData = 0;
477 }
478
479 /// Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)480 bool hasSameSubclassOptionalData(const Value *V) const {
481 return SubclassOptionalData == V->SubclassOptionalData;
482 }
483
484 /// Return true if there is a value handle associated with this value.
hasValueHandle()485 bool hasValueHandle() const { return HasValueHandle; }
486
487 /// Return true if there is metadata referencing this value.
isUsedByMetadata()488 bool isUsedByMetadata() const { return IsUsedByMD; }
489
490 /// Return true if this value is a swifterror value.
491 ///
492 /// swifterror values can be either a function argument or an alloca with a
493 /// swifterror attribute.
494 bool isSwiftError() const;
495
496 /// Strip off pointer casts, all-zero GEPs, and aliases.
497 ///
498 /// Returns the original uncasted value. If this is called on a non-pointer
499 /// value, it returns 'this'.
500 const Value *stripPointerCasts() const;
stripPointerCasts()501 Value *stripPointerCasts() {
502 return const_cast<Value *>(
503 static_cast<const Value *>(this)->stripPointerCasts());
504 }
505
506 /// Strip off pointer casts, all-zero GEPs, aliases and invariant group
507 /// info.
508 ///
509 /// Returns the original uncasted value. If this is called on a non-pointer
510 /// value, it returns 'this'. This function should be used only in
511 /// Alias analysis.
512 const Value *stripPointerCastsAndInvariantGroups() const;
stripPointerCastsAndInvariantGroups()513 Value *stripPointerCastsAndInvariantGroups() {
514 return const_cast<Value *>(
515 static_cast<const Value *>(this)->stripPointerCastsAndInvariantGroups());
516 }
517
518 /// Strip off pointer casts and all-zero GEPs.
519 ///
520 /// Returns the original uncasted value. If this is called on a non-pointer
521 /// value, it returns 'this'.
522 const Value *stripPointerCastsNoFollowAliases() const;
stripPointerCastsNoFollowAliases()523 Value *stripPointerCastsNoFollowAliases() {
524 return const_cast<Value *>(
525 static_cast<const Value *>(this)->stripPointerCastsNoFollowAliases());
526 }
527
528 /// Strip off pointer casts and all-constant inbounds GEPs.
529 ///
530 /// Returns the original pointer value. If this is called on a non-pointer
531 /// value, it returns 'this'.
532 const Value *stripInBoundsConstantOffsets() const;
stripInBoundsConstantOffsets()533 Value *stripInBoundsConstantOffsets() {
534 return const_cast<Value *>(
535 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
536 }
537
538 /// Accumulate offsets from \a stripInBoundsConstantOffsets().
539 ///
540 /// Stores the resulting constant offset stripped into the APInt provided.
541 /// The provided APInt will be extended or truncated as needed to be the
542 /// correct bitwidth for an offset of this pointer type.
543 ///
544 /// If this is called on a non-pointer value, it returns 'this'.
545 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
546 APInt &Offset) const;
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)547 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
548 APInt &Offset) {
549 return const_cast<Value *>(static_cast<const Value *>(this)
550 ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset));
551 }
552
553 /// Strip off pointer casts and inbounds GEPs.
554 ///
555 /// Returns the original pointer value. If this is called on a non-pointer
556 /// value, it returns 'this'.
557 const Value *stripInBoundsOffsets() const;
stripInBoundsOffsets()558 Value *stripInBoundsOffsets() {
559 return const_cast<Value *>(
560 static_cast<const Value *>(this)->stripInBoundsOffsets());
561 }
562
563 /// Returns the number of bytes known to be dereferenceable for the
564 /// pointer value.
565 ///
566 /// If CanBeNull is set by this function the pointer can either be null or be
567 /// dereferenceable up to the returned number of bytes.
568 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
569 bool &CanBeNull) const;
570
571 /// Returns an alignment of the pointer value.
572 ///
573 /// Returns an alignment which is either specified explicitly, e.g. via
574 /// align attribute of a function argument, or guaranteed by DataLayout.
575 unsigned getPointerAlignment(const DataLayout &DL) const;
576
577 /// Translate PHI node to its predecessor from the given basic block.
578 ///
579 /// If this value is a PHI node with CurBB as its parent, return the value in
580 /// the PHI node corresponding to PredBB. If not, return ourself. This is
581 /// useful if you want to know the value something has in a predecessor
582 /// block.
583 const Value *DoPHITranslation(const BasicBlock *CurBB,
584 const BasicBlock *PredBB) const;
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)585 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
586 return const_cast<Value *>(
587 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
588 }
589
590 /// The maximum alignment for instructions.
591 ///
592 /// This is the greatest alignment value supported by load, store, and alloca
593 /// instructions, and global values.
594 static const unsigned MaxAlignmentExponent = 29;
595 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
596
597 /// Mutate the type of this Value to be of the specified type.
598 ///
599 /// Note that this is an extremely dangerous operation which can create
600 /// completely invalid IR very easily. It is strongly recommended that you
601 /// recreate IR objects with the right types instead of mutating them in
602 /// place.
mutateType(Type * Ty)603 void mutateType(Type *Ty) {
604 VTy = Ty;
605 }
606
607 /// Sort the use-list.
608 ///
609 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
610 /// expected to compare two \a Use references.
611 template <class Compare> void sortUseList(Compare Cmp);
612
613 /// Reverse the use-list.
614 void reverseUseList();
615
616 private:
617 /// Merge two lists together.
618 ///
619 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
620 /// "equal" items from L before items from R.
621 ///
622 /// \return the first element in the list.
623 ///
624 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
625 template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)626 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
627 Use *Merged;
628 Use **Next = &Merged;
629
630 while (true) {
631 if (!L) {
632 *Next = R;
633 break;
634 }
635 if (!R) {
636 *Next = L;
637 break;
638 }
639 if (Cmp(*R, *L)) {
640 *Next = R;
641 Next = &R->Next;
642 R = R->Next;
643 } else {
644 *Next = L;
645 Next = &L->Next;
646 L = L->Next;
647 }
648 }
649
650 return Merged;
651 }
652
653 protected:
getSubclassDataFromValue()654 unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)655 void setValueSubclassData(unsigned short D) { SubclassData = D; }
656 };
657
operatorValueDeleter658 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
659
660 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
661 /// Those don't work because Value and Instruction's destructors are protected,
662 /// aren't virtual, and won't destroy the complete object.
663 using unique_value = std::unique_ptr<Value, ValueDeleter>;
664
665 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
666 V.print(OS);
667 return OS;
668 }
669
set(Value * V)670 void Use::set(Value *V) {
671 if (Val) removeFromList();
672 Val = V;
673 if (V) V->addUse(*this);
674 }
675
676 Value *Use::operator=(Value *RHS) {
677 set(RHS);
678 return RHS;
679 }
680
681 const Use &Use::operator=(const Use &RHS) {
682 set(RHS.Val);
683 return *this;
684 }
685
sortUseList(Compare Cmp)686 template <class Compare> void Value::sortUseList(Compare Cmp) {
687 if (!UseList || !UseList->Next)
688 // No need to sort 0 or 1 uses.
689 return;
690
691 // Note: this function completely ignores Prev pointers until the end when
692 // they're fixed en masse.
693
694 // Create a binomial vector of sorted lists, visiting uses one at a time and
695 // merging lists as necessary.
696 const unsigned MaxSlots = 32;
697 Use *Slots[MaxSlots];
698
699 // Collect the first use, turning it into a single-item list.
700 Use *Next = UseList->Next;
701 UseList->Next = nullptr;
702 unsigned NumSlots = 1;
703 Slots[0] = UseList;
704
705 // Collect all but the last use.
706 while (Next->Next) {
707 Use *Current = Next;
708 Next = Current->Next;
709
710 // Turn Current into a single-item list.
711 Current->Next = nullptr;
712
713 // Save Current in the first available slot, merging on collisions.
714 unsigned I;
715 for (I = 0; I < NumSlots; ++I) {
716 if (!Slots[I])
717 break;
718
719 // Merge two lists, doubling the size of Current and emptying slot I.
720 //
721 // Since the uses in Slots[I] originally preceded those in Current, send
722 // Slots[I] in as the left parameter to maintain a stable sort.
723 Current = mergeUseLists(Slots[I], Current, Cmp);
724 Slots[I] = nullptr;
725 }
726 // Check if this is a new slot.
727 if (I == NumSlots) {
728 ++NumSlots;
729 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
730 }
731
732 // Found an open slot.
733 Slots[I] = Current;
734 }
735
736 // Merge all the lists together.
737 assert(Next && "Expected one more Use");
738 assert(!Next->Next && "Expected only one Use");
739 UseList = Next;
740 for (unsigned I = 0; I < NumSlots; ++I)
741 if (Slots[I])
742 // Since the uses in Slots[I] originally preceded those in UseList, send
743 // Slots[I] in as the left parameter to maintain a stable sort.
744 UseList = mergeUseLists(Slots[I], UseList, Cmp);
745
746 // Fix the Prev pointers.
747 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
748 I->setPrev(Prev);
749 Prev = &I->Next;
750 }
751 }
752
753 // isa - Provide some specializations of isa so that we don't have to include
754 // the subtype header files to test to see if the value is a subclass...
755 //
756 template <> struct isa_impl<Constant, Value> {
757 static inline bool doit(const Value &Val) {
758 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
759 return Val.getValueID() <= Value::ConstantLastVal;
760 }
761 };
762
763 template <> struct isa_impl<ConstantData, Value> {
764 static inline bool doit(const Value &Val) {
765 return Val.getValueID() >= Value::ConstantDataFirstVal &&
766 Val.getValueID() <= Value::ConstantDataLastVal;
767 }
768 };
769
770 template <> struct isa_impl<ConstantAggregate, Value> {
771 static inline bool doit(const Value &Val) {
772 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
773 Val.getValueID() <= Value::ConstantAggregateLastVal;
774 }
775 };
776
777 template <> struct isa_impl<Argument, Value> {
778 static inline bool doit (const Value &Val) {
779 return Val.getValueID() == Value::ArgumentVal;
780 }
781 };
782
783 template <> struct isa_impl<InlineAsm, Value> {
784 static inline bool doit(const Value &Val) {
785 return Val.getValueID() == Value::InlineAsmVal;
786 }
787 };
788
789 template <> struct isa_impl<Instruction, Value> {
790 static inline bool doit(const Value &Val) {
791 return Val.getValueID() >= Value::InstructionVal;
792 }
793 };
794
795 template <> struct isa_impl<BasicBlock, Value> {
796 static inline bool doit(const Value &Val) {
797 return Val.getValueID() == Value::BasicBlockVal;
798 }
799 };
800
801 template <> struct isa_impl<Function, Value> {
802 static inline bool doit(const Value &Val) {
803 return Val.getValueID() == Value::FunctionVal;
804 }
805 };
806
807 template <> struct isa_impl<GlobalVariable, Value> {
808 static inline bool doit(const Value &Val) {
809 return Val.getValueID() == Value::GlobalVariableVal;
810 }
811 };
812
813 template <> struct isa_impl<GlobalAlias, Value> {
814 static inline bool doit(const Value &Val) {
815 return Val.getValueID() == Value::GlobalAliasVal;
816 }
817 };
818
819 template <> struct isa_impl<GlobalIFunc, Value> {
820 static inline bool doit(const Value &Val) {
821 return Val.getValueID() == Value::GlobalIFuncVal;
822 }
823 };
824
825 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
826 static inline bool doit(const Value &Val) {
827 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
828 }
829 };
830
831 template <> struct isa_impl<GlobalValue, Value> {
832 static inline bool doit(const Value &Val) {
833 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
834 }
835 };
836
837 template <> struct isa_impl<GlobalObject, Value> {
838 static inline bool doit(const Value &Val) {
839 return isa<GlobalVariable>(Val) || isa<Function>(Val);
840 }
841 };
842
843 // Create wrappers for C Binding types (see CBindingWrapping.h).
844 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
845
846 // Specialized opaque value conversions.
847 inline Value **unwrap(LLVMValueRef *Vals) {
848 return reinterpret_cast<Value**>(Vals);
849 }
850
851 template<typename T>
852 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
853 #ifndef NDEBUG
854 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
855 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
856 #endif
857 (void)Length;
858 return reinterpret_cast<T**>(Vals);
859 }
860
861 inline LLVMValueRef *wrap(const Value **Vals) {
862 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
863 }
864
865 } // end namespace llvm
866
867 #endif // LLVM_IR_VALUE_H
868