1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "pre-RA-sched"
16 #include "llvm/CodeGen/ScheduleDAG.h"
17 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
18 #include "llvm/CodeGen/SelectionDAGNodes.h"
19 #include "llvm/Target/TargetMachine.h"
20 #include "llvm/Target/TargetInstrInfo.h"
21 #include "llvm/Target/TargetRegisterInfo.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include <climits>
26 using namespace llvm;
27
28 #ifndef NDEBUG
29 static cl::opt<bool> StressSchedOpt(
30 "stress-sched", cl::Hidden, cl::init(false),
31 cl::desc("Stress test instruction scheduling"));
32 #endif
33
ScheduleDAG(MachineFunction & mf)34 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
35 : TM(mf.getTarget()),
36 TII(TM.getInstrInfo()),
37 TRI(TM.getRegisterInfo()),
38 MF(mf), MRI(mf.getRegInfo()),
39 EntrySU(), ExitSU() {
40 #ifndef NDEBUG
41 StressSched = StressSchedOpt;
42 #endif
43 }
44
~ScheduleDAG()45 ScheduleDAG::~ScheduleDAG() {}
46
47 /// getInstrDesc helper to handle SDNodes.
getNodeDesc(const SDNode * Node) const48 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
49 if (!Node || !Node->isMachineOpcode()) return NULL;
50 return &TII->get(Node->getMachineOpcode());
51 }
52
53 /// dump - dump the schedule.
dumpSchedule() const54 void ScheduleDAG::dumpSchedule() const {
55 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
56 if (SUnit *SU = Sequence[i])
57 SU->dump(this);
58 else
59 dbgs() << "**** NOOP ****\n";
60 }
61 }
62
63
64 /// Run - perform scheduling.
65 ///
Run(MachineBasicBlock * bb,MachineBasicBlock::iterator insertPos)66 void ScheduleDAG::Run(MachineBasicBlock *bb,
67 MachineBasicBlock::iterator insertPos) {
68 BB = bb;
69 InsertPos = insertPos;
70
71 SUnits.clear();
72 Sequence.clear();
73 EntrySU = SUnit();
74 ExitSU = SUnit();
75
76 Schedule();
77
78 DEBUG({
79 dbgs() << "*** Final schedule ***\n";
80 dumpSchedule();
81 dbgs() << '\n';
82 });
83 }
84
85 /// addPred - This adds the specified edge as a pred of the current node if
86 /// not already. It also adds the current node as a successor of the
87 /// specified node.
addPred(const SDep & D)88 bool SUnit::addPred(const SDep &D) {
89 // If this node already has this depenence, don't add a redundant one.
90 for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end();
91 I != E; ++I)
92 if (*I == D)
93 return false;
94 // Now add a corresponding succ to N.
95 SDep P = D;
96 P.setSUnit(this);
97 SUnit *N = D.getSUnit();
98 // Update the bookkeeping.
99 if (D.getKind() == SDep::Data) {
100 assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
101 assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
102 ++NumPreds;
103 ++N->NumSuccs;
104 }
105 if (!N->isScheduled) {
106 assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
107 ++NumPredsLeft;
108 }
109 if (!isScheduled) {
110 assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
111 ++N->NumSuccsLeft;
112 }
113 Preds.push_back(D);
114 N->Succs.push_back(P);
115 if (P.getLatency() != 0) {
116 this->setDepthDirty();
117 N->setHeightDirty();
118 }
119 return true;
120 }
121
122 /// removePred - This removes the specified edge as a pred of the current
123 /// node if it exists. It also removes the current node as a successor of
124 /// the specified node.
removePred(const SDep & D)125 void SUnit::removePred(const SDep &D) {
126 // Find the matching predecessor.
127 for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
128 I != E; ++I)
129 if (*I == D) {
130 bool FoundSucc = false;
131 // Find the corresponding successor in N.
132 SDep P = D;
133 P.setSUnit(this);
134 SUnit *N = D.getSUnit();
135 for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
136 EE = N->Succs.end(); II != EE; ++II)
137 if (*II == P) {
138 FoundSucc = true;
139 N->Succs.erase(II);
140 break;
141 }
142 assert(FoundSucc && "Mismatching preds / succs lists!");
143 (void)FoundSucc;
144 Preds.erase(I);
145 // Update the bookkeeping.
146 if (P.getKind() == SDep::Data) {
147 assert(NumPreds > 0 && "NumPreds will underflow!");
148 assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
149 --NumPreds;
150 --N->NumSuccs;
151 }
152 if (!N->isScheduled) {
153 assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
154 --NumPredsLeft;
155 }
156 if (!isScheduled) {
157 assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
158 --N->NumSuccsLeft;
159 }
160 if (P.getLatency() != 0) {
161 this->setDepthDirty();
162 N->setHeightDirty();
163 }
164 return;
165 }
166 }
167
setDepthDirty()168 void SUnit::setDepthDirty() {
169 if (!isDepthCurrent) return;
170 SmallVector<SUnit*, 8> WorkList;
171 WorkList.push_back(this);
172 do {
173 SUnit *SU = WorkList.pop_back_val();
174 SU->isDepthCurrent = false;
175 for (SUnit::const_succ_iterator I = SU->Succs.begin(),
176 E = SU->Succs.end(); I != E; ++I) {
177 SUnit *SuccSU = I->getSUnit();
178 if (SuccSU->isDepthCurrent)
179 WorkList.push_back(SuccSU);
180 }
181 } while (!WorkList.empty());
182 }
183
setHeightDirty()184 void SUnit::setHeightDirty() {
185 if (!isHeightCurrent) return;
186 SmallVector<SUnit*, 8> WorkList;
187 WorkList.push_back(this);
188 do {
189 SUnit *SU = WorkList.pop_back_val();
190 SU->isHeightCurrent = false;
191 for (SUnit::const_pred_iterator I = SU->Preds.begin(),
192 E = SU->Preds.end(); I != E; ++I) {
193 SUnit *PredSU = I->getSUnit();
194 if (PredSU->isHeightCurrent)
195 WorkList.push_back(PredSU);
196 }
197 } while (!WorkList.empty());
198 }
199
200 /// setDepthToAtLeast - Update this node's successors to reflect the
201 /// fact that this node's depth just increased.
202 ///
setDepthToAtLeast(unsigned NewDepth)203 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
204 if (NewDepth <= getDepth())
205 return;
206 setDepthDirty();
207 Depth = NewDepth;
208 isDepthCurrent = true;
209 }
210
211 /// setHeightToAtLeast - Update this node's predecessors to reflect the
212 /// fact that this node's height just increased.
213 ///
setHeightToAtLeast(unsigned NewHeight)214 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
215 if (NewHeight <= getHeight())
216 return;
217 setHeightDirty();
218 Height = NewHeight;
219 isHeightCurrent = true;
220 }
221
222 /// ComputeDepth - Calculate the maximal path from the node to the exit.
223 ///
ComputeDepth()224 void SUnit::ComputeDepth() {
225 SmallVector<SUnit*, 8> WorkList;
226 WorkList.push_back(this);
227 do {
228 SUnit *Cur = WorkList.back();
229
230 bool Done = true;
231 unsigned MaxPredDepth = 0;
232 for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
233 E = Cur->Preds.end(); I != E; ++I) {
234 SUnit *PredSU = I->getSUnit();
235 if (PredSU->isDepthCurrent)
236 MaxPredDepth = std::max(MaxPredDepth,
237 PredSU->Depth + I->getLatency());
238 else {
239 Done = false;
240 WorkList.push_back(PredSU);
241 }
242 }
243
244 if (Done) {
245 WorkList.pop_back();
246 if (MaxPredDepth != Cur->Depth) {
247 Cur->setDepthDirty();
248 Cur->Depth = MaxPredDepth;
249 }
250 Cur->isDepthCurrent = true;
251 }
252 } while (!WorkList.empty());
253 }
254
255 /// ComputeHeight - Calculate the maximal path from the node to the entry.
256 ///
ComputeHeight()257 void SUnit::ComputeHeight() {
258 SmallVector<SUnit*, 8> WorkList;
259 WorkList.push_back(this);
260 do {
261 SUnit *Cur = WorkList.back();
262
263 bool Done = true;
264 unsigned MaxSuccHeight = 0;
265 for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
266 E = Cur->Succs.end(); I != E; ++I) {
267 SUnit *SuccSU = I->getSUnit();
268 if (SuccSU->isHeightCurrent)
269 MaxSuccHeight = std::max(MaxSuccHeight,
270 SuccSU->Height + I->getLatency());
271 else {
272 Done = false;
273 WorkList.push_back(SuccSU);
274 }
275 }
276
277 if (Done) {
278 WorkList.pop_back();
279 if (MaxSuccHeight != Cur->Height) {
280 Cur->setHeightDirty();
281 Cur->Height = MaxSuccHeight;
282 }
283 Cur->isHeightCurrent = true;
284 }
285 } while (!WorkList.empty());
286 }
287
288 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
289 /// a group of nodes flagged together.
dump(const ScheduleDAG * G) const290 void SUnit::dump(const ScheduleDAG *G) const {
291 dbgs() << "SU(" << NodeNum << "): ";
292 G->dumpNode(this);
293 }
294
dumpAll(const ScheduleDAG * G) const295 void SUnit::dumpAll(const ScheduleDAG *G) const {
296 dump(G);
297
298 dbgs() << " # preds left : " << NumPredsLeft << "\n";
299 dbgs() << " # succs left : " << NumSuccsLeft << "\n";
300 dbgs() << " # rdefs left : " << NumRegDefsLeft << "\n";
301 dbgs() << " Latency : " << Latency << "\n";
302 dbgs() << " Depth : " << Depth << "\n";
303 dbgs() << " Height : " << Height << "\n";
304
305 if (Preds.size() != 0) {
306 dbgs() << " Predecessors:\n";
307 for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
308 I != E; ++I) {
309 dbgs() << " ";
310 switch (I->getKind()) {
311 case SDep::Data: dbgs() << "val "; break;
312 case SDep::Anti: dbgs() << "anti"; break;
313 case SDep::Output: dbgs() << "out "; break;
314 case SDep::Order: dbgs() << "ch "; break;
315 }
316 dbgs() << "#";
317 dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
318 if (I->isArtificial())
319 dbgs() << " *";
320 dbgs() << ": Latency=" << I->getLatency();
321 if (I->isAssignedRegDep())
322 dbgs() << " Reg=" << G->TRI->getName(I->getReg());
323 dbgs() << "\n";
324 }
325 }
326 if (Succs.size() != 0) {
327 dbgs() << " Successors:\n";
328 for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
329 I != E; ++I) {
330 dbgs() << " ";
331 switch (I->getKind()) {
332 case SDep::Data: dbgs() << "val "; break;
333 case SDep::Anti: dbgs() << "anti"; break;
334 case SDep::Output: dbgs() << "out "; break;
335 case SDep::Order: dbgs() << "ch "; break;
336 }
337 dbgs() << "#";
338 dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
339 if (I->isArtificial())
340 dbgs() << " *";
341 dbgs() << ": Latency=" << I->getLatency();
342 dbgs() << "\n";
343 }
344 }
345 dbgs() << "\n";
346 }
347
348 #ifndef NDEBUG
349 /// VerifySchedule - Verify that all SUnits were scheduled and that
350 /// their state is consistent.
351 ///
VerifySchedule(bool isBottomUp)352 void ScheduleDAG::VerifySchedule(bool isBottomUp) {
353 bool AnyNotSched = false;
354 unsigned DeadNodes = 0;
355 unsigned Noops = 0;
356 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
357 if (!SUnits[i].isScheduled) {
358 if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
359 ++DeadNodes;
360 continue;
361 }
362 if (!AnyNotSched)
363 dbgs() << "*** Scheduling failed! ***\n";
364 SUnits[i].dump(this);
365 dbgs() << "has not been scheduled!\n";
366 AnyNotSched = true;
367 }
368 if (SUnits[i].isScheduled &&
369 (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
370 unsigned(INT_MAX)) {
371 if (!AnyNotSched)
372 dbgs() << "*** Scheduling failed! ***\n";
373 SUnits[i].dump(this);
374 dbgs() << "has an unexpected "
375 << (isBottomUp ? "Height" : "Depth") << " value!\n";
376 AnyNotSched = true;
377 }
378 if (isBottomUp) {
379 if (SUnits[i].NumSuccsLeft != 0) {
380 if (!AnyNotSched)
381 dbgs() << "*** Scheduling failed! ***\n";
382 SUnits[i].dump(this);
383 dbgs() << "has successors left!\n";
384 AnyNotSched = true;
385 }
386 } else {
387 if (SUnits[i].NumPredsLeft != 0) {
388 if (!AnyNotSched)
389 dbgs() << "*** Scheduling failed! ***\n";
390 SUnits[i].dump(this);
391 dbgs() << "has predecessors left!\n";
392 AnyNotSched = true;
393 }
394 }
395 }
396 for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
397 if (!Sequence[i])
398 ++Noops;
399 assert(!AnyNotSched);
400 assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
401 "The number of nodes scheduled doesn't match the expected number!");
402 }
403 #endif
404
405 /// InitDAGTopologicalSorting - create the initial topological
406 /// ordering from the DAG to be scheduled.
407 ///
408 /// The idea of the algorithm is taken from
409 /// "Online algorithms for managing the topological order of
410 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
411 /// This is the MNR algorithm, which was first introduced by
412 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
413 /// "Maintaining a topological order under edge insertions".
414 ///
415 /// Short description of the algorithm:
416 ///
417 /// Topological ordering, ord, of a DAG maps each node to a topological
418 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
419 ///
420 /// This means that if there is a path from the node X to the node Z,
421 /// then ord(X) < ord(Z).
422 ///
423 /// This property can be used to check for reachability of nodes:
424 /// if Z is reachable from X, then an insertion of the edge Z->X would
425 /// create a cycle.
426 ///
427 /// The algorithm first computes a topological ordering for the DAG by
428 /// initializing the Index2Node and Node2Index arrays and then tries to keep
429 /// the ordering up-to-date after edge insertions by reordering the DAG.
430 ///
431 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
432 /// the nodes reachable from Y, and then shifts them using Shift to lie
433 /// immediately after X in Index2Node.
InitDAGTopologicalSorting()434 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
435 unsigned DAGSize = SUnits.size();
436 std::vector<SUnit*> WorkList;
437 WorkList.reserve(DAGSize);
438
439 Index2Node.resize(DAGSize);
440 Node2Index.resize(DAGSize);
441
442 // Initialize the data structures.
443 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
444 SUnit *SU = &SUnits[i];
445 int NodeNum = SU->NodeNum;
446 unsigned Degree = SU->Succs.size();
447 // Temporarily use the Node2Index array as scratch space for degree counts.
448 Node2Index[NodeNum] = Degree;
449
450 // Is it a node without dependencies?
451 if (Degree == 0) {
452 assert(SU->Succs.empty() && "SUnit should have no successors");
453 // Collect leaf nodes.
454 WorkList.push_back(SU);
455 }
456 }
457
458 int Id = DAGSize;
459 while (!WorkList.empty()) {
460 SUnit *SU = WorkList.back();
461 WorkList.pop_back();
462 Allocate(SU->NodeNum, --Id);
463 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
464 I != E; ++I) {
465 SUnit *SU = I->getSUnit();
466 if (!--Node2Index[SU->NodeNum])
467 // If all dependencies of the node are processed already,
468 // then the node can be computed now.
469 WorkList.push_back(SU);
470 }
471 }
472
473 Visited.resize(DAGSize);
474
475 #ifndef NDEBUG
476 // Check correctness of the ordering
477 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
478 SUnit *SU = &SUnits[i];
479 for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
480 I != E; ++I) {
481 assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
482 "Wrong topological sorting");
483 }
484 }
485 #endif
486 }
487
488 /// AddPred - Updates the topological ordering to accommodate an edge
489 /// to be added from SUnit X to SUnit Y.
AddPred(SUnit * Y,SUnit * X)490 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
491 int UpperBound, LowerBound;
492 LowerBound = Node2Index[Y->NodeNum];
493 UpperBound = Node2Index[X->NodeNum];
494 bool HasLoop = false;
495 // Is Ord(X) < Ord(Y) ?
496 if (LowerBound < UpperBound) {
497 // Update the topological order.
498 Visited.reset();
499 DFS(Y, UpperBound, HasLoop);
500 assert(!HasLoop && "Inserted edge creates a loop!");
501 // Recompute topological indexes.
502 Shift(Visited, LowerBound, UpperBound);
503 }
504 }
505
506 /// RemovePred - Updates the topological ordering to accommodate an
507 /// an edge to be removed from the specified node N from the predecessors
508 /// of the current node M.
RemovePred(SUnit * M,SUnit * N)509 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
510 // InitDAGTopologicalSorting();
511 }
512
513 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
514 /// all nodes affected by the edge insertion. These nodes will later get new
515 /// topological indexes by means of the Shift method.
DFS(const SUnit * SU,int UpperBound,bool & HasLoop)516 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
517 bool &HasLoop) {
518 std::vector<const SUnit*> WorkList;
519 WorkList.reserve(SUnits.size());
520
521 WorkList.push_back(SU);
522 do {
523 SU = WorkList.back();
524 WorkList.pop_back();
525 Visited.set(SU->NodeNum);
526 for (int I = SU->Succs.size()-1; I >= 0; --I) {
527 int s = SU->Succs[I].getSUnit()->NodeNum;
528 if (Node2Index[s] == UpperBound) {
529 HasLoop = true;
530 return;
531 }
532 // Visit successors if not already and in affected region.
533 if (!Visited.test(s) && Node2Index[s] < UpperBound) {
534 WorkList.push_back(SU->Succs[I].getSUnit());
535 }
536 }
537 } while (!WorkList.empty());
538 }
539
540 /// Shift - Renumber the nodes so that the topological ordering is
541 /// preserved.
Shift(BitVector & Visited,int LowerBound,int UpperBound)542 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
543 int UpperBound) {
544 std::vector<int> L;
545 int shift = 0;
546 int i;
547
548 for (i = LowerBound; i <= UpperBound; ++i) {
549 // w is node at topological index i.
550 int w = Index2Node[i];
551 if (Visited.test(w)) {
552 // Unmark.
553 Visited.reset(w);
554 L.push_back(w);
555 shift = shift + 1;
556 } else {
557 Allocate(w, i - shift);
558 }
559 }
560
561 for (unsigned j = 0; j < L.size(); ++j) {
562 Allocate(L[j], i - shift);
563 i = i + 1;
564 }
565 }
566
567
568 /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
569 /// create a cycle.
WillCreateCycle(SUnit * SU,SUnit * TargetSU)570 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
571 if (IsReachable(TargetSU, SU))
572 return true;
573 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
574 I != E; ++I)
575 if (I->isAssignedRegDep() &&
576 IsReachable(TargetSU, I->getSUnit()))
577 return true;
578 return false;
579 }
580
581 /// IsReachable - Checks if SU is reachable from TargetSU.
IsReachable(const SUnit * SU,const SUnit * TargetSU)582 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
583 const SUnit *TargetSU) {
584 // If insertion of the edge SU->TargetSU would create a cycle
585 // then there is a path from TargetSU to SU.
586 int UpperBound, LowerBound;
587 LowerBound = Node2Index[TargetSU->NodeNum];
588 UpperBound = Node2Index[SU->NodeNum];
589 bool HasLoop = false;
590 // Is Ord(TargetSU) < Ord(SU) ?
591 if (LowerBound < UpperBound) {
592 Visited.reset();
593 // There may be a path from TargetSU to SU. Check for it.
594 DFS(TargetSU, UpperBound, HasLoop);
595 }
596 return HasLoop;
597 }
598
599 /// Allocate - assign the topological index to the node n.
Allocate(int n,int index)600 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
601 Node2Index[n] = index;
602 Index2Node[index] = n;
603 }
604
605 ScheduleDAGTopologicalSort::
ScheduleDAGTopologicalSort(std::vector<SUnit> & sunits)606 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits) : SUnits(sunits) {}
607
~ScheduleHazardRecognizer()608 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}
609