1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/compiler/instruction-selector.h"
6
7 #include <limits>
8
9 #include "src/assembler-inl.h"
10 #include "src/base/adapters.h"
11 #include "src/compiler/compiler-source-position-table.h"
12 #include "src/compiler/instruction-selector-impl.h"
13 #include "src/compiler/node-matchers.h"
14 #include "src/compiler/pipeline.h"
15 #include "src/compiler/schedule.h"
16 #include "src/compiler/state-values-utils.h"
17 #include "src/deoptimizer.h"
18
19 namespace v8 {
20 namespace internal {
21 namespace compiler {
22
InstructionSelector(Zone * zone,size_t node_count,Linkage * linkage,InstructionSequence * sequence,Schedule * schedule,SourcePositionTable * source_positions,Frame * frame,EnableSwitchJumpTable enable_switch_jump_table,SourcePositionMode source_position_mode,Features features,EnableScheduling enable_scheduling,EnableRootsRelativeAddressing enable_roots_relative_addressing,PoisoningMitigationLevel poisoning_level,EnableTraceTurboJson trace_turbo)23 InstructionSelector::InstructionSelector(
24 Zone* zone, size_t node_count, Linkage* linkage,
25 InstructionSequence* sequence, Schedule* schedule,
26 SourcePositionTable* source_positions, Frame* frame,
27 EnableSwitchJumpTable enable_switch_jump_table,
28 SourcePositionMode source_position_mode, Features features,
29 EnableScheduling enable_scheduling,
30 EnableRootsRelativeAddressing enable_roots_relative_addressing,
31 PoisoningMitigationLevel poisoning_level, EnableTraceTurboJson trace_turbo)
32 : zone_(zone),
33 linkage_(linkage),
34 sequence_(sequence),
35 source_positions_(source_positions),
36 source_position_mode_(source_position_mode),
37 features_(features),
38 schedule_(schedule),
39 current_block_(nullptr),
40 instructions_(zone),
41 continuation_inputs_(sequence->zone()),
42 continuation_outputs_(sequence->zone()),
43 defined_(node_count, false, zone),
44 used_(node_count, false, zone),
45 effect_level_(node_count, 0, zone),
46 virtual_registers_(node_count,
47 InstructionOperand::kInvalidVirtualRegister, zone),
48 virtual_register_rename_(zone),
49 scheduler_(nullptr),
50 enable_scheduling_(enable_scheduling),
51 enable_roots_relative_addressing_(enable_roots_relative_addressing),
52 enable_switch_jump_table_(enable_switch_jump_table),
53 poisoning_level_(poisoning_level),
54 frame_(frame),
55 instruction_selection_failed_(false),
56 instr_origins_(sequence->zone()),
57 trace_turbo_(trace_turbo) {
58 instructions_.reserve(node_count);
59 continuation_inputs_.reserve(5);
60 continuation_outputs_.reserve(2);
61
62 if (trace_turbo_ == kEnableTraceTurboJson) {
63 instr_origins_.assign(node_count, {-1, 0});
64 }
65 }
66
SelectInstructions()67 bool InstructionSelector::SelectInstructions() {
68 // Mark the inputs of all phis in loop headers as used.
69 BasicBlockVector* blocks = schedule()->rpo_order();
70 for (auto const block : *blocks) {
71 if (!block->IsLoopHeader()) continue;
72 DCHECK_LE(2u, block->PredecessorCount());
73 for (Node* const phi : *block) {
74 if (phi->opcode() != IrOpcode::kPhi) continue;
75
76 // Mark all inputs as used.
77 for (Node* const input : phi->inputs()) {
78 MarkAsUsed(input);
79 }
80 }
81 }
82
83 // Visit each basic block in post order.
84 for (auto i = blocks->rbegin(); i != blocks->rend(); ++i) {
85 VisitBlock(*i);
86 if (instruction_selection_failed()) return false;
87 }
88
89 // Schedule the selected instructions.
90 if (UseInstructionScheduling()) {
91 scheduler_ = new (zone()) InstructionScheduler(zone(), sequence());
92 }
93
94 for (auto const block : *blocks) {
95 InstructionBlock* instruction_block =
96 sequence()->InstructionBlockAt(RpoNumber::FromInt(block->rpo_number()));
97 for (size_t i = 0; i < instruction_block->phis().size(); i++) {
98 UpdateRenamesInPhi(instruction_block->PhiAt(i));
99 }
100 size_t end = instruction_block->code_end();
101 size_t start = instruction_block->code_start();
102 DCHECK_LE(end, start);
103 StartBlock(RpoNumber::FromInt(block->rpo_number()));
104 if (end != start) {
105 while (start-- > end + 1) {
106 UpdateRenames(instructions_[start]);
107 AddInstruction(instructions_[start]);
108 }
109 UpdateRenames(instructions_[end]);
110 AddTerminator(instructions_[end]);
111 }
112 EndBlock(RpoNumber::FromInt(block->rpo_number()));
113 }
114 #if DEBUG
115 sequence()->ValidateSSA();
116 #endif
117 return true;
118 }
119
StartBlock(RpoNumber rpo)120 void InstructionSelector::StartBlock(RpoNumber rpo) {
121 if (UseInstructionScheduling()) {
122 DCHECK_NOT_NULL(scheduler_);
123 scheduler_->StartBlock(rpo);
124 } else {
125 sequence()->StartBlock(rpo);
126 }
127 }
128
129
EndBlock(RpoNumber rpo)130 void InstructionSelector::EndBlock(RpoNumber rpo) {
131 if (UseInstructionScheduling()) {
132 DCHECK_NOT_NULL(scheduler_);
133 scheduler_->EndBlock(rpo);
134 } else {
135 sequence()->EndBlock(rpo);
136 }
137 }
138
AddTerminator(Instruction * instr)139 void InstructionSelector::AddTerminator(Instruction* instr) {
140 if (UseInstructionScheduling()) {
141 DCHECK_NOT_NULL(scheduler_);
142 scheduler_->AddTerminator(instr);
143 } else {
144 sequence()->AddInstruction(instr);
145 }
146 }
147
AddInstruction(Instruction * instr)148 void InstructionSelector::AddInstruction(Instruction* instr) {
149 if (UseInstructionScheduling()) {
150 DCHECK_NOT_NULL(scheduler_);
151 scheduler_->AddInstruction(instr);
152 } else {
153 sequence()->AddInstruction(instr);
154 }
155 }
156
Emit(InstructionCode opcode,InstructionOperand output,size_t temp_count,InstructionOperand * temps)157 Instruction* InstructionSelector::Emit(InstructionCode opcode,
158 InstructionOperand output,
159 size_t temp_count,
160 InstructionOperand* temps) {
161 size_t output_count = output.IsInvalid() ? 0 : 1;
162 return Emit(opcode, output_count, &output, 0, nullptr, temp_count, temps);
163 }
164
165
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,size_t temp_count,InstructionOperand * temps)166 Instruction* InstructionSelector::Emit(InstructionCode opcode,
167 InstructionOperand output,
168 InstructionOperand a, size_t temp_count,
169 InstructionOperand* temps) {
170 size_t output_count = output.IsInvalid() ? 0 : 1;
171 return Emit(opcode, output_count, &output, 1, &a, temp_count, temps);
172 }
173
174
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,size_t temp_count,InstructionOperand * temps)175 Instruction* InstructionSelector::Emit(InstructionCode opcode,
176 InstructionOperand output,
177 InstructionOperand a,
178 InstructionOperand b, size_t temp_count,
179 InstructionOperand* temps) {
180 size_t output_count = output.IsInvalid() ? 0 : 1;
181 InstructionOperand inputs[] = {a, b};
182 size_t input_count = arraysize(inputs);
183 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
184 temps);
185 }
186
187
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,size_t temp_count,InstructionOperand * temps)188 Instruction* InstructionSelector::Emit(InstructionCode opcode,
189 InstructionOperand output,
190 InstructionOperand a,
191 InstructionOperand b,
192 InstructionOperand c, size_t temp_count,
193 InstructionOperand* temps) {
194 size_t output_count = output.IsInvalid() ? 0 : 1;
195 InstructionOperand inputs[] = {a, b, c};
196 size_t input_count = arraysize(inputs);
197 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
198 temps);
199 }
200
201
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,InstructionOperand d,size_t temp_count,InstructionOperand * temps)202 Instruction* InstructionSelector::Emit(
203 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
204 InstructionOperand b, InstructionOperand c, InstructionOperand d,
205 size_t temp_count, InstructionOperand* temps) {
206 size_t output_count = output.IsInvalid() ? 0 : 1;
207 InstructionOperand inputs[] = {a, b, c, d};
208 size_t input_count = arraysize(inputs);
209 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
210 temps);
211 }
212
213
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,InstructionOperand d,InstructionOperand e,size_t temp_count,InstructionOperand * temps)214 Instruction* InstructionSelector::Emit(
215 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
216 InstructionOperand b, InstructionOperand c, InstructionOperand d,
217 InstructionOperand e, size_t temp_count, InstructionOperand* temps) {
218 size_t output_count = output.IsInvalid() ? 0 : 1;
219 InstructionOperand inputs[] = {a, b, c, d, e};
220 size_t input_count = arraysize(inputs);
221 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
222 temps);
223 }
224
225
Emit(InstructionCode opcode,InstructionOperand output,InstructionOperand a,InstructionOperand b,InstructionOperand c,InstructionOperand d,InstructionOperand e,InstructionOperand f,size_t temp_count,InstructionOperand * temps)226 Instruction* InstructionSelector::Emit(
227 InstructionCode opcode, InstructionOperand output, InstructionOperand a,
228 InstructionOperand b, InstructionOperand c, InstructionOperand d,
229 InstructionOperand e, InstructionOperand f, size_t temp_count,
230 InstructionOperand* temps) {
231 size_t output_count = output.IsInvalid() ? 0 : 1;
232 InstructionOperand inputs[] = {a, b, c, d, e, f};
233 size_t input_count = arraysize(inputs);
234 return Emit(opcode, output_count, &output, input_count, inputs, temp_count,
235 temps);
236 }
237
238
Emit(InstructionCode opcode,size_t output_count,InstructionOperand * outputs,size_t input_count,InstructionOperand * inputs,size_t temp_count,InstructionOperand * temps)239 Instruction* InstructionSelector::Emit(
240 InstructionCode opcode, size_t output_count, InstructionOperand* outputs,
241 size_t input_count, InstructionOperand* inputs, size_t temp_count,
242 InstructionOperand* temps) {
243 if (output_count >= Instruction::kMaxOutputCount ||
244 input_count >= Instruction::kMaxInputCount ||
245 temp_count >= Instruction::kMaxTempCount) {
246 set_instruction_selection_failed();
247 return nullptr;
248 }
249
250 Instruction* instr =
251 Instruction::New(instruction_zone(), opcode, output_count, outputs,
252 input_count, inputs, temp_count, temps);
253 return Emit(instr);
254 }
255
256
Emit(Instruction * instr)257 Instruction* InstructionSelector::Emit(Instruction* instr) {
258 instructions_.push_back(instr);
259 return instr;
260 }
261
262
CanCover(Node * user,Node * node) const263 bool InstructionSelector::CanCover(Node* user, Node* node) const {
264 // 1. Both {user} and {node} must be in the same basic block.
265 if (schedule()->block(node) != schedule()->block(user)) {
266 return false;
267 }
268 // 2. Pure {node}s must be owned by the {user}.
269 if (node->op()->HasProperty(Operator::kPure)) {
270 return node->OwnedBy(user);
271 }
272 // 3. Impure {node}s must match the effect level of {user}.
273 if (GetEffectLevel(node) != GetEffectLevel(user)) {
274 return false;
275 }
276 // 4. Only {node} must have value edges pointing to {user}.
277 for (Edge const edge : node->use_edges()) {
278 if (edge.from() != user && NodeProperties::IsValueEdge(edge)) {
279 return false;
280 }
281 }
282 return true;
283 }
284
IsOnlyUserOfNodeInSameBlock(Node * user,Node * node) const285 bool InstructionSelector::IsOnlyUserOfNodeInSameBlock(Node* user,
286 Node* node) const {
287 BasicBlock* bb_user = schedule()->block(user);
288 BasicBlock* bb_node = schedule()->block(node);
289 if (bb_user != bb_node) return false;
290 for (Edge const edge : node->use_edges()) {
291 Node* from = edge.from();
292 if ((from != user) && (schedule()->block(from) == bb_user)) {
293 return false;
294 }
295 }
296 return true;
297 }
298
UpdateRenames(Instruction * instruction)299 void InstructionSelector::UpdateRenames(Instruction* instruction) {
300 for (size_t i = 0; i < instruction->InputCount(); i++) {
301 TryRename(instruction->InputAt(i));
302 }
303 }
304
UpdateRenamesInPhi(PhiInstruction * phi)305 void InstructionSelector::UpdateRenamesInPhi(PhiInstruction* phi) {
306 for (size_t i = 0; i < phi->operands().size(); i++) {
307 int vreg = phi->operands()[i];
308 int renamed = GetRename(vreg);
309 if (vreg != renamed) {
310 phi->RenameInput(i, renamed);
311 }
312 }
313 }
314
GetRename(int virtual_register)315 int InstructionSelector::GetRename(int virtual_register) {
316 int rename = virtual_register;
317 while (true) {
318 if (static_cast<size_t>(rename) >= virtual_register_rename_.size()) break;
319 int next = virtual_register_rename_[rename];
320 if (next == InstructionOperand::kInvalidVirtualRegister) {
321 break;
322 }
323 rename = next;
324 }
325 return rename;
326 }
327
TryRename(InstructionOperand * op)328 void InstructionSelector::TryRename(InstructionOperand* op) {
329 if (!op->IsUnallocated()) return;
330 UnallocatedOperand* unalloc = UnallocatedOperand::cast(op);
331 int vreg = unalloc->virtual_register();
332 int rename = GetRename(vreg);
333 if (rename != vreg) {
334 *unalloc = UnallocatedOperand(*unalloc, rename);
335 }
336 }
337
SetRename(const Node * node,const Node * rename)338 void InstructionSelector::SetRename(const Node* node, const Node* rename) {
339 int vreg = GetVirtualRegister(node);
340 if (static_cast<size_t>(vreg) >= virtual_register_rename_.size()) {
341 int invalid = InstructionOperand::kInvalidVirtualRegister;
342 virtual_register_rename_.resize(vreg + 1, invalid);
343 }
344 virtual_register_rename_[vreg] = GetVirtualRegister(rename);
345 }
346
GetVirtualRegister(const Node * node)347 int InstructionSelector::GetVirtualRegister(const Node* node) {
348 DCHECK_NOT_NULL(node);
349 size_t const id = node->id();
350 DCHECK_LT(id, virtual_registers_.size());
351 int virtual_register = virtual_registers_[id];
352 if (virtual_register == InstructionOperand::kInvalidVirtualRegister) {
353 virtual_register = sequence()->NextVirtualRegister();
354 virtual_registers_[id] = virtual_register;
355 }
356 return virtual_register;
357 }
358
359
GetVirtualRegistersForTesting() const360 const std::map<NodeId, int> InstructionSelector::GetVirtualRegistersForTesting()
361 const {
362 std::map<NodeId, int> virtual_registers;
363 for (size_t n = 0; n < virtual_registers_.size(); ++n) {
364 if (virtual_registers_[n] != InstructionOperand::kInvalidVirtualRegister) {
365 NodeId const id = static_cast<NodeId>(n);
366 virtual_registers.insert(std::make_pair(id, virtual_registers_[n]));
367 }
368 }
369 return virtual_registers;
370 }
371
372
IsDefined(Node * node) const373 bool InstructionSelector::IsDefined(Node* node) const {
374 DCHECK_NOT_NULL(node);
375 size_t const id = node->id();
376 DCHECK_LT(id, defined_.size());
377 return defined_[id];
378 }
379
380
MarkAsDefined(Node * node)381 void InstructionSelector::MarkAsDefined(Node* node) {
382 DCHECK_NOT_NULL(node);
383 size_t const id = node->id();
384 DCHECK_LT(id, defined_.size());
385 defined_[id] = true;
386 }
387
388
IsUsed(Node * node) const389 bool InstructionSelector::IsUsed(Node* node) const {
390 DCHECK_NOT_NULL(node);
391 // TODO(bmeurer): This is a terrible monster hack, but we have to make sure
392 // that the Retain is actually emitted, otherwise the GC will mess up.
393 if (node->opcode() == IrOpcode::kRetain) return true;
394 if (!node->op()->HasProperty(Operator::kEliminatable)) return true;
395 size_t const id = node->id();
396 DCHECK_LT(id, used_.size());
397 return used_[id];
398 }
399
400
MarkAsUsed(Node * node)401 void InstructionSelector::MarkAsUsed(Node* node) {
402 DCHECK_NOT_NULL(node);
403 size_t const id = node->id();
404 DCHECK_LT(id, used_.size());
405 used_[id] = true;
406 }
407
GetEffectLevel(Node * node) const408 int InstructionSelector::GetEffectLevel(Node* node) const {
409 DCHECK_NOT_NULL(node);
410 size_t const id = node->id();
411 DCHECK_LT(id, effect_level_.size());
412 return effect_level_[id];
413 }
414
SetEffectLevel(Node * node,int effect_level)415 void InstructionSelector::SetEffectLevel(Node* node, int effect_level) {
416 DCHECK_NOT_NULL(node);
417 size_t const id = node->id();
418 DCHECK_LT(id, effect_level_.size());
419 effect_level_[id] = effect_level;
420 }
421
CanAddressRelativeToRootsRegister() const422 bool InstructionSelector::CanAddressRelativeToRootsRegister() const {
423 return enable_roots_relative_addressing_ == kEnableRootsRelativeAddressing &&
424 CanUseRootsRegister();
425 }
426
CanUseRootsRegister() const427 bool InstructionSelector::CanUseRootsRegister() const {
428 return linkage()->GetIncomingDescriptor()->flags() &
429 CallDescriptor::kCanUseRoots;
430 }
431
MarkAsRepresentation(MachineRepresentation rep,const InstructionOperand & op)432 void InstructionSelector::MarkAsRepresentation(MachineRepresentation rep,
433 const InstructionOperand& op) {
434 UnallocatedOperand unalloc = UnallocatedOperand::cast(op);
435 sequence()->MarkAsRepresentation(rep, unalloc.virtual_register());
436 }
437
438
MarkAsRepresentation(MachineRepresentation rep,Node * node)439 void InstructionSelector::MarkAsRepresentation(MachineRepresentation rep,
440 Node* node) {
441 sequence()->MarkAsRepresentation(rep, GetVirtualRegister(node));
442 }
443
444 namespace {
445
OperandForDeopt(Isolate * isolate,OperandGenerator * g,Node * input,FrameStateInputKind kind,MachineRepresentation rep)446 InstructionOperand OperandForDeopt(Isolate* isolate, OperandGenerator* g,
447 Node* input, FrameStateInputKind kind,
448 MachineRepresentation rep) {
449 if (rep == MachineRepresentation::kNone) {
450 return g->TempImmediate(FrameStateDescriptor::kImpossibleValue);
451 }
452
453 switch (input->opcode()) {
454 case IrOpcode::kInt32Constant:
455 case IrOpcode::kInt64Constant:
456 case IrOpcode::kNumberConstant:
457 case IrOpcode::kFloat32Constant:
458 case IrOpcode::kFloat64Constant:
459 return g->UseImmediate(input);
460 case IrOpcode::kHeapConstant: {
461 if (!CanBeTaggedPointer(rep)) {
462 // If we have inconsistent static and dynamic types, e.g. if we
463 // smi-check a string, we can get here with a heap object that
464 // says it is a smi. In that case, we return an invalid instruction
465 // operand, which will be interpreted as an optimized-out value.
466
467 // TODO(jarin) Ideally, we should turn the current instruction
468 // into an abort (we should never execute it).
469 return InstructionOperand();
470 }
471
472 Handle<HeapObject> constant = HeapConstantOf(input->op());
473 Heap::RootListIndex root_index;
474 if (isolate->heap()->IsRootHandle(constant, &root_index) &&
475 root_index == Heap::kOptimizedOutRootIndex) {
476 // For an optimized-out object we return an invalid instruction
477 // operand, so that we take the fast path for optimized-out values.
478 return InstructionOperand();
479 }
480
481 return g->UseImmediate(input);
482 }
483 case IrOpcode::kArgumentsElementsState:
484 case IrOpcode::kArgumentsLengthState:
485 case IrOpcode::kObjectState:
486 case IrOpcode::kTypedObjectState:
487 UNREACHABLE();
488 break;
489 default:
490 switch (kind) {
491 case FrameStateInputKind::kStackSlot:
492 return g->UseUniqueSlot(input);
493 case FrameStateInputKind::kAny:
494 // Currently deopts "wrap" other operations, so the deopt's inputs
495 // are potentially needed until the end of the deoptimising code.
496 return g->UseAnyAtEnd(input);
497 }
498 }
499 UNREACHABLE();
500 }
501
502 } // namespace
503
504 class StateObjectDeduplicator {
505 public:
StateObjectDeduplicator(Zone * zone)506 explicit StateObjectDeduplicator(Zone* zone) : objects_(zone) {}
507 static const size_t kNotDuplicated = SIZE_MAX;
508
GetObjectId(Node * node)509 size_t GetObjectId(Node* node) {
510 DCHECK(node->opcode() == IrOpcode::kTypedObjectState ||
511 node->opcode() == IrOpcode::kObjectId ||
512 node->opcode() == IrOpcode::kArgumentsElementsState);
513 for (size_t i = 0; i < objects_.size(); ++i) {
514 if (objects_[i] == node) return i;
515 // ObjectId nodes are the Turbofan way to express objects with the same
516 // identity in the deopt info. So they should always be mapped to
517 // previously appearing TypedObjectState nodes.
518 if (HasObjectId(objects_[i]) && HasObjectId(node) &&
519 ObjectIdOf(objects_[i]->op()) == ObjectIdOf(node->op())) {
520 return i;
521 }
522 }
523 DCHECK(node->opcode() == IrOpcode::kTypedObjectState ||
524 node->opcode() == IrOpcode::kArgumentsElementsState);
525 return kNotDuplicated;
526 }
527
InsertObject(Node * node)528 size_t InsertObject(Node* node) {
529 DCHECK(node->opcode() == IrOpcode::kTypedObjectState ||
530 node->opcode() == IrOpcode::kObjectId ||
531 node->opcode() == IrOpcode::kArgumentsElementsState);
532 size_t id = objects_.size();
533 objects_.push_back(node);
534 return id;
535 }
536
537 private:
HasObjectId(Node * node)538 static bool HasObjectId(Node* node) {
539 return node->opcode() == IrOpcode::kTypedObjectState ||
540 node->opcode() == IrOpcode::kObjectId;
541 }
542
543 ZoneVector<Node*> objects_;
544 };
545
546 // Returns the number of instruction operands added to inputs.
AddOperandToStateValueDescriptor(StateValueList * values,InstructionOperandVector * inputs,OperandGenerator * g,StateObjectDeduplicator * deduplicator,Node * input,MachineType type,FrameStateInputKind kind,Zone * zone)547 size_t InstructionSelector::AddOperandToStateValueDescriptor(
548 StateValueList* values, InstructionOperandVector* inputs,
549 OperandGenerator* g, StateObjectDeduplicator* deduplicator, Node* input,
550 MachineType type, FrameStateInputKind kind, Zone* zone) {
551 if (input == nullptr) {
552 values->PushOptimizedOut();
553 return 0;
554 }
555
556 switch (input->opcode()) {
557 case IrOpcode::kArgumentsElementsState: {
558 values->PushArgumentsElements(ArgumentsStateTypeOf(input->op()));
559 // The elements backing store of an arguments object participates in the
560 // duplicate object counting, but can itself never appear duplicated.
561 DCHECK_EQ(StateObjectDeduplicator::kNotDuplicated,
562 deduplicator->GetObjectId(input));
563 deduplicator->InsertObject(input);
564 return 0;
565 }
566 case IrOpcode::kArgumentsLengthState: {
567 values->PushArgumentsLength(ArgumentsStateTypeOf(input->op()));
568 return 0;
569 }
570 case IrOpcode::kObjectState: {
571 UNREACHABLE();
572 }
573 case IrOpcode::kTypedObjectState:
574 case IrOpcode::kObjectId: {
575 size_t id = deduplicator->GetObjectId(input);
576 if (id == StateObjectDeduplicator::kNotDuplicated) {
577 DCHECK_EQ(IrOpcode::kTypedObjectState, input->opcode());
578 size_t entries = 0;
579 id = deduplicator->InsertObject(input);
580 StateValueList* nested = values->PushRecursiveField(zone, id);
581 int const input_count = input->op()->ValueInputCount();
582 ZoneVector<MachineType> const* types = MachineTypesOf(input->op());
583 for (int i = 0; i < input_count; ++i) {
584 entries += AddOperandToStateValueDescriptor(
585 nested, inputs, g, deduplicator, input->InputAt(i), types->at(i),
586 kind, zone);
587 }
588 return entries;
589 } else {
590 // Deoptimizer counts duplicate objects for the running id, so we have
591 // to push the input again.
592 deduplicator->InsertObject(input);
593 values->PushDuplicate(id);
594 return 0;
595 }
596 }
597 default: {
598 InstructionOperand op =
599 OperandForDeopt(isolate(), g, input, kind, type.representation());
600 if (op.kind() == InstructionOperand::INVALID) {
601 // Invalid operand means the value is impossible or optimized-out.
602 values->PushOptimizedOut();
603 return 0;
604 } else {
605 inputs->push_back(op);
606 values->PushPlain(type);
607 return 1;
608 }
609 }
610 }
611 }
612
613
614 // Returns the number of instruction operands added to inputs.
AddInputsToFrameStateDescriptor(FrameStateDescriptor * descriptor,Node * state,OperandGenerator * g,StateObjectDeduplicator * deduplicator,InstructionOperandVector * inputs,FrameStateInputKind kind,Zone * zone)615 size_t InstructionSelector::AddInputsToFrameStateDescriptor(
616 FrameStateDescriptor* descriptor, Node* state, OperandGenerator* g,
617 StateObjectDeduplicator* deduplicator, InstructionOperandVector* inputs,
618 FrameStateInputKind kind, Zone* zone) {
619 DCHECK_EQ(IrOpcode::kFrameState, state->op()->opcode());
620
621 size_t entries = 0;
622 size_t initial_size = inputs->size();
623 USE(initial_size); // initial_size is only used for debug.
624
625 if (descriptor->outer_state()) {
626 entries += AddInputsToFrameStateDescriptor(
627 descriptor->outer_state(), state->InputAt(kFrameStateOuterStateInput),
628 g, deduplicator, inputs, kind, zone);
629 }
630
631 Node* parameters = state->InputAt(kFrameStateParametersInput);
632 Node* locals = state->InputAt(kFrameStateLocalsInput);
633 Node* stack = state->InputAt(kFrameStateStackInput);
634 Node* context = state->InputAt(kFrameStateContextInput);
635 Node* function = state->InputAt(kFrameStateFunctionInput);
636
637 DCHECK_EQ(descriptor->parameters_count(),
638 StateValuesAccess(parameters).size());
639 DCHECK_EQ(descriptor->locals_count(), StateValuesAccess(locals).size());
640 DCHECK_EQ(descriptor->stack_count(), StateValuesAccess(stack).size());
641
642 StateValueList* values_descriptor = descriptor->GetStateValueDescriptors();
643
644 DCHECK_EQ(values_descriptor->size(), 0u);
645 values_descriptor->ReserveSize(descriptor->GetSize());
646
647 entries += AddOperandToStateValueDescriptor(
648 values_descriptor, inputs, g, deduplicator, function,
649 MachineType::AnyTagged(), FrameStateInputKind::kStackSlot, zone);
650 for (StateValuesAccess::TypedNode input_node :
651 StateValuesAccess(parameters)) {
652 entries += AddOperandToStateValueDescriptor(values_descriptor, inputs, g,
653 deduplicator, input_node.node,
654 input_node.type, kind, zone);
655 }
656 if (descriptor->HasContext()) {
657 entries += AddOperandToStateValueDescriptor(
658 values_descriptor, inputs, g, deduplicator, context,
659 MachineType::AnyTagged(), FrameStateInputKind::kStackSlot, zone);
660 }
661 for (StateValuesAccess::TypedNode input_node : StateValuesAccess(locals)) {
662 entries += AddOperandToStateValueDescriptor(values_descriptor, inputs, g,
663 deduplicator, input_node.node,
664 input_node.type, kind, zone);
665 }
666 for (StateValuesAccess::TypedNode input_node : StateValuesAccess(stack)) {
667 entries += AddOperandToStateValueDescriptor(values_descriptor, inputs, g,
668 deduplicator, input_node.node,
669 input_node.type, kind, zone);
670 }
671 DCHECK_EQ(initial_size + entries, inputs->size());
672 return entries;
673 }
674
EmitWithContinuation(InstructionCode opcode,FlagsContinuation * cont)675 Instruction* InstructionSelector::EmitWithContinuation(
676 InstructionCode opcode, FlagsContinuation* cont) {
677 return EmitWithContinuation(opcode, 0, nullptr, 0, nullptr, cont);
678 }
679
EmitWithContinuation(InstructionCode opcode,InstructionOperand a,FlagsContinuation * cont)680 Instruction* InstructionSelector::EmitWithContinuation(
681 InstructionCode opcode, InstructionOperand a, FlagsContinuation* cont) {
682 return EmitWithContinuation(opcode, 0, nullptr, 1, &a, cont);
683 }
684
EmitWithContinuation(InstructionCode opcode,InstructionOperand a,InstructionOperand b,FlagsContinuation * cont)685 Instruction* InstructionSelector::EmitWithContinuation(
686 InstructionCode opcode, InstructionOperand a, InstructionOperand b,
687 FlagsContinuation* cont) {
688 InstructionOperand inputs[] = {a, b};
689 return EmitWithContinuation(opcode, 0, nullptr, arraysize(inputs), inputs,
690 cont);
691 }
692
EmitWithContinuation(InstructionCode opcode,InstructionOperand a,InstructionOperand b,InstructionOperand c,FlagsContinuation * cont)693 Instruction* InstructionSelector::EmitWithContinuation(
694 InstructionCode opcode, InstructionOperand a, InstructionOperand b,
695 InstructionOperand c, FlagsContinuation* cont) {
696 InstructionOperand inputs[] = {a, b, c};
697 return EmitWithContinuation(opcode, 0, nullptr, arraysize(inputs), inputs,
698 cont);
699 }
700
EmitWithContinuation(InstructionCode opcode,size_t output_count,InstructionOperand * outputs,size_t input_count,InstructionOperand * inputs,FlagsContinuation * cont)701 Instruction* InstructionSelector::EmitWithContinuation(
702 InstructionCode opcode, size_t output_count, InstructionOperand* outputs,
703 size_t input_count, InstructionOperand* inputs, FlagsContinuation* cont) {
704 OperandGenerator g(this);
705
706 opcode = cont->Encode(opcode);
707
708 continuation_inputs_.resize(0);
709 for (size_t i = 0; i < input_count; i++) {
710 continuation_inputs_.push_back(inputs[i]);
711 }
712
713 continuation_outputs_.resize(0);
714 for (size_t i = 0; i < output_count; i++) {
715 continuation_outputs_.push_back(outputs[i]);
716 }
717
718 if (cont->IsBranch()) {
719 continuation_inputs_.push_back(g.Label(cont->true_block()));
720 continuation_inputs_.push_back(g.Label(cont->false_block()));
721 } else if (cont->IsDeoptimize()) {
722 opcode |= MiscField::encode(static_cast<int>(input_count));
723 AppendDeoptimizeArguments(&continuation_inputs_, cont->kind(),
724 cont->reason(), cont->feedback(),
725 cont->frame_state());
726 } else if (cont->IsSet()) {
727 continuation_outputs_.push_back(g.DefineAsRegister(cont->result()));
728 } else if (cont->IsTrap()) {
729 int trap_id = static_cast<int>(cont->trap_id());
730 continuation_inputs_.push_back(g.UseImmediate(trap_id));
731 } else {
732 DCHECK(cont->IsNone());
733 }
734
735 size_t const emit_inputs_size = continuation_inputs_.size();
736 auto* emit_inputs =
737 emit_inputs_size ? &continuation_inputs_.front() : nullptr;
738 size_t const emit_outputs_size = continuation_outputs_.size();
739 auto* emit_outputs =
740 emit_outputs_size ? &continuation_outputs_.front() : nullptr;
741 return Emit(opcode, emit_outputs_size, emit_outputs, emit_inputs_size,
742 emit_inputs, 0, nullptr);
743 }
744
AppendDeoptimizeArguments(InstructionOperandVector * args,DeoptimizeKind kind,DeoptimizeReason reason,VectorSlotPair const & feedback,Node * frame_state)745 void InstructionSelector::AppendDeoptimizeArguments(
746 InstructionOperandVector* args, DeoptimizeKind kind,
747 DeoptimizeReason reason, VectorSlotPair const& feedback,
748 Node* frame_state) {
749 OperandGenerator g(this);
750 FrameStateDescriptor* const descriptor = GetFrameStateDescriptor(frame_state);
751 DCHECK_NE(DeoptimizeKind::kLazy, kind);
752 int const state_id =
753 sequence()->AddDeoptimizationEntry(descriptor, kind, reason, feedback);
754 args->push_back(g.TempImmediate(state_id));
755 StateObjectDeduplicator deduplicator(instruction_zone());
756 AddInputsToFrameStateDescriptor(descriptor, frame_state, &g, &deduplicator,
757 args, FrameStateInputKind::kAny,
758 instruction_zone());
759 }
760
EmitDeoptimize(InstructionCode opcode,size_t output_count,InstructionOperand * outputs,size_t input_count,InstructionOperand * inputs,DeoptimizeKind kind,DeoptimizeReason reason,VectorSlotPair const & feedback,Node * frame_state)761 Instruction* InstructionSelector::EmitDeoptimize(
762 InstructionCode opcode, size_t output_count, InstructionOperand* outputs,
763 size_t input_count, InstructionOperand* inputs, DeoptimizeKind kind,
764 DeoptimizeReason reason, VectorSlotPair const& feedback,
765 Node* frame_state) {
766 InstructionOperandVector args(instruction_zone());
767 for (size_t i = 0; i < input_count; ++i) {
768 args.push_back(inputs[i]);
769 }
770 opcode |= MiscField::encode(static_cast<int>(input_count));
771 AppendDeoptimizeArguments(&args, kind, reason, feedback, frame_state);
772 return Emit(opcode, output_count, outputs, args.size(), &args.front(), 0,
773 nullptr);
774 }
775
776 // An internal helper class for generating the operands to calls.
777 // TODO(bmeurer): Get rid of the CallBuffer business and make
778 // InstructionSelector::VisitCall platform independent instead.
779 struct CallBuffer {
CallBufferv8::internal::compiler::CallBuffer780 CallBuffer(Zone* zone, const CallDescriptor* call_descriptor,
781 FrameStateDescriptor* frame_state)
782 : descriptor(call_descriptor),
783 frame_state_descriptor(frame_state),
784 output_nodes(zone),
785 outputs(zone),
786 instruction_args(zone),
787 pushed_nodes(zone) {
788 output_nodes.reserve(call_descriptor->ReturnCount());
789 outputs.reserve(call_descriptor->ReturnCount());
790 pushed_nodes.reserve(input_count());
791 instruction_args.reserve(input_count() + frame_state_value_count());
792 }
793
794
795 const CallDescriptor* descriptor;
796 FrameStateDescriptor* frame_state_descriptor;
797 ZoneVector<PushParameter> output_nodes;
798 InstructionOperandVector outputs;
799 InstructionOperandVector instruction_args;
800 ZoneVector<PushParameter> pushed_nodes;
801
input_countv8::internal::compiler::CallBuffer802 size_t input_count() const { return descriptor->InputCount(); }
803
frame_state_countv8::internal::compiler::CallBuffer804 size_t frame_state_count() const { return descriptor->FrameStateCount(); }
805
frame_state_value_countv8::internal::compiler::CallBuffer806 size_t frame_state_value_count() const {
807 return (frame_state_descriptor == nullptr)
808 ? 0
809 : (frame_state_descriptor->GetTotalSize() +
810 1); // Include deopt id.
811 }
812 };
813
814
815 // TODO(bmeurer): Get rid of the CallBuffer business and make
816 // InstructionSelector::VisitCall platform independent instead.
InitializeCallBuffer(Node * call,CallBuffer * buffer,CallBufferFlags flags,bool is_tail_call,int stack_param_delta)817 void InstructionSelector::InitializeCallBuffer(Node* call, CallBuffer* buffer,
818 CallBufferFlags flags,
819 bool is_tail_call,
820 int stack_param_delta) {
821 OperandGenerator g(this);
822 size_t ret_count = buffer->descriptor->ReturnCount();
823 DCHECK_LE(call->op()->ValueOutputCount(), ret_count);
824 DCHECK_EQ(
825 call->op()->ValueInputCount(),
826 static_cast<int>(buffer->input_count() + buffer->frame_state_count()));
827
828 if (ret_count > 0) {
829 // Collect the projections that represent multiple outputs from this call.
830 if (ret_count == 1) {
831 PushParameter result = {call, buffer->descriptor->GetReturnLocation(0)};
832 buffer->output_nodes.push_back(result);
833 } else {
834 buffer->output_nodes.resize(ret_count);
835 int stack_count = 0;
836 for (size_t i = 0; i < ret_count; ++i) {
837 LinkageLocation location = buffer->descriptor->GetReturnLocation(i);
838 buffer->output_nodes[i] = PushParameter(nullptr, location);
839 if (location.IsCallerFrameSlot()) {
840 stack_count += location.GetSizeInPointers();
841 }
842 }
843 for (Edge const edge : call->use_edges()) {
844 if (!NodeProperties::IsValueEdge(edge)) continue;
845 Node* node = edge.from();
846 DCHECK_EQ(IrOpcode::kProjection, node->opcode());
847 size_t const index = ProjectionIndexOf(node->op());
848
849 DCHECK_LT(index, buffer->output_nodes.size());
850 DCHECK(!buffer->output_nodes[index].node);
851 buffer->output_nodes[index].node = node;
852 }
853 frame_->EnsureReturnSlots(stack_count);
854 }
855
856 // Filter out the outputs that aren't live because no projection uses them.
857 size_t outputs_needed_by_framestate =
858 buffer->frame_state_descriptor == nullptr
859 ? 0
860 : buffer->frame_state_descriptor->state_combine()
861 .ConsumedOutputCount();
862 for (size_t i = 0; i < buffer->output_nodes.size(); i++) {
863 bool output_is_live = buffer->output_nodes[i].node != nullptr ||
864 i < outputs_needed_by_framestate;
865 if (output_is_live) {
866 LinkageLocation location = buffer->output_nodes[i].location;
867 MachineRepresentation rep = location.GetType().representation();
868
869 Node* output = buffer->output_nodes[i].node;
870 InstructionOperand op = output == nullptr
871 ? g.TempLocation(location)
872 : g.DefineAsLocation(output, location);
873 MarkAsRepresentation(rep, op);
874
875 if (!UnallocatedOperand::cast(op).HasFixedSlotPolicy()) {
876 buffer->outputs.push_back(op);
877 buffer->output_nodes[i].node = nullptr;
878 }
879 }
880 }
881 }
882
883 // The first argument is always the callee code.
884 Node* callee = call->InputAt(0);
885 bool call_code_immediate = (flags & kCallCodeImmediate) != 0;
886 bool call_address_immediate = (flags & kCallAddressImmediate) != 0;
887 bool call_use_fixed_target_reg = (flags & kCallFixedTargetRegister) != 0;
888 switch (buffer->descriptor->kind()) {
889 case CallDescriptor::kCallCodeObject:
890 // TODO(jgruber, v8:7449): The below is a hack to support tail-calls from
891 // JS-linkage callers with a register code target. The problem is that the
892 // code target register may be clobbered before the final jmp by
893 // AssemblePopArgumentsAdaptorFrame. As a more permanent fix we could
894 // entirely remove support for tail-calls from JS-linkage callers.
895 buffer->instruction_args.push_back(
896 (call_code_immediate && callee->opcode() == IrOpcode::kHeapConstant)
897 ? g.UseImmediate(callee)
898 : call_use_fixed_target_reg
899 ? g.UseFixed(callee, kJavaScriptCallCodeStartRegister)
900 : is_tail_call ? g.UseUniqueRegister(callee)
901 : g.UseRegister(callee));
902 break;
903 case CallDescriptor::kCallAddress:
904 buffer->instruction_args.push_back(
905 (call_address_immediate &&
906 callee->opcode() == IrOpcode::kExternalConstant)
907 ? g.UseImmediate(callee)
908 : call_use_fixed_target_reg
909 ? g.UseFixed(callee, kJavaScriptCallCodeStartRegister)
910 : g.UseRegister(callee));
911 break;
912 case CallDescriptor::kCallWasmFunction:
913 buffer->instruction_args.push_back(
914 (call_address_immediate &&
915 (callee->opcode() == IrOpcode::kRelocatableInt64Constant ||
916 callee->opcode() == IrOpcode::kRelocatableInt32Constant))
917 ? g.UseImmediate(callee)
918 : call_use_fixed_target_reg
919 ? g.UseFixed(callee, kJavaScriptCallCodeStartRegister)
920 : g.UseRegister(callee));
921 break;
922 case CallDescriptor::kCallJSFunction:
923 buffer->instruction_args.push_back(
924 g.UseLocation(callee, buffer->descriptor->GetInputLocation(0)));
925 break;
926 }
927 DCHECK_EQ(1u, buffer->instruction_args.size());
928
929 // Argument 1 is used for poison-alias index (encoded in a word-sized
930 // immediate. This an index of the operand that aliases with poison register
931 // or -1 if there is no aliasing.
932 buffer->instruction_args.push_back(g.TempImmediate(-1));
933 const size_t poison_alias_index = 1;
934 DCHECK_EQ(buffer->instruction_args.size() - 1, poison_alias_index);
935
936 // If the call needs a frame state, we insert the state information as
937 // follows (n is the number of value inputs to the frame state):
938 // arg 2 : deoptimization id.
939 // arg 3 - arg (n + 2) : value inputs to the frame state.
940 size_t frame_state_entries = 0;
941 USE(frame_state_entries); // frame_state_entries is only used for debug.
942 if (buffer->frame_state_descriptor != nullptr) {
943 Node* frame_state =
944 call->InputAt(static_cast<int>(buffer->descriptor->InputCount()));
945
946 // If it was a syntactic tail call we need to drop the current frame and
947 // all the frames on top of it that are either an arguments adaptor frame
948 // or a tail caller frame.
949 if (is_tail_call) {
950 frame_state = NodeProperties::GetFrameStateInput(frame_state);
951 buffer->frame_state_descriptor =
952 buffer->frame_state_descriptor->outer_state();
953 while (buffer->frame_state_descriptor != nullptr &&
954 buffer->frame_state_descriptor->type() ==
955 FrameStateType::kArgumentsAdaptor) {
956 frame_state = NodeProperties::GetFrameStateInput(frame_state);
957 buffer->frame_state_descriptor =
958 buffer->frame_state_descriptor->outer_state();
959 }
960 }
961
962 int const state_id = sequence()->AddDeoptimizationEntry(
963 buffer->frame_state_descriptor, DeoptimizeKind::kLazy,
964 DeoptimizeReason::kUnknown, VectorSlotPair());
965 buffer->instruction_args.push_back(g.TempImmediate(state_id));
966
967 StateObjectDeduplicator deduplicator(instruction_zone());
968
969 frame_state_entries =
970 1 + AddInputsToFrameStateDescriptor(
971 buffer->frame_state_descriptor, frame_state, &g, &deduplicator,
972 &buffer->instruction_args, FrameStateInputKind::kStackSlot,
973 instruction_zone());
974
975 DCHECK_EQ(2 + frame_state_entries, buffer->instruction_args.size());
976 }
977
978 size_t input_count = static_cast<size_t>(buffer->input_count());
979
980 // Split the arguments into pushed_nodes and instruction_args. Pushed
981 // arguments require an explicit push instruction before the call and do
982 // not appear as arguments to the call. Everything else ends up
983 // as an InstructionOperand argument to the call.
984 auto iter(call->inputs().begin());
985 size_t pushed_count = 0;
986 bool call_tail = (flags & kCallTail) != 0;
987 for (size_t index = 0; index < input_count; ++iter, ++index) {
988 DCHECK(iter != call->inputs().end());
989 DCHECK_NE(IrOpcode::kFrameState, (*iter)->op()->opcode());
990 if (index == 0) continue; // The first argument (callee) is already done.
991
992 LinkageLocation location = buffer->descriptor->GetInputLocation(index);
993 if (call_tail) {
994 location = LinkageLocation::ConvertToTailCallerLocation(
995 location, stack_param_delta);
996 }
997 InstructionOperand op = g.UseLocation(*iter, location);
998 UnallocatedOperand unallocated = UnallocatedOperand::cast(op);
999 if (unallocated.HasFixedSlotPolicy() && !call_tail) {
1000 int stack_index = -unallocated.fixed_slot_index() - 1;
1001 if (static_cast<size_t>(stack_index) >= buffer->pushed_nodes.size()) {
1002 buffer->pushed_nodes.resize(stack_index + 1);
1003 }
1004 PushParameter param = {*iter, location};
1005 buffer->pushed_nodes[stack_index] = param;
1006 pushed_count++;
1007 } else {
1008 // If we do load poisoning and the linkage uses the poisoning register,
1009 // then we request the input in memory location, and during code
1010 // generation, we move the input to the register.
1011 if (poisoning_level_ != PoisoningMitigationLevel::kDontPoison &&
1012 unallocated.HasFixedRegisterPolicy()) {
1013 int reg = unallocated.fixed_register_index();
1014 if (reg == kSpeculationPoisonRegister.code()) {
1015 buffer->instruction_args[poison_alias_index] = g.TempImmediate(
1016 static_cast<int32_t>(buffer->instruction_args.size()));
1017 op = g.UseRegisterOrSlotOrConstant(*iter);
1018 }
1019 }
1020 buffer->instruction_args.push_back(op);
1021 }
1022 }
1023 DCHECK_EQ(input_count, buffer->instruction_args.size() + pushed_count -
1024 frame_state_entries - 1);
1025 if (V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK && call_tail &&
1026 stack_param_delta != 0) {
1027 // For tail calls that change the size of their parameter list and keep
1028 // their return address on the stack, move the return address to just above
1029 // the parameters.
1030 LinkageLocation saved_return_location =
1031 LinkageLocation::ForSavedCallerReturnAddress();
1032 InstructionOperand return_address =
1033 g.UsePointerLocation(LinkageLocation::ConvertToTailCallerLocation(
1034 saved_return_location, stack_param_delta),
1035 saved_return_location);
1036 buffer->instruction_args.push_back(return_address);
1037 }
1038 }
1039
IsSourcePositionUsed(Node * node)1040 bool InstructionSelector::IsSourcePositionUsed(Node* node) {
1041 return (source_position_mode_ == kAllSourcePositions ||
1042 node->opcode() == IrOpcode::kCall ||
1043 node->opcode() == IrOpcode::kCallWithCallerSavedRegisters ||
1044 node->opcode() == IrOpcode::kTrapIf ||
1045 node->opcode() == IrOpcode::kTrapUnless ||
1046 node->opcode() == IrOpcode::kProtectedLoad ||
1047 node->opcode() == IrOpcode::kProtectedStore);
1048 }
1049
VisitBlock(BasicBlock * block)1050 void InstructionSelector::VisitBlock(BasicBlock* block) {
1051 DCHECK(!current_block_);
1052 current_block_ = block;
1053 auto current_num_instructions = [&] {
1054 DCHECK_GE(kMaxInt, instructions_.size());
1055 return static_cast<int>(instructions_.size());
1056 };
1057 int current_block_end = current_num_instructions();
1058
1059 int effect_level = 0;
1060 for (Node* const node : *block) {
1061 SetEffectLevel(node, effect_level);
1062 if (node->opcode() == IrOpcode::kStore ||
1063 node->opcode() == IrOpcode::kUnalignedStore ||
1064 node->opcode() == IrOpcode::kCall ||
1065 node->opcode() == IrOpcode::kCallWithCallerSavedRegisters ||
1066 node->opcode() == IrOpcode::kProtectedLoad ||
1067 node->opcode() == IrOpcode::kProtectedStore) {
1068 ++effect_level;
1069 }
1070 }
1071
1072 // We visit the control first, then the nodes in the block, so the block's
1073 // control input should be on the same effect level as the last node.
1074 if (block->control_input() != nullptr) {
1075 SetEffectLevel(block->control_input(), effect_level);
1076 }
1077
1078 auto FinishEmittedInstructions = [&](Node* node, int instruction_start) {
1079 if (instruction_selection_failed()) return false;
1080 if (current_num_instructions() == instruction_start) return true;
1081 std::reverse(instructions_.begin() + instruction_start,
1082 instructions_.end());
1083 if (!node) return true;
1084 SourcePosition source_position = source_positions_->GetSourcePosition(node);
1085 if (source_position.IsKnown() && IsSourcePositionUsed(node)) {
1086 sequence()->SetSourcePosition(instructions_[instruction_start],
1087 source_position);
1088 }
1089 return true;
1090 };
1091
1092 // Generate code for the block control "top down", but schedule the code
1093 // "bottom up".
1094 VisitControl(block);
1095 if (!FinishEmittedInstructions(block->control_input(), current_block_end))
1096 return;
1097
1098 // Visit code in reverse control flow order, because architecture-specific
1099 // matching may cover more than one node at a time.
1100 for (auto node : base::Reversed(*block)) {
1101 int current_node_end = current_num_instructions();
1102 // Skip nodes that are unused or already defined.
1103 if (IsUsed(node) && !IsDefined(node)) {
1104 // Generate code for this node "top down", but schedule the code "bottom
1105 // up".
1106 VisitNode(node);
1107 if (!FinishEmittedInstructions(node, current_node_end)) return;
1108 }
1109 if (trace_turbo_ == kEnableTraceTurboJson) {
1110 instr_origins_[node->id()] = {current_num_instructions(),
1111 current_node_end};
1112 }
1113 }
1114
1115 // We're done with the block.
1116 InstructionBlock* instruction_block =
1117 sequence()->InstructionBlockAt(RpoNumber::FromInt(block->rpo_number()));
1118 if (current_num_instructions() == current_block_end) {
1119 // Avoid empty block: insert a {kArchNop} instruction.
1120 Emit(Instruction::New(sequence()->zone(), kArchNop));
1121 }
1122 instruction_block->set_code_start(current_num_instructions());
1123 instruction_block->set_code_end(current_block_end);
1124 current_block_ = nullptr;
1125 }
1126
1127
VisitControl(BasicBlock * block)1128 void InstructionSelector::VisitControl(BasicBlock* block) {
1129 #ifdef DEBUG
1130 // SSA deconstruction requires targets of branches not to have phis.
1131 // Edge split form guarantees this property, but is more strict.
1132 if (block->SuccessorCount() > 1) {
1133 for (BasicBlock* const successor : block->successors()) {
1134 for (Node* const node : *successor) {
1135 if (IrOpcode::IsPhiOpcode(node->opcode())) {
1136 std::ostringstream str;
1137 str << "You might have specified merged variables for a label with "
1138 << "only one predecessor." << std::endl
1139 << "# Current Block: " << *successor << std::endl
1140 << "# Node: " << *node;
1141 FATAL("%s", str.str().c_str());
1142 }
1143 }
1144 }
1145 }
1146 #endif
1147
1148 Node* input = block->control_input();
1149 int instruction_end = static_cast<int>(instructions_.size());
1150 switch (block->control()) {
1151 case BasicBlock::kGoto:
1152 VisitGoto(block->SuccessorAt(0));
1153 break;
1154 case BasicBlock::kCall: {
1155 DCHECK_EQ(IrOpcode::kCall, input->opcode());
1156 BasicBlock* success = block->SuccessorAt(0);
1157 BasicBlock* exception = block->SuccessorAt(1);
1158 VisitCall(input, exception);
1159 VisitGoto(success);
1160 break;
1161 }
1162 case BasicBlock::kTailCall: {
1163 DCHECK_EQ(IrOpcode::kTailCall, input->opcode());
1164 VisitTailCall(input);
1165 break;
1166 }
1167 case BasicBlock::kBranch: {
1168 DCHECK_EQ(IrOpcode::kBranch, input->opcode());
1169 BasicBlock* tbranch = block->SuccessorAt(0);
1170 BasicBlock* fbranch = block->SuccessorAt(1);
1171 if (tbranch == fbranch) {
1172 VisitGoto(tbranch);
1173 } else {
1174 VisitBranch(input, tbranch, fbranch);
1175 }
1176 break;
1177 }
1178 case BasicBlock::kSwitch: {
1179 DCHECK_EQ(IrOpcode::kSwitch, input->opcode());
1180 // Last successor must be {IfDefault}.
1181 BasicBlock* default_branch = block->successors().back();
1182 DCHECK_EQ(IrOpcode::kIfDefault, default_branch->front()->opcode());
1183 // All other successors must be {IfValue}s.
1184 int32_t min_value = std::numeric_limits<int32_t>::max();
1185 int32_t max_value = std::numeric_limits<int32_t>::min();
1186 size_t case_count = block->SuccessorCount() - 1;
1187 ZoneVector<CaseInfo> cases(case_count, zone());
1188 for (size_t i = 0; i < case_count; ++i) {
1189 BasicBlock* branch = block->SuccessorAt(i);
1190 const IfValueParameters& p = IfValueParametersOf(branch->front()->op());
1191 cases[i] = CaseInfo{p.value(), p.comparison_order(), branch};
1192 if (min_value > p.value()) min_value = p.value();
1193 if (max_value < p.value()) max_value = p.value();
1194 }
1195 SwitchInfo sw(cases, min_value, max_value, default_branch);
1196 VisitSwitch(input, sw);
1197 break;
1198 }
1199 case BasicBlock::kReturn: {
1200 DCHECK_EQ(IrOpcode::kReturn, input->opcode());
1201 VisitReturn(input);
1202 break;
1203 }
1204 case BasicBlock::kDeoptimize: {
1205 DeoptimizeParameters p = DeoptimizeParametersOf(input->op());
1206 Node* value = input->InputAt(0);
1207 VisitDeoptimize(p.kind(), p.reason(), p.feedback(), value);
1208 break;
1209 }
1210 case BasicBlock::kThrow:
1211 DCHECK_EQ(IrOpcode::kThrow, input->opcode());
1212 VisitThrow(input);
1213 break;
1214 case BasicBlock::kNone: {
1215 // Exit block doesn't have control.
1216 DCHECK_NULL(input);
1217 break;
1218 }
1219 default:
1220 UNREACHABLE();
1221 break;
1222 }
1223 if (trace_turbo_ == kEnableTraceTurboJson && input) {
1224 int instruction_start = static_cast<int>(instructions_.size());
1225 instr_origins_[input->id()] = {instruction_start, instruction_end};
1226 }
1227 }
1228
MarkPairProjectionsAsWord32(Node * node)1229 void InstructionSelector::MarkPairProjectionsAsWord32(Node* node) {
1230 Node* projection0 = NodeProperties::FindProjection(node, 0);
1231 if (projection0) {
1232 MarkAsWord32(projection0);
1233 }
1234 Node* projection1 = NodeProperties::FindProjection(node, 1);
1235 if (projection1) {
1236 MarkAsWord32(projection1);
1237 }
1238 }
1239
VisitNode(Node * node)1240 void InstructionSelector::VisitNode(Node* node) {
1241 DCHECK_NOT_NULL(schedule()->block(node)); // should only use scheduled nodes.
1242 switch (node->opcode()) {
1243 case IrOpcode::kStart:
1244 case IrOpcode::kLoop:
1245 case IrOpcode::kEnd:
1246 case IrOpcode::kBranch:
1247 case IrOpcode::kIfTrue:
1248 case IrOpcode::kIfFalse:
1249 case IrOpcode::kIfSuccess:
1250 case IrOpcode::kSwitch:
1251 case IrOpcode::kIfValue:
1252 case IrOpcode::kIfDefault:
1253 case IrOpcode::kEffectPhi:
1254 case IrOpcode::kMerge:
1255 case IrOpcode::kTerminate:
1256 case IrOpcode::kBeginRegion:
1257 // No code needed for these graph artifacts.
1258 return;
1259 case IrOpcode::kIfException:
1260 return MarkAsReference(node), VisitIfException(node);
1261 case IrOpcode::kFinishRegion:
1262 return MarkAsReference(node), VisitFinishRegion(node);
1263 case IrOpcode::kParameter: {
1264 MachineType type =
1265 linkage()->GetParameterType(ParameterIndexOf(node->op()));
1266 MarkAsRepresentation(type.representation(), node);
1267 return VisitParameter(node);
1268 }
1269 case IrOpcode::kOsrValue:
1270 return MarkAsReference(node), VisitOsrValue(node);
1271 case IrOpcode::kPhi: {
1272 MachineRepresentation rep = PhiRepresentationOf(node->op());
1273 if (rep == MachineRepresentation::kNone) return;
1274 MarkAsRepresentation(rep, node);
1275 return VisitPhi(node);
1276 }
1277 case IrOpcode::kProjection:
1278 return VisitProjection(node);
1279 case IrOpcode::kInt32Constant:
1280 case IrOpcode::kInt64Constant:
1281 case IrOpcode::kExternalConstant:
1282 case IrOpcode::kRelocatableInt32Constant:
1283 case IrOpcode::kRelocatableInt64Constant:
1284 return VisitConstant(node);
1285 case IrOpcode::kFloat32Constant:
1286 return MarkAsFloat32(node), VisitConstant(node);
1287 case IrOpcode::kFloat64Constant:
1288 return MarkAsFloat64(node), VisitConstant(node);
1289 case IrOpcode::kHeapConstant:
1290 return MarkAsReference(node), VisitConstant(node);
1291 case IrOpcode::kNumberConstant: {
1292 double value = OpParameter<double>(node->op());
1293 if (!IsSmiDouble(value)) MarkAsReference(node);
1294 return VisitConstant(node);
1295 }
1296 case IrOpcode::kCall:
1297 return VisitCall(node);
1298 case IrOpcode::kCallWithCallerSavedRegisters:
1299 return VisitCallWithCallerSavedRegisters(node);
1300 case IrOpcode::kDeoptimizeIf:
1301 return VisitDeoptimizeIf(node);
1302 case IrOpcode::kDeoptimizeUnless:
1303 return VisitDeoptimizeUnless(node);
1304 case IrOpcode::kTrapIf:
1305 return VisitTrapIf(node, TrapIdOf(node->op()));
1306 case IrOpcode::kTrapUnless:
1307 return VisitTrapUnless(node, TrapIdOf(node->op()));
1308 case IrOpcode::kFrameState:
1309 case IrOpcode::kStateValues:
1310 case IrOpcode::kObjectState:
1311 return;
1312 case IrOpcode::kDebugAbort:
1313 VisitDebugAbort(node);
1314 return;
1315 case IrOpcode::kDebugBreak:
1316 VisitDebugBreak(node);
1317 return;
1318 case IrOpcode::kUnreachable:
1319 VisitUnreachable(node);
1320 return;
1321 case IrOpcode::kDeadValue:
1322 VisitDeadValue(node);
1323 return;
1324 case IrOpcode::kComment:
1325 VisitComment(node);
1326 return;
1327 case IrOpcode::kRetain:
1328 VisitRetain(node);
1329 return;
1330 case IrOpcode::kLoad: {
1331 LoadRepresentation type = LoadRepresentationOf(node->op());
1332 MarkAsRepresentation(type.representation(), node);
1333 return VisitLoad(node);
1334 }
1335 case IrOpcode::kPoisonedLoad: {
1336 LoadRepresentation type = LoadRepresentationOf(node->op());
1337 MarkAsRepresentation(type.representation(), node);
1338 return VisitPoisonedLoad(node);
1339 }
1340 case IrOpcode::kStore:
1341 return VisitStore(node);
1342 case IrOpcode::kProtectedStore:
1343 return VisitProtectedStore(node);
1344 case IrOpcode::kWord32And:
1345 return MarkAsWord32(node), VisitWord32And(node);
1346 case IrOpcode::kWord32Or:
1347 return MarkAsWord32(node), VisitWord32Or(node);
1348 case IrOpcode::kWord32Xor:
1349 return MarkAsWord32(node), VisitWord32Xor(node);
1350 case IrOpcode::kWord32Shl:
1351 return MarkAsWord32(node), VisitWord32Shl(node);
1352 case IrOpcode::kWord32Shr:
1353 return MarkAsWord32(node), VisitWord32Shr(node);
1354 case IrOpcode::kWord32Sar:
1355 return MarkAsWord32(node), VisitWord32Sar(node);
1356 case IrOpcode::kWord32Ror:
1357 return MarkAsWord32(node), VisitWord32Ror(node);
1358 case IrOpcode::kWord32Equal:
1359 return VisitWord32Equal(node);
1360 case IrOpcode::kWord32Clz:
1361 return MarkAsWord32(node), VisitWord32Clz(node);
1362 case IrOpcode::kWord32Ctz:
1363 return MarkAsWord32(node), VisitWord32Ctz(node);
1364 case IrOpcode::kWord32ReverseBits:
1365 return MarkAsWord32(node), VisitWord32ReverseBits(node);
1366 case IrOpcode::kWord32ReverseBytes:
1367 return MarkAsWord32(node), VisitWord32ReverseBytes(node);
1368 case IrOpcode::kInt32AbsWithOverflow:
1369 return MarkAsWord32(node), VisitInt32AbsWithOverflow(node);
1370 case IrOpcode::kWord32Popcnt:
1371 return MarkAsWord32(node), VisitWord32Popcnt(node);
1372 case IrOpcode::kWord64Popcnt:
1373 return MarkAsWord32(node), VisitWord64Popcnt(node);
1374 case IrOpcode::kWord64And:
1375 return MarkAsWord64(node), VisitWord64And(node);
1376 case IrOpcode::kWord64Or:
1377 return MarkAsWord64(node), VisitWord64Or(node);
1378 case IrOpcode::kWord64Xor:
1379 return MarkAsWord64(node), VisitWord64Xor(node);
1380 case IrOpcode::kWord64Shl:
1381 return MarkAsWord64(node), VisitWord64Shl(node);
1382 case IrOpcode::kWord64Shr:
1383 return MarkAsWord64(node), VisitWord64Shr(node);
1384 case IrOpcode::kWord64Sar:
1385 return MarkAsWord64(node), VisitWord64Sar(node);
1386 case IrOpcode::kWord64Ror:
1387 return MarkAsWord64(node), VisitWord64Ror(node);
1388 case IrOpcode::kWord64Clz:
1389 return MarkAsWord64(node), VisitWord64Clz(node);
1390 case IrOpcode::kWord64Ctz:
1391 return MarkAsWord64(node), VisitWord64Ctz(node);
1392 case IrOpcode::kWord64ReverseBits:
1393 return MarkAsWord64(node), VisitWord64ReverseBits(node);
1394 case IrOpcode::kWord64ReverseBytes:
1395 return MarkAsWord64(node), VisitWord64ReverseBytes(node);
1396 case IrOpcode::kInt64AbsWithOverflow:
1397 return MarkAsWord64(node), VisitInt64AbsWithOverflow(node);
1398 case IrOpcode::kWord64Equal:
1399 return VisitWord64Equal(node);
1400 case IrOpcode::kInt32Add:
1401 return MarkAsWord32(node), VisitInt32Add(node);
1402 case IrOpcode::kInt32AddWithOverflow:
1403 return MarkAsWord32(node), VisitInt32AddWithOverflow(node);
1404 case IrOpcode::kInt32Sub:
1405 return MarkAsWord32(node), VisitInt32Sub(node);
1406 case IrOpcode::kInt32SubWithOverflow:
1407 return VisitInt32SubWithOverflow(node);
1408 case IrOpcode::kInt32Mul:
1409 return MarkAsWord32(node), VisitInt32Mul(node);
1410 case IrOpcode::kInt32MulWithOverflow:
1411 return MarkAsWord32(node), VisitInt32MulWithOverflow(node);
1412 case IrOpcode::kInt32MulHigh:
1413 return VisitInt32MulHigh(node);
1414 case IrOpcode::kInt32Div:
1415 return MarkAsWord32(node), VisitInt32Div(node);
1416 case IrOpcode::kInt32Mod:
1417 return MarkAsWord32(node), VisitInt32Mod(node);
1418 case IrOpcode::kInt32LessThan:
1419 return VisitInt32LessThan(node);
1420 case IrOpcode::kInt32LessThanOrEqual:
1421 return VisitInt32LessThanOrEqual(node);
1422 case IrOpcode::kUint32Div:
1423 return MarkAsWord32(node), VisitUint32Div(node);
1424 case IrOpcode::kUint32LessThan:
1425 return VisitUint32LessThan(node);
1426 case IrOpcode::kUint32LessThanOrEqual:
1427 return VisitUint32LessThanOrEqual(node);
1428 case IrOpcode::kUint32Mod:
1429 return MarkAsWord32(node), VisitUint32Mod(node);
1430 case IrOpcode::kUint32MulHigh:
1431 return VisitUint32MulHigh(node);
1432 case IrOpcode::kInt64Add:
1433 return MarkAsWord64(node), VisitInt64Add(node);
1434 case IrOpcode::kInt64AddWithOverflow:
1435 return MarkAsWord64(node), VisitInt64AddWithOverflow(node);
1436 case IrOpcode::kInt64Sub:
1437 return MarkAsWord64(node), VisitInt64Sub(node);
1438 case IrOpcode::kInt64SubWithOverflow:
1439 return MarkAsWord64(node), VisitInt64SubWithOverflow(node);
1440 case IrOpcode::kInt64Mul:
1441 return MarkAsWord64(node), VisitInt64Mul(node);
1442 case IrOpcode::kInt64Div:
1443 return MarkAsWord64(node), VisitInt64Div(node);
1444 case IrOpcode::kInt64Mod:
1445 return MarkAsWord64(node), VisitInt64Mod(node);
1446 case IrOpcode::kInt64LessThan:
1447 return VisitInt64LessThan(node);
1448 case IrOpcode::kInt64LessThanOrEqual:
1449 return VisitInt64LessThanOrEqual(node);
1450 case IrOpcode::kUint64Div:
1451 return MarkAsWord64(node), VisitUint64Div(node);
1452 case IrOpcode::kUint64LessThan:
1453 return VisitUint64LessThan(node);
1454 case IrOpcode::kUint64LessThanOrEqual:
1455 return VisitUint64LessThanOrEqual(node);
1456 case IrOpcode::kUint64Mod:
1457 return MarkAsWord64(node), VisitUint64Mod(node);
1458 case IrOpcode::kBitcastTaggedToWord:
1459 return MarkAsRepresentation(MachineType::PointerRepresentation(), node),
1460 VisitBitcastTaggedToWord(node);
1461 case IrOpcode::kBitcastWordToTagged:
1462 return MarkAsReference(node), VisitBitcastWordToTagged(node);
1463 case IrOpcode::kBitcastWordToTaggedSigned:
1464 return MarkAsRepresentation(MachineRepresentation::kTaggedSigned, node),
1465 EmitIdentity(node);
1466 case IrOpcode::kChangeFloat32ToFloat64:
1467 return MarkAsFloat64(node), VisitChangeFloat32ToFloat64(node);
1468 case IrOpcode::kChangeInt32ToFloat64:
1469 return MarkAsFloat64(node), VisitChangeInt32ToFloat64(node);
1470 case IrOpcode::kChangeUint32ToFloat64:
1471 return MarkAsFloat64(node), VisitChangeUint32ToFloat64(node);
1472 case IrOpcode::kChangeFloat64ToInt32:
1473 return MarkAsWord32(node), VisitChangeFloat64ToInt32(node);
1474 case IrOpcode::kChangeFloat64ToUint32:
1475 return MarkAsWord32(node), VisitChangeFloat64ToUint32(node);
1476 case IrOpcode::kChangeFloat64ToUint64:
1477 return MarkAsWord64(node), VisitChangeFloat64ToUint64(node);
1478 case IrOpcode::kFloat64SilenceNaN:
1479 MarkAsFloat64(node);
1480 if (CanProduceSignalingNaN(node->InputAt(0))) {
1481 return VisitFloat64SilenceNaN(node);
1482 } else {
1483 return EmitIdentity(node);
1484 }
1485 case IrOpcode::kTruncateFloat64ToUint32:
1486 return MarkAsWord32(node), VisitTruncateFloat64ToUint32(node);
1487 case IrOpcode::kTruncateFloat32ToInt32:
1488 return MarkAsWord32(node), VisitTruncateFloat32ToInt32(node);
1489 case IrOpcode::kTruncateFloat32ToUint32:
1490 return MarkAsWord32(node), VisitTruncateFloat32ToUint32(node);
1491 case IrOpcode::kTryTruncateFloat32ToInt64:
1492 return MarkAsWord64(node), VisitTryTruncateFloat32ToInt64(node);
1493 case IrOpcode::kTryTruncateFloat64ToInt64:
1494 return MarkAsWord64(node), VisitTryTruncateFloat64ToInt64(node);
1495 case IrOpcode::kTryTruncateFloat32ToUint64:
1496 return MarkAsWord64(node), VisitTryTruncateFloat32ToUint64(node);
1497 case IrOpcode::kTryTruncateFloat64ToUint64:
1498 return MarkAsWord64(node), VisitTryTruncateFloat64ToUint64(node);
1499 case IrOpcode::kChangeInt32ToInt64:
1500 return MarkAsWord64(node), VisitChangeInt32ToInt64(node);
1501 case IrOpcode::kChangeUint32ToUint64:
1502 return MarkAsWord64(node), VisitChangeUint32ToUint64(node);
1503 case IrOpcode::kTruncateFloat64ToFloat32:
1504 return MarkAsFloat32(node), VisitTruncateFloat64ToFloat32(node);
1505 case IrOpcode::kTruncateFloat64ToWord32:
1506 return MarkAsWord32(node), VisitTruncateFloat64ToWord32(node);
1507 case IrOpcode::kTruncateInt64ToInt32:
1508 return MarkAsWord32(node), VisitTruncateInt64ToInt32(node);
1509 case IrOpcode::kRoundFloat64ToInt32:
1510 return MarkAsWord32(node), VisitRoundFloat64ToInt32(node);
1511 case IrOpcode::kRoundInt64ToFloat32:
1512 return MarkAsFloat32(node), VisitRoundInt64ToFloat32(node);
1513 case IrOpcode::kRoundInt32ToFloat32:
1514 return MarkAsFloat32(node), VisitRoundInt32ToFloat32(node);
1515 case IrOpcode::kRoundInt64ToFloat64:
1516 return MarkAsFloat64(node), VisitRoundInt64ToFloat64(node);
1517 case IrOpcode::kBitcastFloat32ToInt32:
1518 return MarkAsWord32(node), VisitBitcastFloat32ToInt32(node);
1519 case IrOpcode::kRoundUint32ToFloat32:
1520 return MarkAsFloat32(node), VisitRoundUint32ToFloat32(node);
1521 case IrOpcode::kRoundUint64ToFloat32:
1522 return MarkAsFloat64(node), VisitRoundUint64ToFloat32(node);
1523 case IrOpcode::kRoundUint64ToFloat64:
1524 return MarkAsFloat64(node), VisitRoundUint64ToFloat64(node);
1525 case IrOpcode::kBitcastFloat64ToInt64:
1526 return MarkAsWord64(node), VisitBitcastFloat64ToInt64(node);
1527 case IrOpcode::kBitcastInt32ToFloat32:
1528 return MarkAsFloat32(node), VisitBitcastInt32ToFloat32(node);
1529 case IrOpcode::kBitcastInt64ToFloat64:
1530 return MarkAsFloat64(node), VisitBitcastInt64ToFloat64(node);
1531 case IrOpcode::kFloat32Add:
1532 return MarkAsFloat32(node), VisitFloat32Add(node);
1533 case IrOpcode::kFloat32Sub:
1534 return MarkAsFloat32(node), VisitFloat32Sub(node);
1535 case IrOpcode::kFloat32Neg:
1536 return MarkAsFloat32(node), VisitFloat32Neg(node);
1537 case IrOpcode::kFloat32Mul:
1538 return MarkAsFloat32(node), VisitFloat32Mul(node);
1539 case IrOpcode::kFloat32Div:
1540 return MarkAsFloat32(node), VisitFloat32Div(node);
1541 case IrOpcode::kFloat32Abs:
1542 return MarkAsFloat32(node), VisitFloat32Abs(node);
1543 case IrOpcode::kFloat32Sqrt:
1544 return MarkAsFloat32(node), VisitFloat32Sqrt(node);
1545 case IrOpcode::kFloat32Equal:
1546 return VisitFloat32Equal(node);
1547 case IrOpcode::kFloat32LessThan:
1548 return VisitFloat32LessThan(node);
1549 case IrOpcode::kFloat32LessThanOrEqual:
1550 return VisitFloat32LessThanOrEqual(node);
1551 case IrOpcode::kFloat32Max:
1552 return MarkAsFloat32(node), VisitFloat32Max(node);
1553 case IrOpcode::kFloat32Min:
1554 return MarkAsFloat32(node), VisitFloat32Min(node);
1555 case IrOpcode::kFloat64Add:
1556 return MarkAsFloat64(node), VisitFloat64Add(node);
1557 case IrOpcode::kFloat64Sub:
1558 return MarkAsFloat64(node), VisitFloat64Sub(node);
1559 case IrOpcode::kFloat64Neg:
1560 return MarkAsFloat64(node), VisitFloat64Neg(node);
1561 case IrOpcode::kFloat64Mul:
1562 return MarkAsFloat64(node), VisitFloat64Mul(node);
1563 case IrOpcode::kFloat64Div:
1564 return MarkAsFloat64(node), VisitFloat64Div(node);
1565 case IrOpcode::kFloat64Mod:
1566 return MarkAsFloat64(node), VisitFloat64Mod(node);
1567 case IrOpcode::kFloat64Min:
1568 return MarkAsFloat64(node), VisitFloat64Min(node);
1569 case IrOpcode::kFloat64Max:
1570 return MarkAsFloat64(node), VisitFloat64Max(node);
1571 case IrOpcode::kFloat64Abs:
1572 return MarkAsFloat64(node), VisitFloat64Abs(node);
1573 case IrOpcode::kFloat64Acos:
1574 return MarkAsFloat64(node), VisitFloat64Acos(node);
1575 case IrOpcode::kFloat64Acosh:
1576 return MarkAsFloat64(node), VisitFloat64Acosh(node);
1577 case IrOpcode::kFloat64Asin:
1578 return MarkAsFloat64(node), VisitFloat64Asin(node);
1579 case IrOpcode::kFloat64Asinh:
1580 return MarkAsFloat64(node), VisitFloat64Asinh(node);
1581 case IrOpcode::kFloat64Atan:
1582 return MarkAsFloat64(node), VisitFloat64Atan(node);
1583 case IrOpcode::kFloat64Atanh:
1584 return MarkAsFloat64(node), VisitFloat64Atanh(node);
1585 case IrOpcode::kFloat64Atan2:
1586 return MarkAsFloat64(node), VisitFloat64Atan2(node);
1587 case IrOpcode::kFloat64Cbrt:
1588 return MarkAsFloat64(node), VisitFloat64Cbrt(node);
1589 case IrOpcode::kFloat64Cos:
1590 return MarkAsFloat64(node), VisitFloat64Cos(node);
1591 case IrOpcode::kFloat64Cosh:
1592 return MarkAsFloat64(node), VisitFloat64Cosh(node);
1593 case IrOpcode::kFloat64Exp:
1594 return MarkAsFloat64(node), VisitFloat64Exp(node);
1595 case IrOpcode::kFloat64Expm1:
1596 return MarkAsFloat64(node), VisitFloat64Expm1(node);
1597 case IrOpcode::kFloat64Log:
1598 return MarkAsFloat64(node), VisitFloat64Log(node);
1599 case IrOpcode::kFloat64Log1p:
1600 return MarkAsFloat64(node), VisitFloat64Log1p(node);
1601 case IrOpcode::kFloat64Log10:
1602 return MarkAsFloat64(node), VisitFloat64Log10(node);
1603 case IrOpcode::kFloat64Log2:
1604 return MarkAsFloat64(node), VisitFloat64Log2(node);
1605 case IrOpcode::kFloat64Pow:
1606 return MarkAsFloat64(node), VisitFloat64Pow(node);
1607 case IrOpcode::kFloat64Sin:
1608 return MarkAsFloat64(node), VisitFloat64Sin(node);
1609 case IrOpcode::kFloat64Sinh:
1610 return MarkAsFloat64(node), VisitFloat64Sinh(node);
1611 case IrOpcode::kFloat64Sqrt:
1612 return MarkAsFloat64(node), VisitFloat64Sqrt(node);
1613 case IrOpcode::kFloat64Tan:
1614 return MarkAsFloat64(node), VisitFloat64Tan(node);
1615 case IrOpcode::kFloat64Tanh:
1616 return MarkAsFloat64(node), VisitFloat64Tanh(node);
1617 case IrOpcode::kFloat64Equal:
1618 return VisitFloat64Equal(node);
1619 case IrOpcode::kFloat64LessThan:
1620 return VisitFloat64LessThan(node);
1621 case IrOpcode::kFloat64LessThanOrEqual:
1622 return VisitFloat64LessThanOrEqual(node);
1623 case IrOpcode::kFloat32RoundDown:
1624 return MarkAsFloat32(node), VisitFloat32RoundDown(node);
1625 case IrOpcode::kFloat64RoundDown:
1626 return MarkAsFloat64(node), VisitFloat64RoundDown(node);
1627 case IrOpcode::kFloat32RoundUp:
1628 return MarkAsFloat32(node), VisitFloat32RoundUp(node);
1629 case IrOpcode::kFloat64RoundUp:
1630 return MarkAsFloat64(node), VisitFloat64RoundUp(node);
1631 case IrOpcode::kFloat32RoundTruncate:
1632 return MarkAsFloat32(node), VisitFloat32RoundTruncate(node);
1633 case IrOpcode::kFloat64RoundTruncate:
1634 return MarkAsFloat64(node), VisitFloat64RoundTruncate(node);
1635 case IrOpcode::kFloat64RoundTiesAway:
1636 return MarkAsFloat64(node), VisitFloat64RoundTiesAway(node);
1637 case IrOpcode::kFloat32RoundTiesEven:
1638 return MarkAsFloat32(node), VisitFloat32RoundTiesEven(node);
1639 case IrOpcode::kFloat64RoundTiesEven:
1640 return MarkAsFloat64(node), VisitFloat64RoundTiesEven(node);
1641 case IrOpcode::kFloat64ExtractLowWord32:
1642 return MarkAsWord32(node), VisitFloat64ExtractLowWord32(node);
1643 case IrOpcode::kFloat64ExtractHighWord32:
1644 return MarkAsWord32(node), VisitFloat64ExtractHighWord32(node);
1645 case IrOpcode::kFloat64InsertLowWord32:
1646 return MarkAsFloat64(node), VisitFloat64InsertLowWord32(node);
1647 case IrOpcode::kFloat64InsertHighWord32:
1648 return MarkAsFloat64(node), VisitFloat64InsertHighWord32(node);
1649 case IrOpcode::kTaggedPoisonOnSpeculation:
1650 return MarkAsReference(node), VisitTaggedPoisonOnSpeculation(node);
1651 case IrOpcode::kWord32PoisonOnSpeculation:
1652 return MarkAsWord32(node), VisitWord32PoisonOnSpeculation(node);
1653 case IrOpcode::kWord64PoisonOnSpeculation:
1654 return MarkAsWord64(node), VisitWord64PoisonOnSpeculation(node);
1655 case IrOpcode::kStackSlot:
1656 return VisitStackSlot(node);
1657 case IrOpcode::kLoadStackPointer:
1658 return VisitLoadStackPointer(node);
1659 case IrOpcode::kLoadFramePointer:
1660 return VisitLoadFramePointer(node);
1661 case IrOpcode::kLoadParentFramePointer:
1662 return VisitLoadParentFramePointer(node);
1663 case IrOpcode::kUnalignedLoad: {
1664 LoadRepresentation type = LoadRepresentationOf(node->op());
1665 MarkAsRepresentation(type.representation(), node);
1666 return VisitUnalignedLoad(node);
1667 }
1668 case IrOpcode::kUnalignedStore:
1669 return VisitUnalignedStore(node);
1670 case IrOpcode::kInt32PairAdd:
1671 MarkAsWord32(node);
1672 MarkPairProjectionsAsWord32(node);
1673 return VisitInt32PairAdd(node);
1674 case IrOpcode::kInt32PairSub:
1675 MarkAsWord32(node);
1676 MarkPairProjectionsAsWord32(node);
1677 return VisitInt32PairSub(node);
1678 case IrOpcode::kInt32PairMul:
1679 MarkAsWord32(node);
1680 MarkPairProjectionsAsWord32(node);
1681 return VisitInt32PairMul(node);
1682 case IrOpcode::kWord32PairShl:
1683 MarkAsWord32(node);
1684 MarkPairProjectionsAsWord32(node);
1685 return VisitWord32PairShl(node);
1686 case IrOpcode::kWord32PairShr:
1687 MarkAsWord32(node);
1688 MarkPairProjectionsAsWord32(node);
1689 return VisitWord32PairShr(node);
1690 case IrOpcode::kWord32PairSar:
1691 MarkAsWord32(node);
1692 MarkPairProjectionsAsWord32(node);
1693 return VisitWord32PairSar(node);
1694 case IrOpcode::kWord32AtomicLoad: {
1695 LoadRepresentation type = LoadRepresentationOf(node->op());
1696 MarkAsRepresentation(type.representation(), node);
1697 return VisitWord32AtomicLoad(node);
1698 }
1699 case IrOpcode::kWord64AtomicLoad: {
1700 LoadRepresentation type = LoadRepresentationOf(node->op());
1701 MarkAsRepresentation(type.representation(), node);
1702 return VisitWord64AtomicLoad(node);
1703 }
1704 case IrOpcode::kWord32AtomicStore:
1705 return VisitWord32AtomicStore(node);
1706 case IrOpcode::kWord64AtomicStore:
1707 return VisitWord64AtomicStore(node);
1708 case IrOpcode::kWord32AtomicPairStore:
1709 return VisitWord32AtomicPairStore(node);
1710 case IrOpcode::kWord32AtomicPairLoad: {
1711 MarkAsWord32(node);
1712 MarkPairProjectionsAsWord32(node);
1713 return VisitWord32AtomicPairLoad(node);
1714 }
1715 #define ATOMIC_CASE(name, rep) \
1716 case IrOpcode::k##rep##Atomic##name: { \
1717 MachineType type = AtomicOpType(node->op()); \
1718 MarkAsRepresentation(type.representation(), node); \
1719 return Visit##rep##Atomic##name(node); \
1720 }
1721 ATOMIC_CASE(Add, Word32)
1722 ATOMIC_CASE(Add, Word64)
1723 ATOMIC_CASE(Sub, Word32)
1724 ATOMIC_CASE(Sub, Word64)
1725 ATOMIC_CASE(And, Word32)
1726 ATOMIC_CASE(And, Word64)
1727 ATOMIC_CASE(Or, Word32)
1728 ATOMIC_CASE(Or, Word64)
1729 ATOMIC_CASE(Xor, Word32)
1730 ATOMIC_CASE(Xor, Word64)
1731 ATOMIC_CASE(Exchange, Word32)
1732 ATOMIC_CASE(Exchange, Word64)
1733 ATOMIC_CASE(CompareExchange, Word32)
1734 ATOMIC_CASE(CompareExchange, Word64)
1735 #undef ATOMIC_CASE
1736 #define ATOMIC_CASE(name) \
1737 case IrOpcode::kWord32AtomicPair##name: { \
1738 MarkAsWord32(node); \
1739 MarkPairProjectionsAsWord32(node); \
1740 return VisitWord32AtomicPair##name(node); \
1741 }
1742 ATOMIC_CASE(Add)
1743 ATOMIC_CASE(Sub)
1744 ATOMIC_CASE(And)
1745 ATOMIC_CASE(Or)
1746 ATOMIC_CASE(Xor)
1747 ATOMIC_CASE(Exchange)
1748 ATOMIC_CASE(CompareExchange)
1749 #undef ATOMIC_CASE
1750 #define ATOMIC_CASE(name) \
1751 case IrOpcode::kWord64AtomicNarrow##name: { \
1752 MachineType type = AtomicOpType(node->op()); \
1753 MarkAsRepresentation(type.representation(), node); \
1754 MarkPairProjectionsAsWord32(node); \
1755 return VisitWord64AtomicNarrow##name(node); \
1756 }
1757 ATOMIC_CASE(Add)
1758 ATOMIC_CASE(Sub)
1759 ATOMIC_CASE(And)
1760 ATOMIC_CASE(Or)
1761 ATOMIC_CASE(Xor)
1762 ATOMIC_CASE(Exchange)
1763 ATOMIC_CASE(CompareExchange)
1764 #undef ATOMIC_CASE
1765 case IrOpcode::kSpeculationFence:
1766 return VisitSpeculationFence(node);
1767 case IrOpcode::kProtectedLoad: {
1768 LoadRepresentation type = LoadRepresentationOf(node->op());
1769 MarkAsRepresentation(type.representation(), node);
1770 return VisitProtectedLoad(node);
1771 }
1772 case IrOpcode::kSignExtendWord8ToInt32:
1773 return MarkAsWord32(node), VisitSignExtendWord8ToInt32(node);
1774 case IrOpcode::kSignExtendWord16ToInt32:
1775 return MarkAsWord32(node), VisitSignExtendWord16ToInt32(node);
1776 case IrOpcode::kSignExtendWord8ToInt64:
1777 return MarkAsWord64(node), VisitSignExtendWord8ToInt64(node);
1778 case IrOpcode::kSignExtendWord16ToInt64:
1779 return MarkAsWord64(node), VisitSignExtendWord16ToInt64(node);
1780 case IrOpcode::kSignExtendWord32ToInt64:
1781 return MarkAsWord64(node), VisitSignExtendWord32ToInt64(node);
1782 case IrOpcode::kUnsafePointerAdd:
1783 MarkAsRepresentation(MachineType::PointerRepresentation(), node);
1784 return VisitUnsafePointerAdd(node);
1785 case IrOpcode::kF32x4Splat:
1786 return MarkAsSimd128(node), VisitF32x4Splat(node);
1787 case IrOpcode::kF32x4ExtractLane:
1788 return MarkAsFloat32(node), VisitF32x4ExtractLane(node);
1789 case IrOpcode::kF32x4ReplaceLane:
1790 return MarkAsSimd128(node), VisitF32x4ReplaceLane(node);
1791 case IrOpcode::kF32x4SConvertI32x4:
1792 return MarkAsSimd128(node), VisitF32x4SConvertI32x4(node);
1793 case IrOpcode::kF32x4UConvertI32x4:
1794 return MarkAsSimd128(node), VisitF32x4UConvertI32x4(node);
1795 case IrOpcode::kF32x4Abs:
1796 return MarkAsSimd128(node), VisitF32x4Abs(node);
1797 case IrOpcode::kF32x4Neg:
1798 return MarkAsSimd128(node), VisitF32x4Neg(node);
1799 case IrOpcode::kF32x4RecipApprox:
1800 return MarkAsSimd128(node), VisitF32x4RecipApprox(node);
1801 case IrOpcode::kF32x4RecipSqrtApprox:
1802 return MarkAsSimd128(node), VisitF32x4RecipSqrtApprox(node);
1803 case IrOpcode::kF32x4Add:
1804 return MarkAsSimd128(node), VisitF32x4Add(node);
1805 case IrOpcode::kF32x4AddHoriz:
1806 return MarkAsSimd128(node), VisitF32x4AddHoriz(node);
1807 case IrOpcode::kF32x4Sub:
1808 return MarkAsSimd128(node), VisitF32x4Sub(node);
1809 case IrOpcode::kF32x4Mul:
1810 return MarkAsSimd128(node), VisitF32x4Mul(node);
1811 case IrOpcode::kF32x4Min:
1812 return MarkAsSimd128(node), VisitF32x4Min(node);
1813 case IrOpcode::kF32x4Max:
1814 return MarkAsSimd128(node), VisitF32x4Max(node);
1815 case IrOpcode::kF32x4Eq:
1816 return MarkAsSimd128(node), VisitF32x4Eq(node);
1817 case IrOpcode::kF32x4Ne:
1818 return MarkAsSimd128(node), VisitF32x4Ne(node);
1819 case IrOpcode::kF32x4Lt:
1820 return MarkAsSimd128(node), VisitF32x4Lt(node);
1821 case IrOpcode::kF32x4Le:
1822 return MarkAsSimd128(node), VisitF32x4Le(node);
1823 case IrOpcode::kI32x4Splat:
1824 return MarkAsSimd128(node), VisitI32x4Splat(node);
1825 case IrOpcode::kI32x4ExtractLane:
1826 return MarkAsWord32(node), VisitI32x4ExtractLane(node);
1827 case IrOpcode::kI32x4ReplaceLane:
1828 return MarkAsSimd128(node), VisitI32x4ReplaceLane(node);
1829 case IrOpcode::kI32x4SConvertF32x4:
1830 return MarkAsSimd128(node), VisitI32x4SConvertF32x4(node);
1831 case IrOpcode::kI32x4SConvertI16x8Low:
1832 return MarkAsSimd128(node), VisitI32x4SConvertI16x8Low(node);
1833 case IrOpcode::kI32x4SConvertI16x8High:
1834 return MarkAsSimd128(node), VisitI32x4SConvertI16x8High(node);
1835 case IrOpcode::kI32x4Neg:
1836 return MarkAsSimd128(node), VisitI32x4Neg(node);
1837 case IrOpcode::kI32x4Shl:
1838 return MarkAsSimd128(node), VisitI32x4Shl(node);
1839 case IrOpcode::kI32x4ShrS:
1840 return MarkAsSimd128(node), VisitI32x4ShrS(node);
1841 case IrOpcode::kI32x4Add:
1842 return MarkAsSimd128(node), VisitI32x4Add(node);
1843 case IrOpcode::kI32x4AddHoriz:
1844 return MarkAsSimd128(node), VisitI32x4AddHoriz(node);
1845 case IrOpcode::kI32x4Sub:
1846 return MarkAsSimd128(node), VisitI32x4Sub(node);
1847 case IrOpcode::kI32x4Mul:
1848 return MarkAsSimd128(node), VisitI32x4Mul(node);
1849 case IrOpcode::kI32x4MinS:
1850 return MarkAsSimd128(node), VisitI32x4MinS(node);
1851 case IrOpcode::kI32x4MaxS:
1852 return MarkAsSimd128(node), VisitI32x4MaxS(node);
1853 case IrOpcode::kI32x4Eq:
1854 return MarkAsSimd128(node), VisitI32x4Eq(node);
1855 case IrOpcode::kI32x4Ne:
1856 return MarkAsSimd128(node), VisitI32x4Ne(node);
1857 case IrOpcode::kI32x4GtS:
1858 return MarkAsSimd128(node), VisitI32x4GtS(node);
1859 case IrOpcode::kI32x4GeS:
1860 return MarkAsSimd128(node), VisitI32x4GeS(node);
1861 case IrOpcode::kI32x4UConvertF32x4:
1862 return MarkAsSimd128(node), VisitI32x4UConvertF32x4(node);
1863 case IrOpcode::kI32x4UConvertI16x8Low:
1864 return MarkAsSimd128(node), VisitI32x4UConvertI16x8Low(node);
1865 case IrOpcode::kI32x4UConvertI16x8High:
1866 return MarkAsSimd128(node), VisitI32x4UConvertI16x8High(node);
1867 case IrOpcode::kI32x4ShrU:
1868 return MarkAsSimd128(node), VisitI32x4ShrU(node);
1869 case IrOpcode::kI32x4MinU:
1870 return MarkAsSimd128(node), VisitI32x4MinU(node);
1871 case IrOpcode::kI32x4MaxU:
1872 return MarkAsSimd128(node), VisitI32x4MaxU(node);
1873 case IrOpcode::kI32x4GtU:
1874 return MarkAsSimd128(node), VisitI32x4GtU(node);
1875 case IrOpcode::kI32x4GeU:
1876 return MarkAsSimd128(node), VisitI32x4GeU(node);
1877 case IrOpcode::kI16x8Splat:
1878 return MarkAsSimd128(node), VisitI16x8Splat(node);
1879 case IrOpcode::kI16x8ExtractLane:
1880 return MarkAsWord32(node), VisitI16x8ExtractLane(node);
1881 case IrOpcode::kI16x8ReplaceLane:
1882 return MarkAsSimd128(node), VisitI16x8ReplaceLane(node);
1883 case IrOpcode::kI16x8SConvertI8x16Low:
1884 return MarkAsSimd128(node), VisitI16x8SConvertI8x16Low(node);
1885 case IrOpcode::kI16x8SConvertI8x16High:
1886 return MarkAsSimd128(node), VisitI16x8SConvertI8x16High(node);
1887 case IrOpcode::kI16x8Neg:
1888 return MarkAsSimd128(node), VisitI16x8Neg(node);
1889 case IrOpcode::kI16x8Shl:
1890 return MarkAsSimd128(node), VisitI16x8Shl(node);
1891 case IrOpcode::kI16x8ShrS:
1892 return MarkAsSimd128(node), VisitI16x8ShrS(node);
1893 case IrOpcode::kI16x8SConvertI32x4:
1894 return MarkAsSimd128(node), VisitI16x8SConvertI32x4(node);
1895 case IrOpcode::kI16x8Add:
1896 return MarkAsSimd128(node), VisitI16x8Add(node);
1897 case IrOpcode::kI16x8AddSaturateS:
1898 return MarkAsSimd128(node), VisitI16x8AddSaturateS(node);
1899 case IrOpcode::kI16x8AddHoriz:
1900 return MarkAsSimd128(node), VisitI16x8AddHoriz(node);
1901 case IrOpcode::kI16x8Sub:
1902 return MarkAsSimd128(node), VisitI16x8Sub(node);
1903 case IrOpcode::kI16x8SubSaturateS:
1904 return MarkAsSimd128(node), VisitI16x8SubSaturateS(node);
1905 case IrOpcode::kI16x8Mul:
1906 return MarkAsSimd128(node), VisitI16x8Mul(node);
1907 case IrOpcode::kI16x8MinS:
1908 return MarkAsSimd128(node), VisitI16x8MinS(node);
1909 case IrOpcode::kI16x8MaxS:
1910 return MarkAsSimd128(node), VisitI16x8MaxS(node);
1911 case IrOpcode::kI16x8Eq:
1912 return MarkAsSimd128(node), VisitI16x8Eq(node);
1913 case IrOpcode::kI16x8Ne:
1914 return MarkAsSimd128(node), VisitI16x8Ne(node);
1915 case IrOpcode::kI16x8GtS:
1916 return MarkAsSimd128(node), VisitI16x8GtS(node);
1917 case IrOpcode::kI16x8GeS:
1918 return MarkAsSimd128(node), VisitI16x8GeS(node);
1919 case IrOpcode::kI16x8UConvertI8x16Low:
1920 return MarkAsSimd128(node), VisitI16x8UConvertI8x16Low(node);
1921 case IrOpcode::kI16x8UConvertI8x16High:
1922 return MarkAsSimd128(node), VisitI16x8UConvertI8x16High(node);
1923 case IrOpcode::kI16x8ShrU:
1924 return MarkAsSimd128(node), VisitI16x8ShrU(node);
1925 case IrOpcode::kI16x8UConvertI32x4:
1926 return MarkAsSimd128(node), VisitI16x8UConvertI32x4(node);
1927 case IrOpcode::kI16x8AddSaturateU:
1928 return MarkAsSimd128(node), VisitI16x8AddSaturateU(node);
1929 case IrOpcode::kI16x8SubSaturateU:
1930 return MarkAsSimd128(node), VisitI16x8SubSaturateU(node);
1931 case IrOpcode::kI16x8MinU:
1932 return MarkAsSimd128(node), VisitI16x8MinU(node);
1933 case IrOpcode::kI16x8MaxU:
1934 return MarkAsSimd128(node), VisitI16x8MaxU(node);
1935 case IrOpcode::kI16x8GtU:
1936 return MarkAsSimd128(node), VisitI16x8GtU(node);
1937 case IrOpcode::kI16x8GeU:
1938 return MarkAsSimd128(node), VisitI16x8GeU(node);
1939 case IrOpcode::kI8x16Splat:
1940 return MarkAsSimd128(node), VisitI8x16Splat(node);
1941 case IrOpcode::kI8x16ExtractLane:
1942 return MarkAsWord32(node), VisitI8x16ExtractLane(node);
1943 case IrOpcode::kI8x16ReplaceLane:
1944 return MarkAsSimd128(node), VisitI8x16ReplaceLane(node);
1945 case IrOpcode::kI8x16Neg:
1946 return MarkAsSimd128(node), VisitI8x16Neg(node);
1947 case IrOpcode::kI8x16Shl:
1948 return MarkAsSimd128(node), VisitI8x16Shl(node);
1949 case IrOpcode::kI8x16ShrS:
1950 return MarkAsSimd128(node), VisitI8x16ShrS(node);
1951 case IrOpcode::kI8x16SConvertI16x8:
1952 return MarkAsSimd128(node), VisitI8x16SConvertI16x8(node);
1953 case IrOpcode::kI8x16Add:
1954 return MarkAsSimd128(node), VisitI8x16Add(node);
1955 case IrOpcode::kI8x16AddSaturateS:
1956 return MarkAsSimd128(node), VisitI8x16AddSaturateS(node);
1957 case IrOpcode::kI8x16Sub:
1958 return MarkAsSimd128(node), VisitI8x16Sub(node);
1959 case IrOpcode::kI8x16SubSaturateS:
1960 return MarkAsSimd128(node), VisitI8x16SubSaturateS(node);
1961 case IrOpcode::kI8x16Mul:
1962 return MarkAsSimd128(node), VisitI8x16Mul(node);
1963 case IrOpcode::kI8x16MinS:
1964 return MarkAsSimd128(node), VisitI8x16MinS(node);
1965 case IrOpcode::kI8x16MaxS:
1966 return MarkAsSimd128(node), VisitI8x16MaxS(node);
1967 case IrOpcode::kI8x16Eq:
1968 return MarkAsSimd128(node), VisitI8x16Eq(node);
1969 case IrOpcode::kI8x16Ne:
1970 return MarkAsSimd128(node), VisitI8x16Ne(node);
1971 case IrOpcode::kI8x16GtS:
1972 return MarkAsSimd128(node), VisitI8x16GtS(node);
1973 case IrOpcode::kI8x16GeS:
1974 return MarkAsSimd128(node), VisitI8x16GeS(node);
1975 case IrOpcode::kI8x16ShrU:
1976 return MarkAsSimd128(node), VisitI8x16ShrU(node);
1977 case IrOpcode::kI8x16UConvertI16x8:
1978 return MarkAsSimd128(node), VisitI8x16UConvertI16x8(node);
1979 case IrOpcode::kI8x16AddSaturateU:
1980 return MarkAsSimd128(node), VisitI8x16AddSaturateU(node);
1981 case IrOpcode::kI8x16SubSaturateU:
1982 return MarkAsSimd128(node), VisitI8x16SubSaturateU(node);
1983 case IrOpcode::kI8x16MinU:
1984 return MarkAsSimd128(node), VisitI8x16MinU(node);
1985 case IrOpcode::kI8x16MaxU:
1986 return MarkAsSimd128(node), VisitI8x16MaxU(node);
1987 case IrOpcode::kI8x16GtU:
1988 return MarkAsSimd128(node), VisitI8x16GtU(node);
1989 case IrOpcode::kI8x16GeU:
1990 return MarkAsSimd128(node), VisitI16x8GeU(node);
1991 case IrOpcode::kS128Zero:
1992 return MarkAsSimd128(node), VisitS128Zero(node);
1993 case IrOpcode::kS128And:
1994 return MarkAsSimd128(node), VisitS128And(node);
1995 case IrOpcode::kS128Or:
1996 return MarkAsSimd128(node), VisitS128Or(node);
1997 case IrOpcode::kS128Xor:
1998 return MarkAsSimd128(node), VisitS128Xor(node);
1999 case IrOpcode::kS128Not:
2000 return MarkAsSimd128(node), VisitS128Not(node);
2001 case IrOpcode::kS128Select:
2002 return MarkAsSimd128(node), VisitS128Select(node);
2003 case IrOpcode::kS8x16Shuffle:
2004 return MarkAsSimd128(node), VisitS8x16Shuffle(node);
2005 case IrOpcode::kS1x4AnyTrue:
2006 return MarkAsWord32(node), VisitS1x4AnyTrue(node);
2007 case IrOpcode::kS1x4AllTrue:
2008 return MarkAsWord32(node), VisitS1x4AllTrue(node);
2009 case IrOpcode::kS1x8AnyTrue:
2010 return MarkAsWord32(node), VisitS1x8AnyTrue(node);
2011 case IrOpcode::kS1x8AllTrue:
2012 return MarkAsWord32(node), VisitS1x8AllTrue(node);
2013 case IrOpcode::kS1x16AnyTrue:
2014 return MarkAsWord32(node), VisitS1x16AnyTrue(node);
2015 case IrOpcode::kS1x16AllTrue:
2016 return MarkAsWord32(node), VisitS1x16AllTrue(node);
2017 default:
2018 FATAL("Unexpected operator #%d:%s @ node #%d", node->opcode(),
2019 node->op()->mnemonic(), node->id());
2020 break;
2021 }
2022 }
2023
EmitWordPoisonOnSpeculation(Node * node)2024 void InstructionSelector::EmitWordPoisonOnSpeculation(Node* node) {
2025 if (poisoning_level_ != PoisoningMitigationLevel::kDontPoison) {
2026 OperandGenerator g(this);
2027 Node* input_node = NodeProperties::GetValueInput(node, 0);
2028 InstructionOperand input = g.UseRegister(input_node);
2029 InstructionOperand output = g.DefineSameAsFirst(node);
2030 Emit(kArchWordPoisonOnSpeculation, output, input);
2031 } else {
2032 EmitIdentity(node);
2033 }
2034 }
2035
VisitWord32PoisonOnSpeculation(Node * node)2036 void InstructionSelector::VisitWord32PoisonOnSpeculation(Node* node) {
2037 EmitWordPoisonOnSpeculation(node);
2038 }
2039
VisitWord64PoisonOnSpeculation(Node * node)2040 void InstructionSelector::VisitWord64PoisonOnSpeculation(Node* node) {
2041 EmitWordPoisonOnSpeculation(node);
2042 }
2043
VisitTaggedPoisonOnSpeculation(Node * node)2044 void InstructionSelector::VisitTaggedPoisonOnSpeculation(Node* node) {
2045 EmitWordPoisonOnSpeculation(node);
2046 }
2047
VisitLoadStackPointer(Node * node)2048 void InstructionSelector::VisitLoadStackPointer(Node* node) {
2049 OperandGenerator g(this);
2050 Emit(kArchStackPointer, g.DefineAsRegister(node));
2051 }
2052
VisitLoadFramePointer(Node * node)2053 void InstructionSelector::VisitLoadFramePointer(Node* node) {
2054 OperandGenerator g(this);
2055 Emit(kArchFramePointer, g.DefineAsRegister(node));
2056 }
2057
VisitLoadParentFramePointer(Node * node)2058 void InstructionSelector::VisitLoadParentFramePointer(Node* node) {
2059 OperandGenerator g(this);
2060 Emit(kArchParentFramePointer, g.DefineAsRegister(node));
2061 }
2062
VisitFloat64Acos(Node * node)2063 void InstructionSelector::VisitFloat64Acos(Node* node) {
2064 VisitFloat64Ieee754Unop(node, kIeee754Float64Acos);
2065 }
2066
VisitFloat64Acosh(Node * node)2067 void InstructionSelector::VisitFloat64Acosh(Node* node) {
2068 VisitFloat64Ieee754Unop(node, kIeee754Float64Acosh);
2069 }
2070
VisitFloat64Asin(Node * node)2071 void InstructionSelector::VisitFloat64Asin(Node* node) {
2072 VisitFloat64Ieee754Unop(node, kIeee754Float64Asin);
2073 }
2074
VisitFloat64Asinh(Node * node)2075 void InstructionSelector::VisitFloat64Asinh(Node* node) {
2076 VisitFloat64Ieee754Unop(node, kIeee754Float64Asinh);
2077 }
2078
VisitFloat64Atan(Node * node)2079 void InstructionSelector::VisitFloat64Atan(Node* node) {
2080 VisitFloat64Ieee754Unop(node, kIeee754Float64Atan);
2081 }
2082
VisitFloat64Atanh(Node * node)2083 void InstructionSelector::VisitFloat64Atanh(Node* node) {
2084 VisitFloat64Ieee754Unop(node, kIeee754Float64Atanh);
2085 }
2086
VisitFloat64Atan2(Node * node)2087 void InstructionSelector::VisitFloat64Atan2(Node* node) {
2088 VisitFloat64Ieee754Binop(node, kIeee754Float64Atan2);
2089 }
2090
VisitFloat64Cbrt(Node * node)2091 void InstructionSelector::VisitFloat64Cbrt(Node* node) {
2092 VisitFloat64Ieee754Unop(node, kIeee754Float64Cbrt);
2093 }
2094
VisitFloat64Cos(Node * node)2095 void InstructionSelector::VisitFloat64Cos(Node* node) {
2096 VisitFloat64Ieee754Unop(node, kIeee754Float64Cos);
2097 }
2098
VisitFloat64Cosh(Node * node)2099 void InstructionSelector::VisitFloat64Cosh(Node* node) {
2100 VisitFloat64Ieee754Unop(node, kIeee754Float64Cosh);
2101 }
2102
VisitFloat64Exp(Node * node)2103 void InstructionSelector::VisitFloat64Exp(Node* node) {
2104 VisitFloat64Ieee754Unop(node, kIeee754Float64Exp);
2105 }
2106
VisitFloat64Expm1(Node * node)2107 void InstructionSelector::VisitFloat64Expm1(Node* node) {
2108 VisitFloat64Ieee754Unop(node, kIeee754Float64Expm1);
2109 }
2110
VisitFloat64Log(Node * node)2111 void InstructionSelector::VisitFloat64Log(Node* node) {
2112 VisitFloat64Ieee754Unop(node, kIeee754Float64Log);
2113 }
2114
VisitFloat64Log1p(Node * node)2115 void InstructionSelector::VisitFloat64Log1p(Node* node) {
2116 VisitFloat64Ieee754Unop(node, kIeee754Float64Log1p);
2117 }
2118
VisitFloat64Log2(Node * node)2119 void InstructionSelector::VisitFloat64Log2(Node* node) {
2120 VisitFloat64Ieee754Unop(node, kIeee754Float64Log2);
2121 }
2122
VisitFloat64Log10(Node * node)2123 void InstructionSelector::VisitFloat64Log10(Node* node) {
2124 VisitFloat64Ieee754Unop(node, kIeee754Float64Log10);
2125 }
2126
VisitFloat64Pow(Node * node)2127 void InstructionSelector::VisitFloat64Pow(Node* node) {
2128 VisitFloat64Ieee754Binop(node, kIeee754Float64Pow);
2129 }
2130
VisitFloat64Sin(Node * node)2131 void InstructionSelector::VisitFloat64Sin(Node* node) {
2132 VisitFloat64Ieee754Unop(node, kIeee754Float64Sin);
2133 }
2134
VisitFloat64Sinh(Node * node)2135 void InstructionSelector::VisitFloat64Sinh(Node* node) {
2136 VisitFloat64Ieee754Unop(node, kIeee754Float64Sinh);
2137 }
2138
VisitFloat64Tan(Node * node)2139 void InstructionSelector::VisitFloat64Tan(Node* node) {
2140 VisitFloat64Ieee754Unop(node, kIeee754Float64Tan);
2141 }
2142
VisitFloat64Tanh(Node * node)2143 void InstructionSelector::VisitFloat64Tanh(Node* node) {
2144 VisitFloat64Ieee754Unop(node, kIeee754Float64Tanh);
2145 }
2146
EmitTableSwitch(const SwitchInfo & sw,InstructionOperand & index_operand)2147 void InstructionSelector::EmitTableSwitch(const SwitchInfo& sw,
2148 InstructionOperand& index_operand) {
2149 OperandGenerator g(this);
2150 size_t input_count = 2 + sw.value_range();
2151 DCHECK_LE(sw.value_range(), std::numeric_limits<size_t>::max() - 2);
2152 auto* inputs = zone()->NewArray<InstructionOperand>(input_count);
2153 inputs[0] = index_operand;
2154 InstructionOperand default_operand = g.Label(sw.default_branch());
2155 std::fill(&inputs[1], &inputs[input_count], default_operand);
2156 for (const CaseInfo& c : sw.CasesUnsorted()) {
2157 size_t value = c.value - sw.min_value();
2158 DCHECK_LE(0u, value);
2159 DCHECK_LT(value + 2, input_count);
2160 inputs[value + 2] = g.Label(c.branch);
2161 }
2162 Emit(kArchTableSwitch, 0, nullptr, input_count, inputs, 0, nullptr);
2163 }
2164
2165
EmitLookupSwitch(const SwitchInfo & sw,InstructionOperand & value_operand)2166 void InstructionSelector::EmitLookupSwitch(const SwitchInfo& sw,
2167 InstructionOperand& value_operand) {
2168 OperandGenerator g(this);
2169 std::vector<CaseInfo> cases = sw.CasesSortedByOriginalOrder();
2170 size_t input_count = 2 + sw.case_count() * 2;
2171 DCHECK_LE(sw.case_count(), (std::numeric_limits<size_t>::max() - 2) / 2);
2172 auto* inputs = zone()->NewArray<InstructionOperand>(input_count);
2173 inputs[0] = value_operand;
2174 inputs[1] = g.Label(sw.default_branch());
2175 for (size_t index = 0; index < cases.size(); ++index) {
2176 const CaseInfo& c = cases[index];
2177 inputs[index * 2 + 2 + 0] = g.TempImmediate(c.value);
2178 inputs[index * 2 + 2 + 1] = g.Label(c.branch);
2179 }
2180 Emit(kArchLookupSwitch, 0, nullptr, input_count, inputs, 0, nullptr);
2181 }
2182
EmitBinarySearchSwitch(const SwitchInfo & sw,InstructionOperand & value_operand)2183 void InstructionSelector::EmitBinarySearchSwitch(
2184 const SwitchInfo& sw, InstructionOperand& value_operand) {
2185 OperandGenerator g(this);
2186 size_t input_count = 2 + sw.case_count() * 2;
2187 DCHECK_LE(sw.case_count(), (std::numeric_limits<size_t>::max() - 2) / 2);
2188 auto* inputs = zone()->NewArray<InstructionOperand>(input_count);
2189 inputs[0] = value_operand;
2190 inputs[1] = g.Label(sw.default_branch());
2191 std::vector<CaseInfo> cases = sw.CasesSortedByValue();
2192 std::stable_sort(cases.begin(), cases.end(),
2193 [](CaseInfo a, CaseInfo b) { return a.value < b.value; });
2194 for (size_t index = 0; index < cases.size(); ++index) {
2195 const CaseInfo& c = cases[index];
2196 inputs[index * 2 + 2 + 0] = g.TempImmediate(c.value);
2197 inputs[index * 2 + 2 + 1] = g.Label(c.branch);
2198 }
2199 Emit(kArchBinarySearchSwitch, 0, nullptr, input_count, inputs, 0, nullptr);
2200 }
2201
VisitBitcastTaggedToWord(Node * node)2202 void InstructionSelector::VisitBitcastTaggedToWord(Node* node) {
2203 EmitIdentity(node);
2204 }
2205
VisitBitcastWordToTagged(Node * node)2206 void InstructionSelector::VisitBitcastWordToTagged(Node* node) {
2207 OperandGenerator g(this);
2208 Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(node->InputAt(0)));
2209 }
2210
2211 // 32 bit targets do not implement the following instructions.
2212 #if V8_TARGET_ARCH_32_BIT
2213
VisitWord64And(Node * node)2214 void InstructionSelector::VisitWord64And(Node* node) { UNIMPLEMENTED(); }
2215
2216
VisitWord64Or(Node * node)2217 void InstructionSelector::VisitWord64Or(Node* node) { UNIMPLEMENTED(); }
2218
2219
VisitWord64Xor(Node * node)2220 void InstructionSelector::VisitWord64Xor(Node* node) { UNIMPLEMENTED(); }
2221
2222
VisitWord64Shl(Node * node)2223 void InstructionSelector::VisitWord64Shl(Node* node) { UNIMPLEMENTED(); }
2224
2225
VisitWord64Shr(Node * node)2226 void InstructionSelector::VisitWord64Shr(Node* node) { UNIMPLEMENTED(); }
2227
2228
VisitWord64Sar(Node * node)2229 void InstructionSelector::VisitWord64Sar(Node* node) { UNIMPLEMENTED(); }
2230
2231
VisitWord64Ror(Node * node)2232 void InstructionSelector::VisitWord64Ror(Node* node) { UNIMPLEMENTED(); }
2233
2234
VisitWord64Clz(Node * node)2235 void InstructionSelector::VisitWord64Clz(Node* node) { UNIMPLEMENTED(); }
2236
2237
VisitWord64Ctz(Node * node)2238 void InstructionSelector::VisitWord64Ctz(Node* node) { UNIMPLEMENTED(); }
2239
2240
VisitWord64ReverseBits(Node * node)2241 void InstructionSelector::VisitWord64ReverseBits(Node* node) {
2242 UNIMPLEMENTED();
2243 }
2244
2245
VisitWord64Popcnt(Node * node)2246 void InstructionSelector::VisitWord64Popcnt(Node* node) { UNIMPLEMENTED(); }
2247
2248
VisitWord64Equal(Node * node)2249 void InstructionSelector::VisitWord64Equal(Node* node) { UNIMPLEMENTED(); }
2250
2251
VisitInt64Add(Node * node)2252 void InstructionSelector::VisitInt64Add(Node* node) { UNIMPLEMENTED(); }
2253
2254
VisitInt64AddWithOverflow(Node * node)2255 void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
2256 UNIMPLEMENTED();
2257 }
2258
2259
VisitInt64Sub(Node * node)2260 void InstructionSelector::VisitInt64Sub(Node* node) { UNIMPLEMENTED(); }
2261
2262
VisitInt64SubWithOverflow(Node * node)2263 void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
2264 UNIMPLEMENTED();
2265 }
2266
VisitInt64Mul(Node * node)2267 void InstructionSelector::VisitInt64Mul(Node* node) { UNIMPLEMENTED(); }
2268
2269
VisitInt64Div(Node * node)2270 void InstructionSelector::VisitInt64Div(Node* node) { UNIMPLEMENTED(); }
2271
2272
VisitInt64LessThan(Node * node)2273 void InstructionSelector::VisitInt64LessThan(Node* node) { UNIMPLEMENTED(); }
2274
2275
VisitInt64LessThanOrEqual(Node * node)2276 void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
2277 UNIMPLEMENTED();
2278 }
2279
2280
VisitUint64Div(Node * node)2281 void InstructionSelector::VisitUint64Div(Node* node) { UNIMPLEMENTED(); }
2282
2283
VisitInt64Mod(Node * node)2284 void InstructionSelector::VisitInt64Mod(Node* node) { UNIMPLEMENTED(); }
2285
2286
VisitUint64LessThan(Node * node)2287 void InstructionSelector::VisitUint64LessThan(Node* node) { UNIMPLEMENTED(); }
2288
2289
VisitUint64LessThanOrEqual(Node * node)2290 void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
2291 UNIMPLEMENTED();
2292 }
2293
2294
VisitUint64Mod(Node * node)2295 void InstructionSelector::VisitUint64Mod(Node* node) { UNIMPLEMENTED(); }
2296
2297
VisitChangeInt32ToInt64(Node * node)2298 void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
2299 UNIMPLEMENTED();
2300 }
2301
2302
VisitChangeUint32ToUint64(Node * node)2303 void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
2304 UNIMPLEMENTED();
2305 }
2306
VisitChangeFloat64ToUint64(Node * node)2307 void InstructionSelector::VisitChangeFloat64ToUint64(Node* node) {
2308 UNIMPLEMENTED();
2309 }
2310
VisitTryTruncateFloat32ToInt64(Node * node)2311 void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
2312 UNIMPLEMENTED();
2313 }
2314
2315
VisitTryTruncateFloat64ToInt64(Node * node)2316 void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
2317 UNIMPLEMENTED();
2318 }
2319
2320
VisitTryTruncateFloat32ToUint64(Node * node)2321 void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
2322 UNIMPLEMENTED();
2323 }
2324
2325
VisitTryTruncateFloat64ToUint64(Node * node)2326 void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
2327 UNIMPLEMENTED();
2328 }
2329
2330
VisitTruncateInt64ToInt32(Node * node)2331 void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
2332 UNIMPLEMENTED();
2333 }
2334
2335
VisitRoundInt64ToFloat32(Node * node)2336 void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
2337 UNIMPLEMENTED();
2338 }
2339
2340
VisitRoundInt64ToFloat64(Node * node)2341 void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
2342 UNIMPLEMENTED();
2343 }
2344
2345
VisitRoundUint64ToFloat32(Node * node)2346 void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
2347 UNIMPLEMENTED();
2348 }
2349
2350
VisitRoundUint64ToFloat64(Node * node)2351 void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
2352 UNIMPLEMENTED();
2353 }
2354
VisitBitcastFloat64ToInt64(Node * node)2355 void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
2356 UNIMPLEMENTED();
2357 }
2358
2359
VisitBitcastInt64ToFloat64(Node * node)2360 void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
2361 UNIMPLEMENTED();
2362 }
2363
VisitSignExtendWord8ToInt64(Node * node)2364 void InstructionSelector::VisitSignExtendWord8ToInt64(Node* node) {
2365 UNIMPLEMENTED();
2366 }
2367
VisitSignExtendWord16ToInt64(Node * node)2368 void InstructionSelector::VisitSignExtendWord16ToInt64(Node* node) {
2369 UNIMPLEMENTED();
2370 }
2371
VisitSignExtendWord32ToInt64(Node * node)2372 void InstructionSelector::VisitSignExtendWord32ToInt64(Node* node) {
2373 UNIMPLEMENTED();
2374 }
2375 #endif // V8_TARGET_ARCH_32_BIT
2376
2377 // 64 bit targets do not implement the following instructions.
2378 #if V8_TARGET_ARCH_64_BIT
VisitInt32PairAdd(Node * node)2379 void InstructionSelector::VisitInt32PairAdd(Node* node) { UNIMPLEMENTED(); }
2380
VisitInt32PairSub(Node * node)2381 void InstructionSelector::VisitInt32PairSub(Node* node) { UNIMPLEMENTED(); }
2382
VisitInt32PairMul(Node * node)2383 void InstructionSelector::VisitInt32PairMul(Node* node) { UNIMPLEMENTED(); }
2384
VisitWord32PairShl(Node * node)2385 void InstructionSelector::VisitWord32PairShl(Node* node) { UNIMPLEMENTED(); }
2386
VisitWord32PairShr(Node * node)2387 void InstructionSelector::VisitWord32PairShr(Node* node) { UNIMPLEMENTED(); }
2388
VisitWord32PairSar(Node * node)2389 void InstructionSelector::VisitWord32PairSar(Node* node) { UNIMPLEMENTED(); }
2390 #endif // V8_TARGET_ARCH_64_BIT
2391
2392 #if !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM
VisitWord32AtomicPairLoad(Node * node)2393 void InstructionSelector::VisitWord32AtomicPairLoad(Node* node) {
2394 UNIMPLEMENTED();
2395 }
2396
VisitWord32AtomicPairStore(Node * node)2397 void InstructionSelector::VisitWord32AtomicPairStore(Node* node) {
2398 UNIMPLEMENTED();
2399 }
2400
VisitWord32AtomicPairAdd(Node * node)2401 void InstructionSelector::VisitWord32AtomicPairAdd(Node* node) {
2402 UNIMPLEMENTED();
2403 }
2404
VisitWord32AtomicPairSub(Node * node)2405 void InstructionSelector::VisitWord32AtomicPairSub(Node* node) {
2406 UNIMPLEMENTED();
2407 }
2408
VisitWord32AtomicPairAnd(Node * node)2409 void InstructionSelector::VisitWord32AtomicPairAnd(Node* node) {
2410 UNIMPLEMENTED();
2411 }
2412
VisitWord32AtomicPairOr(Node * node)2413 void InstructionSelector::VisitWord32AtomicPairOr(Node* node) {
2414 UNIMPLEMENTED();
2415 }
2416
VisitWord32AtomicPairXor(Node * node)2417 void InstructionSelector::VisitWord32AtomicPairXor(Node* node) {
2418 UNIMPLEMENTED();
2419 }
2420
VisitWord32AtomicPairExchange(Node * node)2421 void InstructionSelector::VisitWord32AtomicPairExchange(Node* node) {
2422 UNIMPLEMENTED();
2423 }
2424
VisitWord32AtomicPairCompareExchange(Node * node)2425 void InstructionSelector::VisitWord32AtomicPairCompareExchange(Node* node) {
2426 UNIMPLEMENTED();
2427 }
2428
VisitWord64AtomicNarrowAdd(Node * node)2429 void InstructionSelector::VisitWord64AtomicNarrowAdd(Node* node) {
2430 UNIMPLEMENTED();
2431 }
2432
VisitWord64AtomicNarrowSub(Node * node)2433 void InstructionSelector::VisitWord64AtomicNarrowSub(Node* node) {
2434 UNIMPLEMENTED();
2435 }
2436
VisitWord64AtomicNarrowAnd(Node * node)2437 void InstructionSelector::VisitWord64AtomicNarrowAnd(Node* node) {
2438 UNIMPLEMENTED();
2439 }
2440
VisitWord64AtomicNarrowOr(Node * node)2441 void InstructionSelector::VisitWord64AtomicNarrowOr(Node* node) {
2442 UNIMPLEMENTED();
2443 }
2444
VisitWord64AtomicNarrowXor(Node * node)2445 void InstructionSelector::VisitWord64AtomicNarrowXor(Node* node) {
2446 UNIMPLEMENTED();
2447 }
2448
VisitWord64AtomicNarrowExchange(Node * node)2449 void InstructionSelector::VisitWord64AtomicNarrowExchange(Node* node) {
2450 UNIMPLEMENTED();
2451 }
2452
VisitWord64AtomicNarrowCompareExchange(Node * node)2453 void InstructionSelector::VisitWord64AtomicNarrowCompareExchange(Node* node) {
2454 UNIMPLEMENTED();
2455 }
2456 #endif // !V8_TARGET_ARCH_IA32 && !V8_TARGET_ARCH_ARM
2457
2458 #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \
2459 !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32
VisitF32x4SConvertI32x4(Node * node)2460 void InstructionSelector::VisitF32x4SConvertI32x4(Node* node) {
2461 UNIMPLEMENTED();
2462 }
2463
VisitF32x4UConvertI32x4(Node * node)2464 void InstructionSelector::VisitF32x4UConvertI32x4(Node* node) {
2465 UNIMPLEMENTED();
2466 }
2467 #endif // !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS
2468 // && !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32
2469
2470 #if !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_ARM64
VisitWord64AtomicLoad(Node * node)2471 void InstructionSelector::VisitWord64AtomicLoad(Node* node) { UNIMPLEMENTED(); }
2472
VisitWord64AtomicStore(Node * node)2473 void InstructionSelector::VisitWord64AtomicStore(Node* node) {
2474 UNIMPLEMENTED();
2475 }
2476
VisitWord64AtomicAdd(Node * node)2477 void InstructionSelector::VisitWord64AtomicAdd(Node* node) { UNIMPLEMENTED(); }
2478
VisitWord64AtomicSub(Node * node)2479 void InstructionSelector::VisitWord64AtomicSub(Node* node) { UNIMPLEMENTED(); }
2480
VisitWord64AtomicAnd(Node * node)2481 void InstructionSelector::VisitWord64AtomicAnd(Node* node) { UNIMPLEMENTED(); }
2482
VisitWord64AtomicOr(Node * node)2483 void InstructionSelector::VisitWord64AtomicOr(Node* node) { UNIMPLEMENTED(); }
2484
VisitWord64AtomicXor(Node * node)2485 void InstructionSelector::VisitWord64AtomicXor(Node* node) { UNIMPLEMENTED(); }
2486
VisitWord64AtomicExchange(Node * node)2487 void InstructionSelector::VisitWord64AtomicExchange(Node* node) {
2488 UNIMPLEMENTED();
2489 }
2490
VisitWord64AtomicCompareExchange(Node * node)2491 void InstructionSelector::VisitWord64AtomicCompareExchange(Node* node) {
2492 UNIMPLEMENTED();
2493 }
2494 #endif // !V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_ARM64
2495
2496 #if !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS && \
2497 !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32
VisitI32x4SConvertF32x4(Node * node)2498 void InstructionSelector::VisitI32x4SConvertF32x4(Node* node) {
2499 UNIMPLEMENTED();
2500 }
2501
VisitI32x4UConvertF32x4(Node * node)2502 void InstructionSelector::VisitI32x4UConvertF32x4(Node* node) {
2503 UNIMPLEMENTED();
2504 }
2505
VisitI32x4SConvertI16x8Low(Node * node)2506 void InstructionSelector::VisitI32x4SConvertI16x8Low(Node* node) {
2507 UNIMPLEMENTED();
2508 }
2509
VisitI32x4SConvertI16x8High(Node * node)2510 void InstructionSelector::VisitI32x4SConvertI16x8High(Node* node) {
2511 UNIMPLEMENTED();
2512 }
2513
VisitI32x4UConvertI16x8Low(Node * node)2514 void InstructionSelector::VisitI32x4UConvertI16x8Low(Node* node) {
2515 UNIMPLEMENTED();
2516 }
2517
VisitI32x4UConvertI16x8High(Node * node)2518 void InstructionSelector::VisitI32x4UConvertI16x8High(Node* node) {
2519 UNIMPLEMENTED();
2520 }
2521
VisitI16x8SConvertI8x16Low(Node * node)2522 void InstructionSelector::VisitI16x8SConvertI8x16Low(Node* node) {
2523 UNIMPLEMENTED();
2524 }
2525
VisitI16x8SConvertI8x16High(Node * node)2526 void InstructionSelector::VisitI16x8SConvertI8x16High(Node* node) {
2527 UNIMPLEMENTED();
2528 }
2529
VisitI16x8UConvertI8x16Low(Node * node)2530 void InstructionSelector::VisitI16x8UConvertI8x16Low(Node* node) {
2531 UNIMPLEMENTED();
2532 }
2533
VisitI16x8UConvertI8x16High(Node * node)2534 void InstructionSelector::VisitI16x8UConvertI8x16High(Node* node) {
2535 UNIMPLEMENTED();
2536 }
2537
VisitI16x8SConvertI32x4(Node * node)2538 void InstructionSelector::VisitI16x8SConvertI32x4(Node* node) {
2539 UNIMPLEMENTED();
2540 }
VisitI16x8UConvertI32x4(Node * node)2541 void InstructionSelector::VisitI16x8UConvertI32x4(Node* node) {
2542 UNIMPLEMENTED();
2543 }
2544
VisitI8x16SConvertI16x8(Node * node)2545 void InstructionSelector::VisitI8x16SConvertI16x8(Node* node) {
2546 UNIMPLEMENTED();
2547 }
2548
VisitI8x16UConvertI16x8(Node * node)2549 void InstructionSelector::VisitI8x16UConvertI16x8(Node* node) {
2550 UNIMPLEMENTED();
2551 }
2552
VisitI8x16Shl(Node * node)2553 void InstructionSelector::VisitI8x16Shl(Node* node) { UNIMPLEMENTED(); }
2554
VisitI8x16ShrS(Node * node)2555 void InstructionSelector::VisitI8x16ShrS(Node* node) { UNIMPLEMENTED(); }
2556
VisitI8x16ShrU(Node * node)2557 void InstructionSelector::VisitI8x16ShrU(Node* node) { UNIMPLEMENTED(); }
2558
VisitI8x16Mul(Node * node)2559 void InstructionSelector::VisitI8x16Mul(Node* node) { UNIMPLEMENTED(); }
2560
VisitS8x16Shuffle(Node * node)2561 void InstructionSelector::VisitS8x16Shuffle(Node* node) { UNIMPLEMENTED(); }
2562
VisitS1x4AnyTrue(Node * node)2563 void InstructionSelector::VisitS1x4AnyTrue(Node* node) { UNIMPLEMENTED(); }
2564
VisitS1x4AllTrue(Node * node)2565 void InstructionSelector::VisitS1x4AllTrue(Node* node) { UNIMPLEMENTED(); }
2566
VisitS1x8AnyTrue(Node * node)2567 void InstructionSelector::VisitS1x8AnyTrue(Node* node) { UNIMPLEMENTED(); }
2568
VisitS1x8AllTrue(Node * node)2569 void InstructionSelector::VisitS1x8AllTrue(Node* node) { UNIMPLEMENTED(); }
2570
VisitS1x16AnyTrue(Node * node)2571 void InstructionSelector::VisitS1x16AnyTrue(Node* node) { UNIMPLEMENTED(); }
2572
VisitS1x16AllTrue(Node * node)2573 void InstructionSelector::VisitS1x16AllTrue(Node* node) { UNIMPLEMENTED(); }
2574 #endif // !V8_TARGET_ARCH_ARM && !V8_TARGET_ARCH_ARM64 && !V8_TARGET_ARCH_MIPS
2575 // && !V8_TARGET_ARCH_MIPS64 && !V8_TARGET_ARCH_IA32
2576
VisitFinishRegion(Node * node)2577 void InstructionSelector::VisitFinishRegion(Node* node) { EmitIdentity(node); }
2578
VisitParameter(Node * node)2579 void InstructionSelector::VisitParameter(Node* node) {
2580 OperandGenerator g(this);
2581 int index = ParameterIndexOf(node->op());
2582 InstructionOperand op =
2583 linkage()->ParameterHasSecondaryLocation(index)
2584 ? g.DefineAsDualLocation(
2585 node, linkage()->GetParameterLocation(index),
2586 linkage()->GetParameterSecondaryLocation(index))
2587 : g.DefineAsLocation(node, linkage()->GetParameterLocation(index));
2588
2589 Emit(kArchNop, op);
2590 }
2591
2592 namespace {
ExceptionLocation()2593 LinkageLocation ExceptionLocation() {
2594 return LinkageLocation::ForRegister(kReturnRegister0.code(),
2595 MachineType::IntPtr());
2596 }
2597 }
2598
VisitIfException(Node * node)2599 void InstructionSelector::VisitIfException(Node* node) {
2600 OperandGenerator g(this);
2601 DCHECK_EQ(IrOpcode::kCall, node->InputAt(1)->opcode());
2602 Emit(kArchNop, g.DefineAsLocation(node, ExceptionLocation()));
2603 }
2604
2605
VisitOsrValue(Node * node)2606 void InstructionSelector::VisitOsrValue(Node* node) {
2607 OperandGenerator g(this);
2608 int index = OsrValueIndexOf(node->op());
2609 Emit(kArchNop,
2610 g.DefineAsLocation(node, linkage()->GetOsrValueLocation(index)));
2611 }
2612
2613
VisitPhi(Node * node)2614 void InstructionSelector::VisitPhi(Node* node) {
2615 const int input_count = node->op()->ValueInputCount();
2616 DCHECK_EQ(input_count, current_block_->PredecessorCount());
2617 PhiInstruction* phi = new (instruction_zone())
2618 PhiInstruction(instruction_zone(), GetVirtualRegister(node),
2619 static_cast<size_t>(input_count));
2620 sequence()
2621 ->InstructionBlockAt(RpoNumber::FromInt(current_block_->rpo_number()))
2622 ->AddPhi(phi);
2623 for (int i = 0; i < input_count; ++i) {
2624 Node* const input = node->InputAt(i);
2625 MarkAsUsed(input);
2626 phi->SetInput(static_cast<size_t>(i), GetVirtualRegister(input));
2627 }
2628 }
2629
2630
VisitProjection(Node * node)2631 void InstructionSelector::VisitProjection(Node* node) {
2632 OperandGenerator g(this);
2633 Node* value = node->InputAt(0);
2634 switch (value->opcode()) {
2635 case IrOpcode::kInt32AddWithOverflow:
2636 case IrOpcode::kInt32SubWithOverflow:
2637 case IrOpcode::kInt32MulWithOverflow:
2638 case IrOpcode::kInt64AddWithOverflow:
2639 case IrOpcode::kInt64SubWithOverflow:
2640 case IrOpcode::kTryTruncateFloat32ToInt64:
2641 case IrOpcode::kTryTruncateFloat64ToInt64:
2642 case IrOpcode::kTryTruncateFloat32ToUint64:
2643 case IrOpcode::kTryTruncateFloat64ToUint64:
2644 case IrOpcode::kInt32PairAdd:
2645 case IrOpcode::kInt32PairSub:
2646 case IrOpcode::kInt32PairMul:
2647 case IrOpcode::kWord32PairShl:
2648 case IrOpcode::kWord32PairShr:
2649 case IrOpcode::kWord32PairSar:
2650 case IrOpcode::kInt32AbsWithOverflow:
2651 case IrOpcode::kInt64AbsWithOverflow:
2652 if (ProjectionIndexOf(node->op()) == 0u) {
2653 Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
2654 } else {
2655 DCHECK_EQ(1u, ProjectionIndexOf(node->op()));
2656 MarkAsUsed(value);
2657 }
2658 break;
2659 default:
2660 break;
2661 }
2662 }
2663
2664
VisitConstant(Node * node)2665 void InstructionSelector::VisitConstant(Node* node) {
2666 // We must emit a NOP here because every live range needs a defining
2667 // instruction in the register allocator.
2668 OperandGenerator g(this);
2669 Emit(kArchNop, g.DefineAsConstant(node));
2670 }
2671
2672
VisitCall(Node * node,BasicBlock * handler)2673 void InstructionSelector::VisitCall(Node* node, BasicBlock* handler) {
2674 OperandGenerator g(this);
2675 auto call_descriptor = CallDescriptorOf(node->op());
2676
2677 FrameStateDescriptor* frame_state_descriptor = nullptr;
2678 if (call_descriptor->NeedsFrameState()) {
2679 frame_state_descriptor = GetFrameStateDescriptor(
2680 node->InputAt(static_cast<int>(call_descriptor->InputCount())));
2681 }
2682
2683 CallBuffer buffer(zone(), call_descriptor, frame_state_descriptor);
2684
2685 // Compute InstructionOperands for inputs and outputs.
2686 // TODO(turbofan): on some architectures it's probably better to use
2687 // the code object in a register if there are multiple uses of it.
2688 // Improve constant pool and the heuristics in the register allocator
2689 // for where to emit constants.
2690 CallBufferFlags call_buffer_flags(kCallCodeImmediate | kCallAddressImmediate);
2691 InitializeCallBuffer(node, &buffer, call_buffer_flags, false);
2692
2693 EmitPrepareArguments(&(buffer.pushed_nodes), call_descriptor, node);
2694
2695 // Pass label of exception handler block.
2696 CallDescriptor::Flags flags = call_descriptor->flags();
2697 if (handler) {
2698 DCHECK_EQ(IrOpcode::kIfException, handler->front()->opcode());
2699 flags |= CallDescriptor::kHasExceptionHandler;
2700 buffer.instruction_args.push_back(g.Label(handler));
2701 }
2702
2703 // Select the appropriate opcode based on the call type.
2704 InstructionCode opcode = kArchNop;
2705 switch (call_descriptor->kind()) {
2706 case CallDescriptor::kCallAddress:
2707 opcode = kArchCallCFunction | MiscField::encode(static_cast<int>(
2708 call_descriptor->ParameterCount()));
2709 break;
2710 case CallDescriptor::kCallCodeObject:
2711 opcode = kArchCallCodeObject | MiscField::encode(flags);
2712 break;
2713 case CallDescriptor::kCallJSFunction:
2714 opcode = kArchCallJSFunction | MiscField::encode(flags);
2715 break;
2716 case CallDescriptor::kCallWasmFunction:
2717 opcode = kArchCallWasmFunction | MiscField::encode(flags);
2718 break;
2719 }
2720
2721 // Emit the call instruction.
2722 size_t const output_count = buffer.outputs.size();
2723 auto* outputs = output_count ? &buffer.outputs.front() : nullptr;
2724 Instruction* call_instr =
2725 Emit(opcode, output_count, outputs, buffer.instruction_args.size(),
2726 &buffer.instruction_args.front());
2727 if (instruction_selection_failed()) return;
2728 call_instr->MarkAsCall();
2729
2730 EmitPrepareResults(&(buffer.output_nodes), call_descriptor, node);
2731 }
2732
VisitCallWithCallerSavedRegisters(Node * node,BasicBlock * handler)2733 void InstructionSelector::VisitCallWithCallerSavedRegisters(
2734 Node* node, BasicBlock* handler) {
2735 OperandGenerator g(this);
2736 const auto fp_mode = CallDescriptorOf(node->op())->get_save_fp_mode();
2737 Emit(kArchSaveCallerRegisters | MiscField::encode(static_cast<int>(fp_mode)),
2738 g.NoOutput());
2739 VisitCall(node, handler);
2740 Emit(kArchRestoreCallerRegisters |
2741 MiscField::encode(static_cast<int>(fp_mode)),
2742 g.NoOutput());
2743 }
2744
VisitTailCall(Node * node)2745 void InstructionSelector::VisitTailCall(Node* node) {
2746 OperandGenerator g(this);
2747 auto call_descriptor = CallDescriptorOf(node->op());
2748
2749 CallDescriptor* caller = linkage()->GetIncomingDescriptor();
2750 DCHECK(caller->CanTailCall(node));
2751 const CallDescriptor* callee = CallDescriptorOf(node->op());
2752 int stack_param_delta = callee->GetStackParameterDelta(caller);
2753 CallBuffer buffer(zone(), call_descriptor, nullptr);
2754
2755 // Compute InstructionOperands for inputs and outputs.
2756 CallBufferFlags flags(kCallCodeImmediate | kCallTail);
2757 if (IsTailCallAddressImmediate()) {
2758 flags |= kCallAddressImmediate;
2759 }
2760 if (callee->flags() & CallDescriptor::kFixedTargetRegister) {
2761 flags |= kCallFixedTargetRegister;
2762 }
2763 InitializeCallBuffer(node, &buffer, flags, true, stack_param_delta);
2764
2765 // Select the appropriate opcode based on the call type.
2766 InstructionCode opcode;
2767 InstructionOperandVector temps(zone());
2768 if (linkage()->GetIncomingDescriptor()->IsJSFunctionCall()) {
2769 switch (call_descriptor->kind()) {
2770 case CallDescriptor::kCallCodeObject:
2771 opcode = kArchTailCallCodeObjectFromJSFunction;
2772 break;
2773 default:
2774 UNREACHABLE();
2775 return;
2776 }
2777 int temps_count = GetTempsCountForTailCallFromJSFunction();
2778 for (int i = 0; i < temps_count; i++) {
2779 temps.push_back(g.TempRegister());
2780 }
2781 } else {
2782 switch (call_descriptor->kind()) {
2783 case CallDescriptor::kCallCodeObject:
2784 opcode = kArchTailCallCodeObject;
2785 break;
2786 case CallDescriptor::kCallAddress:
2787 opcode = kArchTailCallAddress;
2788 break;
2789 case CallDescriptor::kCallWasmFunction:
2790 opcode = kArchTailCallWasm;
2791 break;
2792 default:
2793 UNREACHABLE();
2794 return;
2795 }
2796 }
2797 opcode |= MiscField::encode(call_descriptor->flags());
2798
2799 Emit(kArchPrepareTailCall, g.NoOutput());
2800
2801 // Add an immediate operand that represents the first slot that is unused
2802 // with respect to the stack pointer that has been updated for the tail call
2803 // instruction. This is used by backends that need to pad arguments for stack
2804 // alignment, in order to store an optional slot of padding above the
2805 // arguments.
2806 int optional_padding_slot = callee->GetFirstUnusedStackSlot();
2807 buffer.instruction_args.push_back(g.TempImmediate(optional_padding_slot));
2808
2809 int first_unused_stack_slot =
2810 (V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK ? 1 : 0) +
2811 stack_param_delta;
2812 buffer.instruction_args.push_back(g.TempImmediate(first_unused_stack_slot));
2813
2814 // Emit the tailcall instruction.
2815 Emit(opcode, 0, nullptr, buffer.instruction_args.size(),
2816 &buffer.instruction_args.front(), temps.size(),
2817 temps.empty() ? nullptr : &temps.front());
2818 }
2819
2820
VisitGoto(BasicBlock * target)2821 void InstructionSelector::VisitGoto(BasicBlock* target) {
2822 // jump to the next block.
2823 OperandGenerator g(this);
2824 Emit(kArchJmp, g.NoOutput(), g.Label(target));
2825 }
2826
VisitReturn(Node * ret)2827 void InstructionSelector::VisitReturn(Node* ret) {
2828 OperandGenerator g(this);
2829 const int input_count = linkage()->GetIncomingDescriptor()->ReturnCount() == 0
2830 ? 1
2831 : ret->op()->ValueInputCount();
2832 DCHECK_GE(input_count, 1);
2833 auto value_locations = zone()->NewArray<InstructionOperand>(input_count);
2834 Node* pop_count = ret->InputAt(0);
2835 value_locations[0] = (pop_count->opcode() == IrOpcode::kInt32Constant ||
2836 pop_count->opcode() == IrOpcode::kInt64Constant)
2837 ? g.UseImmediate(pop_count)
2838 : g.UseRegister(pop_count);
2839 for (int i = 1; i < input_count; ++i) {
2840 value_locations[i] =
2841 g.UseLocation(ret->InputAt(i), linkage()->GetReturnLocation(i - 1));
2842 }
2843 Emit(kArchRet, 0, nullptr, input_count, value_locations);
2844 }
2845
VisitBranch(Node * branch,BasicBlock * tbranch,BasicBlock * fbranch)2846 void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
2847 BasicBlock* fbranch) {
2848 if (NeedsPoisoning(IsSafetyCheckOf(branch->op()))) {
2849 FlagsContinuation cont =
2850 FlagsContinuation::ForBranchAndPoison(kNotEqual, tbranch, fbranch);
2851 VisitWordCompareZero(branch, branch->InputAt(0), &cont);
2852 } else {
2853 FlagsContinuation cont =
2854 FlagsContinuation::ForBranch(kNotEqual, tbranch, fbranch);
2855 VisitWordCompareZero(branch, branch->InputAt(0), &cont);
2856 }
2857 }
2858
VisitDeoptimizeIf(Node * node)2859 void InstructionSelector::VisitDeoptimizeIf(Node* node) {
2860 DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
2861 if (NeedsPoisoning(p.is_safety_check())) {
2862 FlagsContinuation cont = FlagsContinuation::ForDeoptimizeAndPoison(
2863 kNotEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
2864 VisitWordCompareZero(node, node->InputAt(0), &cont);
2865 } else {
2866 FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
2867 kNotEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
2868 VisitWordCompareZero(node, node->InputAt(0), &cont);
2869 }
2870 }
2871
VisitDeoptimizeUnless(Node * node)2872 void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
2873 DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
2874 if (NeedsPoisoning(p.is_safety_check())) {
2875 FlagsContinuation cont = FlagsContinuation::ForDeoptimizeAndPoison(
2876 kEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
2877 VisitWordCompareZero(node, node->InputAt(0), &cont);
2878 } else {
2879 FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
2880 kEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
2881 VisitWordCompareZero(node, node->InputAt(0), &cont);
2882 }
2883 }
2884
VisitTrapIf(Node * node,TrapId trap_id)2885 void InstructionSelector::VisitTrapIf(Node* node, TrapId trap_id) {
2886 FlagsContinuation cont =
2887 FlagsContinuation::ForTrap(kNotEqual, trap_id, node->InputAt(1));
2888 VisitWordCompareZero(node, node->InputAt(0), &cont);
2889 }
2890
VisitTrapUnless(Node * node,TrapId trap_id)2891 void InstructionSelector::VisitTrapUnless(Node* node, TrapId trap_id) {
2892 FlagsContinuation cont =
2893 FlagsContinuation::ForTrap(kEqual, trap_id, node->InputAt(1));
2894 VisitWordCompareZero(node, node->InputAt(0), &cont);
2895 }
2896
EmitIdentity(Node * node)2897 void InstructionSelector::EmitIdentity(Node* node) {
2898 OperandGenerator g(this);
2899 MarkAsUsed(node->InputAt(0));
2900 SetRename(node, node->InputAt(0));
2901 }
2902
VisitDeoptimize(DeoptimizeKind kind,DeoptimizeReason reason,VectorSlotPair const & feedback,Node * value)2903 void InstructionSelector::VisitDeoptimize(DeoptimizeKind kind,
2904 DeoptimizeReason reason,
2905 VectorSlotPair const& feedback,
2906 Node* value) {
2907 EmitDeoptimize(kArchDeoptimize, 0, nullptr, 0, nullptr, kind, reason,
2908 feedback, value);
2909 }
2910
VisitThrow(Node * node)2911 void InstructionSelector::VisitThrow(Node* node) {
2912 OperandGenerator g(this);
2913 Emit(kArchThrowTerminator, g.NoOutput());
2914 }
2915
VisitDebugBreak(Node * node)2916 void InstructionSelector::VisitDebugBreak(Node* node) {
2917 OperandGenerator g(this);
2918 Emit(kArchDebugBreak, g.NoOutput());
2919 }
2920
VisitUnreachable(Node * node)2921 void InstructionSelector::VisitUnreachable(Node* node) {
2922 OperandGenerator g(this);
2923 Emit(kArchDebugBreak, g.NoOutput());
2924 }
2925
VisitDeadValue(Node * node)2926 void InstructionSelector::VisitDeadValue(Node* node) {
2927 OperandGenerator g(this);
2928 MarkAsRepresentation(DeadValueRepresentationOf(node->op()), node);
2929 Emit(kArchDebugBreak, g.DefineAsConstant(node));
2930 }
2931
VisitComment(Node * node)2932 void InstructionSelector::VisitComment(Node* node) {
2933 OperandGenerator g(this);
2934 InstructionOperand operand(g.UseImmediate(node));
2935 Emit(kArchComment, 0, nullptr, 1, &operand);
2936 }
2937
VisitUnsafePointerAdd(Node * node)2938 void InstructionSelector::VisitUnsafePointerAdd(Node* node) {
2939 #if V8_TARGET_ARCH_64_BIT
2940 VisitInt64Add(node);
2941 #else // V8_TARGET_ARCH_64_BIT
2942 VisitInt32Add(node);
2943 #endif // V8_TARGET_ARCH_64_BIT
2944 }
2945
VisitRetain(Node * node)2946 void InstructionSelector::VisitRetain(Node* node) {
2947 OperandGenerator g(this);
2948 Emit(kArchNop, g.NoOutput(), g.UseAny(node->InputAt(0)));
2949 }
2950
CanProduceSignalingNaN(Node * node)2951 bool InstructionSelector::CanProduceSignalingNaN(Node* node) {
2952 // TODO(jarin) Improve the heuristic here.
2953 if (node->opcode() == IrOpcode::kFloat64Add ||
2954 node->opcode() == IrOpcode::kFloat64Sub ||
2955 node->opcode() == IrOpcode::kFloat64Mul) {
2956 return false;
2957 }
2958 return true;
2959 }
2960
GetFrameStateDescriptor(Node * state)2961 FrameStateDescriptor* InstructionSelector::GetFrameStateDescriptor(
2962 Node* state) {
2963 DCHECK_EQ(IrOpcode::kFrameState, state->opcode());
2964 DCHECK_EQ(kFrameStateInputCount, state->InputCount());
2965 FrameStateInfo state_info = FrameStateInfoOf(state->op());
2966
2967 int parameters = static_cast<int>(
2968 StateValuesAccess(state->InputAt(kFrameStateParametersInput)).size());
2969 int locals = static_cast<int>(
2970 StateValuesAccess(state->InputAt(kFrameStateLocalsInput)).size());
2971 int stack = static_cast<int>(
2972 StateValuesAccess(state->InputAt(kFrameStateStackInput)).size());
2973
2974 DCHECK_EQ(parameters, state_info.parameter_count());
2975 DCHECK_EQ(locals, state_info.local_count());
2976
2977 FrameStateDescriptor* outer_state = nullptr;
2978 Node* outer_node = state->InputAt(kFrameStateOuterStateInput);
2979 if (outer_node->opcode() == IrOpcode::kFrameState) {
2980 outer_state = GetFrameStateDescriptor(outer_node);
2981 }
2982
2983 return new (instruction_zone()) FrameStateDescriptor(
2984 instruction_zone(), state_info.type(), state_info.bailout_id(),
2985 state_info.state_combine(), parameters, locals, stack,
2986 state_info.shared_info(), outer_state);
2987 }
2988
2989 // static
CanonicalizeShuffle(bool inputs_equal,uint8_t * shuffle,bool * needs_swap,bool * is_swizzle)2990 void InstructionSelector::CanonicalizeShuffle(bool inputs_equal,
2991 uint8_t* shuffle,
2992 bool* needs_swap,
2993 bool* is_swizzle) {
2994 *needs_swap = false;
2995 // Inputs equal, then it's a swizzle.
2996 if (inputs_equal) {
2997 *is_swizzle = true;
2998 } else {
2999 // Inputs are distinct; check that both are required.
3000 bool src0_is_used = false;
3001 bool src1_is_used = false;
3002 for (int i = 0; i < kSimd128Size; ++i) {
3003 if (shuffle[i] < kSimd128Size) {
3004 src0_is_used = true;
3005 } else {
3006 src1_is_used = true;
3007 }
3008 }
3009 if (src0_is_used && !src1_is_used) {
3010 *is_swizzle = true;
3011 } else if (src1_is_used && !src0_is_used) {
3012 *needs_swap = true;
3013 *is_swizzle = true;
3014 } else {
3015 *is_swizzle = false;
3016 // Canonicalize general 2 input shuffles so that the first input lanes are
3017 // encountered first. This makes architectural shuffle pattern matching
3018 // easier, since we only need to consider 1 input ordering instead of 2.
3019 if (shuffle[0] >= kSimd128Size) {
3020 // The second operand is used first. Swap inputs and adjust the shuffle.
3021 *needs_swap = true;
3022 for (int i = 0; i < kSimd128Size; ++i) {
3023 shuffle[i] ^= kSimd128Size;
3024 }
3025 }
3026 }
3027 }
3028 if (*is_swizzle) {
3029 for (int i = 0; i < kSimd128Size; ++i) shuffle[i] &= kSimd128Size - 1;
3030 }
3031 }
3032
CanonicalizeShuffle(Node * node,uint8_t * shuffle,bool * is_swizzle)3033 void InstructionSelector::CanonicalizeShuffle(Node* node, uint8_t* shuffle,
3034 bool* is_swizzle) {
3035 // Get raw shuffle indices.
3036 memcpy(shuffle, OpParameter<uint8_t*>(node->op()), kSimd128Size);
3037 bool needs_swap;
3038 bool inputs_equal = GetVirtualRegister(node->InputAt(0)) ==
3039 GetVirtualRegister(node->InputAt(1));
3040 CanonicalizeShuffle(inputs_equal, shuffle, &needs_swap, is_swizzle);
3041 if (needs_swap) {
3042 SwapShuffleInputs(node);
3043 }
3044 // Duplicate the first input; for some shuffles on some architectures, it's
3045 // easiest to implement a swizzle as a shuffle so it might be used.
3046 if (*is_swizzle) {
3047 node->ReplaceInput(1, node->InputAt(0));
3048 }
3049 }
3050
3051 // static
SwapShuffleInputs(Node * node)3052 void InstructionSelector::SwapShuffleInputs(Node* node) {
3053 Node* input0 = node->InputAt(0);
3054 Node* input1 = node->InputAt(1);
3055 node->ReplaceInput(0, input1);
3056 node->ReplaceInput(1, input0);
3057 }
3058
3059 // static
TryMatchIdentity(const uint8_t * shuffle)3060 bool InstructionSelector::TryMatchIdentity(const uint8_t* shuffle) {
3061 for (int i = 0; i < kSimd128Size; ++i) {
3062 if (shuffle[i] != i) return false;
3063 }
3064 return true;
3065 }
3066
3067 // static
TryMatch32x4Shuffle(const uint8_t * shuffle,uint8_t * shuffle32x4)3068 bool InstructionSelector::TryMatch32x4Shuffle(const uint8_t* shuffle,
3069 uint8_t* shuffle32x4) {
3070 for (int i = 0; i < 4; ++i) {
3071 if (shuffle[i * 4] % 4 != 0) return false;
3072 for (int j = 1; j < 4; ++j) {
3073 if (shuffle[i * 4 + j] - shuffle[i * 4 + j - 1] != 1) return false;
3074 }
3075 shuffle32x4[i] = shuffle[i * 4] / 4;
3076 }
3077 return true;
3078 }
3079
3080 // static
TryMatch16x8Shuffle(const uint8_t * shuffle,uint8_t * shuffle16x8)3081 bool InstructionSelector::TryMatch16x8Shuffle(const uint8_t* shuffle,
3082 uint8_t* shuffle16x8) {
3083 for (int i = 0; i < 8; ++i) {
3084 if (shuffle[i * 2] % 2 != 0) return false;
3085 for (int j = 1; j < 2; ++j) {
3086 if (shuffle[i * 2 + j] - shuffle[i * 2 + j - 1] != 1) return false;
3087 }
3088 shuffle16x8[i] = shuffle[i * 2] / 2;
3089 }
3090 return true;
3091 }
3092
3093 // static
TryMatchConcat(const uint8_t * shuffle,uint8_t * offset)3094 bool InstructionSelector::TryMatchConcat(const uint8_t* shuffle,
3095 uint8_t* offset) {
3096 // Don't match the identity shuffle (e.g. [0 1 2 ... 15]).
3097 uint8_t start = shuffle[0];
3098 if (start == 0) return false;
3099 DCHECK_GT(kSimd128Size, start); // The shuffle should be canonicalized.
3100 // A concatenation is a series of consecutive indices, with at most one jump
3101 // in the middle from the last lane to the first.
3102 for (int i = 1; i < kSimd128Size; ++i) {
3103 if ((shuffle[i]) != ((shuffle[i - 1] + 1))) {
3104 if (shuffle[i - 1] != 15) return false;
3105 if (shuffle[i] % kSimd128Size != 0) return false;
3106 }
3107 }
3108 *offset = start;
3109 return true;
3110 }
3111
3112 // static
TryMatchBlend(const uint8_t * shuffle)3113 bool InstructionSelector::TryMatchBlend(const uint8_t* shuffle) {
3114 for (int i = 0; i < 16; ++i) {
3115 if ((shuffle[i] & 0xF) != i) return false;
3116 }
3117 return true;
3118 }
3119
3120 // static
Pack4Lanes(const uint8_t * shuffle)3121 int32_t InstructionSelector::Pack4Lanes(const uint8_t* shuffle) {
3122 int32_t result = 0;
3123 for (int i = 3; i >= 0; --i) {
3124 result <<= 8;
3125 result |= shuffle[i];
3126 }
3127 return result;
3128 }
3129
NeedsPoisoning(IsSafetyCheck safety_check) const3130 bool InstructionSelector::NeedsPoisoning(IsSafetyCheck safety_check) const {
3131 switch (poisoning_level_) {
3132 case PoisoningMitigationLevel::kDontPoison:
3133 return false;
3134 case PoisoningMitigationLevel::kPoisonAll:
3135 return safety_check != IsSafetyCheck::kNoSafetyCheck;
3136 case PoisoningMitigationLevel::kPoisonCriticalOnly:
3137 return safety_check == IsSafetyCheck::kCriticalSafetyCheck;
3138 }
3139 UNREACHABLE();
3140 }
3141
3142 } // namespace compiler
3143 } // namespace internal
3144 } // namespace v8
3145