• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines ExprEngine's support for C expressions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ExprCXX.h"
15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
17 
18 using namespace clang;
19 using namespace ento;
20 using llvm::APSInt;
21 
VisitBinaryOperator(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
23                                      ExplodedNode *Pred,
24                                      ExplodedNodeSet &Dst) {
25 
26   Expr *LHS = B->getLHS()->IgnoreParens();
27   Expr *RHS = B->getRHS()->IgnoreParens();
28 
29   // FIXME: Prechecks eventually go in ::Visit().
30   ExplodedNodeSet CheckedSet;
31   ExplodedNodeSet Tmp2;
32   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
33 
34   // With both the LHS and RHS evaluated, process the operation itself.
35   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
36          it != ei; ++it) {
37 
38     ProgramStateRef state = (*it)->getState();
39     const LocationContext *LCtx = (*it)->getLocationContext();
40     SVal LeftV = state->getSVal(LHS, LCtx);
41     SVal RightV = state->getSVal(RHS, LCtx);
42 
43     BinaryOperator::Opcode Op = B->getOpcode();
44 
45     if (Op == BO_Assign) {
46       // EXPERIMENTAL: "Conjured" symbols.
47       // FIXME: Handle structs.
48       if (RightV.isUnknown()) {
49         unsigned Count = currBldrCtx->blockCount();
50         RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
51                                               Count);
52       }
53       // Simulate the effects of a "store":  bind the value of the RHS
54       // to the L-Value represented by the LHS.
55       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
56       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
57                 LeftV, RightV);
58       continue;
59     }
60 
61     if (!B->isAssignmentOp()) {
62       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
63 
64       if (B->isAdditiveOp()) {
65         // If one of the operands is a location, conjure a symbol for the other
66         // one (offset) if it's unknown so that memory arithmetic always
67         // results in an ElementRegion.
68         // TODO: This can be removed after we enable history tracking with
69         // SymSymExpr.
70         unsigned Count = currBldrCtx->blockCount();
71         if (LeftV.getAs<Loc>() &&
72             RHS->getType()->isIntegralOrEnumerationType() &&
73             RightV.isUnknown()) {
74           RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
75                                                 Count);
76         }
77         if (RightV.getAs<Loc>() &&
78             LHS->getType()->isIntegralOrEnumerationType() &&
79             LeftV.isUnknown()) {
80           LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
81                                                Count);
82         }
83       }
84 
85       // Although we don't yet model pointers-to-members, we do need to make
86       // sure that the members of temporaries have a valid 'this' pointer for
87       // other checks.
88       if (B->getOpcode() == BO_PtrMemD)
89         state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
90 
91       // Process non-assignments except commas or short-circuited
92       // logical expressions (LAnd and LOr).
93       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
94       if (Result.isUnknown()) {
95         Bldr.generateNode(B, *it, state);
96         continue;
97       }
98 
99       state = state->BindExpr(B, LCtx, Result);
100       Bldr.generateNode(B, *it, state);
101       continue;
102     }
103 
104     assert (B->isCompoundAssignmentOp());
105 
106     switch (Op) {
107       default:
108         llvm_unreachable("Invalid opcode for compound assignment.");
109       case BO_MulAssign: Op = BO_Mul; break;
110       case BO_DivAssign: Op = BO_Div; break;
111       case BO_RemAssign: Op = BO_Rem; break;
112       case BO_AddAssign: Op = BO_Add; break;
113       case BO_SubAssign: Op = BO_Sub; break;
114       case BO_ShlAssign: Op = BO_Shl; break;
115       case BO_ShrAssign: Op = BO_Shr; break;
116       case BO_AndAssign: Op = BO_And; break;
117       case BO_XorAssign: Op = BO_Xor; break;
118       case BO_OrAssign:  Op = BO_Or;  break;
119     }
120 
121     // Perform a load (the LHS).  This performs the checks for
122     // null dereferences, and so on.
123     ExplodedNodeSet Tmp;
124     SVal location = LeftV;
125     evalLoad(Tmp, B, LHS, *it, state, location);
126 
127     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
128          ++I) {
129 
130       state = (*I)->getState();
131       const LocationContext *LCtx = (*I)->getLocationContext();
132       SVal V = state->getSVal(LHS, LCtx);
133 
134       // Get the computation type.
135       QualType CTy =
136         cast<CompoundAssignOperator>(B)->getComputationResultType();
137       CTy = getContext().getCanonicalType(CTy);
138 
139       QualType CLHSTy =
140         cast<CompoundAssignOperator>(B)->getComputationLHSType();
141       CLHSTy = getContext().getCanonicalType(CLHSTy);
142 
143       QualType LTy = getContext().getCanonicalType(LHS->getType());
144 
145       // Promote LHS.
146       V = svalBuilder.evalCast(V, CLHSTy, LTy);
147 
148       // Compute the result of the operation.
149       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
150                                          B->getType(), CTy);
151 
152       // EXPERIMENTAL: "Conjured" symbols.
153       // FIXME: Handle structs.
154 
155       SVal LHSVal;
156 
157       if (Result.isUnknown()) {
158         // The symbolic value is actually for the type of the left-hand side
159         // expression, not the computation type, as this is the value the
160         // LValue on the LHS will bind to.
161         LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
162                                               currBldrCtx->blockCount());
163         // However, we need to convert the symbol to the computation type.
164         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
165       }
166       else {
167         // The left-hand side may bind to a different value then the
168         // computation type.
169         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
170       }
171 
172       // In C++, assignment and compound assignment operators return an
173       // lvalue.
174       if (B->isGLValue())
175         state = state->BindExpr(B, LCtx, location);
176       else
177         state = state->BindExpr(B, LCtx, Result);
178 
179       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
180     }
181   }
182 
183   // FIXME: postvisits eventually go in ::Visit()
184   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
185 }
186 
VisitBlockExpr(const BlockExpr * BE,ExplodedNode * Pred,ExplodedNodeSet & Dst)187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
188                                 ExplodedNodeSet &Dst) {
189 
190   CanQualType T = getContext().getCanonicalType(BE->getType());
191 
192   const BlockDecl *BD = BE->getBlockDecl();
193   // Get the value of the block itself.
194   SVal V = svalBuilder.getBlockPointer(BD, T,
195                                        Pred->getLocationContext(),
196                                        currBldrCtx->blockCount());
197 
198   ProgramStateRef State = Pred->getState();
199 
200   // If we created a new MemRegion for the block, we should explicitly bind
201   // the captured variables.
202   if (const BlockDataRegion *BDR =
203       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
204 
205     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
206                                               E = BDR->referenced_vars_end();
207 
208     auto CI = BD->capture_begin();
209     auto CE = BD->capture_end();
210     for (; I != E; ++I) {
211       const VarRegion *capturedR = I.getCapturedRegion();
212       const VarRegion *originalR = I.getOriginalRegion();
213 
214       // If the capture had a copy expression, use the result of evaluating
215       // that expression, otherwise use the original value.
216       // We rely on the invariant that the block declaration's capture variables
217       // are a prefix of the BlockDataRegion's referenced vars (which may include
218       // referenced globals, etc.) to enable fast lookup of the capture for a
219       // given referenced var.
220       const Expr *copyExpr = nullptr;
221       if (CI != CE) {
222         assert(CI->getVariable() == capturedR->getDecl());
223         copyExpr = CI->getCopyExpr();
224         CI++;
225       }
226 
227       if (capturedR != originalR) {
228         SVal originalV;
229         if (copyExpr) {
230           originalV = State->getSVal(copyExpr, Pred->getLocationContext());
231         } else {
232           originalV = State->getSVal(loc::MemRegionVal(originalR));
233         }
234         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
235       }
236     }
237   }
238 
239   ExplodedNodeSet Tmp;
240   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
241   Bldr.generateNode(BE, Pred,
242                     State->BindExpr(BE, Pred->getLocationContext(), V),
243                     nullptr, ProgramPoint::PostLValueKind);
244 
245   // FIXME: Move all post/pre visits to ::Visit().
246   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
247 }
248 
VisitCast(const CastExpr * CastE,const Expr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)249 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
250                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
251 
252   ExplodedNodeSet dstPreStmt;
253   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
254 
255   if (CastE->getCastKind() == CK_LValueToRValue) {
256     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
257          I!=E; ++I) {
258       ExplodedNode *subExprNode = *I;
259       ProgramStateRef state = subExprNode->getState();
260       const LocationContext *LCtx = subExprNode->getLocationContext();
261       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
262     }
263     return;
264   }
265 
266   // All other casts.
267   QualType T = CastE->getType();
268   QualType ExTy = Ex->getType();
269 
270   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
271     T = ExCast->getTypeAsWritten();
272 
273   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
274   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
275        I != E; ++I) {
276 
277     Pred = *I;
278     ProgramStateRef state = Pred->getState();
279     const LocationContext *LCtx = Pred->getLocationContext();
280 
281     switch (CastE->getCastKind()) {
282       case CK_LValueToRValue:
283         llvm_unreachable("LValueToRValue casts handled earlier.");
284       case CK_ToVoid:
285         continue;
286         // The analyzer doesn't do anything special with these casts,
287         // since it understands retain/release semantics already.
288       case CK_ARCProduceObject:
289       case CK_ARCConsumeObject:
290       case CK_ARCReclaimReturnedObject:
291       case CK_ARCExtendBlockObject: // Fall-through.
292       case CK_CopyAndAutoreleaseBlockObject:
293         // The analyser can ignore atomic casts for now, although some future
294         // checkers may want to make certain that you're not modifying the same
295         // value through atomic and nonatomic pointers.
296       case CK_AtomicToNonAtomic:
297       case CK_NonAtomicToAtomic:
298         // True no-ops.
299       case CK_NoOp:
300       case CK_ConstructorConversion:
301       case CK_UserDefinedConversion:
302       case CK_FunctionToPointerDecay:
303       case CK_BuiltinFnToFnPtr: {
304         // Copy the SVal of Ex to CastE.
305         ProgramStateRef state = Pred->getState();
306         const LocationContext *LCtx = Pred->getLocationContext();
307         SVal V = state->getSVal(Ex, LCtx);
308         state = state->BindExpr(CastE, LCtx, V);
309         Bldr.generateNode(CastE, Pred, state);
310         continue;
311       }
312       case CK_MemberPointerToBoolean:
313         // FIXME: For now, member pointers are represented by void *.
314         // FALLTHROUGH
315       case CK_Dependent:
316       case CK_ArrayToPointerDecay:
317       case CK_BitCast:
318       case CK_AddressSpaceConversion:
319       case CK_BooleanToSignedIntegral:
320       case CK_NullToPointer:
321       case CK_IntegralToPointer:
322       case CK_PointerToIntegral:
323       case CK_PointerToBoolean:
324       case CK_IntegralToBoolean:
325       case CK_IntegralToFloating:
326       case CK_FloatingToIntegral:
327       case CK_FloatingToBoolean:
328       case CK_FloatingCast:
329       case CK_FloatingRealToComplex:
330       case CK_FloatingComplexToReal:
331       case CK_FloatingComplexToBoolean:
332       case CK_FloatingComplexCast:
333       case CK_FloatingComplexToIntegralComplex:
334       case CK_IntegralRealToComplex:
335       case CK_IntegralComplexToReal:
336       case CK_IntegralComplexToBoolean:
337       case CK_IntegralComplexCast:
338       case CK_IntegralComplexToFloatingComplex:
339       case CK_CPointerToObjCPointerCast:
340       case CK_BlockPointerToObjCPointerCast:
341       case CK_AnyPointerToBlockPointerCast:
342       case CK_ObjCObjectLValueCast:
343       case CK_ZeroToOCLEvent:
344       case CK_LValueBitCast: {
345         // Delegate to SValBuilder to process.
346         SVal V = state->getSVal(Ex, LCtx);
347         V = svalBuilder.evalCast(V, T, ExTy);
348         // Negate the result if we're treating the boolean as a signed i1
349         if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
350           V = evalMinus(V);
351         state = state->BindExpr(CastE, LCtx, V);
352         Bldr.generateNode(CastE, Pred, state);
353         continue;
354       }
355       case CK_IntegralCast: {
356         // Delegate to SValBuilder to process.
357         SVal V = state->getSVal(Ex, LCtx);
358         V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
359         state = state->BindExpr(CastE, LCtx, V);
360         Bldr.generateNode(CastE, Pred, state);
361         continue;
362       }
363       case CK_DerivedToBase:
364       case CK_UncheckedDerivedToBase: {
365         // For DerivedToBase cast, delegate to the store manager.
366         SVal val = state->getSVal(Ex, LCtx);
367         val = getStoreManager().evalDerivedToBase(val, CastE);
368         state = state->BindExpr(CastE, LCtx, val);
369         Bldr.generateNode(CastE, Pred, state);
370         continue;
371       }
372       // Handle C++ dyn_cast.
373       case CK_Dynamic: {
374         SVal val = state->getSVal(Ex, LCtx);
375 
376         // Compute the type of the result.
377         QualType resultType = CastE->getType();
378         if (CastE->isGLValue())
379           resultType = getContext().getPointerType(resultType);
380 
381         bool Failed = false;
382 
383         // Check if the value being cast evaluates to 0.
384         if (val.isZeroConstant())
385           Failed = true;
386         // Else, evaluate the cast.
387         else
388           val = getStoreManager().evalDynamicCast(val, T, Failed);
389 
390         if (Failed) {
391           if (T->isReferenceType()) {
392             // A bad_cast exception is thrown if input value is a reference.
393             // Currently, we model this, by generating a sink.
394             Bldr.generateSink(CastE, Pred, state);
395             continue;
396           } else {
397             // If the cast fails on a pointer, bind to 0.
398             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
399           }
400         } else {
401           // If we don't know if the cast succeeded, conjure a new symbol.
402           if (val.isUnknown()) {
403             DefinedOrUnknownSVal NewSym =
404               svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
405                                            currBldrCtx->blockCount());
406             state = state->BindExpr(CastE, LCtx, NewSym);
407           } else
408             // Else, bind to the derived region value.
409             state = state->BindExpr(CastE, LCtx, val);
410         }
411         Bldr.generateNode(CastE, Pred, state);
412         continue;
413       }
414       case CK_NullToMemberPointer: {
415         // FIXME: For now, member pointers are represented by void *.
416         SVal V = svalBuilder.makeNull();
417         state = state->BindExpr(CastE, LCtx, V);
418         Bldr.generateNode(CastE, Pred, state);
419         continue;
420       }
421       // Various C++ casts that are not handled yet.
422       case CK_ToUnion:
423       case CK_BaseToDerived:
424       case CK_BaseToDerivedMemberPointer:
425       case CK_DerivedToBaseMemberPointer:
426       case CK_ReinterpretMemberPointer:
427       case CK_VectorSplat: {
428         // Recover some path-sensitivty by conjuring a new value.
429         QualType resultType = CastE->getType();
430         if (CastE->isGLValue())
431           resultType = getContext().getPointerType(resultType);
432         SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
433                                                    resultType,
434                                                    currBldrCtx->blockCount());
435         state = state->BindExpr(CastE, LCtx, result);
436         Bldr.generateNode(CastE, Pred, state);
437         continue;
438       }
439     }
440   }
441 }
442 
VisitCompoundLiteralExpr(const CompoundLiteralExpr * CL,ExplodedNode * Pred,ExplodedNodeSet & Dst)443 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
444                                           ExplodedNode *Pred,
445                                           ExplodedNodeSet &Dst) {
446   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
447 
448   ProgramStateRef State = Pred->getState();
449   const LocationContext *LCtx = Pred->getLocationContext();
450 
451   const Expr *Init = CL->getInitializer();
452   SVal V = State->getSVal(CL->getInitializer(), LCtx);
453 
454   if (isa<CXXConstructExpr>(Init)) {
455     // No work needed. Just pass the value up to this expression.
456   } else {
457     assert(isa<InitListExpr>(Init));
458     Loc CLLoc = State->getLValue(CL, LCtx);
459     State = State->bindLoc(CLLoc, V);
460 
461     // Compound literal expressions are a GNU extension in C++.
462     // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
463     // and like temporary objects created by the functional notation T()
464     // CLs are destroyed at the end of the containing full-expression.
465     // HOWEVER, an rvalue of array type is not something the analyzer can
466     // reason about, since we expect all regions to be wrapped in Locs.
467     // So we treat array CLs as lvalues as well, knowing that they will decay
468     // to pointers as soon as they are used.
469     if (CL->isGLValue() || CL->getType()->isArrayType())
470       V = CLLoc;
471   }
472 
473   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
474 }
475 
VisitDeclStmt(const DeclStmt * DS,ExplodedNode * Pred,ExplodedNodeSet & Dst)476 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
477                                ExplodedNodeSet &Dst) {
478   // Assumption: The CFG has one DeclStmt per Decl.
479   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
480 
481   if (!VD) {
482     //TODO:AZ: remove explicit insertion after refactoring is done.
483     Dst.insert(Pred);
484     return;
485   }
486 
487   // FIXME: all pre/post visits should eventually be handled by ::Visit().
488   ExplodedNodeSet dstPreVisit;
489   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
490 
491   ExplodedNodeSet dstEvaluated;
492   StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
493   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
494        I!=E; ++I) {
495     ExplodedNode *N = *I;
496     ProgramStateRef state = N->getState();
497     const LocationContext *LC = N->getLocationContext();
498 
499     // Decls without InitExpr are not initialized explicitly.
500     if (const Expr *InitEx = VD->getInit()) {
501 
502       // Note in the state that the initialization has occurred.
503       ExplodedNode *UpdatedN = N;
504       SVal InitVal = state->getSVal(InitEx, LC);
505 
506       assert(DS->isSingleDecl());
507       if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) {
508         assert(InitEx->IgnoreImplicit() == CtorExpr);
509         (void)CtorExpr;
510         // We constructed the object directly in the variable.
511         // No need to bind anything.
512         B.generateNode(DS, UpdatedN, state);
513       } else {
514         // We bound the temp obj region to the CXXConstructExpr. Now recover
515         // the lazy compound value when the variable is not a reference.
516         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
517             !VD->getType()->isReferenceType()) {
518           if (Optional<loc::MemRegionVal> M =
519                   InitVal.getAs<loc::MemRegionVal>()) {
520             InitVal = state->getSVal(M->getRegion());
521             assert(InitVal.getAs<nonloc::LazyCompoundVal>());
522           }
523         }
524 
525         // Recover some path-sensitivity if a scalar value evaluated to
526         // UnknownVal.
527         if (InitVal.isUnknown()) {
528           QualType Ty = InitEx->getType();
529           if (InitEx->isGLValue()) {
530             Ty = getContext().getPointerType(Ty);
531           }
532 
533           InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
534                                                  currBldrCtx->blockCount());
535         }
536 
537 
538         B.takeNodes(UpdatedN);
539         ExplodedNodeSet Dst2;
540         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
541         B.addNodes(Dst2);
542       }
543     }
544     else {
545       B.generateNode(DS, N, state);
546     }
547   }
548 
549   getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
550 }
551 
VisitLogicalExpr(const BinaryOperator * B,ExplodedNode * Pred,ExplodedNodeSet & Dst)552 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
553                                   ExplodedNodeSet &Dst) {
554   assert(B->getOpcode() == BO_LAnd ||
555          B->getOpcode() == BO_LOr);
556 
557   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
558   ProgramStateRef state = Pred->getState();
559 
560   ExplodedNode *N = Pred;
561   while (!N->getLocation().getAs<BlockEntrance>()) {
562     ProgramPoint P = N->getLocation();
563     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
564     (void) P;
565     assert(N->pred_size() == 1);
566     N = *N->pred_begin();
567   }
568   assert(N->pred_size() == 1);
569   N = *N->pred_begin();
570   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
571   SVal X;
572 
573   // Determine the value of the expression by introspecting how we
574   // got this location in the CFG.  This requires looking at the previous
575   // block we were in and what kind of control-flow transfer was involved.
576   const CFGBlock *SrcBlock = BE.getSrc();
577   // The only terminator (if there is one) that makes sense is a logical op.
578   CFGTerminator T = SrcBlock->getTerminator();
579   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
580     (void) Term;
581     assert(Term->isLogicalOp());
582     assert(SrcBlock->succ_size() == 2);
583     // Did we take the true or false branch?
584     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
585     X = svalBuilder.makeIntVal(constant, B->getType());
586   }
587   else {
588     // If there is no terminator, by construction the last statement
589     // in SrcBlock is the value of the enclosing expression.
590     // However, we still need to constrain that value to be 0 or 1.
591     assert(!SrcBlock->empty());
592     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
593     const Expr *RHS = cast<Expr>(Elem.getStmt());
594     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
595 
596     if (RHSVal.isUndef()) {
597       X = RHSVal;
598     } else {
599       DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
600       ProgramStateRef StTrue, StFalse;
601       std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
602       if (StTrue) {
603         if (StFalse) {
604           // We can't constrain the value to 0 or 1.
605           // The best we can do is a cast.
606           X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
607         } else {
608           // The value is known to be true.
609           X = getSValBuilder().makeIntVal(1, B->getType());
610         }
611       } else {
612         // The value is known to be false.
613         assert(StFalse && "Infeasible path!");
614         X = getSValBuilder().makeIntVal(0, B->getType());
615       }
616     }
617   }
618   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
619 }
620 
VisitInitListExpr(const InitListExpr * IE,ExplodedNode * Pred,ExplodedNodeSet & Dst)621 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
622                                    ExplodedNode *Pred,
623                                    ExplodedNodeSet &Dst) {
624   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
625 
626   ProgramStateRef state = Pred->getState();
627   const LocationContext *LCtx = Pred->getLocationContext();
628   QualType T = getContext().getCanonicalType(IE->getType());
629   unsigned NumInitElements = IE->getNumInits();
630 
631   if (!IE->isGLValue() &&
632       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
633        T->isAnyComplexType())) {
634     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
635 
636     // Handle base case where the initializer has no elements.
637     // e.g: static int* myArray[] = {};
638     if (NumInitElements == 0) {
639       SVal V = svalBuilder.makeCompoundVal(T, vals);
640       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
641       return;
642     }
643 
644     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
645          ei = IE->rend(); it != ei; ++it) {
646       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
647       vals = getBasicVals().consVals(V, vals);
648     }
649 
650     B.generateNode(IE, Pred,
651                    state->BindExpr(IE, LCtx,
652                                    svalBuilder.makeCompoundVal(T, vals)));
653     return;
654   }
655 
656   // Handle scalars: int{5} and int{} and GLvalues.
657   // Note, if the InitListExpr is a GLvalue, it means that there is an address
658   // representing it, so it must have a single init element.
659   assert(NumInitElements <= 1);
660 
661   SVal V;
662   if (NumInitElements == 0)
663     V = getSValBuilder().makeZeroVal(T);
664   else
665     V = state->getSVal(IE->getInit(0), LCtx);
666 
667   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
668 }
669 
VisitGuardedExpr(const Expr * Ex,const Expr * L,const Expr * R,ExplodedNode * Pred,ExplodedNodeSet & Dst)670 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
671                                   const Expr *L,
672                                   const Expr *R,
673                                   ExplodedNode *Pred,
674                                   ExplodedNodeSet &Dst) {
675   assert(L && R);
676 
677   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
678   ProgramStateRef state = Pred->getState();
679   const LocationContext *LCtx = Pred->getLocationContext();
680   const CFGBlock *SrcBlock = nullptr;
681 
682   // Find the predecessor block.
683   ProgramStateRef SrcState = state;
684   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
685     ProgramPoint PP = N->getLocation();
686     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
687       assert(N->pred_size() == 1);
688       continue;
689     }
690     SrcBlock = PP.castAs<BlockEdge>().getSrc();
691     SrcState = N->getState();
692     break;
693   }
694 
695   assert(SrcBlock && "missing function entry");
696 
697   // Find the last expression in the predecessor block.  That is the
698   // expression that is used for the value of the ternary expression.
699   bool hasValue = false;
700   SVal V;
701 
702   for (CFGElement CE : llvm::reverse(*SrcBlock)) {
703     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
704       const Expr *ValEx = cast<Expr>(CS->getStmt());
705       ValEx = ValEx->IgnoreParens();
706 
707       // For GNU extension '?:' operator, the left hand side will be an
708       // OpaqueValueExpr, so get the underlying expression.
709       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
710         L = OpaqueEx->getSourceExpr();
711 
712       // If the last expression in the predecessor block matches true or false
713       // subexpression, get its the value.
714       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
715         hasValue = true;
716         V = SrcState->getSVal(ValEx, LCtx);
717       }
718       break;
719     }
720   }
721 
722   if (!hasValue)
723     V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
724                                      currBldrCtx->blockCount());
725 
726   // Generate a new node with the binding from the appropriate path.
727   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
728 }
729 
730 void ExprEngine::
VisitOffsetOfExpr(const OffsetOfExpr * OOE,ExplodedNode * Pred,ExplodedNodeSet & Dst)731 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
732                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
733   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
734   APSInt IV;
735   if (OOE->EvaluateAsInt(IV, getContext())) {
736     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
737     assert(OOE->getType()->isBuiltinType());
738     assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
739     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
740     SVal X = svalBuilder.makeIntVal(IV);
741     B.generateNode(OOE, Pred,
742                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
743                                               X));
744   }
745   // FIXME: Handle the case where __builtin_offsetof is not a constant.
746 }
747 
748 
749 void ExprEngine::
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * Ex,ExplodedNode * Pred,ExplodedNodeSet & Dst)750 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
751                               ExplodedNode *Pred,
752                               ExplodedNodeSet &Dst) {
753   // FIXME: Prechecks eventually go in ::Visit().
754   ExplodedNodeSet CheckedSet;
755   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
756 
757   ExplodedNodeSet EvalSet;
758   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
759 
760   QualType T = Ex->getTypeOfArgument();
761 
762   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
763        I != E; ++I) {
764     if (Ex->getKind() == UETT_SizeOf) {
765       if (!T->isIncompleteType() && !T->isConstantSizeType()) {
766         assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
767 
768         // FIXME: Add support for VLA type arguments and VLA expressions.
769         // When that happens, we should probably refactor VLASizeChecker's code.
770         continue;
771       } else if (T->getAs<ObjCObjectType>()) {
772         // Some code tries to take the sizeof an ObjCObjectType, relying that
773         // the compiler has laid out its representation.  Just report Unknown
774         // for these.
775         continue;
776       }
777     }
778 
779     APSInt Value = Ex->EvaluateKnownConstInt(getContext());
780     CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
781 
782     ProgramStateRef state = (*I)->getState();
783     state = state->BindExpr(Ex, (*I)->getLocationContext(),
784                             svalBuilder.makeIntVal(amt.getQuantity(),
785                                                    Ex->getType()));
786     Bldr.generateNode(Ex, *I, state);
787   }
788 
789   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
790 }
791 
VisitUnaryOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)792 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
793                                     ExplodedNode *Pred,
794                                     ExplodedNodeSet &Dst) {
795   // FIXME: Prechecks eventually go in ::Visit().
796   ExplodedNodeSet CheckedSet;
797   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
798 
799   ExplodedNodeSet EvalSet;
800   StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
801 
802   for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
803        I != E; ++I) {
804     switch (U->getOpcode()) {
805     default: {
806       Bldr.takeNodes(*I);
807       ExplodedNodeSet Tmp;
808       VisitIncrementDecrementOperator(U, *I, Tmp);
809       Bldr.addNodes(Tmp);
810       break;
811     }
812     case UO_Real: {
813       const Expr *Ex = U->getSubExpr()->IgnoreParens();
814 
815       // FIXME: We don't have complex SValues yet.
816       if (Ex->getType()->isAnyComplexType()) {
817         // Just report "Unknown."
818         break;
819       }
820 
821       // For all other types, UO_Real is an identity operation.
822       assert (U->getType() == Ex->getType());
823       ProgramStateRef state = (*I)->getState();
824       const LocationContext *LCtx = (*I)->getLocationContext();
825       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
826                                                state->getSVal(Ex, LCtx)));
827       break;
828     }
829 
830     case UO_Imag: {
831       const Expr *Ex = U->getSubExpr()->IgnoreParens();
832       // FIXME: We don't have complex SValues yet.
833       if (Ex->getType()->isAnyComplexType()) {
834         // Just report "Unknown."
835         break;
836       }
837       // For all other types, UO_Imag returns 0.
838       ProgramStateRef state = (*I)->getState();
839       const LocationContext *LCtx = (*I)->getLocationContext();
840       SVal X = svalBuilder.makeZeroVal(Ex->getType());
841       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
842       break;
843     }
844 
845     case UO_Plus:
846       assert(!U->isGLValue());
847       // FALL-THROUGH.
848     case UO_Deref:
849     case UO_AddrOf:
850     case UO_Extension: {
851       // FIXME: We can probably just have some magic in Environment::getSVal()
852       // that propagates values, instead of creating a new node here.
853       //
854       // Unary "+" is a no-op, similar to a parentheses.  We still have places
855       // where it may be a block-level expression, so we need to
856       // generate an extra node that just propagates the value of the
857       // subexpression.
858       const Expr *Ex = U->getSubExpr()->IgnoreParens();
859       ProgramStateRef state = (*I)->getState();
860       const LocationContext *LCtx = (*I)->getLocationContext();
861       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
862                                                state->getSVal(Ex, LCtx)));
863       break;
864     }
865 
866     case UO_LNot:
867     case UO_Minus:
868     case UO_Not: {
869       assert (!U->isGLValue());
870       const Expr *Ex = U->getSubExpr()->IgnoreParens();
871       ProgramStateRef state = (*I)->getState();
872       const LocationContext *LCtx = (*I)->getLocationContext();
873 
874       // Get the value of the subexpression.
875       SVal V = state->getSVal(Ex, LCtx);
876 
877       if (V.isUnknownOrUndef()) {
878         Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
879         break;
880       }
881 
882       switch (U->getOpcode()) {
883         default:
884           llvm_unreachable("Invalid Opcode.");
885         case UO_Not:
886           // FIXME: Do we need to handle promotions?
887           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
888           break;
889         case UO_Minus:
890           // FIXME: Do we need to handle promotions?
891           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
892           break;
893         case UO_LNot:
894           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
895           //
896           //  Note: technically we do "E == 0", but this is the same in the
897           //    transfer functions as "0 == E".
898           SVal Result;
899           if (Optional<Loc> LV = V.getAs<Loc>()) {
900             Loc X = svalBuilder.makeNull();
901             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
902           }
903           else if (Ex->getType()->isFloatingType()) {
904             // FIXME: handle floating point types.
905             Result = UnknownVal();
906           } else {
907             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
908             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
909                                U->getType());
910           }
911 
912           state = state->BindExpr(U, LCtx, Result);
913           break;
914       }
915       Bldr.generateNode(U, *I, state);
916       break;
917     }
918     }
919   }
920 
921   getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
922 }
923 
VisitIncrementDecrementOperator(const UnaryOperator * U,ExplodedNode * Pred,ExplodedNodeSet & Dst)924 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
925                                                  ExplodedNode *Pred,
926                                                  ExplodedNodeSet &Dst) {
927   // Handle ++ and -- (both pre- and post-increment).
928   assert (U->isIncrementDecrementOp());
929   const Expr *Ex = U->getSubExpr()->IgnoreParens();
930 
931   const LocationContext *LCtx = Pred->getLocationContext();
932   ProgramStateRef state = Pred->getState();
933   SVal loc = state->getSVal(Ex, LCtx);
934 
935   // Perform a load.
936   ExplodedNodeSet Tmp;
937   evalLoad(Tmp, U, Ex, Pred, state, loc);
938 
939   ExplodedNodeSet Dst2;
940   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
941   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
942 
943     state = (*I)->getState();
944     assert(LCtx == (*I)->getLocationContext());
945     SVal V2_untested = state->getSVal(Ex, LCtx);
946 
947     // Propagate unknown and undefined values.
948     if (V2_untested.isUnknownOrUndef()) {
949       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
950       continue;
951     }
952     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
953 
954     // Handle all other values.
955     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
956 
957     // If the UnaryOperator has non-location type, use its type to create the
958     // constant value. If the UnaryOperator has location type, create the
959     // constant with int type and pointer width.
960     SVal RHS;
961 
962     if (U->getType()->isAnyPointerType())
963       RHS = svalBuilder.makeArrayIndex(1);
964     else if (U->getType()->isIntegralOrEnumerationType())
965       RHS = svalBuilder.makeIntVal(1, U->getType());
966     else
967       RHS = UnknownVal();
968 
969     SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
970 
971     // Conjure a new symbol if necessary to recover precision.
972     if (Result.isUnknown()){
973       DefinedOrUnknownSVal SymVal =
974         svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
975                                      currBldrCtx->blockCount());
976       Result = SymVal;
977 
978       // If the value is a location, ++/-- should always preserve
979       // non-nullness.  Check if the original value was non-null, and if so
980       // propagate that constraint.
981       if (Loc::isLocType(U->getType())) {
982         DefinedOrUnknownSVal Constraint =
983         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
984 
985         if (!state->assume(Constraint, true)) {
986           // It isn't feasible for the original value to be null.
987           // Propagate this constraint.
988           Constraint = svalBuilder.evalEQ(state, SymVal,
989                                        svalBuilder.makeZeroVal(U->getType()));
990 
991 
992           state = state->assume(Constraint, false);
993           assert(state);
994         }
995       }
996     }
997 
998     // Since the lvalue-to-rvalue conversion is explicit in the AST,
999     // we bind an l-value if the operator is prefix and an lvalue (in C++).
1000     if (U->isGLValue())
1001       state = state->BindExpr(U, LCtx, loc);
1002     else
1003       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
1004 
1005     // Perform the store.
1006     Bldr.takeNodes(*I);
1007     ExplodedNodeSet Dst3;
1008     evalStore(Dst3, U, U, *I, state, loc, Result);
1009     Bldr.addNodes(Dst3);
1010   }
1011   Dst.insert(Dst2);
1012 }
1013