1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "thread_list.h"
18
19 #include <dirent.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <sstream>
24 #include <vector>
25
26 #include "android-base/stringprintf.h"
27 #include "backtrace/BacktraceMap.h"
28 #include "nativehelper/scoped_local_ref.h"
29 #include "nativehelper/scoped_utf_chars.h"
30
31 #include "base/aborting.h"
32 #include "base/histogram-inl.h"
33 #include "base/mutex-inl.h"
34 #include "base/systrace.h"
35 #include "base/time_utils.h"
36 #include "base/timing_logger.h"
37 #include "debugger.h"
38 #include "gc/collector/concurrent_copying.h"
39 #include "gc/gc_pause_listener.h"
40 #include "gc/heap.h"
41 #include "gc/reference_processor.h"
42 #include "gc_root.h"
43 #include "jni/jni_internal.h"
44 #include "lock_word.h"
45 #include "monitor.h"
46 #include "native_stack_dump.h"
47 #include "scoped_thread_state_change-inl.h"
48 #include "thread.h"
49 #include "trace.h"
50 #include "well_known_classes.h"
51
52 #if ART_USE_FUTEXES
53 #include "linux/futex.h"
54 #include "sys/syscall.h"
55 #ifndef SYS_futex
56 #define SYS_futex __NR_futex
57 #endif
58 #endif // ART_USE_FUTEXES
59
60 namespace art {
61
62 using android::base::StringPrintf;
63
64 static constexpr uint64_t kLongThreadSuspendThreshold = MsToNs(5);
65 // Use 0 since we want to yield to prevent blocking for an unpredictable amount of time.
66 static constexpr useconds_t kThreadSuspendInitialSleepUs = 0;
67 static constexpr useconds_t kThreadSuspendMaxYieldUs = 3000;
68 static constexpr useconds_t kThreadSuspendMaxSleepUs = 5000;
69
70 // Whether we should try to dump the native stack of unattached threads. See commit ed8b723 for
71 // some history.
72 static constexpr bool kDumpUnattachedThreadNativeStackForSigQuit = true;
73
ThreadList(uint64_t thread_suspend_timeout_ns)74 ThreadList::ThreadList(uint64_t thread_suspend_timeout_ns)
75 : suspend_all_count_(0),
76 debug_suspend_all_count_(0),
77 unregistering_count_(0),
78 suspend_all_historam_("suspend all histogram", 16, 64),
79 long_suspend_(false),
80 shut_down_(false),
81 thread_suspend_timeout_ns_(thread_suspend_timeout_ns),
82 empty_checkpoint_barrier_(new Barrier(0)) {
83 CHECK(Monitor::IsValidLockWord(LockWord::FromThinLockId(kMaxThreadId, 1, 0U)));
84 }
85
~ThreadList()86 ThreadList::~ThreadList() {
87 CHECK(shut_down_);
88 }
89
ShutDown()90 void ThreadList::ShutDown() {
91 ScopedTrace trace(__PRETTY_FUNCTION__);
92 // Detach the current thread if necessary. If we failed to start, there might not be any threads.
93 // We need to detach the current thread here in case there's another thread waiting to join with
94 // us.
95 bool contains = false;
96 Thread* self = Thread::Current();
97 {
98 MutexLock mu(self, *Locks::thread_list_lock_);
99 contains = Contains(self);
100 }
101 if (contains) {
102 Runtime::Current()->DetachCurrentThread();
103 }
104 WaitForOtherNonDaemonThreadsToExit();
105 // Disable GC and wait for GC to complete in case there are still daemon threads doing
106 // allocations.
107 gc::Heap* const heap = Runtime::Current()->GetHeap();
108 heap->DisableGCForShutdown();
109 // In case a GC is in progress, wait for it to finish.
110 heap->WaitForGcToComplete(gc::kGcCauseBackground, Thread::Current());
111 // TODO: there's an unaddressed race here where a thread may attach during shutdown, see
112 // Thread::Init.
113 SuspendAllDaemonThreadsForShutdown();
114
115 shut_down_ = true;
116 }
117
Contains(Thread * thread)118 bool ThreadList::Contains(Thread* thread) {
119 return find(list_.begin(), list_.end(), thread) != list_.end();
120 }
121
Contains(pid_t tid)122 bool ThreadList::Contains(pid_t tid) {
123 for (const auto& thread : list_) {
124 if (thread->GetTid() == tid) {
125 return true;
126 }
127 }
128 return false;
129 }
130
GetLockOwner()131 pid_t ThreadList::GetLockOwner() {
132 return Locks::thread_list_lock_->GetExclusiveOwnerTid();
133 }
134
DumpNativeStacks(std::ostream & os)135 void ThreadList::DumpNativeStacks(std::ostream& os) {
136 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
137 std::unique_ptr<BacktraceMap> map(BacktraceMap::Create(getpid()));
138 for (const auto& thread : list_) {
139 os << "DUMPING THREAD " << thread->GetTid() << "\n";
140 DumpNativeStack(os, thread->GetTid(), map.get(), "\t");
141 os << "\n";
142 }
143 }
144
DumpForSigQuit(std::ostream & os)145 void ThreadList::DumpForSigQuit(std::ostream& os) {
146 {
147 ScopedObjectAccess soa(Thread::Current());
148 // Only print if we have samples.
149 if (suspend_all_historam_.SampleSize() > 0) {
150 Histogram<uint64_t>::CumulativeData data;
151 suspend_all_historam_.CreateHistogram(&data);
152 suspend_all_historam_.PrintConfidenceIntervals(os, 0.99, data); // Dump time to suspend.
153 }
154 }
155 bool dump_native_stack = Runtime::Current()->GetDumpNativeStackOnSigQuit();
156 Dump(os, dump_native_stack);
157 DumpUnattachedThreads(os, dump_native_stack && kDumpUnattachedThreadNativeStackForSigQuit);
158 }
159
DumpUnattachedThread(std::ostream & os,pid_t tid,bool dump_native_stack)160 static void DumpUnattachedThread(std::ostream& os, pid_t tid, bool dump_native_stack)
161 NO_THREAD_SAFETY_ANALYSIS {
162 // TODO: No thread safety analysis as DumpState with a null thread won't access fields, should
163 // refactor DumpState to avoid skipping analysis.
164 Thread::DumpState(os, nullptr, tid);
165 DumpKernelStack(os, tid, " kernel: ", false);
166 if (dump_native_stack) {
167 DumpNativeStack(os, tid, nullptr, " native: ");
168 }
169 os << std::endl;
170 }
171
DumpUnattachedThreads(std::ostream & os,bool dump_native_stack)172 void ThreadList::DumpUnattachedThreads(std::ostream& os, bool dump_native_stack) {
173 DIR* d = opendir("/proc/self/task");
174 if (!d) {
175 return;
176 }
177
178 Thread* self = Thread::Current();
179 dirent* e;
180 while ((e = readdir(d)) != nullptr) {
181 char* end;
182 pid_t tid = strtol(e->d_name, &end, 10);
183 if (!*end) {
184 bool contains;
185 {
186 MutexLock mu(self, *Locks::thread_list_lock_);
187 contains = Contains(tid);
188 }
189 if (!contains) {
190 DumpUnattachedThread(os, tid, dump_native_stack);
191 }
192 }
193 }
194 closedir(d);
195 }
196
197 // Dump checkpoint timeout in milliseconds. Larger amount on the target, since the device could be
198 // overloaded with ANR dumps.
199 static constexpr uint32_t kDumpWaitTimeout = kIsTargetBuild ? 100000 : 20000;
200
201 // A closure used by Thread::Dump.
202 class DumpCheckpoint final : public Closure {
203 public:
DumpCheckpoint(std::ostream * os,bool dump_native_stack)204 DumpCheckpoint(std::ostream* os, bool dump_native_stack)
205 : os_(os),
206 // Avoid verifying count in case a thread doesn't end up passing through the barrier.
207 // This avoids a SIGABRT that would otherwise happen in the destructor.
208 barrier_(0, /*verify_count_on_shutdown=*/false),
209 backtrace_map_(dump_native_stack ? BacktraceMap::Create(getpid()) : nullptr),
210 dump_native_stack_(dump_native_stack) {
211 if (backtrace_map_ != nullptr) {
212 backtrace_map_->SetSuffixesToIgnore(std::vector<std::string> { "oat", "odex" });
213 }
214 }
215
Run(Thread * thread)216 void Run(Thread* thread) override {
217 // Note thread and self may not be equal if thread was already suspended at the point of the
218 // request.
219 Thread* self = Thread::Current();
220 CHECK(self != nullptr);
221 std::ostringstream local_os;
222 {
223 ScopedObjectAccess soa(self);
224 thread->Dump(local_os, dump_native_stack_, backtrace_map_.get());
225 }
226 {
227 // Use the logging lock to ensure serialization when writing to the common ostream.
228 MutexLock mu(self, *Locks::logging_lock_);
229 *os_ << local_os.str() << std::endl;
230 }
231 barrier_.Pass(self);
232 }
233
WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint)234 void WaitForThreadsToRunThroughCheckpoint(size_t threads_running_checkpoint) {
235 Thread* self = Thread::Current();
236 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
237 bool timed_out = barrier_.Increment(self, threads_running_checkpoint, kDumpWaitTimeout);
238 if (timed_out) {
239 // Avoid a recursive abort.
240 LOG((kIsDebugBuild && (gAborting == 0)) ? ::android::base::FATAL : ::android::base::ERROR)
241 << "Unexpected time out during dump checkpoint.";
242 }
243 }
244
245 private:
246 // The common stream that will accumulate all the dumps.
247 std::ostream* const os_;
248 // The barrier to be passed through and for the requestor to wait upon.
249 Barrier barrier_;
250 // A backtrace map, so that all threads use a shared info and don't reacquire/parse separately.
251 std::unique_ptr<BacktraceMap> backtrace_map_;
252 // Whether we should dump the native stack.
253 const bool dump_native_stack_;
254 };
255
Dump(std::ostream & os,bool dump_native_stack)256 void ThreadList::Dump(std::ostream& os, bool dump_native_stack) {
257 Thread* self = Thread::Current();
258 {
259 MutexLock mu(self, *Locks::thread_list_lock_);
260 os << "DALVIK THREADS (" << list_.size() << "):\n";
261 }
262 if (self != nullptr) {
263 DumpCheckpoint checkpoint(&os, dump_native_stack);
264 size_t threads_running_checkpoint;
265 {
266 // Use SOA to prevent deadlocks if multiple threads are calling Dump() at the same time.
267 ScopedObjectAccess soa(self);
268 threads_running_checkpoint = RunCheckpoint(&checkpoint);
269 }
270 if (threads_running_checkpoint != 0) {
271 checkpoint.WaitForThreadsToRunThroughCheckpoint(threads_running_checkpoint);
272 }
273 } else {
274 DumpUnattachedThreads(os, dump_native_stack);
275 }
276 }
277
AssertThreadsAreSuspended(Thread * self,Thread * ignore1,Thread * ignore2)278 void ThreadList::AssertThreadsAreSuspended(Thread* self, Thread* ignore1, Thread* ignore2) {
279 MutexLock mu(self, *Locks::thread_list_lock_);
280 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
281 for (const auto& thread : list_) {
282 if (thread != ignore1 && thread != ignore2) {
283 CHECK(thread->IsSuspended())
284 << "\nUnsuspended thread: <<" << *thread << "\n"
285 << "self: <<" << *Thread::Current();
286 }
287 }
288 }
289
290 #if HAVE_TIMED_RWLOCK
291 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForThreadSuspendAllTimeout()292 NO_RETURN static void UnsafeLogFatalForThreadSuspendAllTimeout() {
293 // Increment gAborting before doing the thread list dump since we don't want any failures from
294 // AssertThreadSuspensionIsAllowable in cases where thread suspension is not allowed.
295 // See b/69044468.
296 ++gAborting;
297 Runtime* runtime = Runtime::Current();
298 std::ostringstream ss;
299 ss << "Thread suspend timeout\n";
300 Locks::mutator_lock_->Dump(ss);
301 ss << "\n";
302 runtime->GetThreadList()->Dump(ss);
303 --gAborting;
304 LOG(FATAL) << ss.str();
305 exit(0);
306 }
307 #endif
308
309 // Unlike suspending all threads where we can wait to acquire the mutator_lock_, suspending an
310 // individual thread requires polling. delay_us is the requested sleep wait. If delay_us is 0 then
311 // we use sched_yield instead of calling usleep.
312 // Although there is the possibility, here and elsewhere, that usleep could return -1 and
313 // errno = EINTR, there should be no problem if interrupted, so we do not check.
ThreadSuspendSleep(useconds_t delay_us)314 static void ThreadSuspendSleep(useconds_t delay_us) {
315 if (delay_us == 0) {
316 sched_yield();
317 } else {
318 usleep(delay_us);
319 }
320 }
321
RunCheckpoint(Closure * checkpoint_function,Closure * callback)322 size_t ThreadList::RunCheckpoint(Closure* checkpoint_function, Closure* callback) {
323 Thread* self = Thread::Current();
324 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
325 Locks::thread_list_lock_->AssertNotHeld(self);
326 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
327
328 std::vector<Thread*> suspended_count_modified_threads;
329 size_t count = 0;
330 {
331 // Call a checkpoint function for each thread, threads which are suspend get their checkpoint
332 // manually called.
333 MutexLock mu(self, *Locks::thread_list_lock_);
334 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
335 count = list_.size();
336 for (const auto& thread : list_) {
337 if (thread != self) {
338 while (true) {
339 if (thread->RequestCheckpoint(checkpoint_function)) {
340 // This thread will run its checkpoint some time in the near future.
341 break;
342 } else {
343 // We are probably suspended, try to make sure that we stay suspended.
344 // The thread switched back to runnable.
345 if (thread->GetState() == kRunnable) {
346 // Spurious fail, try again.
347 continue;
348 }
349 bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
350 DCHECK(updated);
351 suspended_count_modified_threads.push_back(thread);
352 break;
353 }
354 }
355 }
356 }
357 // Run the callback to be called inside this critical section.
358 if (callback != nullptr) {
359 callback->Run(self);
360 }
361 }
362
363 // Run the checkpoint on ourself while we wait for threads to suspend.
364 checkpoint_function->Run(self);
365
366 // Run the checkpoint on the suspended threads.
367 for (const auto& thread : suspended_count_modified_threads) {
368 if (!thread->IsSuspended()) {
369 ScopedTrace trace([&]() {
370 std::ostringstream oss;
371 thread->ShortDump(oss);
372 return std::string("Waiting for suspension of thread ") + oss.str();
373 });
374 // Busy wait until the thread is suspended.
375 const uint64_t start_time = NanoTime();
376 do {
377 ThreadSuspendSleep(kThreadSuspendInitialSleepUs);
378 } while (!thread->IsSuspended());
379 const uint64_t total_delay = NanoTime() - start_time;
380 // Shouldn't need to wait for longer than 1000 microseconds.
381 constexpr uint64_t kLongWaitThreshold = MsToNs(1);
382 if (UNLIKELY(total_delay > kLongWaitThreshold)) {
383 LOG(WARNING) << "Long wait of " << PrettyDuration(total_delay) << " for "
384 << *thread << " suspension!";
385 }
386 }
387 // We know for sure that the thread is suspended at this point.
388 checkpoint_function->Run(thread);
389 {
390 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
391 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
392 DCHECK(updated);
393 }
394 }
395
396 {
397 // Imitate ResumeAll, threads may be waiting on Thread::resume_cond_ since we raised their
398 // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
399 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
400 Thread::resume_cond_->Broadcast(self);
401 }
402
403 return count;
404 }
405
RunEmptyCheckpoint()406 void ThreadList::RunEmptyCheckpoint() {
407 Thread* self = Thread::Current();
408 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
409 Locks::thread_list_lock_->AssertNotHeld(self);
410 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
411 std::vector<uint32_t> runnable_thread_ids;
412 size_t count = 0;
413 Barrier* barrier = empty_checkpoint_barrier_.get();
414 barrier->Init(self, 0);
415 {
416 MutexLock mu(self, *Locks::thread_list_lock_);
417 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
418 for (Thread* thread : list_) {
419 if (thread != self) {
420 while (true) {
421 if (thread->RequestEmptyCheckpoint()) {
422 // This thread will run an empty checkpoint (decrement the empty checkpoint barrier)
423 // some time in the near future.
424 ++count;
425 if (kIsDebugBuild) {
426 runnable_thread_ids.push_back(thread->GetThreadId());
427 }
428 break;
429 }
430 if (thread->GetState() != kRunnable) {
431 // It's seen suspended, we are done because it must not be in the middle of a mutator
432 // heap access.
433 break;
434 }
435 }
436 }
437 }
438 }
439
440 // Wake up the threads blocking for weak ref access so that they will respond to the empty
441 // checkpoint request. Otherwise we will hang as they are blocking in the kRunnable state.
442 Runtime::Current()->GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
443 Runtime::Current()->BroadcastForNewSystemWeaks(/*broadcast_for_checkpoint=*/true);
444 {
445 ScopedThreadStateChange tsc(self, kWaitingForCheckPointsToRun);
446 uint64_t total_wait_time = 0;
447 bool first_iter = true;
448 while (true) {
449 // Wake up the runnable threads blocked on the mutexes that another thread, which is blocked
450 // on a weak ref access, holds (indirectly blocking for weak ref access through another thread
451 // and a mutex.) This needs to be done periodically because the thread may be preempted
452 // between the CheckEmptyCheckpointFromMutex call and the subsequent futex wait in
453 // Mutex::ExclusiveLock, etc. when the wakeup via WakeupToRespondToEmptyCheckpoint
454 // arrives. This could cause a *very rare* deadlock, if not repeated. Most of the cases are
455 // handled in the first iteration.
456 for (BaseMutex* mutex : Locks::expected_mutexes_on_weak_ref_access_) {
457 mutex->WakeupToRespondToEmptyCheckpoint();
458 }
459 static constexpr uint64_t kEmptyCheckpointPeriodicTimeoutMs = 100; // 100ms
460 static constexpr uint64_t kEmptyCheckpointTotalTimeoutMs = 600 * 1000; // 10 minutes.
461 size_t barrier_count = first_iter ? count : 0;
462 first_iter = false; // Don't add to the barrier count from the second iteration on.
463 bool timed_out = barrier->Increment(self, barrier_count, kEmptyCheckpointPeriodicTimeoutMs);
464 if (!timed_out) {
465 break; // Success
466 }
467 // This is a very rare case.
468 total_wait_time += kEmptyCheckpointPeriodicTimeoutMs;
469 if (kIsDebugBuild && total_wait_time > kEmptyCheckpointTotalTimeoutMs) {
470 std::ostringstream ss;
471 ss << "Empty checkpoint timeout\n";
472 ss << "Barrier count " << barrier->GetCount(self) << "\n";
473 ss << "Runnable thread IDs";
474 for (uint32_t tid : runnable_thread_ids) {
475 ss << " " << tid;
476 }
477 ss << "\n";
478 Locks::mutator_lock_->Dump(ss);
479 ss << "\n";
480 LOG(FATAL_WITHOUT_ABORT) << ss.str();
481 // Some threads in 'runnable_thread_ids' are probably stuck. Try to dump their stacks.
482 // Avoid using ThreadList::Dump() initially because it is likely to get stuck as well.
483 {
484 ScopedObjectAccess soa(self);
485 MutexLock mu1(self, *Locks::thread_list_lock_);
486 for (Thread* thread : GetList()) {
487 uint32_t tid = thread->GetThreadId();
488 bool is_in_runnable_thread_ids =
489 std::find(runnable_thread_ids.begin(), runnable_thread_ids.end(), tid) !=
490 runnable_thread_ids.end();
491 if (is_in_runnable_thread_ids &&
492 thread->ReadFlag(kEmptyCheckpointRequest)) {
493 // Found a runnable thread that hasn't responded to the empty checkpoint request.
494 // Assume it's stuck and safe to dump its stack.
495 thread->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT),
496 /*dump_native_stack=*/ true,
497 /*backtrace_map=*/ nullptr,
498 /*force_dump_stack=*/ true);
499 }
500 }
501 }
502 LOG(FATAL_WITHOUT_ABORT)
503 << "Dumped runnable threads that haven't responded to empty checkpoint.";
504 // Now use ThreadList::Dump() to dump more threads, noting it may get stuck.
505 Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
506 LOG(FATAL) << "Dumped all threads.";
507 }
508 }
509 }
510 }
511
512 // A checkpoint/suspend-all hybrid to switch thread roots from
513 // from-space to to-space refs. Used to synchronize threads at a point
514 // to mark the initiation of marking while maintaining the to-space
515 // invariant.
FlipThreadRoots(Closure * thread_flip_visitor,Closure * flip_callback,gc::collector::GarbageCollector * collector,gc::GcPauseListener * pause_listener)516 size_t ThreadList::FlipThreadRoots(Closure* thread_flip_visitor,
517 Closure* flip_callback,
518 gc::collector::GarbageCollector* collector,
519 gc::GcPauseListener* pause_listener) {
520 TimingLogger::ScopedTiming split("ThreadListFlip", collector->GetTimings());
521 Thread* self = Thread::Current();
522 Locks::mutator_lock_->AssertNotHeld(self);
523 Locks::thread_list_lock_->AssertNotHeld(self);
524 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
525 CHECK_NE(self->GetState(), kRunnable);
526
527 collector->GetHeap()->ThreadFlipBegin(self); // Sync with JNI critical calls.
528
529 // ThreadFlipBegin happens before we suspend all the threads, so it does not count towards the
530 // pause.
531 const uint64_t suspend_start_time = NanoTime();
532 SuspendAllInternal(self, self, nullptr);
533 if (pause_listener != nullptr) {
534 pause_listener->StartPause();
535 }
536
537 // Run the flip callback for the collector.
538 Locks::mutator_lock_->ExclusiveLock(self);
539 suspend_all_historam_.AdjustAndAddValue(NanoTime() - suspend_start_time);
540 flip_callback->Run(self);
541 Locks::mutator_lock_->ExclusiveUnlock(self);
542 collector->RegisterPause(NanoTime() - suspend_start_time);
543 if (pause_listener != nullptr) {
544 pause_listener->EndPause();
545 }
546
547 // Resume runnable threads.
548 size_t runnable_thread_count = 0;
549 std::vector<Thread*> other_threads;
550 {
551 TimingLogger::ScopedTiming split2("ResumeRunnableThreads", collector->GetTimings());
552 MutexLock mu(self, *Locks::thread_list_lock_);
553 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
554 --suspend_all_count_;
555 for (const auto& thread : list_) {
556 // Set the flip function for all threads because Thread::DumpState/DumpJavaStack() (invoked by
557 // a checkpoint) may cause the flip function to be run for a runnable/suspended thread before
558 // a runnable thread runs it for itself or we run it for a suspended thread below.
559 thread->SetFlipFunction(thread_flip_visitor);
560 if (thread == self) {
561 continue;
562 }
563 // Resume early the threads that were runnable but are suspended just for this thread flip or
564 // about to transition from non-runnable (eg. kNative at the SOA entry in a JNI function) to
565 // runnable (both cases waiting inside Thread::TransitionFromSuspendedToRunnable), or waiting
566 // for the thread flip to end at the JNI critical section entry (kWaitingForGcThreadFlip),
567 ThreadState state = thread->GetState();
568 if ((state == kWaitingForGcThreadFlip || thread->IsTransitioningToRunnable()) &&
569 thread->GetSuspendCount() == 1) {
570 // The thread will resume right after the broadcast.
571 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
572 DCHECK(updated);
573 ++runnable_thread_count;
574 } else {
575 other_threads.push_back(thread);
576 }
577 }
578 Thread::resume_cond_->Broadcast(self);
579 }
580
581 collector->GetHeap()->ThreadFlipEnd(self);
582
583 // Run the closure on the other threads and let them resume.
584 {
585 TimingLogger::ScopedTiming split3("FlipOtherThreads", collector->GetTimings());
586 ReaderMutexLock mu(self, *Locks::mutator_lock_);
587 for (const auto& thread : other_threads) {
588 Closure* flip_func = thread->GetFlipFunction();
589 if (flip_func != nullptr) {
590 flip_func->Run(thread);
591 }
592 }
593 // Run it for self.
594 Closure* flip_func = self->GetFlipFunction();
595 if (flip_func != nullptr) {
596 flip_func->Run(self);
597 }
598 }
599
600 // Resume other threads.
601 {
602 TimingLogger::ScopedTiming split4("ResumeOtherThreads", collector->GetTimings());
603 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
604 for (const auto& thread : other_threads) {
605 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
606 DCHECK(updated);
607 }
608 Thread::resume_cond_->Broadcast(self);
609 }
610
611 return runnable_thread_count + other_threads.size() + 1; // +1 for self.
612 }
613
SuspendAll(const char * cause,bool long_suspend)614 void ThreadList::SuspendAll(const char* cause, bool long_suspend) {
615 Thread* self = Thread::Current();
616
617 if (self != nullptr) {
618 VLOG(threads) << *self << " SuspendAll for " << cause << " starting...";
619 } else {
620 VLOG(threads) << "Thread[null] SuspendAll for " << cause << " starting...";
621 }
622 {
623 ScopedTrace trace("Suspending mutator threads");
624 const uint64_t start_time = NanoTime();
625
626 SuspendAllInternal(self, self);
627 // All threads are known to have suspended (but a thread may still own the mutator lock)
628 // Make sure this thread grabs exclusive access to the mutator lock and its protected data.
629 #if HAVE_TIMED_RWLOCK
630 while (true) {
631 if (Locks::mutator_lock_->ExclusiveLockWithTimeout(self,
632 NsToMs(thread_suspend_timeout_ns_),
633 0)) {
634 break;
635 } else if (!long_suspend_) {
636 // Reading long_suspend without the mutator lock is slightly racy, in some rare cases, this
637 // could result in a thread suspend timeout.
638 // Timeout if we wait more than thread_suspend_timeout_ns_ nanoseconds.
639 UnsafeLogFatalForThreadSuspendAllTimeout();
640 }
641 }
642 #else
643 Locks::mutator_lock_->ExclusiveLock(self);
644 #endif
645
646 long_suspend_ = long_suspend;
647
648 const uint64_t end_time = NanoTime();
649 const uint64_t suspend_time = end_time - start_time;
650 suspend_all_historam_.AdjustAndAddValue(suspend_time);
651 if (suspend_time > kLongThreadSuspendThreshold) {
652 LOG(WARNING) << "Suspending all threads took: " << PrettyDuration(suspend_time);
653 }
654
655 if (kDebugLocking) {
656 // Debug check that all threads are suspended.
657 AssertThreadsAreSuspended(self, self);
658 }
659 }
660 ATraceBegin((std::string("Mutator threads suspended for ") + cause).c_str());
661
662 if (self != nullptr) {
663 VLOG(threads) << *self << " SuspendAll complete";
664 } else {
665 VLOG(threads) << "Thread[null] SuspendAll complete";
666 }
667 }
668
669 // Ensures all threads running Java suspend and that those not running Java don't start.
670 // Debugger thread might be set to kRunnable for a short period of time after the
671 // SuspendAllInternal. This is safe because it will be set back to suspended state before
672 // the SuspendAll returns.
SuspendAllInternal(Thread * self,Thread * ignore1,Thread * ignore2,SuspendReason reason)673 void ThreadList::SuspendAllInternal(Thread* self,
674 Thread* ignore1,
675 Thread* ignore2,
676 SuspendReason reason) {
677 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
678 Locks::thread_list_lock_->AssertNotHeld(self);
679 Locks::thread_suspend_count_lock_->AssertNotHeld(self);
680 if (kDebugLocking && self != nullptr) {
681 CHECK_NE(self->GetState(), kRunnable);
682 }
683
684 // First request that all threads suspend, then wait for them to suspend before
685 // returning. This suspension scheme also relies on other behaviour:
686 // 1. Threads cannot be deleted while they are suspended or have a suspend-
687 // request flag set - (see Unregister() below).
688 // 2. When threads are created, they are created in a suspended state (actually
689 // kNative) and will never begin executing Java code without first checking
690 // the suspend-request flag.
691
692 // The atomic counter for number of threads that need to pass the barrier.
693 AtomicInteger pending_threads;
694 uint32_t num_ignored = 0;
695 if (ignore1 != nullptr) {
696 ++num_ignored;
697 }
698 if (ignore2 != nullptr && ignore1 != ignore2) {
699 ++num_ignored;
700 }
701 {
702 MutexLock mu(self, *Locks::thread_list_lock_);
703 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
704 // Update global suspend all state for attaching threads.
705 ++suspend_all_count_;
706 if (reason == SuspendReason::kForDebugger) {
707 ++debug_suspend_all_count_;
708 }
709 pending_threads.store(list_.size() - num_ignored, std::memory_order_relaxed);
710 // Increment everybody's suspend count (except those that should be ignored).
711 for (const auto& thread : list_) {
712 if (thread == ignore1 || thread == ignore2) {
713 continue;
714 }
715 VLOG(threads) << "requesting thread suspend: " << *thread;
716 bool updated = thread->ModifySuspendCount(self, +1, &pending_threads, reason);
717 DCHECK(updated);
718
719 // Must install the pending_threads counter first, then check thread->IsSuspend() and clear
720 // the counter. Otherwise there's a race with Thread::TransitionFromRunnableToSuspended()
721 // that can lead a thread to miss a call to PassActiveSuspendBarriers().
722 if (thread->IsSuspended()) {
723 // Only clear the counter for the current thread.
724 thread->ClearSuspendBarrier(&pending_threads);
725 pending_threads.fetch_sub(1, std::memory_order_seq_cst);
726 }
727 }
728 }
729
730 // Wait for the barrier to be passed by all runnable threads. This wait
731 // is done with a timeout so that we can detect problems.
732 #if ART_USE_FUTEXES
733 timespec wait_timeout;
734 InitTimeSpec(false, CLOCK_MONOTONIC, NsToMs(thread_suspend_timeout_ns_), 0, &wait_timeout);
735 #endif
736 const uint64_t start_time = NanoTime();
737 while (true) {
738 int32_t cur_val = pending_threads.load(std::memory_order_relaxed);
739 if (LIKELY(cur_val > 0)) {
740 #if ART_USE_FUTEXES
741 if (futex(pending_threads.Address(), FUTEX_WAIT_PRIVATE, cur_val, &wait_timeout, nullptr, 0)
742 != 0) {
743 if ((errno == EAGAIN) || (errno == EINTR)) {
744 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
745 continue;
746 }
747 if (errno == ETIMEDOUT) {
748 const uint64_t wait_time = NanoTime() - start_time;
749 MutexLock mu(self, *Locks::thread_list_lock_);
750 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
751 std::ostringstream oss;
752 for (const auto& thread : list_) {
753 if (thread == ignore1 || thread == ignore2) {
754 continue;
755 }
756 if (!thread->IsSuspended()) {
757 oss << std::endl << "Thread not suspended: " << *thread;
758 }
759 }
760 LOG(kIsDebugBuild ? ::android::base::FATAL : ::android::base::ERROR)
761 << "Timed out waiting for threads to suspend, waited for "
762 << PrettyDuration(wait_time)
763 << oss.str();
764 } else {
765 PLOG(FATAL) << "futex wait failed for SuspendAllInternal()";
766 }
767 } // else re-check pending_threads in the next iteration (this may be a spurious wake-up).
768 #else
769 // Spin wait. This is likely to be slow, but on most architecture ART_USE_FUTEXES is set.
770 UNUSED(start_time);
771 #endif
772 } else {
773 CHECK_EQ(cur_val, 0);
774 break;
775 }
776 }
777 }
778
ResumeAll()779 void ThreadList::ResumeAll() {
780 Thread* self = Thread::Current();
781
782 if (self != nullptr) {
783 VLOG(threads) << *self << " ResumeAll starting";
784 } else {
785 VLOG(threads) << "Thread[null] ResumeAll starting";
786 }
787
788 ATraceEnd();
789
790 ScopedTrace trace("Resuming mutator threads");
791
792 if (kDebugLocking) {
793 // Debug check that all threads are suspended.
794 AssertThreadsAreSuspended(self, self);
795 }
796
797 long_suspend_ = false;
798
799 Locks::mutator_lock_->ExclusiveUnlock(self);
800 {
801 MutexLock mu(self, *Locks::thread_list_lock_);
802 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
803 // Update global suspend all state for attaching threads.
804 --suspend_all_count_;
805 // Decrement the suspend counts for all threads.
806 for (const auto& thread : list_) {
807 if (thread == self) {
808 continue;
809 }
810 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
811 DCHECK(updated);
812 }
813
814 // Broadcast a notification to all suspended threads, some or all of
815 // which may choose to wake up. No need to wait for them.
816 if (self != nullptr) {
817 VLOG(threads) << *self << " ResumeAll waking others";
818 } else {
819 VLOG(threads) << "Thread[null] ResumeAll waking others";
820 }
821 Thread::resume_cond_->Broadcast(self);
822 }
823
824 if (self != nullptr) {
825 VLOG(threads) << *self << " ResumeAll complete";
826 } else {
827 VLOG(threads) << "Thread[null] ResumeAll complete";
828 }
829 }
830
Resume(Thread * thread,SuspendReason reason)831 bool ThreadList::Resume(Thread* thread, SuspendReason reason) {
832 // This assumes there was an ATraceBegin when we suspended the thread.
833 ATraceEnd();
834
835 Thread* self = Thread::Current();
836 DCHECK_NE(thread, self);
837 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") starting..." << reason;
838
839 {
840 // To check Contains.
841 MutexLock mu(self, *Locks::thread_list_lock_);
842 // To check IsSuspended.
843 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
844 if (UNLIKELY(!thread->IsSuspended())) {
845 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
846 << ") thread not suspended";
847 return false;
848 }
849 if (!Contains(thread)) {
850 // We only expect threads within the thread-list to have been suspended otherwise we can't
851 // stop such threads from delete-ing themselves.
852 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
853 << ") thread not within thread list";
854 return false;
855 }
856 if (UNLIKELY(!thread->ModifySuspendCount(self, -1, nullptr, reason))) {
857 LOG(ERROR) << "Resume(" << reinterpret_cast<void*>(thread)
858 << ") could not modify suspend count.";
859 return false;
860 }
861 }
862
863 {
864 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") waking others";
865 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
866 Thread::resume_cond_->Broadcast(self);
867 }
868
869 VLOG(threads) << "Resume(" << reinterpret_cast<void*>(thread) << ") complete";
870 return true;
871 }
872
ThreadSuspendByPeerWarning(Thread * self,LogSeverity severity,const char * message,jobject peer)873 static void ThreadSuspendByPeerWarning(Thread* self,
874 LogSeverity severity,
875 const char* message,
876 jobject peer) {
877 JNIEnvExt* env = self->GetJniEnv();
878 ScopedLocalRef<jstring>
879 scoped_name_string(env, static_cast<jstring>(env->GetObjectField(
880 peer, WellKnownClasses::java_lang_Thread_name)));
881 ScopedUtfChars scoped_name_chars(env, scoped_name_string.get());
882 if (scoped_name_chars.c_str() == nullptr) {
883 LOG(severity) << message << ": " << peer;
884 env->ExceptionClear();
885 } else {
886 LOG(severity) << message << ": " << peer << ":" << scoped_name_chars.c_str();
887 }
888 }
889
SuspendThreadByPeer(jobject peer,bool request_suspension,SuspendReason reason,bool * timed_out)890 Thread* ThreadList::SuspendThreadByPeer(jobject peer,
891 bool request_suspension,
892 SuspendReason reason,
893 bool* timed_out) {
894 const uint64_t start_time = NanoTime();
895 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
896 *timed_out = false;
897 Thread* const self = Thread::Current();
898 Thread* suspended_thread = nullptr;
899 VLOG(threads) << "SuspendThreadByPeer starting";
900 while (true) {
901 Thread* thread;
902 {
903 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
904 // is requesting another suspend, to avoid deadlock, by requiring this function be called
905 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
906 // than request thread suspension, to avoid potential cycles in threads requesting each other
907 // suspend.
908 ScopedObjectAccess soa(self);
909 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
910 thread = Thread::FromManagedThread(soa, peer);
911 if (thread == nullptr) {
912 if (suspended_thread != nullptr) {
913 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
914 // If we incremented the suspend count but the thread reset its peer, we need to
915 // re-decrement it since it is shutting down and may deadlock the runtime in
916 // ThreadList::WaitForOtherNonDaemonThreadsToExit.
917 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
918 -1,
919 nullptr,
920 reason);
921 DCHECK(updated);
922 }
923 ThreadSuspendByPeerWarning(self,
924 ::android::base::WARNING,
925 "No such thread for suspend",
926 peer);
927 return nullptr;
928 }
929 if (!Contains(thread)) {
930 CHECK(suspended_thread == nullptr);
931 VLOG(threads) << "SuspendThreadByPeer failed for unattached thread: "
932 << reinterpret_cast<void*>(thread);
933 return nullptr;
934 }
935 VLOG(threads) << "SuspendThreadByPeer found thread: " << *thread;
936 {
937 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
938 if (request_suspension) {
939 if (self->GetSuspendCount() > 0) {
940 // We hold the suspend count lock but another thread is trying to suspend us. Its not
941 // safe to try to suspend another thread in case we get a cycle. Start the loop again
942 // which will allow this thread to be suspended.
943 continue;
944 }
945 CHECK(suspended_thread == nullptr);
946 suspended_thread = thread;
947 bool updated = suspended_thread->ModifySuspendCount(self, +1, nullptr, reason);
948 DCHECK(updated);
949 request_suspension = false;
950 } else {
951 // If the caller isn't requesting suspension, a suspension should have already occurred.
952 CHECK_GT(thread->GetSuspendCount(), 0);
953 }
954 // IsSuspended on the current thread will fail as the current thread is changed into
955 // Runnable above. As the suspend count is now raised if this is the current thread
956 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
957 // to just explicitly handle the current thread in the callers to this code.
958 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
959 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
960 // count, or else we've waited and it has self suspended) or is the current thread, we're
961 // done.
962 if (thread->IsSuspended()) {
963 VLOG(threads) << "SuspendThreadByPeer thread suspended: " << *thread;
964 if (ATraceEnabled()) {
965 std::string name;
966 thread->GetThreadName(name);
967 ATraceBegin(StringPrintf("SuspendThreadByPeer suspended %s for peer=%p", name.c_str(),
968 peer).c_str());
969 }
970 return thread;
971 }
972 const uint64_t total_delay = NanoTime() - start_time;
973 if (total_delay >= thread_suspend_timeout_ns_) {
974 ThreadSuspendByPeerWarning(self,
975 ::android::base::FATAL,
976 "Thread suspension timed out",
977 peer);
978 if (suspended_thread != nullptr) {
979 CHECK_EQ(suspended_thread, thread);
980 bool updated = suspended_thread->ModifySuspendCount(soa.Self(),
981 -1,
982 nullptr,
983 reason);
984 DCHECK(updated);
985 }
986 *timed_out = true;
987 return nullptr;
988 } else if (sleep_us == 0 &&
989 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
990 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
991 // excessive CPU usage.
992 sleep_us = kThreadSuspendMaxYieldUs / 2;
993 }
994 }
995 // Release locks and come out of runnable state.
996 }
997 VLOG(threads) << "SuspendThreadByPeer waiting to allow thread chance to suspend";
998 ThreadSuspendSleep(sleep_us);
999 // This may stay at 0 if sleep_us == 0, but this is WAI since we want to avoid using usleep at
1000 // all if possible. This shouldn't be an issue since time to suspend should always be small.
1001 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1002 }
1003 }
1004
ThreadSuspendByThreadIdWarning(LogSeverity severity,const char * message,uint32_t thread_id)1005 static void ThreadSuspendByThreadIdWarning(LogSeverity severity,
1006 const char* message,
1007 uint32_t thread_id) {
1008 LOG(severity) << StringPrintf("%s: %d", message, thread_id);
1009 }
1010
SuspendThreadByThreadId(uint32_t thread_id,SuspendReason reason,bool * timed_out)1011 Thread* ThreadList::SuspendThreadByThreadId(uint32_t thread_id,
1012 SuspendReason reason,
1013 bool* timed_out) {
1014 const uint64_t start_time = NanoTime();
1015 useconds_t sleep_us = kThreadSuspendInitialSleepUs;
1016 *timed_out = false;
1017 Thread* suspended_thread = nullptr;
1018 Thread* const self = Thread::Current();
1019 CHECK_NE(thread_id, kInvalidThreadId);
1020 VLOG(threads) << "SuspendThreadByThreadId starting";
1021 while (true) {
1022 {
1023 // Note: this will transition to runnable and potentially suspend. We ensure only one thread
1024 // is requesting another suspend, to avoid deadlock, by requiring this function be called
1025 // holding Locks::thread_list_suspend_thread_lock_. Its important this thread suspend rather
1026 // than request thread suspension, to avoid potential cycles in threads requesting each other
1027 // suspend.
1028 ScopedObjectAccess soa(self);
1029 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1030 Thread* thread = nullptr;
1031 for (const auto& it : list_) {
1032 if (it->GetThreadId() == thread_id) {
1033 thread = it;
1034 break;
1035 }
1036 }
1037 if (thread == nullptr) {
1038 CHECK(suspended_thread == nullptr) << "Suspended thread " << suspended_thread
1039 << " no longer in thread list";
1040 // There's a race in inflating a lock and the owner giving up ownership and then dying.
1041 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1042 "No such thread id for suspend",
1043 thread_id);
1044 return nullptr;
1045 }
1046 VLOG(threads) << "SuspendThreadByThreadId found thread: " << *thread;
1047 DCHECK(Contains(thread));
1048 {
1049 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1050 if (suspended_thread == nullptr) {
1051 if (self->GetSuspendCount() > 0) {
1052 // We hold the suspend count lock but another thread is trying to suspend us. Its not
1053 // safe to try to suspend another thread in case we get a cycle. Start the loop again
1054 // which will allow this thread to be suspended.
1055 continue;
1056 }
1057 bool updated = thread->ModifySuspendCount(self, +1, nullptr, reason);
1058 DCHECK(updated);
1059 suspended_thread = thread;
1060 } else {
1061 CHECK_EQ(suspended_thread, thread);
1062 // If the caller isn't requesting suspension, a suspension should have already occurred.
1063 CHECK_GT(thread->GetSuspendCount(), 0);
1064 }
1065 // IsSuspended on the current thread will fail as the current thread is changed into
1066 // Runnable above. As the suspend count is now raised if this is the current thread
1067 // it will self suspend on transition to Runnable, making it hard to work with. It's simpler
1068 // to just explicitly handle the current thread in the callers to this code.
1069 CHECK_NE(thread, self) << "Attempt to suspend the current thread for the debugger";
1070 // If thread is suspended (perhaps it was already not Runnable but didn't have a suspend
1071 // count, or else we've waited and it has self suspended) or is the current thread, we're
1072 // done.
1073 if (thread->IsSuspended()) {
1074 if (ATraceEnabled()) {
1075 std::string name;
1076 thread->GetThreadName(name);
1077 ATraceBegin(StringPrintf("SuspendThreadByThreadId suspended %s id=%d",
1078 name.c_str(), thread_id).c_str());
1079 }
1080 VLOG(threads) << "SuspendThreadByThreadId thread suspended: " << *thread;
1081 return thread;
1082 }
1083 const uint64_t total_delay = NanoTime() - start_time;
1084 if (total_delay >= thread_suspend_timeout_ns_) {
1085 ThreadSuspendByThreadIdWarning(::android::base::WARNING,
1086 "Thread suspension timed out",
1087 thread_id);
1088 if (suspended_thread != nullptr) {
1089 bool updated = thread->ModifySuspendCount(soa.Self(), -1, nullptr, reason);
1090 DCHECK(updated);
1091 }
1092 *timed_out = true;
1093 return nullptr;
1094 } else if (sleep_us == 0 &&
1095 total_delay > static_cast<uint64_t>(kThreadSuspendMaxYieldUs) * 1000) {
1096 // We have spun for kThreadSuspendMaxYieldUs time, switch to sleeps to prevent
1097 // excessive CPU usage.
1098 sleep_us = kThreadSuspendMaxYieldUs / 2;
1099 }
1100 }
1101 // Release locks and come out of runnable state.
1102 }
1103 VLOG(threads) << "SuspendThreadByThreadId waiting to allow thread chance to suspend";
1104 ThreadSuspendSleep(sleep_us);
1105 sleep_us = std::min(sleep_us * 2, kThreadSuspendMaxSleepUs);
1106 }
1107 }
1108
FindThreadByThreadId(uint32_t thread_id)1109 Thread* ThreadList::FindThreadByThreadId(uint32_t thread_id) {
1110 for (const auto& thread : list_) {
1111 if (thread->GetThreadId() == thread_id) {
1112 return thread;
1113 }
1114 }
1115 return nullptr;
1116 }
1117
SuspendAllForDebugger()1118 void ThreadList::SuspendAllForDebugger() {
1119 Thread* self = Thread::Current();
1120 Thread* debug_thread = Dbg::GetDebugThread();
1121
1122 VLOG(threads) << *self << " SuspendAllForDebugger starting...";
1123
1124 SuspendAllInternal(self, self, debug_thread, SuspendReason::kForDebugger);
1125 // Block on the mutator lock until all Runnable threads release their share of access then
1126 // immediately unlock again.
1127 #if HAVE_TIMED_RWLOCK
1128 // Timeout if we wait more than 30 seconds.
1129 if (!Locks::mutator_lock_->ExclusiveLockWithTimeout(self, 30 * 1000, 0)) {
1130 UnsafeLogFatalForThreadSuspendAllTimeout();
1131 } else {
1132 Locks::mutator_lock_->ExclusiveUnlock(self);
1133 }
1134 #else
1135 Locks::mutator_lock_->ExclusiveLock(self);
1136 Locks::mutator_lock_->ExclusiveUnlock(self);
1137 #endif
1138 // Disabled for the following race condition:
1139 // Thread 1 calls SuspendAllForDebugger, gets preempted after pulsing the mutator lock.
1140 // Thread 2 calls SuspendAll and SetStateUnsafe (perhaps from Dbg::Disconnected).
1141 // Thread 1 fails assertion that all threads are suspended due to thread 2 being in a runnable
1142 // state (from SetStateUnsafe).
1143 // AssertThreadsAreSuspended(self, self, debug_thread);
1144
1145 VLOG(threads) << *self << " SuspendAllForDebugger complete";
1146 }
1147
SuspendSelfForDebugger()1148 void ThreadList::SuspendSelfForDebugger() {
1149 Thread* const self = Thread::Current();
1150 self->SetReadyForDebugInvoke(true);
1151
1152 // The debugger thread must not suspend itself due to debugger activity!
1153 Thread* debug_thread = Dbg::GetDebugThread();
1154 CHECK(self != debug_thread);
1155 CHECK_NE(self->GetState(), kRunnable);
1156 Locks::mutator_lock_->AssertNotHeld(self);
1157
1158 // The debugger may have detached while we were executing an invoke request. In that case, we
1159 // must not suspend ourself.
1160 DebugInvokeReq* pReq = self->GetInvokeReq();
1161 const bool skip_thread_suspension = (pReq != nullptr && !Dbg::IsDebuggerActive());
1162 if (!skip_thread_suspension) {
1163 // Collisions with other suspends aren't really interesting. We want
1164 // to ensure that we're the only one fiddling with the suspend count
1165 // though.
1166 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1167 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kForDebugger);
1168 DCHECK(updated);
1169 CHECK_GT(self->GetSuspendCount(), 0);
1170
1171 VLOG(threads) << *self << " self-suspending (debugger)";
1172 } else {
1173 // We must no longer be subject to debugger suspension.
1174 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1175 CHECK_EQ(self->GetDebugSuspendCount(), 0) << "Debugger detached without resuming us";
1176
1177 VLOG(threads) << *self << " not self-suspending because debugger detached during invoke";
1178 }
1179
1180 // If the debugger requested an invoke, we need to send the reply and clear the request.
1181 if (pReq != nullptr) {
1182 Dbg::FinishInvokeMethod(pReq);
1183 self->ClearDebugInvokeReq();
1184 pReq = nullptr; // object has been deleted, clear it for safety.
1185 }
1186
1187 // Tell JDWP that we've completed suspension. The JDWP thread can't
1188 // tell us to resume before we're fully asleep because we hold the
1189 // suspend count lock.
1190 Dbg::ClearWaitForEventThread();
1191
1192 {
1193 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1194 while (self->GetSuspendCount() != 0) {
1195 Thread::resume_cond_->Wait(self);
1196 if (self->GetSuspendCount() != 0) {
1197 // The condition was signaled but we're still suspended. This
1198 // can happen when we suspend then resume all threads to
1199 // update instrumentation or compute monitor info. This can
1200 // also happen if the debugger lets go while a SIGQUIT thread
1201 // dump event is pending (assuming SignalCatcher was resumed for
1202 // just long enough to try to grab the thread-suspend lock).
1203 VLOG(jdwp) << *self << " still suspended after undo "
1204 << "(suspend count=" << self->GetSuspendCount() << ", "
1205 << "debug suspend count=" << self->GetDebugSuspendCount() << ")";
1206 }
1207 }
1208 CHECK_EQ(self->GetSuspendCount(), 0);
1209 }
1210
1211 self->SetReadyForDebugInvoke(false);
1212 VLOG(threads) << *self << " self-reviving (debugger)";
1213 }
1214
ResumeAllForDebugger()1215 void ThreadList::ResumeAllForDebugger() {
1216 Thread* self = Thread::Current();
1217 Thread* debug_thread = Dbg::GetDebugThread();
1218
1219 VLOG(threads) << *self << " ResumeAllForDebugger starting...";
1220
1221 // Threads can't resume if we exclusively hold the mutator lock.
1222 Locks::mutator_lock_->AssertNotExclusiveHeld(self);
1223
1224 {
1225 MutexLock thread_list_mu(self, *Locks::thread_list_lock_);
1226 {
1227 MutexLock suspend_count_mu(self, *Locks::thread_suspend_count_lock_);
1228 // Update global suspend all state for attaching threads.
1229 DCHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1230 if (debug_suspend_all_count_ > 0) {
1231 --suspend_all_count_;
1232 --debug_suspend_all_count_;
1233 } else {
1234 // We've been asked to resume all threads without being asked to
1235 // suspend them all before. That may happen if a debugger tries
1236 // to resume some suspended threads (with suspend count == 1)
1237 // at once with a VirtualMachine.Resume command. Let's print a
1238 // warning.
1239 LOG(WARNING) << "Debugger attempted to resume all threads without "
1240 << "having suspended them all before.";
1241 }
1242 // Decrement everybody's suspend count (except our own).
1243 for (const auto& thread : list_) {
1244 if (thread == self || thread == debug_thread) {
1245 continue;
1246 }
1247 if (thread->GetDebugSuspendCount() == 0) {
1248 // This thread may have been individually resumed with ThreadReference.Resume.
1249 continue;
1250 }
1251 VLOG(threads) << "requesting thread resume: " << *thread;
1252 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kForDebugger);
1253 DCHECK(updated);
1254 }
1255 }
1256 }
1257
1258 {
1259 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1260 Thread::resume_cond_->Broadcast(self);
1261 }
1262
1263 VLOG(threads) << *self << " ResumeAllForDebugger complete";
1264 }
1265
UndoDebuggerSuspensions()1266 void ThreadList::UndoDebuggerSuspensions() {
1267 Thread* self = Thread::Current();
1268
1269 VLOG(threads) << *self << " UndoDebuggerSuspensions starting";
1270
1271 {
1272 MutexLock mu(self, *Locks::thread_list_lock_);
1273 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1274 // Update global suspend all state for attaching threads.
1275 suspend_all_count_ -= debug_suspend_all_count_;
1276 debug_suspend_all_count_ = 0;
1277 // Update running threads.
1278 for (const auto& thread : list_) {
1279 if (thread == self || thread->GetDebugSuspendCount() == 0) {
1280 continue;
1281 }
1282 bool suspended = thread->ModifySuspendCount(self,
1283 -thread->GetDebugSuspendCount(),
1284 nullptr,
1285 SuspendReason::kForDebugger);
1286 DCHECK(suspended);
1287 }
1288 }
1289
1290 {
1291 MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1292 Thread::resume_cond_->Broadcast(self);
1293 }
1294
1295 VLOG(threads) << "UndoDebuggerSuspensions(" << *self << ") complete";
1296 }
1297
WaitForOtherNonDaemonThreadsToExit()1298 void ThreadList::WaitForOtherNonDaemonThreadsToExit() {
1299 ScopedTrace trace(__PRETTY_FUNCTION__);
1300 Thread* self = Thread::Current();
1301 Locks::mutator_lock_->AssertNotHeld(self);
1302 while (true) {
1303 {
1304 // No more threads can be born after we start to shutdown.
1305 MutexLock mu(self, *Locks::runtime_shutdown_lock_);
1306 CHECK(Runtime::Current()->IsShuttingDownLocked());
1307 CHECK_EQ(Runtime::Current()->NumberOfThreadsBeingBorn(), 0U);
1308 }
1309 MutexLock mu(self, *Locks::thread_list_lock_);
1310 // Also wait for any threads that are unregistering to finish. This is required so that no
1311 // threads access the thread list after it is deleted. TODO: This may not work for user daemon
1312 // threads since they could unregister at the wrong time.
1313 bool done = unregistering_count_ == 0;
1314 if (done) {
1315 for (const auto& thread : list_) {
1316 if (thread != self && !thread->IsDaemon()) {
1317 done = false;
1318 break;
1319 }
1320 }
1321 }
1322 if (done) {
1323 break;
1324 }
1325 // Wait for another thread to exit before re-checking.
1326 Locks::thread_exit_cond_->Wait(self);
1327 }
1328 }
1329
SuspendAllDaemonThreadsForShutdown()1330 void ThreadList::SuspendAllDaemonThreadsForShutdown() {
1331 ScopedTrace trace(__PRETTY_FUNCTION__);
1332 Thread* self = Thread::Current();
1333 size_t daemons_left = 0;
1334 {
1335 // Tell all the daemons it's time to suspend.
1336 MutexLock mu(self, *Locks::thread_list_lock_);
1337 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1338 for (const auto& thread : list_) {
1339 // This is only run after all non-daemon threads have exited, so the remainder should all be
1340 // daemons.
1341 CHECK(thread->IsDaemon()) << *thread;
1342 if (thread != self) {
1343 bool updated = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1344 DCHECK(updated);
1345 ++daemons_left;
1346 }
1347 // We are shutting down the runtime, set the JNI functions of all the JNIEnvs to be
1348 // the sleep forever one.
1349 thread->GetJniEnv()->SetFunctionsToRuntimeShutdownFunctions();
1350 }
1351 }
1352 // If we have any daemons left, wait 200ms to ensure they are not stuck in a place where they
1353 // are about to access runtime state and are not in a runnable state. Examples: Monitor code
1354 // or waking up from a condition variable. TODO: Try and see if there is a better way to wait
1355 // for daemon threads to be in a blocked state.
1356 if (daemons_left > 0) {
1357 static constexpr size_t kDaemonSleepTime = 200 * 1000;
1358 usleep(kDaemonSleepTime);
1359 }
1360 // Give the threads a chance to suspend, complaining if they're slow.
1361 bool have_complained = false;
1362 static constexpr size_t kTimeoutMicroseconds = 2000 * 1000;
1363 static constexpr size_t kSleepMicroseconds = 1000;
1364 for (size_t i = 0; i < kTimeoutMicroseconds / kSleepMicroseconds; ++i) {
1365 bool all_suspended = true;
1366 {
1367 MutexLock mu(self, *Locks::thread_list_lock_);
1368 for (const auto& thread : list_) {
1369 if (thread != self && thread->GetState() == kRunnable) {
1370 if (!have_complained) {
1371 LOG(WARNING) << "daemon thread not yet suspended: " << *thread;
1372 have_complained = true;
1373 }
1374 all_suspended = false;
1375 }
1376 }
1377 }
1378 if (all_suspended) {
1379 return;
1380 }
1381 usleep(kSleepMicroseconds);
1382 }
1383 LOG(WARNING) << "timed out suspending all daemon threads";
1384 }
1385
Register(Thread * self)1386 void ThreadList::Register(Thread* self) {
1387 DCHECK_EQ(self, Thread::Current());
1388 CHECK(!shut_down_);
1389
1390 if (VLOG_IS_ON(threads)) {
1391 std::ostringstream oss;
1392 self->ShortDump(oss); // We don't hold the mutator_lock_ yet and so cannot call Dump.
1393 LOG(INFO) << "ThreadList::Register() " << *self << "\n" << oss.str();
1394 }
1395
1396 // Atomically add self to the thread list and make its thread_suspend_count_ reflect ongoing
1397 // SuspendAll requests.
1398 MutexLock mu(self, *Locks::thread_list_lock_);
1399 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1400 CHECK_GE(suspend_all_count_, debug_suspend_all_count_);
1401 // Modify suspend count in increments of 1 to maintain invariants in ModifySuspendCount. While
1402 // this isn't particularly efficient the suspend counts are most commonly 0 or 1.
1403 for (int delta = debug_suspend_all_count_; delta > 0; delta--) {
1404 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kForDebugger);
1405 DCHECK(updated);
1406 }
1407 for (int delta = suspend_all_count_ - debug_suspend_all_count_; delta > 0; delta--) {
1408 bool updated = self->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1409 DCHECK(updated);
1410 }
1411 CHECK(!Contains(self));
1412 list_.push_back(self);
1413 if (kUseReadBarrier) {
1414 gc::collector::ConcurrentCopying* const cc =
1415 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector();
1416 // Initialize according to the state of the CC collector.
1417 self->SetIsGcMarkingAndUpdateEntrypoints(cc->IsMarking());
1418 if (cc->IsUsingReadBarrierEntrypoints()) {
1419 self->SetReadBarrierEntrypoints();
1420 }
1421 self->SetWeakRefAccessEnabled(cc->IsWeakRefAccessEnabled());
1422 }
1423 self->NotifyInTheadList();
1424 }
1425
Unregister(Thread * self)1426 void ThreadList::Unregister(Thread* self) {
1427 DCHECK_EQ(self, Thread::Current());
1428 CHECK_NE(self->GetState(), kRunnable);
1429 Locks::mutator_lock_->AssertNotHeld(self);
1430
1431 VLOG(threads) << "ThreadList::Unregister() " << *self;
1432
1433 {
1434 MutexLock mu(self, *Locks::thread_list_lock_);
1435 ++unregistering_count_;
1436 }
1437
1438 // Any time-consuming destruction, plus anything that can call back into managed code or
1439 // suspend and so on, must happen at this point, and not in ~Thread. The self->Destroy is what
1440 // causes the threads to join. It is important to do this after incrementing unregistering_count_
1441 // since we want the runtime to wait for the daemon threads to exit before deleting the thread
1442 // list.
1443 self->Destroy();
1444
1445 // If tracing, remember thread id and name before thread exits.
1446 Trace::StoreExitingThreadInfo(self);
1447
1448 uint32_t thin_lock_id = self->GetThreadId();
1449 while (true) {
1450 // Remove and delete the Thread* while holding the thread_list_lock_ and
1451 // thread_suspend_count_lock_ so that the unregistering thread cannot be suspended.
1452 // Note: deliberately not using MutexLock that could hold a stale self pointer.
1453 {
1454 MutexLock mu(self, *Locks::thread_list_lock_);
1455 if (!Contains(self)) {
1456 std::string thread_name;
1457 self->GetThreadName(thread_name);
1458 std::ostringstream os;
1459 DumpNativeStack(os, GetTid(), nullptr, " native: ", nullptr);
1460 LOG(ERROR) << "Request to unregister unattached thread " << thread_name << "\n" << os.str();
1461 break;
1462 } else {
1463 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1464 if (!self->IsSuspended()) {
1465 list_.remove(self);
1466 break;
1467 }
1468 }
1469 }
1470 // In the case where we are not suspended yet, sleep to leave other threads time to execute.
1471 // This is important if there are realtime threads. b/111277984
1472 usleep(1);
1473 // We failed to remove the thread due to a suspend request, loop and try again.
1474 }
1475 delete self;
1476
1477 // Release the thread ID after the thread is finished and deleted to avoid cases where we can
1478 // temporarily have multiple threads with the same thread id. When this occurs, it causes
1479 // problems in FindThreadByThreadId / SuspendThreadByThreadId.
1480 ReleaseThreadId(nullptr, thin_lock_id);
1481
1482 // Clear the TLS data, so that the underlying native thread is recognizably detached.
1483 // (It may wish to reattach later.)
1484 #ifdef ART_TARGET_ANDROID
1485 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = nullptr;
1486 #else
1487 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, nullptr), "detach self");
1488 #endif
1489
1490 // Signal that a thread just detached.
1491 MutexLock mu(nullptr, *Locks::thread_list_lock_);
1492 --unregistering_count_;
1493 Locks::thread_exit_cond_->Broadcast(nullptr);
1494 }
1495
ForEach(void (* callback)(Thread *,void *),void * context)1496 void ThreadList::ForEach(void (*callback)(Thread*, void*), void* context) {
1497 for (const auto& thread : list_) {
1498 callback(thread, context);
1499 }
1500 }
1501
VisitRootsForSuspendedThreads(RootVisitor * visitor)1502 void ThreadList::VisitRootsForSuspendedThreads(RootVisitor* visitor) {
1503 Thread* const self = Thread::Current();
1504 std::vector<Thread*> threads_to_visit;
1505
1506 // Tell threads to suspend and copy them into list.
1507 {
1508 MutexLock mu(self, *Locks::thread_list_lock_);
1509 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1510 for (Thread* thread : list_) {
1511 bool suspended = thread->ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal);
1512 DCHECK(suspended);
1513 if (thread == self || thread->IsSuspended()) {
1514 threads_to_visit.push_back(thread);
1515 } else {
1516 bool resumed = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1517 DCHECK(resumed);
1518 }
1519 }
1520 }
1521
1522 // Visit roots without holding thread_list_lock_ and thread_suspend_count_lock_ to prevent lock
1523 // order violations.
1524 for (Thread* thread : threads_to_visit) {
1525 thread->VisitRoots(visitor, kVisitRootFlagAllRoots);
1526 }
1527
1528 // Restore suspend counts.
1529 {
1530 MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1531 for (Thread* thread : threads_to_visit) {
1532 bool updated = thread->ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1533 DCHECK(updated);
1534 }
1535 }
1536 }
1537
VisitRoots(RootVisitor * visitor,VisitRootFlags flags) const1538 void ThreadList::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) const {
1539 MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
1540 for (const auto& thread : list_) {
1541 thread->VisitRoots(visitor, flags);
1542 }
1543 }
1544
AllocThreadId(Thread * self)1545 uint32_t ThreadList::AllocThreadId(Thread* self) {
1546 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1547 for (size_t i = 0; i < allocated_ids_.size(); ++i) {
1548 if (!allocated_ids_[i]) {
1549 allocated_ids_.set(i);
1550 return i + 1; // Zero is reserved to mean "invalid".
1551 }
1552 }
1553 LOG(FATAL) << "Out of internal thread ids";
1554 UNREACHABLE();
1555 }
1556
ReleaseThreadId(Thread * self,uint32_t id)1557 void ThreadList::ReleaseThreadId(Thread* self, uint32_t id) {
1558 MutexLock mu(self, *Locks::allocated_thread_ids_lock_);
1559 --id; // Zero is reserved to mean "invalid".
1560 DCHECK(allocated_ids_[id]) << id;
1561 allocated_ids_.reset(id);
1562 }
1563
ScopedSuspendAll(const char * cause,bool long_suspend)1564 ScopedSuspendAll::ScopedSuspendAll(const char* cause, bool long_suspend) {
1565 Runtime::Current()->GetThreadList()->SuspendAll(cause, long_suspend);
1566 }
1567
~ScopedSuspendAll()1568 ScopedSuspendAll::~ScopedSuspendAll() {
1569 Runtime::Current()->GetThreadList()->ResumeAll();
1570 }
1571
1572 } // namespace art
1573