1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "webrtc/modules/audio_processing/ns/nsx_core.h"
12
13 #include <arm_neon.h>
14 #include <assert.h>
15
16 // Constants to compensate for shifting signal log(2^shifts).
17 const int16_t WebRtcNsx_kLogTable[9] = {
18 0, 177, 355, 532, 710, 887, 1065, 1242, 1420
19 };
20
21 const int16_t WebRtcNsx_kCounterDiv[201] = {
22 32767, 16384, 10923, 8192, 6554, 5461, 4681, 4096, 3641, 3277, 2979, 2731,
23 2521, 2341, 2185, 2048, 1928, 1820, 1725, 1638, 1560, 1489, 1425, 1365, 1311,
24 1260, 1214, 1170, 1130, 1092, 1057, 1024, 993, 964, 936, 910, 886, 862, 840,
25 819, 799, 780, 762, 745, 728, 712, 697, 683, 669, 655, 643, 630, 618, 607,
26 596, 585, 575, 565, 555, 546, 537, 529, 520, 512, 504, 496, 489, 482, 475,
27 468, 462, 455, 449, 443, 437, 431, 426, 420, 415, 410, 405, 400, 395, 390,
28 386, 381, 377, 372, 368, 364, 360, 356, 352, 349, 345, 341, 338, 334, 331,
29 328, 324, 321, 318, 315, 312, 309, 306, 303, 301, 298, 295, 293, 290, 287,
30 285, 282, 280, 278, 275, 273, 271, 269, 266, 264, 262, 260, 258, 256, 254,
31 252, 250, 248, 246, 245, 243, 241, 239, 237, 236, 234, 232, 231, 229, 228,
32 226, 224, 223, 221, 220, 218, 217, 216, 214, 213, 211, 210, 209, 207, 206,
33 205, 204, 202, 201, 200, 199, 197, 196, 195, 194, 193, 192, 191, 189, 188,
34 187, 186, 185, 184, 183, 182, 181, 180, 179, 178, 177, 176, 175, 174, 173,
35 172, 172, 171, 170, 169, 168, 167, 166, 165, 165, 164, 163
36 };
37
38 const int16_t WebRtcNsx_kLogTableFrac[256] = {
39 0, 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 16, 17, 18, 20, 21,
40 22, 24, 25, 26, 28, 29, 30, 32, 33, 34, 36, 37, 38, 40, 41, 42,
41 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62,
42 63, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81,
43 82, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 96, 97, 98, 99,
44 100, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 116,
45 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131,
46 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
47 147, 148, 149, 150, 151, 152, 153, 154, 155, 155, 156, 157, 158, 159, 160,
48 161, 162, 163, 164, 165, 166, 167, 168, 169, 169, 170, 171, 172, 173, 174,
49 175, 176, 177, 178, 178, 179, 180, 181, 182, 183, 184, 185, 185, 186, 187,
50 188, 189, 190, 191, 192, 192, 193, 194, 195, 196, 197, 198, 198, 199, 200,
51 201, 202, 203, 203, 204, 205, 206, 207, 208, 208, 209, 210, 211, 212, 212,
52 213, 214, 215, 216, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
53 225, 226, 227, 228, 228, 229, 230, 231, 231, 232, 233, 234, 234, 235, 236,
54 237, 238, 238, 239, 240, 241, 241, 242, 243, 244, 244, 245, 246, 247, 247,
55 248, 249, 249, 250, 251, 252, 252, 253, 254, 255, 255
56 };
57
58 // Update the noise estimation information.
UpdateNoiseEstimateNeon(NoiseSuppressionFixedC * inst,int offset)59 static void UpdateNoiseEstimateNeon(NoiseSuppressionFixedC* inst, int offset) {
60 const int16_t kExp2Const = 11819; // Q13
61 int16_t* ptr_noiseEstLogQuantile = NULL;
62 int16_t* ptr_noiseEstQuantile = NULL;
63 int16x4_t kExp2Const16x4 = vdup_n_s16(kExp2Const);
64 int32x4_t twentyOne32x4 = vdupq_n_s32(21);
65 int32x4_t constA32x4 = vdupq_n_s32(0x1fffff);
66 int32x4_t constB32x4 = vdupq_n_s32(0x200000);
67
68 int16_t tmp16 = WebRtcSpl_MaxValueW16(inst->noiseEstLogQuantile + offset,
69 inst->magnLen);
70
71 // Guarantee a Q-domain as high as possible and still fit in int16
72 inst->qNoise = 14 - (int) WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(kExp2Const,
73 tmp16,
74 21);
75
76 int32x4_t qNoise32x4 = vdupq_n_s32(inst->qNoise);
77
78 for (ptr_noiseEstLogQuantile = &inst->noiseEstLogQuantile[offset],
79 ptr_noiseEstQuantile = &inst->noiseEstQuantile[0];
80 ptr_noiseEstQuantile < &inst->noiseEstQuantile[inst->magnLen - 3];
81 ptr_noiseEstQuantile += 4, ptr_noiseEstLogQuantile += 4) {
82
83 // tmp32no2 = kExp2Const * inst->noiseEstLogQuantile[offset + i];
84 int16x4_t v16x4 = vld1_s16(ptr_noiseEstLogQuantile);
85 int32x4_t v32x4B = vmull_s16(v16x4, kExp2Const16x4);
86
87 // tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac
88 int32x4_t v32x4A = vandq_s32(v32x4B, constA32x4);
89 v32x4A = vorrq_s32(v32x4A, constB32x4);
90
91 // tmp16 = (int16_t)(tmp32no2 >> 21);
92 v32x4B = vshrq_n_s32(v32x4B, 21);
93
94 // tmp16 -= 21;// shift 21 to get result in Q0
95 v32x4B = vsubq_s32(v32x4B, twentyOne32x4);
96
97 // tmp16 += (int16_t) inst->qNoise;
98 // shift to get result in Q(qNoise)
99 v32x4B = vaddq_s32(v32x4B, qNoise32x4);
100
101 // if (tmp16 < 0) {
102 // tmp32no1 >>= -tmp16;
103 // } else {
104 // tmp32no1 <<= tmp16;
105 // }
106 v32x4B = vshlq_s32(v32x4A, v32x4B);
107
108 // tmp16 = WebRtcSpl_SatW32ToW16(tmp32no1);
109 v16x4 = vqmovn_s32(v32x4B);
110
111 //inst->noiseEstQuantile[i] = tmp16;
112 vst1_s16(ptr_noiseEstQuantile, v16x4);
113 }
114
115 // Last iteration:
116
117 // inst->quantile[i]=exp(inst->lquantile[offset+i]);
118 // in Q21
119 int32_t tmp32no2 = kExp2Const * *ptr_noiseEstLogQuantile;
120 int32_t tmp32no1 = (0x00200000 | (tmp32no2 & 0x001FFFFF)); // 2^21 + frac
121
122 tmp16 = (int16_t)(tmp32no2 >> 21);
123 tmp16 -= 21;// shift 21 to get result in Q0
124 tmp16 += (int16_t) inst->qNoise; //shift to get result in Q(qNoise)
125 if (tmp16 < 0) {
126 tmp32no1 >>= -tmp16;
127 } else {
128 tmp32no1 <<= tmp16;
129 }
130 *ptr_noiseEstQuantile = WebRtcSpl_SatW32ToW16(tmp32no1);
131 }
132
133 // Noise Estimation
WebRtcNsx_NoiseEstimationNeon(NoiseSuppressionFixedC * inst,uint16_t * magn,uint32_t * noise,int16_t * q_noise)134 void WebRtcNsx_NoiseEstimationNeon(NoiseSuppressionFixedC* inst,
135 uint16_t* magn,
136 uint32_t* noise,
137 int16_t* q_noise) {
138 int16_t lmagn[HALF_ANAL_BLOCKL], counter, countDiv;
139 int16_t countProd, delta, zeros, frac;
140 int16_t log2, tabind, logval, tmp16, tmp16no1, tmp16no2;
141 const int16_t log2_const = 22713;
142 const int16_t width_factor = 21845;
143
144 size_t i, s, offset;
145
146 tabind = inst->stages - inst->normData;
147 assert(tabind < 9);
148 assert(tabind > -9);
149 if (tabind < 0) {
150 logval = -WebRtcNsx_kLogTable[-tabind];
151 } else {
152 logval = WebRtcNsx_kLogTable[tabind];
153 }
154
155 int16x8_t logval_16x8 = vdupq_n_s16(logval);
156
157 // lmagn(i)=log(magn(i))=log(2)*log2(magn(i))
158 // magn is in Q(-stages), and the real lmagn values are:
159 // real_lmagn(i)=log(magn(i)*2^stages)=log(magn(i))+log(2^stages)
160 // lmagn in Q8
161 for (i = 0; i < inst->magnLen; i++) {
162 if (magn[i]) {
163 zeros = WebRtcSpl_NormU32((uint32_t)magn[i]);
164 frac = (int16_t)((((uint32_t)magn[i] << zeros)
165 & 0x7FFFFFFF) >> 23);
166 assert(frac < 256);
167 // log2(magn(i))
168 log2 = (int16_t)(((31 - zeros) << 8)
169 + WebRtcNsx_kLogTableFrac[frac]);
170 // log2(magn(i))*log(2)
171 lmagn[i] = (int16_t)((log2 * log2_const) >> 15);
172 // + log(2^stages)
173 lmagn[i] += logval;
174 } else {
175 lmagn[i] = logval;
176 }
177 }
178
179 int16x4_t Q3_16x4 = vdup_n_s16(3);
180 int16x8_t WIDTHQ8_16x8 = vdupq_n_s16(WIDTH_Q8);
181 int16x8_t WIDTHFACTOR_16x8 = vdupq_n_s16(width_factor);
182
183 int16_t factor = FACTOR_Q7;
184 if (inst->blockIndex < END_STARTUP_LONG)
185 factor = FACTOR_Q7_STARTUP;
186
187 // Loop over simultaneous estimates
188 for (s = 0; s < SIMULT; s++) {
189 offset = s * inst->magnLen;
190
191 // Get counter values from state
192 counter = inst->noiseEstCounter[s];
193 assert(counter < 201);
194 countDiv = WebRtcNsx_kCounterDiv[counter];
195 countProd = (int16_t)(counter * countDiv);
196
197 // quant_est(...)
198 int16_t deltaBuff[8];
199 int16x4_t tmp16x4_0;
200 int16x4_t tmp16x4_1;
201 int16x4_t countDiv_16x4 = vdup_n_s16(countDiv);
202 int16x8_t countProd_16x8 = vdupq_n_s16(countProd);
203 int16x8_t tmp16x8_0 = vdupq_n_s16(countDiv);
204 int16x8_t prod16x8 = vqrdmulhq_s16(WIDTHFACTOR_16x8, tmp16x8_0);
205 int16x8_t tmp16x8_1;
206 int16x8_t tmp16x8_2;
207 int16x8_t tmp16x8_3;
208 uint16x8_t tmp16x8_4;
209 int32x4_t tmp32x4;
210
211 for (i = 0; i + 7 < inst->magnLen; i += 8) {
212 // Compute delta.
213 // Smaller step size during startup. This prevents from using
214 // unrealistic values causing overflow.
215 tmp16x8_0 = vdupq_n_s16(factor);
216 vst1q_s16(deltaBuff, tmp16x8_0);
217
218 int j;
219 for (j = 0; j < 8; j++) {
220 if (inst->noiseEstDensity[offset + i + j] > 512) {
221 // Get values for deltaBuff by shifting intead of dividing.
222 int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i + j]);
223 deltaBuff[j] = (int16_t)(FACTOR_Q16 >> (14 - factor));
224 }
225 }
226
227 // Update log quantile estimate
228
229 // tmp16 = (int16_t)((delta * countDiv) >> 14);
230 tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[0]), countDiv_16x4);
231 tmp16x4_1 = vshrn_n_s32(tmp32x4, 14);
232 tmp32x4 = vmull_s16(vld1_s16(&deltaBuff[4]), countDiv_16x4);
233 tmp16x4_0 = vshrn_n_s32(tmp32x4, 14);
234 tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // Keep for several lines.
235
236 // prepare for the "if" branch
237 // tmp16 += 2;
238 // tmp16_1 = (Word16)(tmp16>>2);
239 tmp16x8_1 = vrshrq_n_s16(tmp16x8_0, 2);
240
241 // inst->noiseEstLogQuantile[offset+i] + tmp16_1;
242 tmp16x8_2 = vld1q_s16(&inst->noiseEstLogQuantile[offset + i]); // Keep
243 tmp16x8_1 = vaddq_s16(tmp16x8_2, tmp16x8_1); // Keep for several lines
244
245 // Prepare for the "else" branch
246 // tmp16 += 1;
247 // tmp16_1 = (Word16)(tmp16>>1);
248 tmp16x8_0 = vrshrq_n_s16(tmp16x8_0, 1);
249
250 // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1);
251 tmp32x4 = vmull_s16(vget_low_s16(tmp16x8_0), Q3_16x4);
252 tmp16x4_1 = vshrn_n_s32(tmp32x4, 1);
253
254 // tmp16_2 = (int16_t)((tmp16_1 * 3) >> 1);
255 tmp32x4 = vmull_s16(vget_high_s16(tmp16x8_0), Q3_16x4);
256 tmp16x4_0 = vshrn_n_s32(tmp32x4, 1);
257
258 // inst->noiseEstLogQuantile[offset + i] - tmp16_2;
259 tmp16x8_0 = vcombine_s16(tmp16x4_1, tmp16x4_0); // keep
260 tmp16x8_0 = vsubq_s16(tmp16x8_2, tmp16x8_0);
261
262 // logval is the smallest fixed point representation we can have. Values
263 // below that will correspond to values in the interval [0, 1], which
264 // can't possibly occur.
265 tmp16x8_0 = vmaxq_s16(tmp16x8_0, logval_16x8);
266
267 // Do the if-else branches:
268 tmp16x8_3 = vld1q_s16(&lmagn[i]); // keep for several lines
269 tmp16x8_4 = vcgtq_s16(tmp16x8_3, tmp16x8_2);
270 tmp16x8_2 = vbslq_s16(tmp16x8_4, tmp16x8_1, tmp16x8_0);
271 vst1q_s16(&inst->noiseEstLogQuantile[offset + i], tmp16x8_2);
272
273 // Update density estimate
274 // tmp16_1 + tmp16_2
275 tmp16x8_1 = vld1q_s16(&inst->noiseEstDensity[offset + i]);
276 tmp16x8_0 = vqrdmulhq_s16(tmp16x8_1, countProd_16x8);
277 tmp16x8_0 = vaddq_s16(tmp16x8_0, prod16x8);
278
279 // lmagn[i] - inst->noiseEstLogQuantile[offset + i]
280 tmp16x8_3 = vsubq_s16(tmp16x8_3, tmp16x8_2);
281 tmp16x8_3 = vabsq_s16(tmp16x8_3);
282 tmp16x8_4 = vcgtq_s16(WIDTHQ8_16x8, tmp16x8_3);
283 tmp16x8_1 = vbslq_s16(tmp16x8_4, tmp16x8_0, tmp16x8_1);
284 vst1q_s16(&inst->noiseEstDensity[offset + i], tmp16x8_1);
285 } // End loop over magnitude spectrum
286
287 // Last iteration over magnitude spectrum:
288 // compute delta
289 if (inst->noiseEstDensity[offset + i] > 512) {
290 // Get values for deltaBuff by shifting intead of dividing.
291 int factor = WebRtcSpl_NormW16(inst->noiseEstDensity[offset + i]);
292 delta = (int16_t)(FACTOR_Q16 >> (14 - factor));
293 } else {
294 delta = FACTOR_Q7;
295 if (inst->blockIndex < END_STARTUP_LONG) {
296 // Smaller step size during startup. This prevents from using
297 // unrealistic values causing overflow.
298 delta = FACTOR_Q7_STARTUP;
299 }
300 }
301 // update log quantile estimate
302 tmp16 = (int16_t)((delta * countDiv) >> 14);
303 if (lmagn[i] > inst->noiseEstLogQuantile[offset + i]) {
304 // +=QUANTILE*delta/(inst->counter[s]+1) QUANTILE=0.25, =1 in Q2
305 // CounterDiv=1/(inst->counter[s]+1) in Q15
306 tmp16 += 2;
307 inst->noiseEstLogQuantile[offset + i] += tmp16 / 4;
308 } else {
309 tmp16 += 1;
310 // *(1-QUANTILE), in Q2 QUANTILE=0.25, 1-0.25=0.75=3 in Q2
311 // TODO(bjornv): investigate why we need to truncate twice.
312 tmp16no2 = (int16_t)((tmp16 / 2) * 3 / 2);
313 inst->noiseEstLogQuantile[offset + i] -= tmp16no2;
314 if (inst->noiseEstLogQuantile[offset + i] < logval) {
315 // logval is the smallest fixed point representation we can have.
316 // Values below that will correspond to values in the interval
317 // [0, 1], which can't possibly occur.
318 inst->noiseEstLogQuantile[offset + i] = logval;
319 }
320 }
321
322 // update density estimate
323 if (WEBRTC_SPL_ABS_W16(lmagn[i] - inst->noiseEstLogQuantile[offset + i])
324 < WIDTH_Q8) {
325 tmp16no1 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
326 inst->noiseEstDensity[offset + i], countProd, 15);
327 tmp16no2 = (int16_t)WEBRTC_SPL_MUL_16_16_RSFT_WITH_ROUND(
328 width_factor, countDiv, 15);
329 inst->noiseEstDensity[offset + i] = tmp16no1 + tmp16no2;
330 }
331
332
333 if (counter >= END_STARTUP_LONG) {
334 inst->noiseEstCounter[s] = 0;
335 if (inst->blockIndex >= END_STARTUP_LONG) {
336 UpdateNoiseEstimateNeon(inst, offset);
337 }
338 }
339 inst->noiseEstCounter[s]++;
340
341 } // end loop over simultaneous estimates
342
343 // Sequentially update the noise during startup
344 if (inst->blockIndex < END_STARTUP_LONG) {
345 UpdateNoiseEstimateNeon(inst, offset);
346 }
347
348 for (i = 0; i < inst->magnLen; i++) {
349 noise[i] = (uint32_t)(inst->noiseEstQuantile[i]); // Q(qNoise)
350 }
351 (*q_noise) = (int16_t)inst->qNoise;
352 }
353
354 // Filter the data in the frequency domain, and create spectrum.
WebRtcNsx_PrepareSpectrumNeon(NoiseSuppressionFixedC * inst,int16_t * freq_buf)355 void WebRtcNsx_PrepareSpectrumNeon(NoiseSuppressionFixedC* inst,
356 int16_t* freq_buf) {
357 assert(inst->magnLen % 8 == 1);
358 assert(inst->anaLen2 % 16 == 0);
359
360 // (1) Filtering.
361
362 // Fixed point C code for the next block is as follows:
363 // for (i = 0; i < inst->magnLen; i++) {
364 // inst->real[i] = (int16_t)((inst->real[i] *
365 // (int16_t)(inst->noiseSupFilter[i])) >> 14); // Q(normData-stages)
366 // inst->imag[i] = (int16_t)((inst->imag[i] *
367 // (int16_t)(inst->noiseSupFilter[i])) >> 14); // Q(normData-stages)
368 // }
369
370 int16_t* preal = &inst->real[0];
371 int16_t* pimag = &inst->imag[0];
372 int16_t* pns_filter = (int16_t*)&inst->noiseSupFilter[0];
373 int16_t* pimag_end = pimag + inst->magnLen - 4;
374
375 while (pimag < pimag_end) {
376 int16x8_t real = vld1q_s16(preal);
377 int16x8_t imag = vld1q_s16(pimag);
378 int16x8_t ns_filter = vld1q_s16(pns_filter);
379
380 int32x4_t tmp_r_0 = vmull_s16(vget_low_s16(real), vget_low_s16(ns_filter));
381 int32x4_t tmp_i_0 = vmull_s16(vget_low_s16(imag), vget_low_s16(ns_filter));
382 int32x4_t tmp_r_1 = vmull_s16(vget_high_s16(real),
383 vget_high_s16(ns_filter));
384 int32x4_t tmp_i_1 = vmull_s16(vget_high_s16(imag),
385 vget_high_s16(ns_filter));
386
387 int16x4_t result_r_0 = vshrn_n_s32(tmp_r_0, 14);
388 int16x4_t result_i_0 = vshrn_n_s32(tmp_i_0, 14);
389 int16x4_t result_r_1 = vshrn_n_s32(tmp_r_1, 14);
390 int16x4_t result_i_1 = vshrn_n_s32(tmp_i_1, 14);
391
392 vst1q_s16(preal, vcombine_s16(result_r_0, result_r_1));
393 vst1q_s16(pimag, vcombine_s16(result_i_0, result_i_1));
394 preal += 8;
395 pimag += 8;
396 pns_filter += 8;
397 }
398
399 // Filter the last element
400 *preal = (int16_t)((*preal * *pns_filter) >> 14);
401 *pimag = (int16_t)((*pimag * *pns_filter) >> 14);
402
403 // (2) Create spectrum.
404
405 // Fixed point C code for the rest of the function is as follows:
406 // freq_buf[0] = inst->real[0];
407 // freq_buf[1] = -inst->imag[0];
408 // for (i = 1, j = 2; i < inst->anaLen2; i += 1, j += 2) {
409 // freq_buf[j] = inst->real[i];
410 // freq_buf[j + 1] = -inst->imag[i];
411 // }
412 // freq_buf[inst->anaLen] = inst->real[inst->anaLen2];
413 // freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2];
414
415 preal = &inst->real[0];
416 pimag = &inst->imag[0];
417 pimag_end = pimag + inst->anaLen2;
418 int16_t * freq_buf_start = freq_buf;
419 while (pimag < pimag_end) {
420 // loop unroll
421 int16x8x2_t real_imag_0;
422 int16x8x2_t real_imag_1;
423 real_imag_0.val[1] = vld1q_s16(pimag);
424 real_imag_0.val[0] = vld1q_s16(preal);
425 preal += 8;
426 pimag += 8;
427 real_imag_1.val[1] = vld1q_s16(pimag);
428 real_imag_1.val[0] = vld1q_s16(preal);
429 preal += 8;
430 pimag += 8;
431
432 real_imag_0.val[1] = vnegq_s16(real_imag_0.val[1]);
433 real_imag_1.val[1] = vnegq_s16(real_imag_1.val[1]);
434 vst2q_s16(freq_buf_start, real_imag_0);
435 freq_buf_start += 16;
436 vst2q_s16(freq_buf_start, real_imag_1);
437 freq_buf_start += 16;
438 }
439 freq_buf[inst->anaLen] = inst->real[inst->anaLen2];
440 freq_buf[inst->anaLen + 1] = -inst->imag[inst->anaLen2];
441 }
442
443 // For the noise supress process, synthesis, read out fully processed segment,
444 // and update synthesis buffer.
WebRtcNsx_SynthesisUpdateNeon(NoiseSuppressionFixedC * inst,int16_t * out_frame,int16_t gain_factor)445 void WebRtcNsx_SynthesisUpdateNeon(NoiseSuppressionFixedC* inst,
446 int16_t* out_frame,
447 int16_t gain_factor) {
448 assert(inst->anaLen % 16 == 0);
449 assert(inst->blockLen10ms % 16 == 0);
450
451 int16_t* preal_start = inst->real;
452 const int16_t* pwindow = inst->window;
453 int16_t* preal_end = preal_start + inst->anaLen;
454 int16_t* psynthesis_buffer = inst->synthesisBuffer;
455
456 while (preal_start < preal_end) {
457 // Loop unroll.
458 int16x8_t window_0 = vld1q_s16(pwindow);
459 int16x8_t real_0 = vld1q_s16(preal_start);
460 int16x8_t synthesis_buffer_0 = vld1q_s16(psynthesis_buffer);
461
462 int16x8_t window_1 = vld1q_s16(pwindow + 8);
463 int16x8_t real_1 = vld1q_s16(preal_start + 8);
464 int16x8_t synthesis_buffer_1 = vld1q_s16(psynthesis_buffer + 8);
465
466 int32x4_t tmp32a_0_low = vmull_s16(vget_low_s16(real_0),
467 vget_low_s16(window_0));
468 int32x4_t tmp32a_0_high = vmull_s16(vget_high_s16(real_0),
469 vget_high_s16(window_0));
470
471 int32x4_t tmp32a_1_low = vmull_s16(vget_low_s16(real_1),
472 vget_low_s16(window_1));
473 int32x4_t tmp32a_1_high = vmull_s16(vget_high_s16(real_1),
474 vget_high_s16(window_1));
475
476 int16x4_t tmp16a_0_low = vqrshrn_n_s32(tmp32a_0_low, 14);
477 int16x4_t tmp16a_0_high = vqrshrn_n_s32(tmp32a_0_high, 14);
478
479 int16x4_t tmp16a_1_low = vqrshrn_n_s32(tmp32a_1_low, 14);
480 int16x4_t tmp16a_1_high = vqrshrn_n_s32(tmp32a_1_high, 14);
481
482 int32x4_t tmp32b_0_low = vmull_n_s16(tmp16a_0_low, gain_factor);
483 int32x4_t tmp32b_0_high = vmull_n_s16(tmp16a_0_high, gain_factor);
484
485 int32x4_t tmp32b_1_low = vmull_n_s16(tmp16a_1_low, gain_factor);
486 int32x4_t tmp32b_1_high = vmull_n_s16(tmp16a_1_high, gain_factor);
487
488 int16x4_t tmp16b_0_low = vqrshrn_n_s32(tmp32b_0_low, 13);
489 int16x4_t tmp16b_0_high = vqrshrn_n_s32(tmp32b_0_high, 13);
490
491 int16x4_t tmp16b_1_low = vqrshrn_n_s32(tmp32b_1_low, 13);
492 int16x4_t tmp16b_1_high = vqrshrn_n_s32(tmp32b_1_high, 13);
493
494 synthesis_buffer_0 = vqaddq_s16(vcombine_s16(tmp16b_0_low, tmp16b_0_high),
495 synthesis_buffer_0);
496 synthesis_buffer_1 = vqaddq_s16(vcombine_s16(tmp16b_1_low, tmp16b_1_high),
497 synthesis_buffer_1);
498 vst1q_s16(psynthesis_buffer, synthesis_buffer_0);
499 vst1q_s16(psynthesis_buffer + 8, synthesis_buffer_1);
500
501 pwindow += 16;
502 preal_start += 16;
503 psynthesis_buffer += 16;
504 }
505
506 // Read out fully processed segment.
507 int16_t * p_start = inst->synthesisBuffer;
508 int16_t * p_end = inst->synthesisBuffer + inst->blockLen10ms;
509 int16_t * p_frame = out_frame;
510 while (p_start < p_end) {
511 int16x8_t frame_0 = vld1q_s16(p_start);
512 vst1q_s16(p_frame, frame_0);
513 p_start += 8;
514 p_frame += 8;
515 }
516
517 // Update synthesis buffer.
518 int16_t* p_start_src = inst->synthesisBuffer + inst->blockLen10ms;
519 int16_t* p_end_src = inst->synthesisBuffer + inst->anaLen;
520 int16_t* p_start_dst = inst->synthesisBuffer;
521 while (p_start_src < p_end_src) {
522 int16x8_t frame = vld1q_s16(p_start_src);
523 vst1q_s16(p_start_dst, frame);
524 p_start_src += 8;
525 p_start_dst += 8;
526 }
527
528 p_start = inst->synthesisBuffer + inst->anaLen - inst->blockLen10ms;
529 p_end = p_start + inst->blockLen10ms;
530 int16x8_t zero = vdupq_n_s16(0);
531 for (;p_start < p_end; p_start += 8) {
532 vst1q_s16(p_start, zero);
533 }
534 }
535
536 // Update analysis buffer for lower band, and window data before FFT.
WebRtcNsx_AnalysisUpdateNeon(NoiseSuppressionFixedC * inst,int16_t * out,int16_t * new_speech)537 void WebRtcNsx_AnalysisUpdateNeon(NoiseSuppressionFixedC* inst,
538 int16_t* out,
539 int16_t* new_speech) {
540 assert(inst->blockLen10ms % 16 == 0);
541 assert(inst->anaLen % 16 == 0);
542
543 // For lower band update analysis buffer.
544 // memcpy(inst->analysisBuffer, inst->analysisBuffer + inst->blockLen10ms,
545 // (inst->anaLen - inst->blockLen10ms) * sizeof(*inst->analysisBuffer));
546 int16_t* p_start_src = inst->analysisBuffer + inst->blockLen10ms;
547 int16_t* p_end_src = inst->analysisBuffer + inst->anaLen;
548 int16_t* p_start_dst = inst->analysisBuffer;
549 while (p_start_src < p_end_src) {
550 int16x8_t frame = vld1q_s16(p_start_src);
551 vst1q_s16(p_start_dst, frame);
552
553 p_start_src += 8;
554 p_start_dst += 8;
555 }
556
557 // memcpy(inst->analysisBuffer + inst->anaLen - inst->blockLen10ms,
558 // new_speech, inst->blockLen10ms * sizeof(*inst->analysisBuffer));
559 p_start_src = new_speech;
560 p_end_src = new_speech + inst->blockLen10ms;
561 p_start_dst = inst->analysisBuffer + inst->anaLen - inst->blockLen10ms;
562 while (p_start_src < p_end_src) {
563 int16x8_t frame = vld1q_s16(p_start_src);
564 vst1q_s16(p_start_dst, frame);
565
566 p_start_src += 8;
567 p_start_dst += 8;
568 }
569
570 // Window data before FFT.
571 int16_t* p_start_window = (int16_t*) inst->window;
572 int16_t* p_start_buffer = inst->analysisBuffer;
573 int16_t* p_start_out = out;
574 const int16_t* p_end_out = out + inst->anaLen;
575
576 // Load the first element to reduce pipeline bubble.
577 int16x8_t window = vld1q_s16(p_start_window);
578 int16x8_t buffer = vld1q_s16(p_start_buffer);
579 p_start_window += 8;
580 p_start_buffer += 8;
581
582 while (p_start_out < p_end_out) {
583 // Unroll loop.
584 int32x4_t tmp32_low = vmull_s16(vget_low_s16(window), vget_low_s16(buffer));
585 int32x4_t tmp32_high = vmull_s16(vget_high_s16(window),
586 vget_high_s16(buffer));
587 window = vld1q_s16(p_start_window);
588 buffer = vld1q_s16(p_start_buffer);
589
590 int16x4_t result_low = vrshrn_n_s32(tmp32_low, 14);
591 int16x4_t result_high = vrshrn_n_s32(tmp32_high, 14);
592 vst1q_s16(p_start_out, vcombine_s16(result_low, result_high));
593
594 p_start_buffer += 8;
595 p_start_window += 8;
596 p_start_out += 8;
597 }
598 }
599