• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/common_audio/vad/vad_sp.h"
12 
13 #include <assert.h>
14 
15 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
16 #include "webrtc/common_audio/vad/vad_core.h"
17 #include "webrtc/typedefs.h"
18 
19 // Allpass filter coefficients, upper and lower, in Q13.
20 // Upper: 0.64, Lower: 0.17.
21 static const int16_t kAllPassCoefsQ13[2] = { 5243, 1392 };  // Q13.
22 static const int16_t kSmoothingDown = 6553;  // 0.2 in Q15.
23 static const int16_t kSmoothingUp = 32439;  // 0.99 in Q15.
24 
25 // TODO(bjornv): Move this function to vad_filterbank.c.
26 // Downsampling filter based on splitting filter and allpass functions.
WebRtcVad_Downsampling(const int16_t * signal_in,int16_t * signal_out,int32_t * filter_state,size_t in_length)27 void WebRtcVad_Downsampling(const int16_t* signal_in,
28                             int16_t* signal_out,
29                             int32_t* filter_state,
30                             size_t in_length) {
31   int16_t tmp16_1 = 0, tmp16_2 = 0;
32   int32_t tmp32_1 = filter_state[0];
33   int32_t tmp32_2 = filter_state[1];
34   size_t n = 0;
35   // Downsampling by 2 gives half length.
36   size_t half_length = (in_length >> 1);
37 
38   // Filter coefficients in Q13, filter state in Q0.
39   for (n = 0; n < half_length; n++) {
40     // All-pass filtering upper branch.
41     tmp16_1 = (int16_t) ((tmp32_1 >> 1) +
42         ((kAllPassCoefsQ13[0] * *signal_in) >> 14));
43     *signal_out = tmp16_1;
44     tmp32_1 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[0] * tmp16_1) >> 12);
45 
46     // All-pass filtering lower branch.
47     tmp16_2 = (int16_t) ((tmp32_2 >> 1) +
48         ((kAllPassCoefsQ13[1] * *signal_in) >> 14));
49     *signal_out++ += tmp16_2;
50     tmp32_2 = (int32_t)(*signal_in++) - ((kAllPassCoefsQ13[1] * tmp16_2) >> 12);
51   }
52   // Store the filter states.
53   filter_state[0] = tmp32_1;
54   filter_state[1] = tmp32_2;
55 }
56 
57 // Inserts |feature_value| into |low_value_vector|, if it is one of the 16
58 // smallest values the last 100 frames. Then calculates and returns the median
59 // of the five smallest values.
WebRtcVad_FindMinimum(VadInstT * self,int16_t feature_value,int channel)60 int16_t WebRtcVad_FindMinimum(VadInstT* self,
61                               int16_t feature_value,
62                               int channel) {
63   int i = 0, j = 0;
64   int position = -1;
65   // Offset to beginning of the 16 minimum values in memory.
66   const int offset = (channel << 4);
67   int16_t current_median = 1600;
68   int16_t alpha = 0;
69   int32_t tmp32 = 0;
70   // Pointer to memory for the 16 minimum values and the age of each value of
71   // the |channel|.
72   int16_t* age = &self->index_vector[offset];
73   int16_t* smallest_values = &self->low_value_vector[offset];
74 
75   assert(channel < kNumChannels);
76 
77   // Each value in |smallest_values| is getting 1 loop older. Update |age|, and
78   // remove old values.
79   for (i = 0; i < 16; i++) {
80     if (age[i] != 100) {
81       age[i]++;
82     } else {
83       // Too old value. Remove from memory and shift larger values downwards.
84       for (j = i; j < 16; j++) {
85         smallest_values[j] = smallest_values[j + 1];
86         age[j] = age[j + 1];
87       }
88       age[15] = 101;
89       smallest_values[15] = 10000;
90     }
91   }
92 
93   // Check if |feature_value| is smaller than any of the values in
94   // |smallest_values|. If so, find the |position| where to insert the new value
95   // (|feature_value|).
96   if (feature_value < smallest_values[7]) {
97     if (feature_value < smallest_values[3]) {
98       if (feature_value < smallest_values[1]) {
99         if (feature_value < smallest_values[0]) {
100           position = 0;
101         } else {
102           position = 1;
103         }
104       } else if (feature_value < smallest_values[2]) {
105         position = 2;
106       } else {
107         position = 3;
108       }
109     } else if (feature_value < smallest_values[5]) {
110       if (feature_value < smallest_values[4]) {
111         position = 4;
112       } else {
113         position = 5;
114       }
115     } else if (feature_value < smallest_values[6]) {
116       position = 6;
117     } else {
118       position = 7;
119     }
120   } else if (feature_value < smallest_values[15]) {
121     if (feature_value < smallest_values[11]) {
122       if (feature_value < smallest_values[9]) {
123         if (feature_value < smallest_values[8]) {
124           position = 8;
125         } else {
126           position = 9;
127         }
128       } else if (feature_value < smallest_values[10]) {
129         position = 10;
130       } else {
131         position = 11;
132       }
133     } else if (feature_value < smallest_values[13]) {
134       if (feature_value < smallest_values[12]) {
135         position = 12;
136       } else {
137         position = 13;
138       }
139     } else if (feature_value < smallest_values[14]) {
140       position = 14;
141     } else {
142       position = 15;
143     }
144   }
145 
146   // If we have detected a new small value, insert it at the correct position
147   // and shift larger values up.
148   if (position > -1) {
149     for (i = 15; i > position; i--) {
150       smallest_values[i] = smallest_values[i - 1];
151       age[i] = age[i - 1];
152     }
153     smallest_values[position] = feature_value;
154     age[position] = 1;
155   }
156 
157   // Get |current_median|.
158   if (self->frame_counter > 2) {
159     current_median = smallest_values[2];
160   } else if (self->frame_counter > 0) {
161     current_median = smallest_values[0];
162   }
163 
164   // Smooth the median value.
165   if (self->frame_counter > 0) {
166     if (current_median < self->mean_value[channel]) {
167       alpha = kSmoothingDown;  // 0.2 in Q15.
168     } else {
169       alpha = kSmoothingUp;  // 0.99 in Q15.
170     }
171   }
172   tmp32 = (alpha + 1) * self->mean_value[channel];
173   tmp32 += (WEBRTC_SPL_WORD16_MAX - alpha) * current_median;
174   tmp32 += 16384;
175   self->mean_value[channel] = (int16_t) (tmp32 >> 15);
176 
177   return self->mean_value[channel];
178 }
179