• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
19 
20 #include <cstring>
21 #include <map>
22 
23 #include "arch/instruction_set.h"
24 #include "compiled_method.h"
25 #include "debug/method_debug_info.h"
26 #include "dwarf/debug_info_entry_writer.h"
27 #include "dwarf/register.h"
28 #include "stack_map.h"
29 
30 namespace art {
31 namespace debug {
32 using Reg = dwarf::Reg;
33 
GetDwarfCoreReg(InstructionSet isa,int machine_reg)34 static Reg GetDwarfCoreReg(InstructionSet isa, int machine_reg) {
35   switch (isa) {
36     case InstructionSet::kArm:
37     case InstructionSet::kThumb2:
38       return Reg::ArmCore(machine_reg);
39     case InstructionSet::kArm64:
40       return Reg::Arm64Core(machine_reg);
41     case InstructionSet::kX86:
42       return Reg::X86Core(machine_reg);
43     case InstructionSet::kX86_64:
44       return Reg::X86_64Core(machine_reg);
45     case InstructionSet::kMips:
46       return Reg::MipsCore(machine_reg);
47     case InstructionSet::kMips64:
48       return Reg::Mips64Core(machine_reg);
49     case InstructionSet::kNone:
50       LOG(FATAL) << "No instruction set";
51   }
52   UNREACHABLE();
53 }
54 
GetDwarfFpReg(InstructionSet isa,int machine_reg)55 static Reg GetDwarfFpReg(InstructionSet isa, int machine_reg) {
56   switch (isa) {
57     case InstructionSet::kArm:
58     case InstructionSet::kThumb2:
59       return Reg::ArmFp(machine_reg);
60     case InstructionSet::kArm64:
61       return Reg::Arm64Fp(machine_reg);
62     case InstructionSet::kX86:
63       return Reg::X86Fp(machine_reg);
64     case InstructionSet::kX86_64:
65       return Reg::X86_64Fp(machine_reg);
66     case InstructionSet::kMips:
67       return Reg::MipsFp(machine_reg);
68     case InstructionSet::kMips64:
69       return Reg::Mips64Fp(machine_reg);
70     case InstructionSet::kNone:
71       LOG(FATAL) << "No instruction set";
72   }
73   UNREACHABLE();
74 }
75 
76 struct VariableLocation {
77   uint32_t low_pc;  // Relative to compilation unit.
78   uint32_t high_pc;  // Relative to compilation unit.
79   DexRegisterLocation reg_lo;  // May be None if the location is unknown.
80   DexRegisterLocation reg_hi;  // Most significant bits of 64-bit value.
81 };
82 
83 // Get the location of given dex register (e.g. stack or machine register).
84 // Note that the location might be different based on the current pc.
85 // The result will cover all ranges where the variable is in scope.
86 // PCs corresponding to stackmap with dex register map are accurate,
87 // all other PCs are best-effort only.
GetVariableLocations(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa)88 static std::vector<VariableLocation> GetVariableLocations(
89     const MethodDebugInfo* method_info,
90     const std::vector<DexRegisterMap>& dex_register_maps,
91     uint16_t vreg,
92     bool is64bitValue,
93     uint64_t compilation_unit_code_address,
94     uint32_t dex_pc_low,
95     uint32_t dex_pc_high,
96     InstructionSet isa) {
97   std::vector<VariableLocation> variable_locations;
98 
99   // Get stack maps sorted by pc (they might not be sorted internally).
100   // TODO(dsrbecky) Remove this once stackmaps get sorted by pc.
101   const CodeInfo code_info(method_info->code_info);
102   std::map<uint32_t, uint32_t> stack_maps;  // low_pc -> stack_map_index.
103   for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(); s++) {
104     StackMap stack_map = code_info.GetStackMapAt(s);
105     DCHECK(stack_map.IsValid());
106     if (!stack_map.HasDexRegisterMap()) {
107       // The compiler creates stackmaps without register maps at the start of
108       // basic blocks in order to keep instruction-accurate line number mapping.
109       // However, we never stop at those (breakpoint locations always have map).
110       // Therefore, for the purpose of local variables, we ignore them.
111       // The main reason for this is to save space by avoiding undefined gaps.
112       continue;
113     }
114     const uint32_t pc_offset = stack_map.GetNativePcOffset(isa);
115     DCHECK_LE(pc_offset, method_info->code_size);
116     DCHECK_LE(compilation_unit_code_address, method_info->code_address);
117     const uint32_t low_pc = dchecked_integral_cast<uint32_t>(
118         method_info->code_address + pc_offset - compilation_unit_code_address);
119     stack_maps.emplace(low_pc, s);
120   }
121 
122   // Create entries for the requested register based on stack map data.
123   for (auto it = stack_maps.begin(); it != stack_maps.end(); it++) {
124     const uint32_t low_pc = it->first;
125     const uint32_t stack_map_index = it->second;
126     const StackMap stack_map = code_info.GetStackMapAt(stack_map_index);
127     auto next_it = it;
128     next_it++;
129     const uint32_t high_pc = next_it != stack_maps.end()
130       ? next_it->first
131       : method_info->code_address + method_info->code_size - compilation_unit_code_address;
132     DCHECK_LE(low_pc, high_pc);
133     if (low_pc == high_pc) {
134       continue;  // Ignore if the address range is empty.
135     }
136 
137     // Check that the stack map is in the requested range.
138     uint32_t dex_pc = stack_map.GetDexPc();
139     if (!(dex_pc_low <= dex_pc && dex_pc < dex_pc_high)) {
140       // The variable is not in scope at this PC. Therefore omit the entry.
141       // Note that this is different to None() entry which means in scope, but unknown location.
142       continue;
143     }
144 
145     // Find the location of the dex register.
146     DexRegisterLocation reg_lo = DexRegisterLocation::None();
147     DexRegisterLocation reg_hi = DexRegisterLocation::None();
148     DCHECK_LT(stack_map_index, dex_register_maps.size());
149     DexRegisterMap dex_register_map = dex_register_maps[stack_map_index];
150     DCHECK(!dex_register_map.empty());
151     CodeItemDataAccessor accessor(*method_info->dex_file, method_info->code_item);
152     reg_lo = dex_register_map[vreg];
153     if (is64bitValue) {
154       reg_hi = dex_register_map[vreg + 1];
155     }
156 
157     // Add location entry for this address range.
158     if (!variable_locations.empty() &&
159         variable_locations.back().reg_lo == reg_lo &&
160         variable_locations.back().reg_hi == reg_hi &&
161         variable_locations.back().high_pc == low_pc) {
162       // Merge with the previous entry (extend its range).
163       variable_locations.back().high_pc = high_pc;
164     } else {
165       variable_locations.push_back({low_pc, high_pc, reg_lo, reg_hi});
166     }
167   }
168 
169   return variable_locations;
170 }
171 
172 // Write table into .debug_loc which describes location of dex register.
173 // The dex register might be valid only at some points and it might
174 // move between machine registers and stack.
WriteDebugLocEntry(const MethodDebugInfo * method_info,const std::vector<DexRegisterMap> & dex_register_maps,uint16_t vreg,bool is64bitValue,uint64_t compilation_unit_code_address,uint32_t dex_pc_low,uint32_t dex_pc_high,InstructionSet isa,dwarf::DebugInfoEntryWriter<> * debug_info,std::vector<uint8_t> * debug_loc_buffer,std::vector<uint8_t> * debug_ranges_buffer)175 static void WriteDebugLocEntry(const MethodDebugInfo* method_info,
176                                const std::vector<DexRegisterMap>& dex_register_maps,
177                                uint16_t vreg,
178                                bool is64bitValue,
179                                uint64_t compilation_unit_code_address,
180                                uint32_t dex_pc_low,
181                                uint32_t dex_pc_high,
182                                InstructionSet isa,
183                                dwarf::DebugInfoEntryWriter<>* debug_info,
184                                std::vector<uint8_t>* debug_loc_buffer,
185                                std::vector<uint8_t>* debug_ranges_buffer) {
186   using Kind = DexRegisterLocation::Kind;
187   if (method_info->code_info == nullptr || dex_register_maps.empty()) {
188     return;
189   }
190 
191   std::vector<VariableLocation> variable_locations = GetVariableLocations(
192       method_info,
193       dex_register_maps,
194       vreg,
195       is64bitValue,
196       compilation_unit_code_address,
197       dex_pc_low,
198       dex_pc_high,
199       isa);
200 
201   // Write .debug_loc entries.
202   dwarf::Writer<> debug_loc(debug_loc_buffer);
203   const size_t debug_loc_offset = debug_loc.size();
204   const bool is64bit = Is64BitInstructionSet(isa);
205   std::vector<uint8_t> expr_buffer;
206   for (const VariableLocation& variable_location : variable_locations) {
207     // Translate dex register location to DWARF expression.
208     // Note that 64-bit value might be split to two distinct locations.
209     // (for example, two 32-bit machine registers, or even stack and register)
210     dwarf::Expression expr(&expr_buffer);
211     DexRegisterLocation reg_lo = variable_location.reg_lo;
212     DexRegisterLocation reg_hi = variable_location.reg_hi;
213     for (int piece = 0; piece < (is64bitValue ? 2 : 1); piece++) {
214       DexRegisterLocation reg_loc = (piece == 0 ? reg_lo : reg_hi);
215       const Kind kind = reg_loc.GetKind();
216       const int32_t value = reg_loc.GetValue();
217       if (kind == Kind::kInStack) {
218         // The stack offset is relative to SP. Make it relative to CFA.
219         expr.WriteOpFbreg(value - method_info->frame_size_in_bytes);
220         if (piece == 0 && reg_hi.GetKind() == Kind::kInStack &&
221             reg_hi.GetValue() == value + 4) {
222           break;  // the high word is correctly implied by the low word.
223         }
224       } else if (kind == Kind::kInRegister) {
225         expr.WriteOpReg(GetDwarfCoreReg(isa, value).num());
226         if (piece == 0 && reg_hi.GetKind() == Kind::kInRegisterHigh &&
227             reg_hi.GetValue() == value) {
228           break;  // the high word is correctly implied by the low word.
229         }
230       } else if (kind == Kind::kInFpuRegister) {
231         if ((isa == InstructionSet::kArm || isa == InstructionSet::kThumb2) &&
232             piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegister &&
233             reg_hi.GetValue() == value + 1 && value % 2 == 0) {
234           // Translate S register pair to D register (e.g. S4+S5 to D2).
235           expr.WriteOpReg(Reg::ArmDp(value / 2).num());
236           break;
237         }
238         expr.WriteOpReg(GetDwarfFpReg(isa, value).num());
239         if (piece == 0 && reg_hi.GetKind() == Kind::kInFpuRegisterHigh &&
240             reg_hi.GetValue() == reg_lo.GetValue()) {
241           break;  // the high word is correctly implied by the low word.
242         }
243       } else if (kind == Kind::kConstant) {
244         expr.WriteOpConsts(value);
245         expr.WriteOpStackValue();
246       } else if (kind == Kind::kNone) {
247         break;
248       } else {
249         // kInStackLargeOffset and kConstantLargeValue are hidden by GetKind().
250         // kInRegisterHigh and kInFpuRegisterHigh should be handled by
251         // the special cases above and they should not occur alone.
252         LOG(WARNING) << "Unexpected register location: " << kind
253                      << " (This can indicate either a bug in the dexer when generating"
254                      << " local variable information, or a bug in ART compiler."
255                      << " Please file a bug at go/art-bug)";
256         break;
257       }
258       if (is64bitValue) {
259         // Write the marker which is needed by split 64-bit values.
260         // This code is skipped by the special cases.
261         expr.WriteOpPiece(4);
262       }
263     }
264 
265     if (expr.size() > 0) {
266       if (is64bit) {
267         debug_loc.PushUint64(variable_location.low_pc);
268         debug_loc.PushUint64(variable_location.high_pc);
269       } else {
270         debug_loc.PushUint32(variable_location.low_pc);
271         debug_loc.PushUint32(variable_location.high_pc);
272       }
273       // Write the expression.
274       debug_loc.PushUint16(expr.size());
275       debug_loc.PushData(expr.data());
276     } else {
277       // Do not generate .debug_loc if the location is not known.
278     }
279   }
280   // Write end-of-list entry.
281   if (is64bit) {
282     debug_loc.PushUint64(0);
283     debug_loc.PushUint64(0);
284   } else {
285     debug_loc.PushUint32(0);
286     debug_loc.PushUint32(0);
287   }
288 
289   // Write .debug_ranges entries.
290   // This includes ranges where the variable is in scope but the location is not known.
291   dwarf::Writer<> debug_ranges(debug_ranges_buffer);
292   size_t debug_ranges_offset = debug_ranges.size();
293   for (size_t i = 0; i < variable_locations.size(); i++) {
294     uint32_t low_pc = variable_locations[i].low_pc;
295     uint32_t high_pc = variable_locations[i].high_pc;
296     while (i + 1 < variable_locations.size() && variable_locations[i+1].low_pc == high_pc) {
297       // Merge address range with the next entry.
298       high_pc = variable_locations[++i].high_pc;
299     }
300     if (is64bit) {
301       debug_ranges.PushUint64(low_pc);
302       debug_ranges.PushUint64(high_pc);
303     } else {
304       debug_ranges.PushUint32(low_pc);
305       debug_ranges.PushUint32(high_pc);
306     }
307   }
308   // Write end-of-list entry.
309   if (is64bit) {
310     debug_ranges.PushUint64(0);
311     debug_ranges.PushUint64(0);
312   } else {
313     debug_ranges.PushUint32(0);
314     debug_ranges.PushUint32(0);
315   }
316 
317   // Simple de-duplication - check whether this entry is same as the last one (or tail of it).
318   size_t debug_ranges_entry_size = debug_ranges.size() - debug_ranges_offset;
319   if (debug_ranges_offset >= debug_ranges_entry_size) {
320     size_t previous_offset = debug_ranges_offset - debug_ranges_entry_size;
321     if (memcmp(debug_ranges_buffer->data() + previous_offset,
322                debug_ranges_buffer->data() + debug_ranges_offset,
323                debug_ranges_entry_size) == 0) {
324       // Remove what we have just written and use the last entry instead.
325       debug_ranges_buffer->resize(debug_ranges_offset);
326       debug_ranges_offset = previous_offset;
327     }
328   }
329 
330   // Write attributes to .debug_info.
331   debug_info->WriteSecOffset(dwarf::DW_AT_location, debug_loc_offset);
332   debug_info->WriteSecOffset(dwarf::DW_AT_start_scope, debug_ranges_offset);
333 }
334 
335 }  // namespace debug
336 }  // namespace art
337 
338 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LOC_WRITER_H_
339 
340