• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2015 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/base/bitbuffer.h"
12 
13 #include <algorithm>
14 #include <limits>
15 
16 #include "webrtc/base/checks.h"
17 
18 namespace {
19 
20 // Returns the lowest (right-most) |bit_count| bits in |byte|.
LowestBits(uint8_t byte,size_t bit_count)21 uint8_t LowestBits(uint8_t byte, size_t bit_count) {
22   RTC_DCHECK_LE(bit_count, 8u);
23   return byte & ((1 << bit_count) - 1);
24 }
25 
26 // Returns the highest (left-most) |bit_count| bits in |byte|, shifted to the
27 // lowest bits (to the right).
HighestBits(uint8_t byte,size_t bit_count)28 uint8_t HighestBits(uint8_t byte, size_t bit_count) {
29   RTC_DCHECK_LE(bit_count, 8u);
30   uint8_t shift = 8 - static_cast<uint8_t>(bit_count);
31   uint8_t mask = 0xFF << shift;
32   return (byte & mask) >> shift;
33 }
34 
35 // Returns the highest byte of |val| in a uint8_t.
HighestByte(uint64_t val)36 uint8_t HighestByte(uint64_t val) {
37   return static_cast<uint8_t>(val >> 56);
38 }
39 
40 // Returns the result of writing partial data from |source|, of
41 // |source_bit_count| size in the highest bits, to |target| at
42 // |target_bit_offset| from the highest bit.
WritePartialByte(uint8_t source,size_t source_bit_count,uint8_t target,size_t target_bit_offset)43 uint8_t WritePartialByte(uint8_t source,
44                          size_t source_bit_count,
45                          uint8_t target,
46                          size_t target_bit_offset) {
47   RTC_DCHECK(target_bit_offset < 8);
48   RTC_DCHECK(source_bit_count < 9);
49   RTC_DCHECK(source_bit_count <= (8 - target_bit_offset));
50   // Generate a mask for just the bits we're going to overwrite, so:
51   uint8_t mask =
52       // The number of bits we want, in the most significant bits...
53       static_cast<uint8_t>(0xFF << (8 - source_bit_count))
54       // ...shifted over to the target offset from the most signficant bit.
55       >> target_bit_offset;
56 
57   // We want the target, with the bits we'll overwrite masked off, or'ed with
58   // the bits from the source we want.
59   return (target & ~mask) | (source >> target_bit_offset);
60 }
61 
62 // Counts the number of bits used in the binary representation of val.
CountBits(uint64_t val)63 size_t CountBits(uint64_t val) {
64   size_t bit_count = 0;
65   while (val != 0) {
66     bit_count++;
67     val >>= 1;
68   }
69   return bit_count;
70 }
71 
72 }  // namespace
73 
74 namespace rtc {
75 
BitBuffer(const uint8_t * bytes,size_t byte_count)76 BitBuffer::BitBuffer(const uint8_t* bytes, size_t byte_count)
77     : bytes_(bytes), byte_count_(byte_count), byte_offset_(), bit_offset_() {
78   RTC_DCHECK(static_cast<uint64_t>(byte_count_) <=
79              std::numeric_limits<uint32_t>::max());
80 }
81 
RemainingBitCount() const82 uint64_t BitBuffer::RemainingBitCount() const {
83   return (static_cast<uint64_t>(byte_count_) - byte_offset_) * 8 - bit_offset_;
84 }
85 
ReadUInt8(uint8_t * val)86 bool BitBuffer::ReadUInt8(uint8_t* val) {
87   uint32_t bit_val;
88   if (!ReadBits(&bit_val, sizeof(uint8_t) * 8)) {
89     return false;
90   }
91   RTC_DCHECK(bit_val <= std::numeric_limits<uint8_t>::max());
92   *val = static_cast<uint8_t>(bit_val);
93   return true;
94 }
95 
ReadUInt16(uint16_t * val)96 bool BitBuffer::ReadUInt16(uint16_t* val) {
97   uint32_t bit_val;
98   if (!ReadBits(&bit_val, sizeof(uint16_t) * 8)) {
99     return false;
100   }
101   RTC_DCHECK(bit_val <= std::numeric_limits<uint16_t>::max());
102   *val = static_cast<uint16_t>(bit_val);
103   return true;
104 }
105 
ReadUInt32(uint32_t * val)106 bool BitBuffer::ReadUInt32(uint32_t* val) {
107   return ReadBits(val, sizeof(uint32_t) * 8);
108 }
109 
PeekBits(uint32_t * val,size_t bit_count)110 bool BitBuffer::PeekBits(uint32_t* val, size_t bit_count) {
111   if (!val || bit_count > RemainingBitCount() || bit_count > 32) {
112     return false;
113   }
114   const uint8_t* bytes = bytes_ + byte_offset_;
115   size_t remaining_bits_in_current_byte = 8 - bit_offset_;
116   uint32_t bits = LowestBits(*bytes++, remaining_bits_in_current_byte);
117   // If we're reading fewer bits than what's left in the current byte, just
118   // return the portion of this byte that we need.
119   if (bit_count < remaining_bits_in_current_byte) {
120     *val = HighestBits(bits, bit_offset_ + bit_count);
121     return true;
122   }
123   // Otherwise, subtract what we've read from the bit count and read as many
124   // full bytes as we can into bits.
125   bit_count -= remaining_bits_in_current_byte;
126   while (bit_count >= 8) {
127     bits = (bits << 8) | *bytes++;
128     bit_count -= 8;
129   }
130   // Whatever we have left is smaller than a byte, so grab just the bits we need
131   // and shift them into the lowest bits.
132   if (bit_count > 0) {
133     bits <<= bit_count;
134     bits |= HighestBits(*bytes, bit_count);
135   }
136   *val = bits;
137   return true;
138 }
139 
ReadBits(uint32_t * val,size_t bit_count)140 bool BitBuffer::ReadBits(uint32_t* val, size_t bit_count) {
141   return PeekBits(val, bit_count) && ConsumeBits(bit_count);
142 }
143 
ConsumeBytes(size_t byte_count)144 bool BitBuffer::ConsumeBytes(size_t byte_count) {
145   return ConsumeBits(byte_count * 8);
146 }
147 
ConsumeBits(size_t bit_count)148 bool BitBuffer::ConsumeBits(size_t bit_count) {
149   if (bit_count > RemainingBitCount()) {
150     return false;
151   }
152 
153   byte_offset_ += (bit_offset_ + bit_count) / 8;
154   bit_offset_ = (bit_offset_ + bit_count) % 8;
155   return true;
156 }
157 
ReadExponentialGolomb(uint32_t * val)158 bool BitBuffer::ReadExponentialGolomb(uint32_t* val) {
159   if (!val) {
160     return false;
161   }
162   // Store off the current byte/bit offset, in case we want to restore them due
163   // to a failed parse.
164   size_t original_byte_offset = byte_offset_;
165   size_t original_bit_offset = bit_offset_;
166 
167   // Count the number of leading 0 bits by peeking/consuming them one at a time.
168   size_t zero_bit_count = 0;
169   uint32_t peeked_bit;
170   while (PeekBits(&peeked_bit, 1) && peeked_bit == 0) {
171     zero_bit_count++;
172     ConsumeBits(1);
173   }
174 
175   // We should either be at the end of the stream, or the next bit should be 1.
176   RTC_DCHECK(!PeekBits(&peeked_bit, 1) || peeked_bit == 1);
177 
178   // The bit count of the value is the number of zeros + 1. Make sure that many
179   // bits fits in a uint32_t and that we have enough bits left for it, and then
180   // read the value.
181   size_t value_bit_count = zero_bit_count + 1;
182   if (value_bit_count > 32 || !ReadBits(val, value_bit_count)) {
183     RTC_CHECK(Seek(original_byte_offset, original_bit_offset));
184     return false;
185   }
186   *val -= 1;
187   return true;
188 }
189 
ReadSignedExponentialGolomb(int32_t * val)190 bool BitBuffer::ReadSignedExponentialGolomb(int32_t* val) {
191   uint32_t unsigned_val;
192   if (!ReadExponentialGolomb(&unsigned_val)) {
193     return false;
194   }
195   if ((unsigned_val & 1) == 0) {
196     *val = -static_cast<int32_t>(unsigned_val / 2);
197   } else {
198     *val = (unsigned_val + 1) / 2;
199   }
200   return true;
201 }
202 
GetCurrentOffset(size_t * out_byte_offset,size_t * out_bit_offset)203 void BitBuffer::GetCurrentOffset(
204     size_t* out_byte_offset, size_t* out_bit_offset) {
205   RTC_CHECK(out_byte_offset != NULL);
206   RTC_CHECK(out_bit_offset != NULL);
207   *out_byte_offset = byte_offset_;
208   *out_bit_offset = bit_offset_;
209 }
210 
Seek(size_t byte_offset,size_t bit_offset)211 bool BitBuffer::Seek(size_t byte_offset, size_t bit_offset) {
212   if (byte_offset > byte_count_ || bit_offset > 7 ||
213       (byte_offset == byte_count_ && bit_offset > 0)) {
214     return false;
215   }
216   byte_offset_ = byte_offset;
217   bit_offset_ = bit_offset;
218   return true;
219 }
220 
BitBufferWriter(uint8_t * bytes,size_t byte_count)221 BitBufferWriter::BitBufferWriter(uint8_t* bytes, size_t byte_count)
222     : BitBuffer(bytes, byte_count), writable_bytes_(bytes) {
223 }
224 
WriteUInt8(uint8_t val)225 bool BitBufferWriter::WriteUInt8(uint8_t val) {
226   return WriteBits(val, sizeof(uint8_t) * 8);
227 }
228 
WriteUInt16(uint16_t val)229 bool BitBufferWriter::WriteUInt16(uint16_t val) {
230   return WriteBits(val, sizeof(uint16_t) * 8);
231 }
232 
WriteUInt32(uint32_t val)233 bool BitBufferWriter::WriteUInt32(uint32_t val) {
234   return WriteBits(val, sizeof(uint32_t) * 8);
235 }
236 
WriteBits(uint64_t val,size_t bit_count)237 bool BitBufferWriter::WriteBits(uint64_t val, size_t bit_count) {
238   if (bit_count > RemainingBitCount()) {
239     return false;
240   }
241   size_t total_bits = bit_count;
242 
243   // For simplicity, push the bits we want to read from val to the highest bits.
244   val <<= (sizeof(uint64_t) * 8 - bit_count);
245 
246   uint8_t* bytes = writable_bytes_ + byte_offset_;
247 
248   // The first byte is relatively special; the bit offset to write to may put us
249   // in the middle of the byte, and the total bit count to write may require we
250   // save the bits at the end of the byte.
251   size_t remaining_bits_in_current_byte = 8 - bit_offset_;
252   size_t bits_in_first_byte =
253       std::min(bit_count, remaining_bits_in_current_byte);
254   *bytes = WritePartialByte(
255       HighestByte(val), bits_in_first_byte, *bytes, bit_offset_);
256   if (bit_count <= remaining_bits_in_current_byte) {
257     // Nothing left to write, so quit early.
258     return ConsumeBits(total_bits);
259   }
260 
261   // Subtract what we've written from the bit count, shift it off the value, and
262   // write the remaining full bytes.
263   val <<= bits_in_first_byte;
264   bytes++;
265   bit_count -= bits_in_first_byte;
266   while (bit_count >= 8) {
267     *bytes++ = HighestByte(val);
268     val <<= 8;
269     bit_count -= 8;
270   }
271 
272   // Last byte may also be partial, so write the remaining bits from the top of
273   // val.
274   if (bit_count > 0) {
275     *bytes = WritePartialByte(HighestByte(val), bit_count, *bytes, 0);
276   }
277 
278   // All done! Consume the bits we've written.
279   return ConsumeBits(total_bits);
280 }
281 
WriteExponentialGolomb(uint32_t val)282 bool BitBufferWriter::WriteExponentialGolomb(uint32_t val) {
283   // We don't support reading UINT32_MAX, because it doesn't fit in a uint32_t
284   // when encoded, so don't support writing it either.
285   if (val == std::numeric_limits<uint32_t>::max()) {
286     return false;
287   }
288   uint64_t val_to_encode = static_cast<uint64_t>(val) + 1;
289 
290   // We need to write CountBits(val+1) 0s and then val+1. Since val (as a
291   // uint64_t) has leading zeros, we can just write the total golomb encoded
292   // size worth of bits, knowing the value will appear last.
293   return WriteBits(val_to_encode, CountBits(val_to_encode) * 2 - 1);
294 }
295 
296 }  // namespace rtc
297