• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "calling_convention_x86_64.h"
18 
19 #include <android-base/logging.h>
20 
21 #include "arch/instruction_set.h"
22 #include "base/bit_utils.h"
23 #include "handle_scope-inl.h"
24 #include "utils/x86_64/managed_register_x86_64.h"
25 
26 namespace art {
27 namespace x86_64 {
28 
29 constexpr size_t kFramePointerSize = static_cast<size_t>(PointerSize::k64);
30 static_assert(kX86_64PointerSize == PointerSize::k64, "Unexpected x86_64 pointer size");
31 static_assert(kStackAlignment >= 16u, "System V AMD64 ABI requires at least 16 byte stack alignment");
32 
33 // XMM0..XMM7 can be used to pass the first 8 floating args. The rest must go on the stack.
34 // -- Managed and JNI calling conventions.
35 constexpr size_t kMaxFloatOrDoubleRegisterArguments = 8u;
36 // Up to how many integer-like (pointers, objects, longs, int, short, bool, etc) args can be
37 // enregistered. The rest of the args must go on the stack.
38 // -- JNI calling convention only (Managed excludes RDI, so it's actually 5).
39 constexpr size_t kMaxIntLikeRegisterArguments = 6u;
40 
41 static constexpr ManagedRegister kCalleeSaveRegisters[] = {
42     // Core registers.
43     X86_64ManagedRegister::FromCpuRegister(RBX),
44     X86_64ManagedRegister::FromCpuRegister(RBP),
45     X86_64ManagedRegister::FromCpuRegister(R12),
46     X86_64ManagedRegister::FromCpuRegister(R13),
47     X86_64ManagedRegister::FromCpuRegister(R14),
48     X86_64ManagedRegister::FromCpuRegister(R15),
49     // Hard float registers.
50     X86_64ManagedRegister::FromXmmRegister(XMM12),
51     X86_64ManagedRegister::FromXmmRegister(XMM13),
52     X86_64ManagedRegister::FromXmmRegister(XMM14),
53     X86_64ManagedRegister::FromXmmRegister(XMM15),
54 };
55 
CalculateCoreCalleeSpillMask()56 static constexpr uint32_t CalculateCoreCalleeSpillMask() {
57   // The spilled PC gets a special marker.
58   uint32_t result = 1 << kNumberOfCpuRegisters;
59   for (auto&& r : kCalleeSaveRegisters) {
60     if (r.AsX86_64().IsCpuRegister()) {
61       result |= (1 << r.AsX86_64().AsCpuRegister().AsRegister());
62     }
63   }
64   return result;
65 }
66 
CalculateFpCalleeSpillMask()67 static constexpr uint32_t CalculateFpCalleeSpillMask() {
68   uint32_t result = 0;
69   for (auto&& r : kCalleeSaveRegisters) {
70     if (r.AsX86_64().IsXmmRegister()) {
71       result |= (1 << r.AsX86_64().AsXmmRegister().AsFloatRegister());
72     }
73   }
74   return result;
75 }
76 
77 static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
78 static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask();
79 
80 // Calling convention
81 
InterproceduralScratchRegister()82 ManagedRegister X86_64ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
83   return X86_64ManagedRegister::FromCpuRegister(RAX);
84 }
85 
InterproceduralScratchRegister()86 ManagedRegister X86_64JniCallingConvention::InterproceduralScratchRegister() {
87   return X86_64ManagedRegister::FromCpuRegister(RAX);
88 }
89 
ReturnScratchRegister() const90 ManagedRegister X86_64JniCallingConvention::ReturnScratchRegister() const {
91   return ManagedRegister::NoRegister();  // No free regs, so assembler uses push/pop
92 }
93 
ReturnRegisterForShorty(const char * shorty,bool jni ATTRIBUTE_UNUSED)94 static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni ATTRIBUTE_UNUSED) {
95   if (shorty[0] == 'F' || shorty[0] == 'D') {
96     return X86_64ManagedRegister::FromXmmRegister(XMM0);
97   } else if (shorty[0] == 'J') {
98     return X86_64ManagedRegister::FromCpuRegister(RAX);
99   } else if (shorty[0] == 'V') {
100     return ManagedRegister::NoRegister();
101   } else {
102     return X86_64ManagedRegister::FromCpuRegister(RAX);
103   }
104 }
105 
ReturnRegister()106 ManagedRegister X86_64ManagedRuntimeCallingConvention::ReturnRegister() {
107   return ReturnRegisterForShorty(GetShorty(), false);
108 }
109 
ReturnRegister()110 ManagedRegister X86_64JniCallingConvention::ReturnRegister() {
111   return ReturnRegisterForShorty(GetShorty(), true);
112 }
113 
IntReturnRegister()114 ManagedRegister X86_64JniCallingConvention::IntReturnRegister() {
115   return X86_64ManagedRegister::FromCpuRegister(RAX);
116 }
117 
118 // Managed runtime calling convention
119 
MethodRegister()120 ManagedRegister X86_64ManagedRuntimeCallingConvention::MethodRegister() {
121   return X86_64ManagedRegister::FromCpuRegister(RDI);
122 }
123 
IsCurrentParamInRegister()124 bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
125   return !IsCurrentParamOnStack();
126 }
127 
IsCurrentParamOnStack()128 bool X86_64ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
129   // We assume all parameters are on stack, args coming via registers are spilled as entry_spills
130   return true;
131 }
132 
CurrentParamRegister()133 ManagedRegister X86_64ManagedRuntimeCallingConvention::CurrentParamRegister() {
134   ManagedRegister res = ManagedRegister::NoRegister();
135   if (!IsCurrentParamAFloatOrDouble()) {
136     switch (itr_args_ - itr_float_and_doubles_) {
137     case 0: res = X86_64ManagedRegister::FromCpuRegister(RSI); break;
138     case 1: res = X86_64ManagedRegister::FromCpuRegister(RDX); break;
139     case 2: res = X86_64ManagedRegister::FromCpuRegister(RCX); break;
140     case 3: res = X86_64ManagedRegister::FromCpuRegister(R8); break;
141     case 4: res = X86_64ManagedRegister::FromCpuRegister(R9); break;
142     }
143   } else if (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments) {
144     // First eight float parameters are passed via XMM0..XMM7
145     res = X86_64ManagedRegister::FromXmmRegister(
146                                  static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_));
147   }
148   return res;
149 }
150 
CurrentParamStackOffset()151 FrameOffset X86_64ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
152   return FrameOffset(displacement_.Int32Value() +  // displacement
153                      static_cast<size_t>(kX86_64PointerSize) +  // Method ref
154                      itr_slots_ * sizeof(uint32_t));  // offset into in args
155 }
156 
EntrySpills()157 const ManagedRegisterEntrySpills& X86_64ManagedRuntimeCallingConvention::EntrySpills() {
158   // We spill the argument registers on X86 to free them up for scratch use, we then assume
159   // all arguments are on the stack.
160   if (entry_spills_.size() == 0) {
161     ResetIterator(FrameOffset(0));
162     while (HasNext()) {
163       ManagedRegister in_reg = CurrentParamRegister();
164       if (!in_reg.IsNoRegister()) {
165         int32_t size = IsParamALongOrDouble(itr_args_) ? 8 : 4;
166         int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
167         ManagedRegisterSpill spill(in_reg, size, spill_offset);
168         entry_spills_.push_back(spill);
169       }
170       Next();
171     }
172   }
173   return entry_spills_;
174 }
175 
176 // JNI calling convention
177 
X86_64JniCallingConvention(bool is_static,bool is_synchronized,bool is_critical_native,const char * shorty)178 X86_64JniCallingConvention::X86_64JniCallingConvention(bool is_static,
179                                                        bool is_synchronized,
180                                                        bool is_critical_native,
181                                                        const char* shorty)
182     : JniCallingConvention(is_static,
183                            is_synchronized,
184                            is_critical_native,
185                            shorty,
186                            kX86_64PointerSize) {
187 }
188 
CoreSpillMask() const189 uint32_t X86_64JniCallingConvention::CoreSpillMask() const {
190   return kCoreCalleeSpillMask;
191 }
192 
FpSpillMask() const193 uint32_t X86_64JniCallingConvention::FpSpillMask() const {
194   return kFpCalleeSpillMask;
195 }
196 
FrameSize()197 size_t X86_64JniCallingConvention::FrameSize() {
198   // Method*, PC return address and callee save area size, local reference segment state
199   const size_t method_ptr_size = static_cast<size_t>(kX86_64PointerSize);
200   const size_t pc_return_addr_size = kFramePointerSize;
201   const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
202   size_t frame_data_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
203 
204   if (LIKELY(HasLocalReferenceSegmentState())) {                     // local ref. segment state
205     // Local reference segment state is sometimes excluded.
206     frame_data_size += kFramePointerSize;
207   }
208 
209   // References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header
210   const size_t handle_scope_size = HandleScope::SizeOf(kX86_64PointerSize, ReferenceCount());
211 
212   size_t total_size = frame_data_size;
213   if (LIKELY(HasHandleScope())) {
214     // HandleScope is sometimes excluded.
215     total_size += handle_scope_size;                                 // handle scope size
216   }
217 
218   // Plus return value spill area size
219   total_size += SizeOfReturnValue();
220 
221   return RoundUp(total_size, kStackAlignment);
222 }
223 
OutArgSize()224 size_t X86_64JniCallingConvention::OutArgSize() {
225   return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
226 }
227 
CalleeSaveRegisters() const228 ArrayRef<const ManagedRegister> X86_64JniCallingConvention::CalleeSaveRegisters() const {
229   return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
230 }
231 
IsCurrentParamInRegister()232 bool X86_64JniCallingConvention::IsCurrentParamInRegister() {
233   return !IsCurrentParamOnStack();
234 }
235 
IsCurrentParamOnStack()236 bool X86_64JniCallingConvention::IsCurrentParamOnStack() {
237   return CurrentParamRegister().IsNoRegister();
238 }
239 
CurrentParamRegister()240 ManagedRegister X86_64JniCallingConvention::CurrentParamRegister() {
241   ManagedRegister res = ManagedRegister::NoRegister();
242   if (!IsCurrentParamAFloatOrDouble()) {
243     switch (itr_args_ - itr_float_and_doubles_) {
244     case 0: res = X86_64ManagedRegister::FromCpuRegister(RDI); break;
245     case 1: res = X86_64ManagedRegister::FromCpuRegister(RSI); break;
246     case 2: res = X86_64ManagedRegister::FromCpuRegister(RDX); break;
247     case 3: res = X86_64ManagedRegister::FromCpuRegister(RCX); break;
248     case 4: res = X86_64ManagedRegister::FromCpuRegister(R8); break;
249     case 5: res = X86_64ManagedRegister::FromCpuRegister(R9); break;
250     static_assert(5u == kMaxIntLikeRegisterArguments - 1, "Missing case statement(s)");
251     }
252   } else if (itr_float_and_doubles_ < kMaxFloatOrDoubleRegisterArguments) {
253     // First eight float parameters are passed via XMM0..XMM7
254     res = X86_64ManagedRegister::FromXmmRegister(
255                                  static_cast<FloatRegister>(XMM0 + itr_float_and_doubles_));
256   }
257   return res;
258 }
259 
CurrentParamStackOffset()260 FrameOffset X86_64JniCallingConvention::CurrentParamStackOffset() {
261   CHECK(IsCurrentParamOnStack());
262   size_t args_on_stack = itr_args_
263       - std::min(kMaxFloatOrDoubleRegisterArguments,
264                  static_cast<size_t>(itr_float_and_doubles_))
265           // Float arguments passed through Xmm0..Xmm7
266       - std::min(kMaxIntLikeRegisterArguments,
267                  static_cast<size_t>(itr_args_ - itr_float_and_doubles_));
268           // Integer arguments passed through GPR
269   size_t offset = displacement_.Int32Value() - OutArgSize() + (args_on_stack * kFramePointerSize);
270   CHECK_LT(offset, OutArgSize());
271   return FrameOffset(offset);
272 }
273 
274 // TODO: Calling this "NumberArgs" is misleading.
275 // It's really more like NumberSlots (like itr_slots_)
276 // because doubles/longs get counted twice.
NumberOfOutgoingStackArgs()277 size_t X86_64JniCallingConvention::NumberOfOutgoingStackArgs() {
278   size_t static_args = HasSelfClass() ? 1 : 0;  // count jclass
279   // regular argument parameters and this
280   size_t param_args = NumArgs() + NumLongOrDoubleArgs();
281   // count JNIEnv* and return pc (pushed after Method*)
282   size_t internal_args = 1 /* return pc */ + (HasJniEnv() ? 1 : 0 /* jni env */);
283   size_t total_args = static_args + param_args + internal_args;
284 
285   // Float arguments passed through Xmm0..Xmm7
286   // Other (integer) arguments passed through GPR (RDI, RSI, RDX, RCX, R8, R9)
287   size_t total_stack_args = total_args
288                             - std::min(kMaxFloatOrDoubleRegisterArguments, static_cast<size_t>(NumFloatOrDoubleArgs()))
289                             - std::min(kMaxIntLikeRegisterArguments, static_cast<size_t>(NumArgs() - NumFloatOrDoubleArgs()));
290 
291   return total_stack_args;
292 }
293 
294 }  // namespace x86_64
295 }  // namespace art
296