1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> 5 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_GENERAL_PRODUCT_H 12 #define EIGEN_GENERAL_PRODUCT_H 13 14 namespace Eigen { 15 16 enum { 17 Large = 2, 18 Small = 3 19 }; 20 21 namespace internal { 22 23 template<int Rows, int Cols, int Depth> struct product_type_selector; 24 25 template<int Size, int MaxSize> struct product_size_category 26 { 27 enum { is_large = MaxSize == Dynamic || 28 Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD || 29 (Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD), 30 value = is_large ? Large 31 : Size == 1 ? 1 32 : Small 33 }; 34 }; 35 36 template<typename Lhs, typename Rhs> struct product_type 37 { 38 typedef typename remove_all<Lhs>::type _Lhs; 39 typedef typename remove_all<Rhs>::type _Rhs; 40 enum { 41 MaxRows = traits<_Lhs>::MaxRowsAtCompileTime, 42 Rows = traits<_Lhs>::RowsAtCompileTime, 43 MaxCols = traits<_Rhs>::MaxColsAtCompileTime, 44 Cols = traits<_Rhs>::ColsAtCompileTime, 45 MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime, 46 traits<_Rhs>::MaxRowsAtCompileTime), 47 Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime, 48 traits<_Rhs>::RowsAtCompileTime) 49 }; 50 51 // the splitting into different lines of code here, introducing the _select enums and the typedef below, 52 // is to work around an internal compiler error with gcc 4.1 and 4.2. 53 private: 54 enum { 55 rows_select = product_size_category<Rows,MaxRows>::value, 56 cols_select = product_size_category<Cols,MaxCols>::value, 57 depth_select = product_size_category<Depth,MaxDepth>::value 58 }; 59 typedef product_type_selector<rows_select, cols_select, depth_select> selector; 60 61 public: 62 enum { 63 value = selector::ret, 64 ret = selector::ret 65 }; 66 #ifdef EIGEN_DEBUG_PRODUCT debugproduct_type67 static void debug() 68 { 69 EIGEN_DEBUG_VAR(Rows); 70 EIGEN_DEBUG_VAR(Cols); 71 EIGEN_DEBUG_VAR(Depth); 72 EIGEN_DEBUG_VAR(rows_select); 73 EIGEN_DEBUG_VAR(cols_select); 74 EIGEN_DEBUG_VAR(depth_select); 75 EIGEN_DEBUG_VAR(value); 76 } 77 #endif 78 }; 79 80 /* The following allows to select the kind of product at compile time 81 * based on the three dimensions of the product. 82 * This is a compile time mapping from {1,Small,Large}^3 -> {product types} */ 83 // FIXME I'm not sure the current mapping is the ideal one. 84 template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; }; 85 template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; }; 86 template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; }; 87 template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; }; 88 template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; }; 89 template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; }; 90 template<> struct product_type_selector<1, Small,Small> { enum { ret = CoeffBasedProductMode }; }; 91 template<> struct product_type_selector<Small,Small,Small> { enum { ret = CoeffBasedProductMode }; }; 92 template<> struct product_type_selector<Small, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; 93 template<> struct product_type_selector<Small, Large, 1> { enum { ret = LazyCoeffBasedProductMode }; }; 94 template<> struct product_type_selector<Large, Small, 1> { enum { ret = LazyCoeffBasedProductMode }; }; 95 template<> struct product_type_selector<1, Large,Small> { enum { ret = CoeffBasedProductMode }; }; 96 template<> struct product_type_selector<1, Large,Large> { enum { ret = GemvProduct }; }; 97 template<> struct product_type_selector<1, Small,Large> { enum { ret = CoeffBasedProductMode }; }; 98 template<> struct product_type_selector<Large,1, Small> { enum { ret = CoeffBasedProductMode }; }; 99 template<> struct product_type_selector<Large,1, Large> { enum { ret = GemvProduct }; }; 100 template<> struct product_type_selector<Small,1, Large> { enum { ret = CoeffBasedProductMode }; }; 101 template<> struct product_type_selector<Small,Small,Large> { enum { ret = GemmProduct }; }; 102 template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; }; 103 template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; }; 104 template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; }; 105 template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; }; 106 template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; }; 107 template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; }; 108 109 } // end namespace internal 110 111 /*********************************************************************** 112 * Implementation of Inner Vector Vector Product 113 ***********************************************************************/ 114 115 // FIXME : maybe the "inner product" could return a Scalar 116 // instead of a 1x1 matrix ?? 117 // Pro: more natural for the user 118 // Cons: this could be a problem if in a meta unrolled algorithm a matrix-matrix 119 // product ends up to a row-vector times col-vector product... To tackle this use 120 // case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x); 121 122 /*********************************************************************** 123 * Implementation of Outer Vector Vector Product 124 ***********************************************************************/ 125 126 /*********************************************************************** 127 * Implementation of General Matrix Vector Product 128 ***********************************************************************/ 129 130 /* According to the shape/flags of the matrix we have to distinghish 3 different cases: 131 * 1 - the matrix is col-major, BLAS compatible and M is large => call fast BLAS-like colmajor routine 132 * 2 - the matrix is row-major, BLAS compatible and N is large => call fast BLAS-like rowmajor routine 133 * 3 - all other cases are handled using a simple loop along the outer-storage direction. 134 * Therefore we need a lower level meta selector. 135 * Furthermore, if the matrix is the rhs, then the product has to be transposed. 136 */ 137 namespace internal { 138 139 template<int Side, int StorageOrder, bool BlasCompatible> 140 struct gemv_dense_selector; 141 142 } // end namespace internal 143 144 namespace internal { 145 146 template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if; 147 148 template<typename Scalar,int Size,int MaxSize> 149 struct gemv_static_vector_if<Scalar,Size,MaxSize,false> 150 { 151 EIGEN_STRONG_INLINE Scalar* data() { eigen_internal_assert(false && "should never be called"); return 0; } 152 }; 153 154 template<typename Scalar,int Size> 155 struct gemv_static_vector_if<Scalar,Size,Dynamic,true> 156 { 157 EIGEN_STRONG_INLINE Scalar* data() { return 0; } 158 }; 159 160 template<typename Scalar,int Size,int MaxSize> 161 struct gemv_static_vector_if<Scalar,Size,MaxSize,true> 162 { 163 enum { 164 ForceAlignment = internal::packet_traits<Scalar>::Vectorizable, 165 PacketSize = internal::packet_traits<Scalar>::size 166 }; 167 #if EIGEN_MAX_STATIC_ALIGN_BYTES!=0 168 internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data; 169 EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; } 170 #else 171 // Some architectures cannot align on the stack, 172 // => let's manually enforce alignment by allocating more data and return the address of the first aligned element. 173 internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data; 174 EIGEN_STRONG_INLINE Scalar* data() { 175 return ForceAlignment 176 ? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES) 177 : m_data.array; 178 } 179 #endif 180 }; 181 182 // The vector is on the left => transposition 183 template<int StorageOrder, bool BlasCompatible> 184 struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible> 185 { 186 template<typename Lhs, typename Rhs, typename Dest> 187 static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) 188 { 189 Transpose<Dest> destT(dest); 190 enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor }; 191 gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible> 192 ::run(rhs.transpose(), lhs.transpose(), destT, alpha); 193 } 194 }; 195 196 template<> struct gemv_dense_selector<OnTheRight,ColMajor,true> 197 { 198 template<typename Lhs, typename Rhs, typename Dest> 199 static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) 200 { 201 typedef typename Lhs::Scalar LhsScalar; 202 typedef typename Rhs::Scalar RhsScalar; 203 typedef typename Dest::Scalar ResScalar; 204 typedef typename Dest::RealScalar RealScalar; 205 206 typedef internal::blas_traits<Lhs> LhsBlasTraits; 207 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; 208 typedef internal::blas_traits<Rhs> RhsBlasTraits; 209 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; 210 211 typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest; 212 213 ActualLhsType actualLhs = LhsBlasTraits::extract(lhs); 214 ActualRhsType actualRhs = RhsBlasTraits::extract(rhs); 215 216 ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) 217 * RhsBlasTraits::extractScalarFactor(rhs); 218 219 // make sure Dest is a compile-time vector type (bug 1166) 220 typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest; 221 222 enum { 223 // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 224 // on, the other hand it is good for the cache to pack the vector anyways... 225 EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1), 226 ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex), 227 MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal 228 }; 229 230 typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper; 231 typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper; 232 RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha); 233 234 if(!MightCannotUseDest) 235 { 236 // shortcut if we are sure to be able to use dest directly, 237 // this ease the compiler to generate cleaner and more optimzized code for most common cases 238 general_matrix_vector_product 239 <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( 240 actualLhs.rows(), actualLhs.cols(), 241 LhsMapper(actualLhs.data(), actualLhs.outerStride()), 242 RhsMapper(actualRhs.data(), actualRhs.innerStride()), 243 dest.data(), 1, 244 compatibleAlpha); 245 } 246 else 247 { 248 gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest; 249 250 const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0)); 251 const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible; 252 253 ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(), 254 evalToDest ? dest.data() : static_dest.data()); 255 256 if(!evalToDest) 257 { 258 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN 259 Index size = dest.size(); 260 EIGEN_DENSE_STORAGE_CTOR_PLUGIN 261 #endif 262 if(!alphaIsCompatible) 263 { 264 MappedDest(actualDestPtr, dest.size()).setZero(); 265 compatibleAlpha = RhsScalar(1); 266 } 267 else 268 MappedDest(actualDestPtr, dest.size()) = dest; 269 } 270 271 general_matrix_vector_product 272 <Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( 273 actualLhs.rows(), actualLhs.cols(), 274 LhsMapper(actualLhs.data(), actualLhs.outerStride()), 275 RhsMapper(actualRhs.data(), actualRhs.innerStride()), 276 actualDestPtr, 1, 277 compatibleAlpha); 278 279 if (!evalToDest) 280 { 281 if(!alphaIsCompatible) 282 dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size()); 283 else 284 dest = MappedDest(actualDestPtr, dest.size()); 285 } 286 } 287 } 288 }; 289 290 template<> struct gemv_dense_selector<OnTheRight,RowMajor,true> 291 { 292 template<typename Lhs, typename Rhs, typename Dest> 293 static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) 294 { 295 typedef typename Lhs::Scalar LhsScalar; 296 typedef typename Rhs::Scalar RhsScalar; 297 typedef typename Dest::Scalar ResScalar; 298 299 typedef internal::blas_traits<Lhs> LhsBlasTraits; 300 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; 301 typedef internal::blas_traits<Rhs> RhsBlasTraits; 302 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; 303 typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned; 304 305 typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs); 306 typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs); 307 308 ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs) 309 * RhsBlasTraits::extractScalarFactor(rhs); 310 311 enum { 312 // FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1 313 // on, the other hand it is good for the cache to pack the vector anyways... 314 DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1 315 }; 316 317 gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs; 318 319 ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(), 320 DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data()); 321 322 if(!DirectlyUseRhs) 323 { 324 #ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN 325 Index size = actualRhs.size(); 326 EIGEN_DENSE_STORAGE_CTOR_PLUGIN 327 #endif 328 Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs; 329 } 330 331 typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper; 332 typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper; 333 general_matrix_vector_product 334 <Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run( 335 actualLhs.rows(), actualLhs.cols(), 336 LhsMapper(actualLhs.data(), actualLhs.outerStride()), 337 RhsMapper(actualRhsPtr, 1), 338 dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166) 339 actualAlpha); 340 } 341 }; 342 343 template<> struct gemv_dense_selector<OnTheRight,ColMajor,false> 344 { 345 template<typename Lhs, typename Rhs, typename Dest> 346 static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) 347 { 348 EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); 349 // TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp 350 typename nested_eval<Rhs,1>::type actual_rhs(rhs); 351 const Index size = rhs.rows(); 352 for(Index k=0; k<size; ++k) 353 dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k); 354 } 355 }; 356 357 template<> struct gemv_dense_selector<OnTheRight,RowMajor,false> 358 { 359 template<typename Lhs, typename Rhs, typename Dest> 360 static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha) 361 { 362 EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE); 363 typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs); 364 const Index rows = dest.rows(); 365 for(Index i=0; i<rows; ++i) 366 dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum(); 367 } 368 }; 369 370 } // end namespace internal 371 372 /*************************************************************************** 373 * Implementation of matrix base methods 374 ***************************************************************************/ 375 376 /** \returns the matrix product of \c *this and \a other. 377 * 378 * \note If instead of the matrix product you want the coefficient-wise product, see Cwise::operator*(). 379 * 380 * \sa lazyProduct(), operator*=(const MatrixBase&), Cwise::operator*() 381 */ 382 #ifndef __CUDACC__ 383 384 template<typename Derived> 385 template<typename OtherDerived> 386 inline const Product<Derived, OtherDerived> 387 MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const 388 { 389 // A note regarding the function declaration: In MSVC, this function will sometimes 390 // not be inlined since DenseStorage is an unwindable object for dynamic 391 // matrices and product types are holding a member to store the result. 392 // Thus it does not help tagging this function with EIGEN_STRONG_INLINE. 393 enum { 394 ProductIsValid = Derived::ColsAtCompileTime==Dynamic 395 || OtherDerived::RowsAtCompileTime==Dynamic 396 || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), 397 AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, 398 SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) 399 }; 400 // note to the lost user: 401 // * for a dot product use: v1.dot(v2) 402 // * for a coeff-wise product use: v1.cwiseProduct(v2) 403 EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), 404 INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) 405 EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), 406 INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) 407 EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) 408 #ifdef EIGEN_DEBUG_PRODUCT 409 internal::product_type<Derived,OtherDerived>::debug(); 410 #endif 411 412 return Product<Derived, OtherDerived>(derived(), other.derived()); 413 } 414 415 #endif // __CUDACC__ 416 417 /** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation. 418 * 419 * The returned product will behave like any other expressions: the coefficients of the product will be 420 * computed once at a time as requested. This might be useful in some extremely rare cases when only 421 * a small and no coherent fraction of the result's coefficients have to be computed. 422 * 423 * \warning This version of the matrix product can be much much slower. So use it only if you know 424 * what you are doing and that you measured a true speed improvement. 425 * 426 * \sa operator*(const MatrixBase&) 427 */ 428 template<typename Derived> 429 template<typename OtherDerived> 430 const Product<Derived,OtherDerived,LazyProduct> 431 MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const 432 { 433 enum { 434 ProductIsValid = Derived::ColsAtCompileTime==Dynamic 435 || OtherDerived::RowsAtCompileTime==Dynamic 436 || int(Derived::ColsAtCompileTime)==int(OtherDerived::RowsAtCompileTime), 437 AreVectors = Derived::IsVectorAtCompileTime && OtherDerived::IsVectorAtCompileTime, 438 SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(Derived,OtherDerived) 439 }; 440 // note to the lost user: 441 // * for a dot product use: v1.dot(v2) 442 // * for a coeff-wise product use: v1.cwiseProduct(v2) 443 EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), 444 INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) 445 EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), 446 INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) 447 EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) 448 449 return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived()); 450 } 451 452 } // end namespace Eigen 453 454 #endif // EIGEN_PRODUCT_H 455