1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <drm_fourcc.h>
27 #include <errno.h>
28 #include <time.h>
29 #include <unistd.h>
30 #include "main/context.h"
31 #include "main/framebuffer.h"
32 #include "main/renderbuffer.h"
33 #include "main/texobj.h"
34 #include "main/hash.h"
35 #include "main/fbobject.h"
36 #include "main/version.h"
37 #include "swrast/s_renderbuffer.h"
38 #include "util/ralloc.h"
39 #include "brw_defines.h"
40 #include "brw_state.h"
41 #include "compiler/nir/nir.h"
42
43 #include "utils.h"
44 #include "util/xmlpool.h"
45
46 static const __DRIconfigOptionsExtension brw_config_options = {
47 .base = { __DRI_CONFIG_OPTIONS, 1 },
48 .xml =
49 DRI_CONF_BEGIN
50 DRI_CONF_SECTION_PERFORMANCE
51 /* Options correspond to DRI_CONF_BO_REUSE_DISABLED,
52 * DRI_CONF_BO_REUSE_ALL
53 */
54 DRI_CONF_OPT_BEGIN_V(bo_reuse, enum, 1, "0:1")
55 DRI_CONF_DESC_BEGIN(en, "Buffer object reuse")
56 DRI_CONF_ENUM(0, "Disable buffer object reuse")
57 DRI_CONF_ENUM(1, "Enable reuse of all sizes of buffer objects")
58 DRI_CONF_DESC_END
59 DRI_CONF_OPT_END
60 DRI_CONF_MESA_NO_ERROR("false")
61 DRI_CONF_SECTION_END
62
63 DRI_CONF_SECTION_QUALITY
64 DRI_CONF_PRECISE_TRIG("false")
65
66 DRI_CONF_OPT_BEGIN(clamp_max_samples, int, -1)
67 DRI_CONF_DESC(en, "Clamp the value of GL_MAX_SAMPLES to the "
68 "given integer. If negative, then do not clamp.")
69 DRI_CONF_OPT_END
70 DRI_CONF_SECTION_END
71
72 DRI_CONF_SECTION_DEBUG
73 DRI_CONF_NO_RAST("false")
74 DRI_CONF_ALWAYS_FLUSH_BATCH("false")
75 DRI_CONF_ALWAYS_FLUSH_CACHE("false")
76 DRI_CONF_DISABLE_THROTTLING("false")
77 DRI_CONF_FORCE_GLSL_EXTENSIONS_WARN("false")
78 DRI_CONF_FORCE_GLSL_VERSION(0)
79 DRI_CONF_DISABLE_GLSL_LINE_CONTINUATIONS("false")
80 DRI_CONF_DISABLE_BLEND_FUNC_EXTENDED("false")
81 DRI_CONF_DUAL_COLOR_BLEND_BY_LOCATION("false")
82 DRI_CONF_ALLOW_GLSL_EXTENSION_DIRECTIVE_MIDSHADER("false")
83 DRI_CONF_ALLOW_GLSL_BUILTIN_VARIABLE_REDECLARATION("false")
84 DRI_CONF_ALLOW_GLSL_CROSS_STAGE_INTERPOLATION_MISMATCH("false")
85 DRI_CONF_ALLOW_HIGHER_COMPAT_VERSION("false")
86 DRI_CONF_FORCE_GLSL_ABS_SQRT("false")
87
88 DRI_CONF_OPT_BEGIN_B(shader_precompile, "true")
89 DRI_CONF_DESC(en, "Perform code generation at shader link time.")
90 DRI_CONF_OPT_END
91 DRI_CONF_SECTION_END
92
93 DRI_CONF_SECTION_MISCELLANEOUS
94 DRI_CONF_GLSL_ZERO_INIT("false")
95 DRI_CONF_ALLOW_RGB10_CONFIGS("false")
96 DRI_CONF_SECTION_END
97 DRI_CONF_END
98 };
99
100 #include "intel_batchbuffer.h"
101 #include "intel_buffers.h"
102 #include "brw_bufmgr.h"
103 #include "intel_fbo.h"
104 #include "intel_mipmap_tree.h"
105 #include "intel_screen.h"
106 #include "intel_tex.h"
107 #include "intel_image.h"
108
109 #include "brw_context.h"
110
111 #include "i915_drm.h"
112
113 /**
114 * For debugging purposes, this returns a time in seconds.
115 */
116 double
get_time(void)117 get_time(void)
118 {
119 struct timespec tp;
120
121 clock_gettime(CLOCK_MONOTONIC, &tp);
122
123 return tp.tv_sec + tp.tv_nsec / 1000000000.0;
124 }
125
126 static const __DRItexBufferExtension intelTexBufferExtension = {
127 .base = { __DRI_TEX_BUFFER, 3 },
128
129 .setTexBuffer = intelSetTexBuffer,
130 .setTexBuffer2 = intelSetTexBuffer2,
131 .releaseTexBuffer = NULL,
132 };
133
134 static void
intel_dri2_flush_with_flags(__DRIcontext * cPriv,__DRIdrawable * dPriv,unsigned flags,enum __DRI2throttleReason reason)135 intel_dri2_flush_with_flags(__DRIcontext *cPriv,
136 __DRIdrawable *dPriv,
137 unsigned flags,
138 enum __DRI2throttleReason reason)
139 {
140 struct brw_context *brw = cPriv->driverPrivate;
141
142 if (!brw)
143 return;
144
145 struct gl_context *ctx = &brw->ctx;
146
147 FLUSH_VERTICES(ctx, 0);
148
149 if (flags & __DRI2_FLUSH_DRAWABLE)
150 intel_resolve_for_dri2_flush(brw, dPriv);
151
152 if (reason == __DRI2_THROTTLE_SWAPBUFFER)
153 brw->need_swap_throttle = true;
154 if (reason == __DRI2_THROTTLE_FLUSHFRONT)
155 brw->need_flush_throttle = true;
156
157 intel_batchbuffer_flush(brw);
158 }
159
160 /**
161 * Provides compatibility with loaders that only support the older (version
162 * 1-3) flush interface.
163 *
164 * That includes libGL up to Mesa 9.0, and the X Server at least up to 1.13.
165 */
166 static void
intel_dri2_flush(__DRIdrawable * drawable)167 intel_dri2_flush(__DRIdrawable *drawable)
168 {
169 intel_dri2_flush_with_flags(drawable->driContextPriv, drawable,
170 __DRI2_FLUSH_DRAWABLE,
171 __DRI2_THROTTLE_SWAPBUFFER);
172 }
173
174 static const struct __DRI2flushExtensionRec intelFlushExtension = {
175 .base = { __DRI2_FLUSH, 4 },
176
177 .flush = intel_dri2_flush,
178 .invalidate = dri2InvalidateDrawable,
179 .flush_with_flags = intel_dri2_flush_with_flags,
180 };
181
182 static const struct intel_image_format intel_image_formats[] = {
183 { __DRI_IMAGE_FOURCC_ARGB2101010, __DRI_IMAGE_COMPONENTS_RGBA, 1,
184 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB2101010, 4 } } },
185
186 { __DRI_IMAGE_FOURCC_XRGB2101010, __DRI_IMAGE_COMPONENTS_RGB, 1,
187 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB2101010, 4 } } },
188
189 { __DRI_IMAGE_FOURCC_ARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
190 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
191
192 { __DRI_IMAGE_FOURCC_ABGR8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
193 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } },
194
195 { __DRI_IMAGE_FOURCC_SARGB8888, __DRI_IMAGE_COMPONENTS_RGBA, 1,
196 { { 0, 0, 0, __DRI_IMAGE_FORMAT_SARGB8, 4 } } },
197
198 { __DRI_IMAGE_FOURCC_XRGB8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
199 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XRGB8888, 4 }, } },
200
201 { __DRI_IMAGE_FOURCC_XBGR8888, __DRI_IMAGE_COMPONENTS_RGB, 1,
202 { { 0, 0, 0, __DRI_IMAGE_FORMAT_XBGR8888, 4 }, } },
203
204 { __DRI_IMAGE_FOURCC_ARGB1555, __DRI_IMAGE_COMPONENTS_RGBA, 1,
205 { { 0, 0, 0, __DRI_IMAGE_FORMAT_ARGB1555, 2 } } },
206
207 { __DRI_IMAGE_FOURCC_RGB565, __DRI_IMAGE_COMPONENTS_RGB, 1,
208 { { 0, 0, 0, __DRI_IMAGE_FORMAT_RGB565, 2 } } },
209
210 { __DRI_IMAGE_FOURCC_R8, __DRI_IMAGE_COMPONENTS_R, 1,
211 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 }, } },
212
213 { __DRI_IMAGE_FOURCC_R16, __DRI_IMAGE_COMPONENTS_R, 1,
214 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R16, 1 }, } },
215
216 { __DRI_IMAGE_FOURCC_GR88, __DRI_IMAGE_COMPONENTS_RG, 1,
217 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 }, } },
218
219 { __DRI_IMAGE_FOURCC_GR1616, __DRI_IMAGE_COMPONENTS_RG, 1,
220 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR1616, 2 }, } },
221
222 { __DRI_IMAGE_FOURCC_YUV410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
223 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
224 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
225 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
226
227 { __DRI_IMAGE_FOURCC_YUV411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
228 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
229 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
230 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
231
232 { __DRI_IMAGE_FOURCC_YUV420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
233 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
234 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
235 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
236
237 { __DRI_IMAGE_FOURCC_YUV422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
238 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
239 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
240 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
241
242 { __DRI_IMAGE_FOURCC_YUV444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
243 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
244 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
245 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
246
247 { __DRI_IMAGE_FOURCC_YVU410, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
248 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
249 { 2, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 },
250 { 1, 2, 2, __DRI_IMAGE_FORMAT_R8, 1 } } },
251
252 { __DRI_IMAGE_FOURCC_YVU411, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
253 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
254 { 2, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 },
255 { 1, 2, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
256
257 { __DRI_IMAGE_FOURCC_YVU420, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
258 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
259 { 2, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 },
260 { 1, 1, 1, __DRI_IMAGE_FORMAT_R8, 1 } } },
261
262 { __DRI_IMAGE_FOURCC_YVU422, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
263 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
264 { 2, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 },
265 { 1, 1, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
266
267 { __DRI_IMAGE_FOURCC_YVU444, __DRI_IMAGE_COMPONENTS_Y_U_V, 3,
268 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
269 { 2, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
270 { 1, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 } } },
271
272 { __DRI_IMAGE_FOURCC_NV12, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
273 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
274 { 1, 1, 1, __DRI_IMAGE_FORMAT_GR88, 2 } } },
275
276 { __DRI_IMAGE_FOURCC_NV16, __DRI_IMAGE_COMPONENTS_Y_UV, 2,
277 { { 0, 0, 0, __DRI_IMAGE_FORMAT_R8, 1 },
278 { 1, 1, 0, __DRI_IMAGE_FORMAT_GR88, 2 } } },
279
280 /* For YUYV and UYVY buffers, we set up two overlapping DRI images
281 * and treat them as planar buffers in the compositors.
282 * Plane 0 is GR88 and samples YU or YV pairs and places Y into
283 * the R component, while plane 1 is ARGB/ABGR and samples YUYV/UYVY
284 * clusters and places pairs and places U into the G component and
285 * V into A. This lets the texture sampler interpolate the Y
286 * components correctly when sampling from plane 0, and interpolate
287 * U and V correctly when sampling from plane 1. */
288 { __DRI_IMAGE_FOURCC_YUYV, __DRI_IMAGE_COMPONENTS_Y_XUXV, 2,
289 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
290 { 0, 1, 0, __DRI_IMAGE_FORMAT_ARGB8888, 4 } } },
291 { __DRI_IMAGE_FOURCC_UYVY, __DRI_IMAGE_COMPONENTS_Y_UXVX, 2,
292 { { 0, 0, 0, __DRI_IMAGE_FORMAT_GR88, 2 },
293 { 0, 1, 0, __DRI_IMAGE_FORMAT_ABGR8888, 4 } } }
294 };
295
296 static const struct {
297 uint64_t modifier;
298 unsigned since_gen;
299 } supported_modifiers[] = {
300 { .modifier = DRM_FORMAT_MOD_LINEAR , .since_gen = 1 },
301 { .modifier = I915_FORMAT_MOD_X_TILED , .since_gen = 1 },
302 { .modifier = I915_FORMAT_MOD_Y_TILED , .since_gen = 6 },
303 { .modifier = I915_FORMAT_MOD_Y_TILED_CCS , .since_gen = 9 },
304 };
305
306 static bool
modifier_is_supported(const struct gen_device_info * devinfo,const struct intel_image_format * fmt,int dri_format,uint64_t modifier)307 modifier_is_supported(const struct gen_device_info *devinfo,
308 const struct intel_image_format *fmt, int dri_format,
309 uint64_t modifier)
310 {
311 const struct isl_drm_modifier_info *modinfo =
312 isl_drm_modifier_get_info(modifier);
313 int i;
314
315 /* ISL had better know about the modifier */
316 if (!modinfo)
317 return false;
318
319 if (modinfo->aux_usage == ISL_AUX_USAGE_CCS_E) {
320 /* If INTEL_DEBUG=norbc is set, don't support any CCS_E modifiers */
321 if (unlikely(INTEL_DEBUG & DEBUG_NO_RBC))
322 return false;
323
324 /* CCS_E is not supported for planar images */
325 if (fmt && fmt->nplanes > 1)
326 return false;
327
328 if (fmt) {
329 assert(dri_format == 0);
330 dri_format = fmt->planes[0].dri_format;
331 }
332
333 mesa_format format = driImageFormatToGLFormat(dri_format);
334 format = _mesa_get_srgb_format_linear(format);
335 if (!isl_format_supports_ccs_e(devinfo,
336 brw_isl_format_for_mesa_format(format)))
337 return false;
338 }
339
340 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
341 if (supported_modifiers[i].modifier != modifier)
342 continue;
343
344 return supported_modifiers[i].since_gen <= devinfo->gen;
345 }
346
347 return false;
348 }
349
350 static uint64_t
tiling_to_modifier(uint32_t tiling)351 tiling_to_modifier(uint32_t tiling)
352 {
353 static const uint64_t map[] = {
354 [I915_TILING_NONE] = DRM_FORMAT_MOD_LINEAR,
355 [I915_TILING_X] = I915_FORMAT_MOD_X_TILED,
356 [I915_TILING_Y] = I915_FORMAT_MOD_Y_TILED,
357 };
358
359 assert(tiling < ARRAY_SIZE(map));
360
361 return map[tiling];
362 }
363
364 static void
intel_image_warn_if_unaligned(__DRIimage * image,const char * func)365 intel_image_warn_if_unaligned(__DRIimage *image, const char *func)
366 {
367 uint32_t tiling, swizzle;
368 brw_bo_get_tiling(image->bo, &tiling, &swizzle);
369
370 if (tiling != I915_TILING_NONE && (image->offset & 0xfff)) {
371 _mesa_warning(NULL, "%s: offset 0x%08x not on tile boundary",
372 func, image->offset);
373 }
374 }
375
376 static const struct intel_image_format *
intel_image_format_lookup(int fourcc)377 intel_image_format_lookup(int fourcc)
378 {
379 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
380 if (intel_image_formats[i].fourcc == fourcc)
381 return &intel_image_formats[i];
382 }
383
384 return NULL;
385 }
386
387 static boolean
intel_image_get_fourcc(__DRIimage * image,int * fourcc)388 intel_image_get_fourcc(__DRIimage *image, int *fourcc)
389 {
390 if (image->planar_format) {
391 *fourcc = image->planar_format->fourcc;
392 return true;
393 }
394
395 for (unsigned i = 0; i < ARRAY_SIZE(intel_image_formats); i++) {
396 if (intel_image_formats[i].planes[0].dri_format == image->dri_format) {
397 *fourcc = intel_image_formats[i].fourcc;
398 return true;
399 }
400 }
401 return false;
402 }
403
404 static __DRIimage *
intel_allocate_image(struct intel_screen * screen,int dri_format,void * loaderPrivate)405 intel_allocate_image(struct intel_screen *screen, int dri_format,
406 void *loaderPrivate)
407 {
408 __DRIimage *image;
409
410 image = calloc(1, sizeof *image);
411 if (image == NULL)
412 return NULL;
413
414 image->screen = screen;
415 image->dri_format = dri_format;
416 image->offset = 0;
417
418 image->format = driImageFormatToGLFormat(dri_format);
419 if (dri_format != __DRI_IMAGE_FORMAT_NONE &&
420 image->format == MESA_FORMAT_NONE) {
421 free(image);
422 return NULL;
423 }
424
425 image->internal_format = _mesa_get_format_base_format(image->format);
426 image->data = loaderPrivate;
427
428 return image;
429 }
430
431 /**
432 * Sets up a DRIImage structure to point to a slice out of a miptree.
433 */
434 static void
intel_setup_image_from_mipmap_tree(struct brw_context * brw,__DRIimage * image,struct intel_mipmap_tree * mt,GLuint level,GLuint zoffset)435 intel_setup_image_from_mipmap_tree(struct brw_context *brw, __DRIimage *image,
436 struct intel_mipmap_tree *mt, GLuint level,
437 GLuint zoffset)
438 {
439 intel_miptree_make_shareable(brw, mt);
440
441 intel_miptree_check_level_layer(mt, level, zoffset);
442
443 image->width = minify(mt->surf.phys_level0_sa.width,
444 level - mt->first_level);
445 image->height = minify(mt->surf.phys_level0_sa.height,
446 level - mt->first_level);
447 image->pitch = mt->surf.row_pitch;
448
449 image->offset = intel_miptree_get_tile_offsets(mt, level, zoffset,
450 &image->tile_x,
451 &image->tile_y);
452
453 brw_bo_unreference(image->bo);
454 image->bo = mt->bo;
455 brw_bo_reference(mt->bo);
456 }
457
458 static __DRIimage *
intel_create_image_from_name(__DRIscreen * dri_screen,int width,int height,int format,int name,int pitch,void * loaderPrivate)459 intel_create_image_from_name(__DRIscreen *dri_screen,
460 int width, int height, int format,
461 int name, int pitch, void *loaderPrivate)
462 {
463 struct intel_screen *screen = dri_screen->driverPrivate;
464 __DRIimage *image;
465 int cpp;
466
467 image = intel_allocate_image(screen, format, loaderPrivate);
468 if (image == NULL)
469 return NULL;
470
471 if (image->format == MESA_FORMAT_NONE)
472 cpp = 1;
473 else
474 cpp = _mesa_get_format_bytes(image->format);
475
476 image->width = width;
477 image->height = height;
478 image->pitch = pitch * cpp;
479 image->bo = brw_bo_gem_create_from_name(screen->bufmgr, "image",
480 name);
481 if (!image->bo) {
482 free(image);
483 return NULL;
484 }
485 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
486
487 return image;
488 }
489
490 static __DRIimage *
intel_create_image_from_renderbuffer(__DRIcontext * context,int renderbuffer,void * loaderPrivate)491 intel_create_image_from_renderbuffer(__DRIcontext *context,
492 int renderbuffer, void *loaderPrivate)
493 {
494 __DRIimage *image;
495 struct brw_context *brw = context->driverPrivate;
496 struct gl_context *ctx = &brw->ctx;
497 struct gl_renderbuffer *rb;
498 struct intel_renderbuffer *irb;
499
500 rb = _mesa_lookup_renderbuffer(ctx, renderbuffer);
501 if (!rb) {
502 _mesa_error(ctx, GL_INVALID_OPERATION, "glRenderbufferExternalMESA");
503 return NULL;
504 }
505
506 irb = intel_renderbuffer(rb);
507 intel_miptree_make_shareable(brw, irb->mt);
508 image = calloc(1, sizeof *image);
509 if (image == NULL)
510 return NULL;
511
512 image->internal_format = rb->InternalFormat;
513 image->format = rb->Format;
514 image->modifier = tiling_to_modifier(
515 isl_tiling_to_i915_tiling(irb->mt->surf.tiling));
516 image->offset = 0;
517 image->data = loaderPrivate;
518 brw_bo_unreference(image->bo);
519 image->bo = irb->mt->bo;
520 brw_bo_reference(irb->mt->bo);
521 image->width = rb->Width;
522 image->height = rb->Height;
523 image->pitch = irb->mt->surf.row_pitch;
524 image->dri_format = driGLFormatToImageFormat(image->format);
525 image->has_depthstencil = irb->mt->stencil_mt? true : false;
526
527 rb->NeedsFinishRenderTexture = true;
528 return image;
529 }
530
531 static __DRIimage *
intel_create_image_from_texture(__DRIcontext * context,int target,unsigned texture,int zoffset,int level,unsigned * error,void * loaderPrivate)532 intel_create_image_from_texture(__DRIcontext *context, int target,
533 unsigned texture, int zoffset,
534 int level,
535 unsigned *error,
536 void *loaderPrivate)
537 {
538 __DRIimage *image;
539 struct brw_context *brw = context->driverPrivate;
540 struct gl_texture_object *obj;
541 struct intel_texture_object *iobj;
542 GLuint face = 0;
543
544 obj = _mesa_lookup_texture(&brw->ctx, texture);
545 if (!obj || obj->Target != target) {
546 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
547 return NULL;
548 }
549
550 if (target == GL_TEXTURE_CUBE_MAP)
551 face = zoffset;
552
553 _mesa_test_texobj_completeness(&brw->ctx, obj);
554 iobj = intel_texture_object(obj);
555 if (!obj->_BaseComplete || (level > 0 && !obj->_MipmapComplete)) {
556 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
557 return NULL;
558 }
559
560 if (level < obj->BaseLevel || level > obj->_MaxLevel) {
561 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
562 return NULL;
563 }
564
565 if (target == GL_TEXTURE_3D && obj->Image[face][level]->Depth < zoffset) {
566 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
567 return NULL;
568 }
569 image = calloc(1, sizeof *image);
570 if (image == NULL) {
571 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
572 return NULL;
573 }
574
575 image->internal_format = obj->Image[face][level]->InternalFormat;
576 image->format = obj->Image[face][level]->TexFormat;
577 image->modifier = tiling_to_modifier(
578 isl_tiling_to_i915_tiling(iobj->mt->surf.tiling));
579 image->data = loaderPrivate;
580 intel_setup_image_from_mipmap_tree(brw, image, iobj->mt, level, zoffset);
581 image->dri_format = driGLFormatToImageFormat(image->format);
582 image->has_depthstencil = iobj->mt->stencil_mt? true : false;
583 image->planar_format = iobj->planar_format;
584 if (image->dri_format == MESA_FORMAT_NONE) {
585 *error = __DRI_IMAGE_ERROR_BAD_PARAMETER;
586 free(image);
587 return NULL;
588 }
589
590 *error = __DRI_IMAGE_ERROR_SUCCESS;
591 return image;
592 }
593
594 static void
intel_destroy_image(__DRIimage * image)595 intel_destroy_image(__DRIimage *image)
596 {
597 brw_bo_unreference(image->bo);
598 free(image);
599 }
600
601 enum modifier_priority {
602 MODIFIER_PRIORITY_INVALID = 0,
603 MODIFIER_PRIORITY_LINEAR,
604 MODIFIER_PRIORITY_X,
605 MODIFIER_PRIORITY_Y,
606 MODIFIER_PRIORITY_Y_CCS,
607 };
608
609 const uint64_t priority_to_modifier[] = {
610 [MODIFIER_PRIORITY_INVALID] = DRM_FORMAT_MOD_INVALID,
611 [MODIFIER_PRIORITY_LINEAR] = DRM_FORMAT_MOD_LINEAR,
612 [MODIFIER_PRIORITY_X] = I915_FORMAT_MOD_X_TILED,
613 [MODIFIER_PRIORITY_Y] = I915_FORMAT_MOD_Y_TILED,
614 [MODIFIER_PRIORITY_Y_CCS] = I915_FORMAT_MOD_Y_TILED_CCS,
615 };
616
617 static uint64_t
select_best_modifier(struct gen_device_info * devinfo,int dri_format,const uint64_t * modifiers,const unsigned count)618 select_best_modifier(struct gen_device_info *devinfo,
619 int dri_format,
620 const uint64_t *modifiers,
621 const unsigned count)
622 {
623 enum modifier_priority prio = MODIFIER_PRIORITY_INVALID;
624
625 for (int i = 0; i < count; i++) {
626 if (!modifier_is_supported(devinfo, NULL, dri_format, modifiers[i]))
627 continue;
628
629 switch (modifiers[i]) {
630 case I915_FORMAT_MOD_Y_TILED_CCS:
631 prio = MAX2(prio, MODIFIER_PRIORITY_Y_CCS);
632 break;
633 case I915_FORMAT_MOD_Y_TILED:
634 prio = MAX2(prio, MODIFIER_PRIORITY_Y);
635 break;
636 case I915_FORMAT_MOD_X_TILED:
637 prio = MAX2(prio, MODIFIER_PRIORITY_X);
638 break;
639 case DRM_FORMAT_MOD_LINEAR:
640 prio = MAX2(prio, MODIFIER_PRIORITY_LINEAR);
641 break;
642 case DRM_FORMAT_MOD_INVALID:
643 default:
644 break;
645 }
646 }
647
648 return priority_to_modifier[prio];
649 }
650
651 static __DRIimage *
intel_create_image_common(__DRIscreen * dri_screen,int width,int height,int format,unsigned int use,const uint64_t * modifiers,unsigned count,void * loaderPrivate)652 intel_create_image_common(__DRIscreen *dri_screen,
653 int width, int height, int format,
654 unsigned int use,
655 const uint64_t *modifiers,
656 unsigned count,
657 void *loaderPrivate)
658 {
659 __DRIimage *image;
660 struct intel_screen *screen = dri_screen->driverPrivate;
661 uint64_t modifier = DRM_FORMAT_MOD_INVALID;
662 bool ok;
663
664 /* Callers of this may specify a modifier, or a dri usage, but not both. The
665 * newer modifier interface deprecates the older usage flags newer modifier
666 * interface deprecates the older usage flags.
667 */
668 assert(!(use && count));
669
670 if (use & __DRI_IMAGE_USE_CURSOR) {
671 if (width != 64 || height != 64)
672 return NULL;
673 modifier = DRM_FORMAT_MOD_LINEAR;
674 }
675
676 if (use & __DRI_IMAGE_USE_LINEAR)
677 modifier = DRM_FORMAT_MOD_LINEAR;
678
679 if (modifier == DRM_FORMAT_MOD_INVALID) {
680 if (modifiers) {
681 /* User requested specific modifiers */
682 modifier = select_best_modifier(&screen->devinfo, format,
683 modifiers, count);
684 if (modifier == DRM_FORMAT_MOD_INVALID)
685 return NULL;
686 } else {
687 /* Historically, X-tiled was the default, and so lack of modifier means
688 * X-tiled.
689 */
690 modifier = I915_FORMAT_MOD_X_TILED;
691 }
692 }
693
694 image = intel_allocate_image(screen, format, loaderPrivate);
695 if (image == NULL)
696 return NULL;
697
698 const struct isl_drm_modifier_info *mod_info =
699 isl_drm_modifier_get_info(modifier);
700
701 struct isl_surf surf;
702 ok = isl_surf_init(&screen->isl_dev, &surf,
703 .dim = ISL_SURF_DIM_2D,
704 .format = brw_isl_format_for_mesa_format(image->format),
705 .width = width,
706 .height = height,
707 .depth = 1,
708 .levels = 1,
709 .array_len = 1,
710 .samples = 1,
711 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
712 ISL_SURF_USAGE_TEXTURE_BIT |
713 ISL_SURF_USAGE_STORAGE_BIT,
714 .tiling_flags = (1 << mod_info->tiling));
715 assert(ok);
716 if (!ok) {
717 free(image);
718 return NULL;
719 }
720
721 struct isl_surf aux_surf;
722 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
723 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf, 0);
724 if (!ok) {
725 free(image);
726 return NULL;
727 }
728 } else {
729 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
730 aux_surf.size = 0;
731 }
732
733 /* We request that the bufmgr zero the buffer for us for two reasons:
734 *
735 * 1) If a buffer gets re-used from the pool, we don't want to leak random
736 * garbage from our process to some other.
737 *
738 * 2) For images with CCS_E, we want to ensure that the CCS starts off in
739 * a valid state. A CCS value of 0 indicates that the given block is
740 * in the pass-through state which is what we want.
741 */
742 image->bo = brw_bo_alloc_tiled(screen->bufmgr, "image",
743 surf.size + aux_surf.size,
744 isl_tiling_to_i915_tiling(mod_info->tiling),
745 surf.row_pitch, BO_ALLOC_ZEROED);
746 if (image->bo == NULL) {
747 free(image);
748 return NULL;
749 }
750 image->width = width;
751 image->height = height;
752 image->pitch = surf.row_pitch;
753 image->modifier = modifier;
754
755 if (aux_surf.size) {
756 image->aux_offset = surf.size;
757 image->aux_pitch = aux_surf.row_pitch;
758 image->aux_size = aux_surf.size;
759 }
760
761 return image;
762 }
763
764 static __DRIimage *
intel_create_image(__DRIscreen * dri_screen,int width,int height,int format,unsigned int use,void * loaderPrivate)765 intel_create_image(__DRIscreen *dri_screen,
766 int width, int height, int format,
767 unsigned int use,
768 void *loaderPrivate)
769 {
770 return intel_create_image_common(dri_screen, width, height, format, use, NULL, 0,
771 loaderPrivate);
772 }
773
774 static void *
intel_map_image(__DRIcontext * context,__DRIimage * image,int x0,int y0,int width,int height,unsigned int flags,int * stride,void ** map_info)775 intel_map_image(__DRIcontext *context, __DRIimage *image,
776 int x0, int y0, int width, int height,
777 unsigned int flags, int *stride, void **map_info)
778 {
779 struct brw_context *brw = NULL;
780 struct brw_bo *bo = NULL;
781 void *raw_data = NULL;
782 GLuint pix_w = 1;
783 GLuint pix_h = 1;
784 GLint pix_bytes = 1;
785
786 if (!context || !image || !stride || !map_info || *map_info)
787 return NULL;
788
789 if (x0 < 0 || x0 >= image->width || width > image->width - x0)
790 return NULL;
791
792 if (y0 < 0 || y0 >= image->height || height > image->height - y0)
793 return NULL;
794
795 if (flags & MAP_INTERNAL_MASK)
796 return NULL;
797
798 brw = context->driverPrivate;
799 bo = image->bo;
800
801 assert(brw);
802 assert(bo);
803
804 /* DRI flags and GL_MAP.*_BIT flags are the same, so just pass them on. */
805 raw_data = brw_bo_map(brw, bo, flags);
806 if (!raw_data)
807 return NULL;
808
809 _mesa_get_format_block_size(image->format, &pix_w, &pix_h);
810 pix_bytes = _mesa_get_format_bytes(image->format);
811
812 assert(pix_w);
813 assert(pix_h);
814 assert(pix_bytes > 0);
815
816 raw_data += (x0 / pix_w) * pix_bytes + (y0 / pix_h) * image->pitch;
817
818 brw_bo_reference(bo);
819
820 *stride = image->pitch;
821 *map_info = bo;
822
823 return raw_data;
824 }
825
826 static void
intel_unmap_image(__DRIcontext * context,__DRIimage * image,void * map_info)827 intel_unmap_image(__DRIcontext *context, __DRIimage *image, void *map_info)
828 {
829 struct brw_bo *bo = map_info;
830
831 brw_bo_unmap(bo);
832 brw_bo_unreference(bo);
833 }
834
835 static __DRIimage *
intel_create_image_with_modifiers(__DRIscreen * dri_screen,int width,int height,int format,const uint64_t * modifiers,const unsigned count,void * loaderPrivate)836 intel_create_image_with_modifiers(__DRIscreen *dri_screen,
837 int width, int height, int format,
838 const uint64_t *modifiers,
839 const unsigned count,
840 void *loaderPrivate)
841 {
842 return intel_create_image_common(dri_screen, width, height, format, 0,
843 modifiers, count, loaderPrivate);
844 }
845
846 static GLboolean
intel_query_image(__DRIimage * image,int attrib,int * value)847 intel_query_image(__DRIimage *image, int attrib, int *value)
848 {
849 switch (attrib) {
850 case __DRI_IMAGE_ATTRIB_STRIDE:
851 *value = image->pitch;
852 return true;
853 case __DRI_IMAGE_ATTRIB_HANDLE:
854 *value = brw_bo_export_gem_handle(image->bo);
855 return true;
856 case __DRI_IMAGE_ATTRIB_NAME:
857 return !brw_bo_flink(image->bo, (uint32_t *) value);
858 case __DRI_IMAGE_ATTRIB_FORMAT:
859 *value = image->dri_format;
860 return true;
861 case __DRI_IMAGE_ATTRIB_WIDTH:
862 *value = image->width;
863 return true;
864 case __DRI_IMAGE_ATTRIB_HEIGHT:
865 *value = image->height;
866 return true;
867 case __DRI_IMAGE_ATTRIB_COMPONENTS:
868 if (image->planar_format == NULL)
869 return false;
870 *value = image->planar_format->components;
871 return true;
872 case __DRI_IMAGE_ATTRIB_FD:
873 return !brw_bo_gem_export_to_prime(image->bo, value);
874 case __DRI_IMAGE_ATTRIB_FOURCC:
875 return intel_image_get_fourcc(image, value);
876 case __DRI_IMAGE_ATTRIB_NUM_PLANES:
877 if (isl_drm_modifier_has_aux(image->modifier)) {
878 assert(!image->planar_format || image->planar_format->nplanes == 1);
879 *value = 2;
880 } else if (image->planar_format) {
881 *value = image->planar_format->nplanes;
882 } else {
883 *value = 1;
884 }
885 return true;
886 case __DRI_IMAGE_ATTRIB_OFFSET:
887 *value = image->offset;
888 return true;
889 case __DRI_IMAGE_ATTRIB_MODIFIER_LOWER:
890 *value = (image->modifier & 0xffffffff);
891 return true;
892 case __DRI_IMAGE_ATTRIB_MODIFIER_UPPER:
893 *value = ((image->modifier >> 32) & 0xffffffff);
894 return true;
895
896 default:
897 return false;
898 }
899 }
900
901 static GLboolean
intel_query_format_modifier_attribs(__DRIscreen * dri_screen,uint32_t fourcc,uint64_t modifier,int attrib,uint64_t * value)902 intel_query_format_modifier_attribs(__DRIscreen *dri_screen,
903 uint32_t fourcc, uint64_t modifier,
904 int attrib, uint64_t *value)
905 {
906 struct intel_screen *screen = dri_screen->driverPrivate;
907 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
908
909 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
910 return false;
911
912 switch (attrib) {
913 case __DRI_IMAGE_FORMAT_MODIFIER_ATTRIB_PLANE_COUNT:
914 *value = isl_drm_modifier_has_aux(modifier) ? 2 : f->nplanes;
915 return true;
916
917 default:
918 return false;
919 }
920 }
921
922 static __DRIimage *
intel_dup_image(__DRIimage * orig_image,void * loaderPrivate)923 intel_dup_image(__DRIimage *orig_image, void *loaderPrivate)
924 {
925 __DRIimage *image;
926
927 image = calloc(1, sizeof *image);
928 if (image == NULL)
929 return NULL;
930
931 brw_bo_reference(orig_image->bo);
932 image->bo = orig_image->bo;
933 image->internal_format = orig_image->internal_format;
934 image->planar_format = orig_image->planar_format;
935 image->dri_format = orig_image->dri_format;
936 image->format = orig_image->format;
937 image->modifier = orig_image->modifier;
938 image->offset = orig_image->offset;
939 image->width = orig_image->width;
940 image->height = orig_image->height;
941 image->pitch = orig_image->pitch;
942 image->tile_x = orig_image->tile_x;
943 image->tile_y = orig_image->tile_y;
944 image->has_depthstencil = orig_image->has_depthstencil;
945 image->data = loaderPrivate;
946 image->dma_buf_imported = orig_image->dma_buf_imported;
947 image->aux_offset = orig_image->aux_offset;
948 image->aux_pitch = orig_image->aux_pitch;
949
950 memcpy(image->strides, orig_image->strides, sizeof(image->strides));
951 memcpy(image->offsets, orig_image->offsets, sizeof(image->offsets));
952
953 return image;
954 }
955
956 static GLboolean
intel_validate_usage(__DRIimage * image,unsigned int use)957 intel_validate_usage(__DRIimage *image, unsigned int use)
958 {
959 if (use & __DRI_IMAGE_USE_CURSOR) {
960 if (image->width != 64 || image->height != 64)
961 return GL_FALSE;
962 }
963
964 return GL_TRUE;
965 }
966
967 static __DRIimage *
intel_create_image_from_names(__DRIscreen * dri_screen,int width,int height,int fourcc,int * names,int num_names,int * strides,int * offsets,void * loaderPrivate)968 intel_create_image_from_names(__DRIscreen *dri_screen,
969 int width, int height, int fourcc,
970 int *names, int num_names,
971 int *strides, int *offsets,
972 void *loaderPrivate)
973 {
974 const struct intel_image_format *f = NULL;
975 __DRIimage *image;
976 int i, index;
977
978 if (dri_screen == NULL || names == NULL || num_names != 1)
979 return NULL;
980
981 f = intel_image_format_lookup(fourcc);
982 if (f == NULL)
983 return NULL;
984
985 image = intel_create_image_from_name(dri_screen, width, height,
986 __DRI_IMAGE_FORMAT_NONE,
987 names[0], strides[0],
988 loaderPrivate);
989
990 if (image == NULL)
991 return NULL;
992
993 image->planar_format = f;
994 for (i = 0; i < f->nplanes; i++) {
995 index = f->planes[i].buffer_index;
996 image->offsets[index] = offsets[index];
997 image->strides[index] = strides[index];
998 }
999
1000 return image;
1001 }
1002
1003 static __DRIimage *
intel_create_image_from_fds_common(__DRIscreen * dri_screen,int width,int height,int fourcc,uint64_t modifier,int * fds,int num_fds,int * strides,int * offsets,void * loaderPrivate)1004 intel_create_image_from_fds_common(__DRIscreen *dri_screen,
1005 int width, int height, int fourcc,
1006 uint64_t modifier, int *fds, int num_fds,
1007 int *strides, int *offsets,
1008 void *loaderPrivate)
1009 {
1010 struct intel_screen *screen = dri_screen->driverPrivate;
1011 const struct intel_image_format *f;
1012 __DRIimage *image;
1013 int i, index;
1014 bool ok;
1015
1016 if (fds == NULL || num_fds < 1)
1017 return NULL;
1018
1019 f = intel_image_format_lookup(fourcc);
1020 if (f == NULL)
1021 return NULL;
1022
1023 if (modifier != DRM_FORMAT_MOD_INVALID &&
1024 !modifier_is_supported(&screen->devinfo, f, 0, modifier))
1025 return NULL;
1026
1027 if (f->nplanes == 1)
1028 image = intel_allocate_image(screen, f->planes[0].dri_format,
1029 loaderPrivate);
1030 else
1031 image = intel_allocate_image(screen, __DRI_IMAGE_FORMAT_NONE,
1032 loaderPrivate);
1033
1034 if (image == NULL)
1035 return NULL;
1036
1037 image->width = width;
1038 image->height = height;
1039 image->pitch = strides[0];
1040
1041 image->planar_format = f;
1042
1043 if (modifier != DRM_FORMAT_MOD_INVALID) {
1044 const struct isl_drm_modifier_info *mod_info =
1045 isl_drm_modifier_get_info(modifier);
1046 uint32_t tiling = isl_tiling_to_i915_tiling(mod_info->tiling);
1047 image->bo = brw_bo_gem_create_from_prime_tiled(screen->bufmgr, fds[0],
1048 tiling, strides[0]);
1049 } else {
1050 image->bo = brw_bo_gem_create_from_prime(screen->bufmgr, fds[0]);
1051 }
1052
1053 if (image->bo == NULL) {
1054 free(image);
1055 return NULL;
1056 }
1057
1058 /* We only support all planes from the same bo.
1059 * brw_bo_gem_create_from_prime() should return the same pointer for all
1060 * fds received here */
1061 for (i = 1; i < num_fds; i++) {
1062 struct brw_bo *aux = brw_bo_gem_create_from_prime(screen->bufmgr, fds[i]);
1063 brw_bo_unreference(aux);
1064 if (aux != image->bo) {
1065 brw_bo_unreference(image->bo);
1066 free(image);
1067 return NULL;
1068 }
1069 }
1070
1071 if (modifier != DRM_FORMAT_MOD_INVALID)
1072 image->modifier = modifier;
1073 else
1074 image->modifier = tiling_to_modifier(image->bo->tiling_mode);
1075
1076 const struct isl_drm_modifier_info *mod_info =
1077 isl_drm_modifier_get_info(image->modifier);
1078
1079 int size = 0;
1080 struct isl_surf surf;
1081 for (i = 0; i < f->nplanes; i++) {
1082 index = f->planes[i].buffer_index;
1083 image->offsets[index] = offsets[index];
1084 image->strides[index] = strides[index];
1085
1086 mesa_format format = driImageFormatToGLFormat(f->planes[i].dri_format);
1087
1088 ok = isl_surf_init(&screen->isl_dev, &surf,
1089 .dim = ISL_SURF_DIM_2D,
1090 .format = brw_isl_format_for_mesa_format(format),
1091 .width = image->width >> f->planes[i].width_shift,
1092 .height = image->height >> f->planes[i].height_shift,
1093 .depth = 1,
1094 .levels = 1,
1095 .array_len = 1,
1096 .samples = 1,
1097 .row_pitch = strides[index],
1098 .usage = ISL_SURF_USAGE_RENDER_TARGET_BIT |
1099 ISL_SURF_USAGE_TEXTURE_BIT |
1100 ISL_SURF_USAGE_STORAGE_BIT,
1101 .tiling_flags = (1 << mod_info->tiling));
1102 if (!ok) {
1103 brw_bo_unreference(image->bo);
1104 free(image);
1105 return NULL;
1106 }
1107
1108 const int end = offsets[index] + surf.size;
1109 if (size < end)
1110 size = end;
1111 }
1112
1113 if (mod_info->aux_usage == ISL_AUX_USAGE_CCS_E) {
1114 /* Even though we initialize surf in the loop above, we know that
1115 * anything with CCS_E will have exactly one plane so surf is properly
1116 * initialized when we get here.
1117 */
1118 assert(f->nplanes == 1);
1119
1120 image->aux_offset = offsets[1];
1121 image->aux_pitch = strides[1];
1122
1123 /* Scanout hardware requires that the CCS be placed after the main
1124 * surface in memory. We consider any CCS that is placed any earlier in
1125 * memory to be invalid and reject it.
1126 *
1127 * At some point in the future, this restriction may be relaxed if the
1128 * hardware becomes less strict but we may need a new modifier for that.
1129 */
1130 assert(size > 0);
1131 if (image->aux_offset < size) {
1132 brw_bo_unreference(image->bo);
1133 free(image);
1134 return NULL;
1135 }
1136
1137 struct isl_surf aux_surf;
1138 ok = isl_surf_get_ccs_surf(&screen->isl_dev, &surf, &aux_surf,
1139 image->aux_pitch);
1140 if (!ok) {
1141 brw_bo_unreference(image->bo);
1142 free(image);
1143 return NULL;
1144 }
1145
1146 image->aux_size = aux_surf.size;
1147
1148 const int end = image->aux_offset + aux_surf.size;
1149 if (size < end)
1150 size = end;
1151 } else {
1152 assert(mod_info->aux_usage == ISL_AUX_USAGE_NONE);
1153 }
1154
1155 /* Check that the requested image actually fits within the BO. 'size'
1156 * is already relative to the offsets, so we don't need to add that. */
1157 if (image->bo->size == 0) {
1158 image->bo->size = size;
1159 } else if (size > image->bo->size) {
1160 brw_bo_unreference(image->bo);
1161 free(image);
1162 return NULL;
1163 }
1164
1165 if (f->nplanes == 1) {
1166 image->offset = image->offsets[0];
1167 intel_image_warn_if_unaligned(image, __func__);
1168 }
1169
1170 return image;
1171 }
1172
1173 static __DRIimage *
intel_create_image_from_fds(__DRIscreen * dri_screen,int width,int height,int fourcc,int * fds,int num_fds,int * strides,int * offsets,void * loaderPrivate)1174 intel_create_image_from_fds(__DRIscreen *dri_screen,
1175 int width, int height, int fourcc,
1176 int *fds, int num_fds, int *strides, int *offsets,
1177 void *loaderPrivate)
1178 {
1179 return intel_create_image_from_fds_common(dri_screen, width, height, fourcc,
1180 DRM_FORMAT_MOD_INVALID,
1181 fds, num_fds, strides, offsets,
1182 loaderPrivate);
1183 }
1184
1185 static __DRIimage *
intel_create_image_from_dma_bufs2(__DRIscreen * dri_screen,int width,int height,int fourcc,uint64_t modifier,int * fds,int num_fds,int * strides,int * offsets,enum __DRIYUVColorSpace yuv_color_space,enum __DRISampleRange sample_range,enum __DRIChromaSiting horizontal_siting,enum __DRIChromaSiting vertical_siting,unsigned * error,void * loaderPrivate)1186 intel_create_image_from_dma_bufs2(__DRIscreen *dri_screen,
1187 int width, int height,
1188 int fourcc, uint64_t modifier,
1189 int *fds, int num_fds,
1190 int *strides, int *offsets,
1191 enum __DRIYUVColorSpace yuv_color_space,
1192 enum __DRISampleRange sample_range,
1193 enum __DRIChromaSiting horizontal_siting,
1194 enum __DRIChromaSiting vertical_siting,
1195 unsigned *error,
1196 void *loaderPrivate)
1197 {
1198 __DRIimage *image;
1199 const struct intel_image_format *f = intel_image_format_lookup(fourcc);
1200
1201 if (!f) {
1202 *error = __DRI_IMAGE_ERROR_BAD_MATCH;
1203 return NULL;
1204 }
1205
1206 image = intel_create_image_from_fds_common(dri_screen, width, height,
1207 fourcc, modifier,
1208 fds, num_fds, strides, offsets,
1209 loaderPrivate);
1210
1211 /*
1212 * Invalid parameters and any inconsistencies between are assumed to be
1213 * checked by the caller. Therefore besides unsupported formats one can fail
1214 * only in allocation.
1215 */
1216 if (!image) {
1217 *error = __DRI_IMAGE_ERROR_BAD_ALLOC;
1218 return NULL;
1219 }
1220
1221 image->dma_buf_imported = true;
1222 image->yuv_color_space = yuv_color_space;
1223 image->sample_range = sample_range;
1224 image->horizontal_siting = horizontal_siting;
1225 image->vertical_siting = vertical_siting;
1226
1227 *error = __DRI_IMAGE_ERROR_SUCCESS;
1228 return image;
1229 }
1230
1231 static __DRIimage *
intel_create_image_from_dma_bufs(__DRIscreen * dri_screen,int width,int height,int fourcc,int * fds,int num_fds,int * strides,int * offsets,enum __DRIYUVColorSpace yuv_color_space,enum __DRISampleRange sample_range,enum __DRIChromaSiting horizontal_siting,enum __DRIChromaSiting vertical_siting,unsigned * error,void * loaderPrivate)1232 intel_create_image_from_dma_bufs(__DRIscreen *dri_screen,
1233 int width, int height, int fourcc,
1234 int *fds, int num_fds,
1235 int *strides, int *offsets,
1236 enum __DRIYUVColorSpace yuv_color_space,
1237 enum __DRISampleRange sample_range,
1238 enum __DRIChromaSiting horizontal_siting,
1239 enum __DRIChromaSiting vertical_siting,
1240 unsigned *error,
1241 void *loaderPrivate)
1242 {
1243 return intel_create_image_from_dma_bufs2(dri_screen, width, height,
1244 fourcc, DRM_FORMAT_MOD_INVALID,
1245 fds, num_fds, strides, offsets,
1246 yuv_color_space,
1247 sample_range,
1248 horizontal_siting,
1249 vertical_siting,
1250 error,
1251 loaderPrivate);
1252 }
1253
1254 static GLboolean
intel_query_dma_buf_formats(__DRIscreen * screen,int max,int * formats,int * count)1255 intel_query_dma_buf_formats(__DRIscreen *screen, int max,
1256 int *formats, int *count)
1257 {
1258 int i, j = 0;
1259
1260 if (max == 0) {
1261 *count = ARRAY_SIZE(intel_image_formats) - 1; /* not SARGB */
1262 return true;
1263 }
1264
1265 for (i = 0; i < (ARRAY_SIZE(intel_image_formats)) && j < max; i++) {
1266 if (intel_image_formats[i].fourcc == __DRI_IMAGE_FOURCC_SARGB8888)
1267 continue;
1268 formats[j++] = intel_image_formats[i].fourcc;
1269 }
1270
1271 *count = j;
1272 return true;
1273 }
1274
1275 static GLboolean
intel_query_dma_buf_modifiers(__DRIscreen * _screen,int fourcc,int max,uint64_t * modifiers,unsigned int * external_only,int * count)1276 intel_query_dma_buf_modifiers(__DRIscreen *_screen, int fourcc, int max,
1277 uint64_t *modifiers,
1278 unsigned int *external_only,
1279 int *count)
1280 {
1281 struct intel_screen *screen = _screen->driverPrivate;
1282 const struct intel_image_format *f;
1283 int num_mods = 0, i;
1284
1285 f = intel_image_format_lookup(fourcc);
1286 if (f == NULL)
1287 return false;
1288
1289 for (i = 0; i < ARRAY_SIZE(supported_modifiers); i++) {
1290 uint64_t modifier = supported_modifiers[i].modifier;
1291 if (!modifier_is_supported(&screen->devinfo, f, 0, modifier))
1292 continue;
1293
1294 num_mods++;
1295 if (max == 0)
1296 continue;
1297
1298 modifiers[num_mods - 1] = modifier;
1299 if (num_mods >= max)
1300 break;
1301 }
1302
1303 if (external_only != NULL) {
1304 for (i = 0; i < num_mods && i < max; i++) {
1305 if (f->components == __DRI_IMAGE_COMPONENTS_Y_U_V ||
1306 f->components == __DRI_IMAGE_COMPONENTS_Y_UV ||
1307 f->components == __DRI_IMAGE_COMPONENTS_Y_XUXV) {
1308 external_only[i] = GL_TRUE;
1309 }
1310 else {
1311 external_only[i] = GL_FALSE;
1312 }
1313 }
1314 }
1315
1316 *count = num_mods;
1317 return true;
1318 }
1319
1320 static __DRIimage *
intel_from_planar(__DRIimage * parent,int plane,void * loaderPrivate)1321 intel_from_planar(__DRIimage *parent, int plane, void *loaderPrivate)
1322 {
1323 int width, height, offset, stride, size, dri_format;
1324 __DRIimage *image;
1325
1326 if (parent == NULL)
1327 return NULL;
1328
1329 width = parent->width;
1330 height = parent->height;
1331
1332 const struct intel_image_format *f = parent->planar_format;
1333
1334 if (f && plane < f->nplanes) {
1335 /* Use the planar format definition. */
1336 width >>= f->planes[plane].width_shift;
1337 height >>= f->planes[plane].height_shift;
1338 dri_format = f->planes[plane].dri_format;
1339 int index = f->planes[plane].buffer_index;
1340 offset = parent->offsets[index];
1341 stride = parent->strides[index];
1342 size = height * stride;
1343 } else if (plane == 0) {
1344 /* The only plane of a non-planar image: copy the parent definition
1345 * directly. */
1346 dri_format = parent->dri_format;
1347 offset = parent->offset;
1348 stride = parent->pitch;
1349 size = height * stride;
1350 } else if (plane == 1 && parent->modifier != DRM_FORMAT_MOD_INVALID &&
1351 isl_drm_modifier_has_aux(parent->modifier)) {
1352 /* Auxiliary plane */
1353 dri_format = parent->dri_format;
1354 offset = parent->aux_offset;
1355 stride = parent->aux_pitch;
1356 size = parent->aux_size;
1357 } else {
1358 return NULL;
1359 }
1360
1361 if (offset + size > parent->bo->size) {
1362 _mesa_warning(NULL, "intel_from_planar: subimage out of bounds");
1363 return NULL;
1364 }
1365
1366 image = intel_allocate_image(parent->screen, dri_format, loaderPrivate);
1367 if (image == NULL)
1368 return NULL;
1369
1370 image->bo = parent->bo;
1371 brw_bo_reference(parent->bo);
1372 image->modifier = parent->modifier;
1373
1374 image->width = width;
1375 image->height = height;
1376 image->pitch = stride;
1377 image->offset = offset;
1378
1379 intel_image_warn_if_unaligned(image, __func__);
1380
1381 return image;
1382 }
1383
1384 static const __DRIimageExtension intelImageExtension = {
1385 .base = { __DRI_IMAGE, 16 },
1386
1387 .createImageFromName = intel_create_image_from_name,
1388 .createImageFromRenderbuffer = intel_create_image_from_renderbuffer,
1389 .destroyImage = intel_destroy_image,
1390 .createImage = intel_create_image,
1391 .queryImage = intel_query_image,
1392 .dupImage = intel_dup_image,
1393 .validateUsage = intel_validate_usage,
1394 .createImageFromNames = intel_create_image_from_names,
1395 .fromPlanar = intel_from_planar,
1396 .createImageFromTexture = intel_create_image_from_texture,
1397 .createImageFromFds = intel_create_image_from_fds,
1398 .createImageFromDmaBufs = intel_create_image_from_dma_bufs,
1399 .blitImage = NULL,
1400 .getCapabilities = NULL,
1401 .mapImage = intel_map_image,
1402 .unmapImage = intel_unmap_image,
1403 .createImageWithModifiers = intel_create_image_with_modifiers,
1404 .createImageFromDmaBufs2 = intel_create_image_from_dma_bufs2,
1405 .queryDmaBufFormats = intel_query_dma_buf_formats,
1406 .queryDmaBufModifiers = intel_query_dma_buf_modifiers,
1407 .queryDmaBufFormatModifierAttribs = intel_query_format_modifier_attribs,
1408 };
1409
1410 static uint64_t
get_aperture_size(int fd)1411 get_aperture_size(int fd)
1412 {
1413 struct drm_i915_gem_get_aperture aperture;
1414
1415 if (drmIoctl(fd, DRM_IOCTL_I915_GEM_GET_APERTURE, &aperture) != 0)
1416 return 0;
1417
1418 return aperture.aper_size;
1419 }
1420
1421 static int
brw_query_renderer_integer(__DRIscreen * dri_screen,int param,unsigned int * value)1422 brw_query_renderer_integer(__DRIscreen *dri_screen,
1423 int param, unsigned int *value)
1424 {
1425 const struct intel_screen *const screen =
1426 (struct intel_screen *) dri_screen->driverPrivate;
1427
1428 switch (param) {
1429 case __DRI2_RENDERER_VENDOR_ID:
1430 value[0] = 0x8086;
1431 return 0;
1432 case __DRI2_RENDERER_DEVICE_ID:
1433 value[0] = screen->deviceID;
1434 return 0;
1435 case __DRI2_RENDERER_ACCELERATED:
1436 value[0] = 1;
1437 return 0;
1438 case __DRI2_RENDERER_VIDEO_MEMORY: {
1439 /* Once a batch uses more than 75% of the maximum mappable size, we
1440 * assume that there's some fragmentation, and we start doing extra
1441 * flushing, etc. That's the big cliff apps will care about.
1442 */
1443 const unsigned gpu_mappable_megabytes =
1444 screen->aperture_threshold / (1024 * 1024);
1445
1446 const long system_memory_pages = sysconf(_SC_PHYS_PAGES);
1447 const long system_page_size = sysconf(_SC_PAGE_SIZE);
1448
1449 if (system_memory_pages <= 0 || system_page_size <= 0)
1450 return -1;
1451
1452 const uint64_t system_memory_bytes = (uint64_t) system_memory_pages
1453 * (uint64_t) system_page_size;
1454
1455 const unsigned system_memory_megabytes =
1456 (unsigned) (system_memory_bytes / (1024 * 1024));
1457
1458 value[0] = MIN2(system_memory_megabytes, gpu_mappable_megabytes);
1459 return 0;
1460 }
1461 case __DRI2_RENDERER_UNIFIED_MEMORY_ARCHITECTURE:
1462 value[0] = 1;
1463 return 0;
1464 case __DRI2_RENDERER_HAS_TEXTURE_3D:
1465 value[0] = 1;
1466 return 0;
1467 case __DRI2_RENDERER_HAS_CONTEXT_PRIORITY:
1468 value[0] = 0;
1469 if (brw_hw_context_set_priority(screen->bufmgr,
1470 0, BRW_CONTEXT_HIGH_PRIORITY) == 0)
1471 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_HIGH;
1472 if (brw_hw_context_set_priority(screen->bufmgr,
1473 0, BRW_CONTEXT_LOW_PRIORITY) == 0)
1474 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_LOW;
1475 /* reset to default last, just in case */
1476 if (brw_hw_context_set_priority(screen->bufmgr,
1477 0, BRW_CONTEXT_MEDIUM_PRIORITY) == 0)
1478 value[0] |= __DRI2_RENDERER_HAS_CONTEXT_PRIORITY_MEDIUM;
1479 return 0;
1480 case __DRI2_RENDERER_HAS_FRAMEBUFFER_SRGB:
1481 value[0] = 1;
1482 return 0;
1483 default:
1484 return driQueryRendererIntegerCommon(dri_screen, param, value);
1485 }
1486
1487 return -1;
1488 }
1489
1490 static int
brw_query_renderer_string(__DRIscreen * dri_screen,int param,const char ** value)1491 brw_query_renderer_string(__DRIscreen *dri_screen,
1492 int param, const char **value)
1493 {
1494 const struct intel_screen *screen =
1495 (struct intel_screen *) dri_screen->driverPrivate;
1496
1497 switch (param) {
1498 case __DRI2_RENDERER_VENDOR_ID:
1499 value[0] = brw_vendor_string;
1500 return 0;
1501 case __DRI2_RENDERER_DEVICE_ID:
1502 value[0] = brw_get_renderer_string(screen);
1503 return 0;
1504 default:
1505 break;
1506 }
1507
1508 return -1;
1509 }
1510
1511 static const __DRI2rendererQueryExtension intelRendererQueryExtension = {
1512 .base = { __DRI2_RENDERER_QUERY, 1 },
1513
1514 .queryInteger = brw_query_renderer_integer,
1515 .queryString = brw_query_renderer_string
1516 };
1517
1518 static const __DRIrobustnessExtension dri2Robustness = {
1519 .base = { __DRI2_ROBUSTNESS, 1 }
1520 };
1521
1522 static const __DRIextension *screenExtensions[] = {
1523 &intelTexBufferExtension.base,
1524 &intelFenceExtension.base,
1525 &intelFlushExtension.base,
1526 &intelImageExtension.base,
1527 &intelRendererQueryExtension.base,
1528 &dri2ConfigQueryExtension.base,
1529 &dri2NoErrorExtension.base,
1530 NULL
1531 };
1532
1533 static const __DRIextension *intelRobustScreenExtensions[] = {
1534 &intelTexBufferExtension.base,
1535 &intelFenceExtension.base,
1536 &intelFlushExtension.base,
1537 &intelImageExtension.base,
1538 &intelRendererQueryExtension.base,
1539 &dri2ConfigQueryExtension.base,
1540 &dri2Robustness.base,
1541 &dri2NoErrorExtension.base,
1542 NULL
1543 };
1544
1545 static int
intel_get_param(struct intel_screen * screen,int param,int * value)1546 intel_get_param(struct intel_screen *screen, int param, int *value)
1547 {
1548 int ret = 0;
1549 struct drm_i915_getparam gp;
1550
1551 memset(&gp, 0, sizeof(gp));
1552 gp.param = param;
1553 gp.value = value;
1554
1555 if (drmIoctl(screen->driScrnPriv->fd, DRM_IOCTL_I915_GETPARAM, &gp) == -1) {
1556 ret = -errno;
1557 if (ret != -EINVAL)
1558 _mesa_warning(NULL, "drm_i915_getparam: %d", ret);
1559 }
1560
1561 return ret;
1562 }
1563
1564 static bool
intel_get_boolean(struct intel_screen * screen,int param)1565 intel_get_boolean(struct intel_screen *screen, int param)
1566 {
1567 int value = 0;
1568 return (intel_get_param(screen, param, &value) == 0) && value;
1569 }
1570
1571 static int
intel_get_integer(struct intel_screen * screen,int param)1572 intel_get_integer(struct intel_screen *screen, int param)
1573 {
1574 int value = -1;
1575
1576 if (intel_get_param(screen, param, &value) == 0)
1577 return value;
1578
1579 return -1;
1580 }
1581
1582 static void
intelDestroyScreen(__DRIscreen * sPriv)1583 intelDestroyScreen(__DRIscreen * sPriv)
1584 {
1585 struct intel_screen *screen = sPriv->driverPrivate;
1586
1587 brw_bufmgr_destroy(screen->bufmgr);
1588 driDestroyOptionInfo(&screen->optionCache);
1589
1590 ralloc_free(screen);
1591 sPriv->driverPrivate = NULL;
1592 }
1593
1594
1595 /**
1596 * Create a gl_framebuffer and attach it to __DRIdrawable::driverPrivate.
1597 *
1598 *_This implements driDriverAPI::createNewDrawable, which the DRI layer calls
1599 * when creating a EGLSurface, GLXDrawable, or GLXPixmap. Despite the name,
1600 * this does not allocate GPU memory.
1601 */
1602 static GLboolean
intelCreateBuffer(__DRIscreen * dri_screen,__DRIdrawable * driDrawPriv,const struct gl_config * mesaVis,GLboolean isPixmap)1603 intelCreateBuffer(__DRIscreen *dri_screen,
1604 __DRIdrawable * driDrawPriv,
1605 const struct gl_config * mesaVis, GLboolean isPixmap)
1606 {
1607 struct intel_renderbuffer *rb;
1608 struct intel_screen *screen = (struct intel_screen *)
1609 dri_screen->driverPrivate;
1610 mesa_format rgbFormat;
1611 unsigned num_samples =
1612 intel_quantize_num_samples(screen, mesaVis->samples);
1613
1614 if (isPixmap)
1615 return false;
1616
1617 struct gl_framebuffer *fb = CALLOC_STRUCT(gl_framebuffer);
1618 if (!fb)
1619 return false;
1620
1621 _mesa_initialize_window_framebuffer(fb, mesaVis);
1622
1623 if (screen->winsys_msaa_samples_override != -1) {
1624 num_samples = screen->winsys_msaa_samples_override;
1625 fb->Visual.samples = num_samples;
1626 }
1627
1628 if (mesaVis->redBits == 10 && mesaVis->alphaBits > 0) {
1629 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10A2_UNORM
1630 : MESA_FORMAT_R10G10B10A2_UNORM;
1631 } else if (mesaVis->redBits == 10) {
1632 rgbFormat = mesaVis->redMask == 0x3ff00000 ? MESA_FORMAT_B10G10R10X2_UNORM
1633 : MESA_FORMAT_R10G10B10X2_UNORM;
1634 } else if (mesaVis->redBits == 5) {
1635 rgbFormat = mesaVis->redMask == 0x1f ? MESA_FORMAT_R5G6B5_UNORM
1636 : MESA_FORMAT_B5G6R5_UNORM;
1637 } else if (mesaVis->sRGBCapable) {
1638 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1639 : MESA_FORMAT_B8G8R8A8_SRGB;
1640 } else if (mesaVis->alphaBits == 0) {
1641 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8X8_UNORM
1642 : MESA_FORMAT_B8G8R8X8_UNORM;
1643 } else {
1644 rgbFormat = mesaVis->redMask == 0xff ? MESA_FORMAT_R8G8B8A8_SRGB
1645 : MESA_FORMAT_B8G8R8A8_SRGB;
1646 fb->Visual.sRGBCapable = true;
1647 }
1648
1649 /* mesaVis->sRGBCapable was set, user is asking for sRGB */
1650 bool srgb_cap_set = mesaVis->redBits >= 8 && mesaVis->sRGBCapable;
1651
1652 /* setup the hardware-based renderbuffers */
1653 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1654 _mesa_attach_and_own_rb(fb, BUFFER_FRONT_LEFT, &rb->Base.Base);
1655 rb->need_srgb = srgb_cap_set;
1656
1657 if (mesaVis->doubleBufferMode) {
1658 rb = intel_create_winsys_renderbuffer(screen, rgbFormat, num_samples);
1659 _mesa_attach_and_own_rb(fb, BUFFER_BACK_LEFT, &rb->Base.Base);
1660 rb->need_srgb = srgb_cap_set;
1661 }
1662
1663 /*
1664 * Assert here that the gl_config has an expected depth/stencil bit
1665 * combination: one of d24/s8, d16/s0, d0/s0. (See intelInitScreen2(),
1666 * which constructs the advertised configs.)
1667 */
1668 if (mesaVis->depthBits == 24) {
1669 assert(mesaVis->stencilBits == 8);
1670
1671 if (screen->devinfo.has_hiz_and_separate_stencil) {
1672 rb = intel_create_private_renderbuffer(screen,
1673 MESA_FORMAT_Z24_UNORM_X8_UINT,
1674 num_samples);
1675 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1676 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_S_UINT8,
1677 num_samples);
1678 _mesa_attach_and_own_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1679 } else {
1680 /*
1681 * Use combined depth/stencil. Note that the renderbuffer is
1682 * attached to two attachment points.
1683 */
1684 rb = intel_create_private_renderbuffer(screen,
1685 MESA_FORMAT_Z24_UNORM_S8_UINT,
1686 num_samples);
1687 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1688 _mesa_attach_and_reference_rb(fb, BUFFER_STENCIL, &rb->Base.Base);
1689 }
1690 }
1691 else if (mesaVis->depthBits == 16) {
1692 assert(mesaVis->stencilBits == 0);
1693 rb = intel_create_private_renderbuffer(screen, MESA_FORMAT_Z_UNORM16,
1694 num_samples);
1695 _mesa_attach_and_own_rb(fb, BUFFER_DEPTH, &rb->Base.Base);
1696 }
1697 else {
1698 assert(mesaVis->depthBits == 0);
1699 assert(mesaVis->stencilBits == 0);
1700 }
1701
1702 /* now add any/all software-based renderbuffers we may need */
1703 _swrast_add_soft_renderbuffers(fb,
1704 false, /* never sw color */
1705 false, /* never sw depth */
1706 false, /* never sw stencil */
1707 mesaVis->accumRedBits > 0,
1708 false, /* never sw alpha */
1709 false /* never sw aux */ );
1710 driDrawPriv->driverPrivate = fb;
1711
1712 return true;
1713 }
1714
1715 static void
intelDestroyBuffer(__DRIdrawable * driDrawPriv)1716 intelDestroyBuffer(__DRIdrawable * driDrawPriv)
1717 {
1718 struct gl_framebuffer *fb = driDrawPriv->driverPrivate;
1719
1720 _mesa_reference_framebuffer(&fb, NULL);
1721 }
1722
1723 static void
intel_cs_timestamp_frequency(struct intel_screen * screen)1724 intel_cs_timestamp_frequency(struct intel_screen *screen)
1725 {
1726 /* We shouldn't need to update gen_device_info.timestamp_frequency prior to
1727 * gen10, PCI-id is enough to figure it out.
1728 */
1729 assert(screen->devinfo.gen >= 10);
1730
1731 int ret, freq;
1732
1733 ret = intel_get_param(screen, I915_PARAM_CS_TIMESTAMP_FREQUENCY,
1734 &freq);
1735 if (ret < 0) {
1736 _mesa_warning(NULL,
1737 "Kernel 4.15 required to read the CS timestamp frequency.\n");
1738 return;
1739 }
1740
1741 screen->devinfo.timestamp_frequency = freq;
1742 }
1743
1744 static void
intel_detect_sseu(struct intel_screen * screen)1745 intel_detect_sseu(struct intel_screen *screen)
1746 {
1747 assert(screen->devinfo.gen >= 8);
1748 int ret;
1749
1750 screen->subslice_total = -1;
1751 screen->eu_total = -1;
1752
1753 ret = intel_get_param(screen, I915_PARAM_SUBSLICE_TOTAL,
1754 &screen->subslice_total);
1755 if (ret < 0 && ret != -EINVAL)
1756 goto err_out;
1757
1758 ret = intel_get_param(screen,
1759 I915_PARAM_EU_TOTAL, &screen->eu_total);
1760 if (ret < 0 && ret != -EINVAL)
1761 goto err_out;
1762
1763 /* Without this information, we cannot get the right Braswell brandstrings,
1764 * and we have to use conservative numbers for GPGPU on many platforms, but
1765 * otherwise, things will just work.
1766 */
1767 if (screen->subslice_total < 1 || screen->eu_total < 1)
1768 _mesa_warning(NULL,
1769 "Kernel 4.1 required to properly query GPU properties.\n");
1770
1771 return;
1772
1773 err_out:
1774 screen->subslice_total = -1;
1775 screen->eu_total = -1;
1776 _mesa_warning(NULL, "Failed to query GPU properties (%s).\n", strerror(-ret));
1777 }
1778
1779 static bool
intel_init_bufmgr(struct intel_screen * screen)1780 intel_init_bufmgr(struct intel_screen *screen)
1781 {
1782 __DRIscreen *dri_screen = screen->driScrnPriv;
1783
1784 if (getenv("INTEL_NO_HW") != NULL)
1785 screen->no_hw = true;
1786
1787 screen->bufmgr = brw_bufmgr_init(&screen->devinfo, dri_screen->fd);
1788 if (screen->bufmgr == NULL) {
1789 fprintf(stderr, "[%s:%u] Error initializing buffer manager.\n",
1790 __func__, __LINE__);
1791 return false;
1792 }
1793
1794 if (!intel_get_boolean(screen, I915_PARAM_HAS_EXEC_NO_RELOC)) {
1795 fprintf(stderr, "[%s: %u] Kernel 3.9 required.\n", __func__, __LINE__);
1796 return false;
1797 }
1798
1799 return true;
1800 }
1801
1802 static bool
intel_detect_swizzling(struct intel_screen * screen)1803 intel_detect_swizzling(struct intel_screen *screen)
1804 {
1805 struct brw_bo *buffer;
1806 unsigned flags = 0;
1807 uint32_t aligned_pitch;
1808 uint32_t tiling = I915_TILING_X;
1809 uint32_t swizzle_mode = 0;
1810
1811 buffer = brw_bo_alloc_tiled_2d(screen->bufmgr, "swizzle test",
1812 64, 64, 4, tiling, &aligned_pitch, flags);
1813 if (buffer == NULL)
1814 return false;
1815
1816 brw_bo_get_tiling(buffer, &tiling, &swizzle_mode);
1817 brw_bo_unreference(buffer);
1818
1819 if (swizzle_mode == I915_BIT_6_SWIZZLE_NONE)
1820 return false;
1821 else
1822 return true;
1823 }
1824
1825 static int
intel_detect_timestamp(struct intel_screen * screen)1826 intel_detect_timestamp(struct intel_screen *screen)
1827 {
1828 uint64_t dummy = 0, last = 0;
1829 int upper, lower, loops;
1830
1831 /* On 64bit systems, some old kernels trigger a hw bug resulting in the
1832 * TIMESTAMP register being shifted and the low 32bits always zero.
1833 *
1834 * More recent kernels offer an interface to read the full 36bits
1835 * everywhere.
1836 */
1837 if (brw_reg_read(screen->bufmgr, TIMESTAMP | 1, &dummy) == 0)
1838 return 3;
1839
1840 /* Determine if we have a 32bit or 64bit kernel by inspecting the
1841 * upper 32bits for a rapidly changing timestamp.
1842 */
1843 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &last))
1844 return 0;
1845
1846 upper = lower = 0;
1847 for (loops = 0; loops < 10; loops++) {
1848 /* The TIMESTAMP should change every 80ns, so several round trips
1849 * through the kernel should be enough to advance it.
1850 */
1851 if (brw_reg_read(screen->bufmgr, TIMESTAMP, &dummy))
1852 return 0;
1853
1854 upper += (dummy >> 32) != (last >> 32);
1855 if (upper > 1) /* beware 32bit counter overflow */
1856 return 2; /* upper dword holds the low 32bits of the timestamp */
1857
1858 lower += (dummy & 0xffffffff) != (last & 0xffffffff);
1859 if (lower > 1)
1860 return 1; /* timestamp is unshifted */
1861
1862 last = dummy;
1863 }
1864
1865 /* No advancement? No timestamp! */
1866 return 0;
1867 }
1868
1869 /**
1870 * Test if we can use MI_LOAD_REGISTER_MEM from an untrusted batchbuffer.
1871 *
1872 * Some combinations of hardware and kernel versions allow this feature,
1873 * while others don't. Instead of trying to enumerate every case, just
1874 * try and write a register and see if works.
1875 */
1876 static bool
intel_detect_pipelined_register(struct intel_screen * screen,int reg,uint32_t expected_value,bool reset)1877 intel_detect_pipelined_register(struct intel_screen *screen,
1878 int reg, uint32_t expected_value, bool reset)
1879 {
1880 if (screen->no_hw)
1881 return false;
1882
1883 struct brw_bo *results, *bo;
1884 uint32_t *batch;
1885 uint32_t offset = 0;
1886 void *map;
1887 bool success = false;
1888
1889 /* Create a zero'ed temporary buffer for reading our results */
1890 results = brw_bo_alloc(screen->bufmgr, "registers", 4096, 0);
1891 if (results == NULL)
1892 goto err;
1893
1894 bo = brw_bo_alloc(screen->bufmgr, "batchbuffer", 4096, 0);
1895 if (bo == NULL)
1896 goto err_results;
1897
1898 map = brw_bo_map(NULL, bo, MAP_WRITE);
1899 if (!map)
1900 goto err_batch;
1901
1902 batch = map;
1903
1904 /* Write the register. */
1905 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1906 *batch++ = reg;
1907 *batch++ = expected_value;
1908
1909 /* Save the register's value back to the buffer. */
1910 *batch++ = MI_STORE_REGISTER_MEM | (3 - 2);
1911 *batch++ = reg;
1912 struct drm_i915_gem_relocation_entry reloc = {
1913 .offset = (char *) batch - (char *) map,
1914 .delta = offset * sizeof(uint32_t),
1915 .target_handle = results->gem_handle,
1916 .read_domains = I915_GEM_DOMAIN_INSTRUCTION,
1917 .write_domain = I915_GEM_DOMAIN_INSTRUCTION,
1918 };
1919 *batch++ = reloc.presumed_offset + reloc.delta;
1920
1921 /* And afterwards clear the register */
1922 if (reset) {
1923 *batch++ = MI_LOAD_REGISTER_IMM | (3 - 2);
1924 *batch++ = reg;
1925 *batch++ = 0;
1926 }
1927
1928 *batch++ = MI_BATCH_BUFFER_END;
1929
1930 struct drm_i915_gem_exec_object2 exec_objects[2] = {
1931 {
1932 .handle = results->gem_handle,
1933 },
1934 {
1935 .handle = bo->gem_handle,
1936 .relocation_count = 1,
1937 .relocs_ptr = (uintptr_t) &reloc,
1938 }
1939 };
1940
1941 struct drm_i915_gem_execbuffer2 execbuf = {
1942 .buffers_ptr = (uintptr_t) exec_objects,
1943 .buffer_count = 2,
1944 .batch_len = ALIGN((char *) batch - (char *) map, 8),
1945 .flags = I915_EXEC_RENDER,
1946 };
1947
1948 /* Don't bother with error checking - if the execbuf fails, the
1949 * value won't be written and we'll just report that there's no access.
1950 */
1951 __DRIscreen *dri_screen = screen->driScrnPriv;
1952 drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf);
1953
1954 /* Check whether the value got written. */
1955 void *results_map = brw_bo_map(NULL, results, MAP_READ);
1956 if (results_map) {
1957 success = *((uint32_t *)results_map + offset) == expected_value;
1958 brw_bo_unmap(results);
1959 }
1960
1961 err_batch:
1962 brw_bo_unreference(bo);
1963 err_results:
1964 brw_bo_unreference(results);
1965 err:
1966 return success;
1967 }
1968
1969 static bool
intel_detect_pipelined_so(struct intel_screen * screen)1970 intel_detect_pipelined_so(struct intel_screen *screen)
1971 {
1972 const struct gen_device_info *devinfo = &screen->devinfo;
1973
1974 /* Supposedly, Broadwell just works. */
1975 if (devinfo->gen >= 8)
1976 return true;
1977
1978 if (devinfo->gen <= 6)
1979 return false;
1980
1981 /* See the big explanation about command parser versions below */
1982 if (screen->cmd_parser_version >= (devinfo->is_haswell ? 7 : 2))
1983 return true;
1984
1985 /* We use SO_WRITE_OFFSET0 since you're supposed to write it (unlike the
1986 * statistics registers), and we already reset it to zero before using it.
1987 */
1988 return intel_detect_pipelined_register(screen,
1989 GEN7_SO_WRITE_OFFSET(0),
1990 0x1337d0d0,
1991 false);
1992 }
1993
1994 /**
1995 * Return array of MSAA modes supported by the hardware. The array is
1996 * zero-terminated and sorted in decreasing order.
1997 */
1998 const int*
intel_supported_msaa_modes(const struct intel_screen * screen)1999 intel_supported_msaa_modes(const struct intel_screen *screen)
2000 {
2001 static const int gen9_modes[] = {16, 8, 4, 2, 0, -1};
2002 static const int gen8_modes[] = {8, 4, 2, 0, -1};
2003 static const int gen7_modes[] = {8, 4, 0, -1};
2004 static const int gen6_modes[] = {4, 0, -1};
2005 static const int gen4_modes[] = {0, -1};
2006
2007 if (screen->devinfo.gen >= 9) {
2008 return gen9_modes;
2009 } else if (screen->devinfo.gen >= 8) {
2010 return gen8_modes;
2011 } else if (screen->devinfo.gen >= 7) {
2012 return gen7_modes;
2013 } else if (screen->devinfo.gen == 6) {
2014 return gen6_modes;
2015 } else {
2016 return gen4_modes;
2017 }
2018 }
2019
2020 static unsigned
intel_loader_get_cap(const __DRIscreen * dri_screen,enum dri_loader_cap cap)2021 intel_loader_get_cap(const __DRIscreen *dri_screen, enum dri_loader_cap cap)
2022 {
2023 if (dri_screen->dri2.loader && dri_screen->dri2.loader->base.version >= 4 &&
2024 dri_screen->dri2.loader->getCapability)
2025 return dri_screen->dri2.loader->getCapability(dri_screen->loaderPrivate, cap);
2026
2027 if (dri_screen->image.loader && dri_screen->image.loader->base.version >= 2 &&
2028 dri_screen->image.loader->getCapability)
2029 return dri_screen->image.loader->getCapability(dri_screen->loaderPrivate, cap);
2030
2031 return 0;
2032 }
2033
2034 static __DRIconfig**
intel_screen_make_configs(__DRIscreen * dri_screen)2035 intel_screen_make_configs(__DRIscreen *dri_screen)
2036 {
2037 static const mesa_format formats[] = {
2038 MESA_FORMAT_B5G6R5_UNORM,
2039 MESA_FORMAT_B8G8R8A8_UNORM,
2040 MESA_FORMAT_B8G8R8X8_UNORM,
2041
2042 MESA_FORMAT_B8G8R8A8_SRGB,
2043
2044 /* For 10 bpc, 30 bit depth framebuffers. */
2045 MESA_FORMAT_B10G10R10A2_UNORM,
2046 MESA_FORMAT_B10G10R10X2_UNORM,
2047
2048 /* The 32-bit RGBA format must not precede the 32-bit BGRA format.
2049 * Likewise for RGBX and BGRX. Otherwise, the GLX client and the GLX
2050 * server may disagree on which format the GLXFBConfig represents,
2051 * resulting in swapped color channels.
2052 *
2053 * The problem, as of 2017-05-30:
2054 * When matching a GLXFBConfig to a __DRIconfig, GLX ignores the channel
2055 * order and chooses the first __DRIconfig with the expected channel
2056 * sizes. Specifically, GLX compares the GLXFBConfig's and __DRIconfig's
2057 * __DRI_ATTRIB_{CHANNEL}_SIZE but ignores __DRI_ATTRIB_{CHANNEL}_MASK.
2058 *
2059 * EGL does not suffer from this problem. It correctly compares the
2060 * channel masks when matching EGLConfig to __DRIconfig.
2061 */
2062
2063 /* Required by Android, for HAL_PIXEL_FORMAT_RGBA_8888. */
2064 MESA_FORMAT_R8G8B8A8_UNORM,
2065
2066 /* Required by Android, for HAL_PIXEL_FORMAT_RGBX_8888. */
2067 MESA_FORMAT_R8G8B8X8_UNORM,
2068 };
2069
2070 /* GLX_SWAP_COPY_OML is not supported due to page flipping. */
2071 static const GLenum back_buffer_modes[] = {
2072 __DRI_ATTRIB_SWAP_UNDEFINED, __DRI_ATTRIB_SWAP_NONE
2073 };
2074
2075 static const uint8_t singlesample_samples[1] = {0};
2076
2077 struct intel_screen *screen = dri_screen->driverPrivate;
2078 const struct gen_device_info *devinfo = &screen->devinfo;
2079 uint8_t depth_bits[4], stencil_bits[4];
2080 __DRIconfig **configs = NULL;
2081
2082 /* Expose only BGRA ordering if the loader doesn't support RGBA ordering. */
2083 unsigned num_formats;
2084 if (intel_loader_get_cap(dri_screen, DRI_LOADER_CAP_RGBA_ORDERING))
2085 num_formats = ARRAY_SIZE(formats);
2086 else
2087 num_formats = ARRAY_SIZE(formats) - 2; /* all - RGBA_ORDERING formats */
2088
2089 /* Shall we expose 10 bpc formats? */
2090 bool allow_rgb10_configs = driQueryOptionb(&screen->optionCache,
2091 "allow_rgb10_configs");
2092
2093 /* Generate singlesample configs without accumulation buffer. */
2094 for (unsigned i = 0; i < num_formats; i++) {
2095 __DRIconfig **new_configs;
2096 int num_depth_stencil_bits = 2;
2097
2098 if (!allow_rgb10_configs &&
2099 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2100 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2101 continue;
2102
2103 /* Starting with DRI2 protocol version 1.1 we can request a depth/stencil
2104 * buffer that has a different number of bits per pixel than the color
2105 * buffer, gen >= 6 supports this.
2106 */
2107 depth_bits[0] = 0;
2108 stencil_bits[0] = 0;
2109
2110 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2111 depth_bits[1] = 16;
2112 stencil_bits[1] = 0;
2113 if (devinfo->gen >= 6) {
2114 depth_bits[2] = 24;
2115 stencil_bits[2] = 8;
2116 num_depth_stencil_bits = 3;
2117 }
2118 } else {
2119 depth_bits[1] = 24;
2120 stencil_bits[1] = 8;
2121 }
2122
2123 new_configs = driCreateConfigs(formats[i],
2124 depth_bits,
2125 stencil_bits,
2126 num_depth_stencil_bits,
2127 back_buffer_modes, 2,
2128 singlesample_samples, 1,
2129 false, false);
2130 configs = driConcatConfigs(configs, new_configs);
2131 }
2132
2133 /* Generate the minimum possible set of configs that include an
2134 * accumulation buffer.
2135 */
2136 for (unsigned i = 0; i < num_formats; i++) {
2137 __DRIconfig **new_configs;
2138
2139 if (!allow_rgb10_configs &&
2140 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2141 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2142 continue;
2143
2144 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2145 depth_bits[0] = 16;
2146 stencil_bits[0] = 0;
2147 } else {
2148 depth_bits[0] = 24;
2149 stencil_bits[0] = 8;
2150 }
2151
2152 new_configs = driCreateConfigs(formats[i],
2153 depth_bits, stencil_bits, 1,
2154 back_buffer_modes, 1,
2155 singlesample_samples, 1,
2156 true, false);
2157 configs = driConcatConfigs(configs, new_configs);
2158 }
2159
2160 /* Generate multisample configs.
2161 *
2162 * This loop breaks early, and hence is a no-op, on gen < 6.
2163 *
2164 * Multisample configs must follow the singlesample configs in order to
2165 * work around an X server bug present in 1.12. The X server chooses to
2166 * associate the first listed RGBA888-Z24S8 config, regardless of its
2167 * sample count, with the 32-bit depth visual used for compositing.
2168 *
2169 * Only doublebuffer configs with GLX_SWAP_UNDEFINED_OML behavior are
2170 * supported. Singlebuffer configs are not supported because no one wants
2171 * them.
2172 */
2173 for (unsigned i = 0; i < num_formats; i++) {
2174 if (devinfo->gen < 6)
2175 break;
2176
2177 if (!allow_rgb10_configs &&
2178 (formats[i] == MESA_FORMAT_B10G10R10A2_UNORM ||
2179 formats[i] == MESA_FORMAT_B10G10R10X2_UNORM))
2180 continue;
2181
2182 __DRIconfig **new_configs;
2183 const int num_depth_stencil_bits = 2;
2184 int num_msaa_modes = 0;
2185 const uint8_t *multisample_samples = NULL;
2186
2187 depth_bits[0] = 0;
2188 stencil_bits[0] = 0;
2189
2190 if (formats[i] == MESA_FORMAT_B5G6R5_UNORM) {
2191 depth_bits[1] = 16;
2192 stencil_bits[1] = 0;
2193 } else {
2194 depth_bits[1] = 24;
2195 stencil_bits[1] = 8;
2196 }
2197
2198 if (devinfo->gen >= 9) {
2199 static const uint8_t multisample_samples_gen9[] = {2, 4, 8, 16};
2200 multisample_samples = multisample_samples_gen9;
2201 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen9);
2202 } else if (devinfo->gen == 8) {
2203 static const uint8_t multisample_samples_gen8[] = {2, 4, 8};
2204 multisample_samples = multisample_samples_gen8;
2205 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen8);
2206 } else if (devinfo->gen == 7) {
2207 static const uint8_t multisample_samples_gen7[] = {4, 8};
2208 multisample_samples = multisample_samples_gen7;
2209 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen7);
2210 } else if (devinfo->gen == 6) {
2211 static const uint8_t multisample_samples_gen6[] = {4};
2212 multisample_samples = multisample_samples_gen6;
2213 num_msaa_modes = ARRAY_SIZE(multisample_samples_gen6);
2214 }
2215
2216 new_configs = driCreateConfigs(formats[i],
2217 depth_bits,
2218 stencil_bits,
2219 num_depth_stencil_bits,
2220 back_buffer_modes, 1,
2221 multisample_samples,
2222 num_msaa_modes,
2223 false, false);
2224 configs = driConcatConfigs(configs, new_configs);
2225 }
2226
2227 if (configs == NULL) {
2228 fprintf(stderr, "[%s:%u] Error creating FBConfig!\n", __func__,
2229 __LINE__);
2230 return NULL;
2231 }
2232
2233 return configs;
2234 }
2235
2236 static void
set_max_gl_versions(struct intel_screen * screen)2237 set_max_gl_versions(struct intel_screen *screen)
2238 {
2239 __DRIscreen *dri_screen = screen->driScrnPriv;
2240 const bool has_astc = screen->devinfo.gen >= 9;
2241
2242 switch (screen->devinfo.gen) {
2243 case 10:
2244 case 9:
2245 case 8:
2246 dri_screen->max_gl_core_version = 45;
2247 dri_screen->max_gl_compat_version = 30;
2248 dri_screen->max_gl_es1_version = 11;
2249 dri_screen->max_gl_es2_version = has_astc ? 32 : 31;
2250 break;
2251 case 7:
2252 dri_screen->max_gl_core_version = 33;
2253 if (can_do_pipelined_register_writes(screen)) {
2254 dri_screen->max_gl_core_version = 42;
2255 if (screen->devinfo.is_haswell && can_do_compute_dispatch(screen))
2256 dri_screen->max_gl_core_version = 43;
2257 if (screen->devinfo.is_haswell && can_do_mi_math_and_lrr(screen))
2258 dri_screen->max_gl_core_version = 45;
2259 }
2260 dri_screen->max_gl_compat_version = 30;
2261 dri_screen->max_gl_es1_version = 11;
2262 dri_screen->max_gl_es2_version = screen->devinfo.is_haswell ? 31 : 30;
2263 break;
2264 case 6:
2265 dri_screen->max_gl_core_version = 33;
2266 dri_screen->max_gl_compat_version = 30;
2267 dri_screen->max_gl_es1_version = 11;
2268 dri_screen->max_gl_es2_version = 30;
2269 break;
2270 case 5:
2271 case 4:
2272 dri_screen->max_gl_core_version = 0;
2273 dri_screen->max_gl_compat_version = 21;
2274 dri_screen->max_gl_es1_version = 11;
2275 dri_screen->max_gl_es2_version = 20;
2276 break;
2277 default:
2278 unreachable("unrecognized intel_screen::gen");
2279 }
2280 }
2281
2282 /**
2283 * Return the revision (generally the revid field of the PCI header) of the
2284 * graphics device.
2285 */
2286 int
intel_device_get_revision(int fd)2287 intel_device_get_revision(int fd)
2288 {
2289 struct drm_i915_getparam gp;
2290 int revision;
2291 int ret;
2292
2293 memset(&gp, 0, sizeof(gp));
2294 gp.param = I915_PARAM_REVISION;
2295 gp.value = &revision;
2296
2297 ret = drmCommandWriteRead(fd, DRM_I915_GETPARAM, &gp, sizeof(gp));
2298 if (ret)
2299 revision = -1;
2300
2301 return revision;
2302 }
2303
2304 static void
shader_debug_log_mesa(void * data,const char * fmt,...)2305 shader_debug_log_mesa(void *data, const char *fmt, ...)
2306 {
2307 struct brw_context *brw = (struct brw_context *)data;
2308 va_list args;
2309
2310 va_start(args, fmt);
2311 GLuint msg_id = 0;
2312 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2313 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2314 MESA_DEBUG_TYPE_OTHER,
2315 MESA_DEBUG_SEVERITY_NOTIFICATION, fmt, args);
2316 va_end(args);
2317 }
2318
2319 static void
shader_perf_log_mesa(void * data,const char * fmt,...)2320 shader_perf_log_mesa(void *data, const char *fmt, ...)
2321 {
2322 struct brw_context *brw = (struct brw_context *)data;
2323
2324 va_list args;
2325 va_start(args, fmt);
2326
2327 if (unlikely(INTEL_DEBUG & DEBUG_PERF)) {
2328 va_list args_copy;
2329 va_copy(args_copy, args);
2330 vfprintf(stderr, fmt, args_copy);
2331 va_end(args_copy);
2332 }
2333
2334 if (brw->perf_debug) {
2335 GLuint msg_id = 0;
2336 _mesa_gl_vdebug(&brw->ctx, &msg_id,
2337 MESA_DEBUG_SOURCE_SHADER_COMPILER,
2338 MESA_DEBUG_TYPE_PERFORMANCE,
2339 MESA_DEBUG_SEVERITY_MEDIUM, fmt, args);
2340 }
2341 va_end(args);
2342 }
2343
2344 static int
parse_devid_override(const char * devid_override)2345 parse_devid_override(const char *devid_override)
2346 {
2347 static const struct {
2348 const char *name;
2349 int pci_id;
2350 } name_map[] = {
2351 { "brw", 0x2a02 },
2352 { "g4x", 0x2a42 },
2353 { "ilk", 0x0042 },
2354 { "snb", 0x0126 },
2355 { "ivb", 0x016a },
2356 { "hsw", 0x0d2e },
2357 { "byt", 0x0f33 },
2358 { "bdw", 0x162e },
2359 { "chv", 0x22B3 },
2360 { "skl", 0x1912 },
2361 { "bxt", 0x5A85 },
2362 { "kbl", 0x5912 },
2363 { "glk", 0x3185 },
2364 { "cnl", 0x5a52 },
2365 };
2366
2367 for (unsigned i = 0; i < ARRAY_SIZE(name_map); i++) {
2368 if (!strcmp(name_map[i].name, devid_override))
2369 return name_map[i].pci_id;
2370 }
2371
2372 return strtol(devid_override, NULL, 0);
2373 }
2374
2375 /**
2376 * Get the PCI ID for the device. This can be overridden by setting the
2377 * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
2378 *
2379 * Returns -1 on ioctl failure.
2380 */
2381 static int
get_pci_device_id(struct intel_screen * screen)2382 get_pci_device_id(struct intel_screen *screen)
2383 {
2384 if (geteuid() == getuid()) {
2385 char *devid_override = getenv("INTEL_DEVID_OVERRIDE");
2386 if (devid_override) {
2387 screen->no_hw = true;
2388 return parse_devid_override(devid_override);
2389 }
2390 }
2391
2392 return intel_get_integer(screen, I915_PARAM_CHIPSET_ID);
2393 }
2394
2395 /**
2396 * This is the driver specific part of the createNewScreen entry point.
2397 * Called when using DRI2.
2398 *
2399 * \return the struct gl_config supported by this driver
2400 */
2401 static const
intelInitScreen2(__DRIscreen * dri_screen)2402 __DRIconfig **intelInitScreen2(__DRIscreen *dri_screen)
2403 {
2404 struct intel_screen *screen;
2405
2406 if (dri_screen->image.loader) {
2407 } else if (dri_screen->dri2.loader->base.version <= 2 ||
2408 dri_screen->dri2.loader->getBuffersWithFormat == NULL) {
2409 fprintf(stderr,
2410 "\nERROR! DRI2 loader with getBuffersWithFormat() "
2411 "support required\n");
2412 return NULL;
2413 }
2414
2415 /* Allocate the private area */
2416 screen = rzalloc(NULL, struct intel_screen);
2417 if (!screen) {
2418 fprintf(stderr, "\nERROR! Allocating private area failed\n");
2419 return NULL;
2420 }
2421 /* parse information in __driConfigOptions */
2422 driOptionCache options;
2423 memset(&options, 0, sizeof(options));
2424
2425 driParseOptionInfo(&options, brw_config_options.xml);
2426 driParseConfigFiles(&screen->optionCache, &options, dri_screen->myNum, "i965");
2427 driDestroyOptionCache(&options);
2428
2429 screen->driScrnPriv = dri_screen;
2430 dri_screen->driverPrivate = (void *) screen;
2431
2432 screen->deviceID = get_pci_device_id(screen);
2433
2434 if (!gen_get_device_info(screen->deviceID, &screen->devinfo))
2435 return NULL;
2436
2437 if (!intel_init_bufmgr(screen))
2438 return NULL;
2439
2440 const struct gen_device_info *devinfo = &screen->devinfo;
2441
2442 brw_process_intel_debug_variable();
2443
2444 if ((INTEL_DEBUG & DEBUG_SHADER_TIME) && devinfo->gen < 7) {
2445 fprintf(stderr,
2446 "shader_time debugging requires gen7 (Ivybridge) or better.\n");
2447 INTEL_DEBUG &= ~DEBUG_SHADER_TIME;
2448 }
2449
2450 if (intel_get_integer(screen, I915_PARAM_MMAP_GTT_VERSION) >= 1) {
2451 /* Theorectically unlimited! At least for individual objects...
2452 *
2453 * Currently the entire (global) address space for all GTT maps is
2454 * limited to 64bits. That is all objects on the system that are
2455 * setup for GTT mmapping must fit within 64bits. An attempt to use
2456 * one that exceeds the limit with fail in brw_bo_map_gtt().
2457 *
2458 * Long before we hit that limit, we will be practically limited by
2459 * that any single object must fit in physical memory (RAM). The upper
2460 * limit on the CPU's address space is currently 48bits (Skylake), of
2461 * which only 39bits can be physical memory. (The GPU itself also has
2462 * a 48bit addressable virtual space.) We can fit over 32 million
2463 * objects of the current maximum allocable size before running out
2464 * of mmap space.
2465 */
2466 screen->max_gtt_map_object_size = UINT64_MAX;
2467 } else {
2468 /* Estimate the size of the mappable aperture into the GTT. There's an
2469 * ioctl to get the whole GTT size, but not one to get the mappable subset.
2470 * It turns out it's basically always 256MB, though some ancient hardware
2471 * was smaller.
2472 */
2473 uint32_t gtt_size = 256 * 1024 * 1024;
2474
2475 /* We don't want to map two objects such that a memcpy between them would
2476 * just fault one mapping in and then the other over and over forever. So
2477 * we would need to divide the GTT size by 2. Additionally, some GTT is
2478 * taken up by things like the framebuffer and the ringbuffer and such, so
2479 * be more conservative.
2480 */
2481 screen->max_gtt_map_object_size = gtt_size / 4;
2482 }
2483
2484 screen->aperture_threshold = get_aperture_size(dri_screen->fd) * 3 / 4;
2485
2486 screen->hw_has_swizzling = intel_detect_swizzling(screen);
2487 screen->hw_has_timestamp = intel_detect_timestamp(screen);
2488
2489 isl_device_init(&screen->isl_dev, &screen->devinfo,
2490 screen->hw_has_swizzling);
2491
2492 if (devinfo->gen >= 10)
2493 intel_cs_timestamp_frequency(screen);
2494
2495 /* GENs prior to 8 do not support EU/Subslice info */
2496 if (devinfo->gen >= 8) {
2497 intel_detect_sseu(screen);
2498 } else if (devinfo->gen == 7) {
2499 screen->subslice_total = 1 << (devinfo->gt - 1);
2500 }
2501
2502 /* Gen7-7.5 kernel requirements / command parser saga:
2503 *
2504 * - pre-v3.16:
2505 * Haswell and Baytrail cannot use any privileged batchbuffer features.
2506 *
2507 * Ivybridge has aliasing PPGTT on by default, which accidentally marks
2508 * all batches secure, allowing them to use any feature with no checking.
2509 * This is effectively equivalent to a command parser version of
2510 * \infinity - everything is possible.
2511 *
2512 * The command parser does not exist, and querying the version will
2513 * return -EINVAL.
2514 *
2515 * - v3.16:
2516 * The kernel enables the command parser by default, for systems with
2517 * aliasing PPGTT enabled (Ivybridge and Haswell). However, the
2518 * hardware checker is still enabled, so Haswell and Baytrail cannot
2519 * do anything.
2520 *
2521 * Ivybridge goes from "everything is possible" to "only what the
2522 * command parser allows" (if the user boots with i915.cmd_parser=0,
2523 * then everything is possible again). We can only safely use features
2524 * allowed by the supported command parser version.
2525 *
2526 * Annoyingly, I915_PARAM_CMD_PARSER_VERSION reports the static version
2527 * implemented by the kernel, even if it's turned off. So, checking
2528 * for version > 0 does not mean that you can write registers. We have
2529 * to try it and see. The version does, however, indicate the age of
2530 * the kernel.
2531 *
2532 * Instead of matching the hardware checker's behavior of converting
2533 * privileged commands to MI_NOOP, it makes execbuf2 start returning
2534 * -EINVAL, making it dangerous to try and use privileged features.
2535 *
2536 * Effective command parser versions:
2537 * - Haswell: 0 (reporting 1, writes don't work)
2538 * - Baytrail: 0 (reporting 1, writes don't work)
2539 * - Ivybridge: 1 (enabled) or infinite (disabled)
2540 *
2541 * - v3.17:
2542 * Baytrail aliasing PPGTT is enabled, making it like Ivybridge:
2543 * effectively version 1 (enabled) or infinite (disabled).
2544 *
2545 * - v3.19: f1f55cc0556031c8ee3fe99dae7251e78b9b653b
2546 * Command parser v2 supports predicate writes.
2547 *
2548 * - Haswell: 0 (reporting 1, writes don't work)
2549 * - Baytrail: 2 (enabled) or infinite (disabled)
2550 * - Ivybridge: 2 (enabled) or infinite (disabled)
2551 *
2552 * So version >= 2 is enough to know that Ivybridge and Baytrail
2553 * will work. Haswell still can't do anything.
2554 *
2555 * - v4.0: Version 3 happened. Largely not relevant.
2556 *
2557 * - v4.1: 6702cf16e0ba8b0129f5aa1b6609d4e9c70bc13b
2558 * L3 config registers are properly saved and restored as part
2559 * of the hardware context. We can approximately detect this point
2560 * in time by checking if I915_PARAM_REVISION is recognized - it
2561 * landed in a later commit, but in the same release cycle.
2562 *
2563 * - v4.2: 245054a1fe33c06ad233e0d58a27ec7b64db9284
2564 * Command parser finally gains secure batch promotion. On Haswell,
2565 * the hardware checker gets disabled, which finally allows it to do
2566 * privileged commands.
2567 *
2568 * I915_PARAM_CMD_PARSER_VERSION reports 3. Effective versions:
2569 * - Haswell: 3 (enabled) or 0 (disabled)
2570 * - Baytrail: 3 (enabled) or infinite (disabled)
2571 * - Ivybridge: 3 (enabled) or infinite (disabled)
2572 *
2573 * Unfortunately, detecting this point in time is tricky, because
2574 * no version bump happened when this important change occurred.
2575 * On Haswell, if we can write any register, then the kernel is at
2576 * least this new, and we can start trusting the version number.
2577 *
2578 * - v4.4: 2bbe6bbb0dc94fd4ce287bdac9e1bd184e23057b and
2579 * Command parser reaches version 4, allowing access to Haswell
2580 * atomic scratch and chicken3 registers. If version >= 4, we know
2581 * the kernel is new enough to support privileged features on all
2582 * hardware. However, the user might have disabled it...and the
2583 * kernel will still report version 4. So we still have to guess
2584 * and check.
2585 *
2586 * - v4.4: 7b9748cb513a6bef4af87b79f0da3ff7e8b56cd8
2587 * Command parser v5 whitelists indirect compute shader dispatch
2588 * registers, needed for OpenGL 4.3 and later.
2589 *
2590 * - v4.8:
2591 * Command parser v7 lets us use MI_MATH on Haswell.
2592 *
2593 * Additionally, the kernel begins reporting version 0 when
2594 * the command parser is disabled, allowing us to skip the
2595 * guess-and-check step on Haswell. Unfortunately, this also
2596 * means that we can no longer use it as an indicator of the
2597 * age of the kernel.
2598 */
2599 if (intel_get_param(screen, I915_PARAM_CMD_PARSER_VERSION,
2600 &screen->cmd_parser_version) < 0) {
2601 /* Command parser does not exist - getparam is unrecognized */
2602 screen->cmd_parser_version = 0;
2603 }
2604
2605 /* Kernel 4.13 retuired for exec object capture */
2606 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_CAPTURE)) {
2607 screen->kernel_features |= KERNEL_ALLOWS_EXEC_CAPTURE;
2608 }
2609
2610 if (intel_get_boolean(screen, I915_PARAM_HAS_EXEC_BATCH_FIRST)) {
2611 screen->kernel_features |= KERNEL_ALLOWS_EXEC_BATCH_FIRST;
2612 }
2613
2614 if (!intel_detect_pipelined_so(screen)) {
2615 /* We can't do anything, so the effective version is 0. */
2616 screen->cmd_parser_version = 0;
2617 } else {
2618 screen->kernel_features |= KERNEL_ALLOWS_SOL_OFFSET_WRITES;
2619 }
2620
2621 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 2)
2622 screen->kernel_features |= KERNEL_ALLOWS_PREDICATE_WRITES;
2623
2624 /* Haswell requires command parser version 4 in order to have L3
2625 * atomic scratch1 and chicken3 bits
2626 */
2627 if (devinfo->is_haswell && screen->cmd_parser_version >= 4) {
2628 screen->kernel_features |=
2629 KERNEL_ALLOWS_HSW_SCRATCH1_AND_ROW_CHICKEN3;
2630 }
2631
2632 /* Haswell requires command parser version 6 in order to write to the
2633 * MI_MATH GPR registers, and version 7 in order to use
2634 * MI_LOAD_REGISTER_REG (which all users of MI_MATH use).
2635 */
2636 if (devinfo->gen >= 8 ||
2637 (devinfo->is_haswell && screen->cmd_parser_version >= 7)) {
2638 screen->kernel_features |= KERNEL_ALLOWS_MI_MATH_AND_LRR;
2639 }
2640
2641 /* Gen7 needs at least command parser version 5 to support compute */
2642 if (devinfo->gen >= 8 || screen->cmd_parser_version >= 5)
2643 screen->kernel_features |= KERNEL_ALLOWS_COMPUTE_DISPATCH;
2644
2645 const char *force_msaa = getenv("INTEL_FORCE_MSAA");
2646 if (force_msaa) {
2647 screen->winsys_msaa_samples_override =
2648 intel_quantize_num_samples(screen, atoi(force_msaa));
2649 printf("Forcing winsys sample count to %d\n",
2650 screen->winsys_msaa_samples_override);
2651 } else {
2652 screen->winsys_msaa_samples_override = -1;
2653 }
2654
2655 set_max_gl_versions(screen);
2656
2657 /* Notification of GPU resets requires hardware contexts and a kernel new
2658 * enough to support DRM_IOCTL_I915_GET_RESET_STATS. If the ioctl is
2659 * supported, calling it with a context of 0 will either generate EPERM or
2660 * no error. If the ioctl is not supported, it always generate EINVAL.
2661 * Use this to determine whether to advertise the __DRI2_ROBUSTNESS
2662 * extension to the loader.
2663 *
2664 * Don't even try on pre-Gen6, since we don't attempt to use contexts there.
2665 */
2666 if (devinfo->gen >= 6) {
2667 struct drm_i915_reset_stats stats;
2668 memset(&stats, 0, sizeof(stats));
2669
2670 const int ret = drmIoctl(dri_screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats);
2671
2672 screen->has_context_reset_notification =
2673 (ret != -1 || errno != EINVAL);
2674 }
2675
2676 dri_screen->extensions = !screen->has_context_reset_notification
2677 ? screenExtensions : intelRobustScreenExtensions;
2678
2679 screen->compiler = brw_compiler_create(screen, devinfo);
2680 screen->compiler->shader_debug_log = shader_debug_log_mesa;
2681 screen->compiler->shader_perf_log = shader_perf_log_mesa;
2682 screen->compiler->constant_buffer_0_is_relative = true;
2683 screen->compiler->supports_pull_constants = true;
2684
2685 screen->has_exec_fence =
2686 intel_get_boolean(screen, I915_PARAM_HAS_EXEC_FENCE);
2687
2688 intel_screen_init_surface_formats(screen);
2689
2690 if (INTEL_DEBUG & (DEBUG_BATCH | DEBUG_SUBMIT)) {
2691 unsigned int caps = intel_get_integer(screen, I915_PARAM_HAS_SCHEDULER);
2692 if (caps) {
2693 fprintf(stderr, "Kernel scheduler detected: %08x\n", caps);
2694 if (caps & I915_SCHEDULER_CAP_PRIORITY)
2695 fprintf(stderr, " - User priority sorting enabled\n");
2696 if (caps & I915_SCHEDULER_CAP_PREEMPTION)
2697 fprintf(stderr, " - Preemption enabled\n");
2698 }
2699 }
2700
2701 return (const __DRIconfig**) intel_screen_make_configs(dri_screen);
2702 }
2703
2704 struct intel_buffer {
2705 __DRIbuffer base;
2706 struct brw_bo *bo;
2707 };
2708
2709 static __DRIbuffer *
intelAllocateBuffer(__DRIscreen * dri_screen,unsigned attachment,unsigned format,int width,int height)2710 intelAllocateBuffer(__DRIscreen *dri_screen,
2711 unsigned attachment, unsigned format,
2712 int width, int height)
2713 {
2714 struct intel_buffer *intelBuffer;
2715 struct intel_screen *screen = dri_screen->driverPrivate;
2716
2717 assert(attachment == __DRI_BUFFER_FRONT_LEFT ||
2718 attachment == __DRI_BUFFER_BACK_LEFT);
2719
2720 intelBuffer = calloc(1, sizeof *intelBuffer);
2721 if (intelBuffer == NULL)
2722 return NULL;
2723
2724 /* The front and back buffers are color buffers, which are X tiled. GEN9+
2725 * supports Y tiled and compressed buffers, but there is no way to plumb that
2726 * through to here. */
2727 uint32_t pitch;
2728 int cpp = format / 8;
2729 intelBuffer->bo = brw_bo_alloc_tiled_2d(screen->bufmgr,
2730 "intelAllocateBuffer",
2731 width,
2732 height,
2733 cpp,
2734 I915_TILING_X, &pitch,
2735 BO_ALLOC_BUSY);
2736
2737 if (intelBuffer->bo == NULL) {
2738 free(intelBuffer);
2739 return NULL;
2740 }
2741
2742 brw_bo_flink(intelBuffer->bo, &intelBuffer->base.name);
2743
2744 intelBuffer->base.attachment = attachment;
2745 intelBuffer->base.cpp = cpp;
2746 intelBuffer->base.pitch = pitch;
2747
2748 return &intelBuffer->base;
2749 }
2750
2751 static void
intelReleaseBuffer(__DRIscreen * dri_screen,__DRIbuffer * buffer)2752 intelReleaseBuffer(__DRIscreen *dri_screen, __DRIbuffer *buffer)
2753 {
2754 struct intel_buffer *intelBuffer = (struct intel_buffer *) buffer;
2755
2756 brw_bo_unreference(intelBuffer->bo);
2757 free(intelBuffer);
2758 }
2759
2760 static const struct __DriverAPIRec brw_driver_api = {
2761 .InitScreen = intelInitScreen2,
2762 .DestroyScreen = intelDestroyScreen,
2763 .CreateContext = brwCreateContext,
2764 .DestroyContext = intelDestroyContext,
2765 .CreateBuffer = intelCreateBuffer,
2766 .DestroyBuffer = intelDestroyBuffer,
2767 .MakeCurrent = intelMakeCurrent,
2768 .UnbindContext = intelUnbindContext,
2769 .AllocateBuffer = intelAllocateBuffer,
2770 .ReleaseBuffer = intelReleaseBuffer
2771 };
2772
2773 static const struct __DRIDriverVtableExtensionRec brw_vtable = {
2774 .base = { __DRI_DRIVER_VTABLE, 1 },
2775 .vtable = &brw_driver_api,
2776 };
2777
2778 static const __DRIextension *brw_driver_extensions[] = {
2779 &driCoreExtension.base,
2780 &driImageDriverExtension.base,
2781 &driDRI2Extension.base,
2782 &brw_vtable.base,
2783 &brw_config_options.base,
2784 NULL
2785 };
2786
__driDriverGetExtensions_i965(void)2787 PUBLIC const __DRIextension **__driDriverGetExtensions_i965(void)
2788 {
2789 globalDriverAPI = &brw_driver_api;
2790
2791 return brw_driver_extensions;
2792 }
2793