• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright (c) 2004 Python Software Foundation.
2# All rights reserved.
3
4# Written by Eric Price <eprice at tjhsst.edu>
5#    and Facundo Batista <facundo at taniquetil.com.ar>
6#    and Raymond Hettinger <python at rcn.com>
7#    and Aahz <aahz at pobox.com>
8#    and Tim Peters
9
10# This module is currently Py2.3 compatible and should be kept that way
11# unless a major compelling advantage arises.  IOW, 2.3 compatibility is
12# strongly preferred, but not guaranteed.
13
14# Also, this module should be kept in sync with the latest updates of
15# the IBM specification as it evolves.  Those updates will be treated
16# as bug fixes (deviation from the spec is a compatibility, usability
17# bug) and will be backported.  At this point the spec is stabilizing
18# and the updates are becoming fewer, smaller, and less significant.
19
20"""
21This is a Py2.3 implementation of decimal floating point arithmetic based on
22the General Decimal Arithmetic Specification:
23
24    www2.hursley.ibm.com/decimal/decarith.html
25
26and IEEE standard 854-1987:
27
28    www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html
29
30Decimal floating point has finite precision with arbitrarily large bounds.
31
32The purpose of this module is to support arithmetic using familiar
33"schoolhouse" rules and to avoid some of the tricky representation
34issues associated with binary floating point.  The package is especially
35useful for financial applications or for contexts where users have
36expectations that are at odds with binary floating point (for instance,
37in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
38of the expected Decimal('0.00') returned by decimal floating point).
39
40Here are some examples of using the decimal module:
41
42>>> from decimal import *
43>>> setcontext(ExtendedContext)
44>>> Decimal(0)
45Decimal('0')
46>>> Decimal('1')
47Decimal('1')
48>>> Decimal('-.0123')
49Decimal('-0.0123')
50>>> Decimal(123456)
51Decimal('123456')
52>>> Decimal('123.45e12345678901234567890')
53Decimal('1.2345E+12345678901234567892')
54>>> Decimal('1.33') + Decimal('1.27')
55Decimal('2.60')
56>>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
57Decimal('-2.20')
58>>> dig = Decimal(1)
59>>> print dig / Decimal(3)
600.333333333
61>>> getcontext().prec = 18
62>>> print dig / Decimal(3)
630.333333333333333333
64>>> print dig.sqrt()
651
66>>> print Decimal(3).sqrt()
671.73205080756887729
68>>> print Decimal(3) ** 123
694.85192780976896427E+58
70>>> inf = Decimal(1) / Decimal(0)
71>>> print inf
72Infinity
73>>> neginf = Decimal(-1) / Decimal(0)
74>>> print neginf
75-Infinity
76>>> print neginf + inf
77NaN
78>>> print neginf * inf
79-Infinity
80>>> print dig / 0
81Infinity
82>>> getcontext().traps[DivisionByZero] = 1
83>>> print dig / 0
84Traceback (most recent call last):
85  ...
86  ...
87  ...
88DivisionByZero: x / 0
89>>> c = Context()
90>>> c.traps[InvalidOperation] = 0
91>>> print c.flags[InvalidOperation]
920
93>>> c.divide(Decimal(0), Decimal(0))
94Decimal('NaN')
95>>> c.traps[InvalidOperation] = 1
96>>> print c.flags[InvalidOperation]
971
98>>> c.flags[InvalidOperation] = 0
99>>> print c.flags[InvalidOperation]
1000
101>>> print c.divide(Decimal(0), Decimal(0))
102Traceback (most recent call last):
103  ...
104  ...
105  ...
106InvalidOperation: 0 / 0
107>>> print c.flags[InvalidOperation]
1081
109>>> c.flags[InvalidOperation] = 0
110>>> c.traps[InvalidOperation] = 0
111>>> print c.divide(Decimal(0), Decimal(0))
112NaN
113>>> print c.flags[InvalidOperation]
1141
115>>>
116"""
117
118__all__ = [
119    # Two major classes
120    'Decimal', 'Context',
121
122    # Contexts
123    'DefaultContext', 'BasicContext', 'ExtendedContext',
124
125    # Exceptions
126    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
127    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
128
129    # Constants for use in setting up contexts
130    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
131    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
132
133    # Functions for manipulating contexts
134    'setcontext', 'getcontext', 'localcontext'
135]
136
137__version__ = '1.70'    # Highest version of the spec this complies with
138
139import copy as _copy
140import math as _math
141import numbers as _numbers
142
143try:
144    from collections import namedtuple as _namedtuple
145    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
146except ImportError:
147    DecimalTuple = lambda *args: args
148
149# Rounding
150ROUND_DOWN = 'ROUND_DOWN'
151ROUND_HALF_UP = 'ROUND_HALF_UP'
152ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
153ROUND_CEILING = 'ROUND_CEILING'
154ROUND_FLOOR = 'ROUND_FLOOR'
155ROUND_UP = 'ROUND_UP'
156ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
157ROUND_05UP = 'ROUND_05UP'
158
159# Errors
160
161class DecimalException(ArithmeticError):
162    """Base exception class.
163
164    Used exceptions derive from this.
165    If an exception derives from another exception besides this (such as
166    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
167    called if the others are present.  This isn't actually used for
168    anything, though.
169
170    handle  -- Called when context._raise_error is called and the
171               trap_enabler is not set.  First argument is self, second is the
172               context.  More arguments can be given, those being after
173               the explanation in _raise_error (For example,
174               context._raise_error(NewError, '(-x)!', self._sign) would
175               call NewError().handle(context, self._sign).)
176
177    To define a new exception, it should be sufficient to have it derive
178    from DecimalException.
179    """
180    def handle(self, context, *args):
181        pass
182
183
184class Clamped(DecimalException):
185    """Exponent of a 0 changed to fit bounds.
186
187    This occurs and signals clamped if the exponent of a result has been
188    altered in order to fit the constraints of a specific concrete
189    representation.  This may occur when the exponent of a zero result would
190    be outside the bounds of a representation, or when a large normal
191    number would have an encoded exponent that cannot be represented.  In
192    this latter case, the exponent is reduced to fit and the corresponding
193    number of zero digits are appended to the coefficient ("fold-down").
194    """
195
196class InvalidOperation(DecimalException):
197    """An invalid operation was performed.
198
199    Various bad things cause this:
200
201    Something creates a signaling NaN
202    -INF + INF
203    0 * (+-)INF
204    (+-)INF / (+-)INF
205    x % 0
206    (+-)INF % x
207    x._rescale( non-integer )
208    sqrt(-x) , x > 0
209    0 ** 0
210    x ** (non-integer)
211    x ** (+-)INF
212    An operand is invalid
213
214    The result of the operation after these is a quiet positive NaN,
215    except when the cause is a signaling NaN, in which case the result is
216    also a quiet NaN, but with the original sign, and an optional
217    diagnostic information.
218    """
219    def handle(self, context, *args):
220        if args:
221            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
222            return ans._fix_nan(context)
223        return _NaN
224
225class ConversionSyntax(InvalidOperation):
226    """Trying to convert badly formed string.
227
228    This occurs and signals invalid-operation if an string is being
229    converted to a number and it does not conform to the numeric string
230    syntax.  The result is [0,qNaN].
231    """
232    def handle(self, context, *args):
233        return _NaN
234
235class DivisionByZero(DecimalException, ZeroDivisionError):
236    """Division by 0.
237
238    This occurs and signals division-by-zero if division of a finite number
239    by zero was attempted (during a divide-integer or divide operation, or a
240    power operation with negative right-hand operand), and the dividend was
241    not zero.
242
243    The result of the operation is [sign,inf], where sign is the exclusive
244    or of the signs of the operands for divide, or is 1 for an odd power of
245    -0, for power.
246    """
247
248    def handle(self, context, sign, *args):
249        return _SignedInfinity[sign]
250
251class DivisionImpossible(InvalidOperation):
252    """Cannot perform the division adequately.
253
254    This occurs and signals invalid-operation if the integer result of a
255    divide-integer or remainder operation had too many digits (would be
256    longer than precision).  The result is [0,qNaN].
257    """
258
259    def handle(self, context, *args):
260        return _NaN
261
262class DivisionUndefined(InvalidOperation, ZeroDivisionError):
263    """Undefined result of division.
264
265    This occurs and signals invalid-operation if division by zero was
266    attempted (during a divide-integer, divide, or remainder operation), and
267    the dividend is also zero.  The result is [0,qNaN].
268    """
269
270    def handle(self, context, *args):
271        return _NaN
272
273class Inexact(DecimalException):
274    """Had to round, losing information.
275
276    This occurs and signals inexact whenever the result of an operation is
277    not exact (that is, it needed to be rounded and any discarded digits
278    were non-zero), or if an overflow or underflow condition occurs.  The
279    result in all cases is unchanged.
280
281    The inexact signal may be tested (or trapped) to determine if a given
282    operation (or sequence of operations) was inexact.
283    """
284
285class InvalidContext(InvalidOperation):
286    """Invalid context.  Unknown rounding, for example.
287
288    This occurs and signals invalid-operation if an invalid context was
289    detected during an operation.  This can occur if contexts are not checked
290    on creation and either the precision exceeds the capability of the
291    underlying concrete representation or an unknown or unsupported rounding
292    was specified.  These aspects of the context need only be checked when
293    the values are required to be used.  The result is [0,qNaN].
294    """
295
296    def handle(self, context, *args):
297        return _NaN
298
299class Rounded(DecimalException):
300    """Number got rounded (not  necessarily changed during rounding).
301
302    This occurs and signals rounded whenever the result of an operation is
303    rounded (that is, some zero or non-zero digits were discarded from the
304    coefficient), or if an overflow or underflow condition occurs.  The
305    result in all cases is unchanged.
306
307    The rounded signal may be tested (or trapped) to determine if a given
308    operation (or sequence of operations) caused a loss of precision.
309    """
310
311class Subnormal(DecimalException):
312    """Exponent < Emin before rounding.
313
314    This occurs and signals subnormal whenever the result of a conversion or
315    operation is subnormal (that is, its adjusted exponent is less than
316    Emin, before any rounding).  The result in all cases is unchanged.
317
318    The subnormal signal may be tested (or trapped) to determine if a given
319    or operation (or sequence of operations) yielded a subnormal result.
320    """
321
322class Overflow(Inexact, Rounded):
323    """Numerical overflow.
324
325    This occurs and signals overflow if the adjusted exponent of a result
326    (from a conversion or from an operation that is not an attempt to divide
327    by zero), after rounding, would be greater than the largest value that
328    can be handled by the implementation (the value Emax).
329
330    The result depends on the rounding mode:
331
332    For round-half-up and round-half-even (and for round-half-down and
333    round-up, if implemented), the result of the operation is [sign,inf],
334    where sign is the sign of the intermediate result.  For round-down, the
335    result is the largest finite number that can be represented in the
336    current precision, with the sign of the intermediate result.  For
337    round-ceiling, the result is the same as for round-down if the sign of
338    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
339    the result is the same as for round-down if the sign of the intermediate
340    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
341    will also be raised.
342    """
343
344    def handle(self, context, sign, *args):
345        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
346                                ROUND_HALF_DOWN, ROUND_UP):
347            return _SignedInfinity[sign]
348        if sign == 0:
349            if context.rounding == ROUND_CEILING:
350                return _SignedInfinity[sign]
351            return _dec_from_triple(sign, '9'*context.prec,
352                            context.Emax-context.prec+1)
353        if sign == 1:
354            if context.rounding == ROUND_FLOOR:
355                return _SignedInfinity[sign]
356            return _dec_from_triple(sign, '9'*context.prec,
357                             context.Emax-context.prec+1)
358
359
360class Underflow(Inexact, Rounded, Subnormal):
361    """Numerical underflow with result rounded to 0.
362
363    This occurs and signals underflow if a result is inexact and the
364    adjusted exponent of the result would be smaller (more negative) than
365    the smallest value that can be handled by the implementation (the value
366    Emin).  That is, the result is both inexact and subnormal.
367
368    The result after an underflow will be a subnormal number rounded, if
369    necessary, so that its exponent is not less than Etiny.  This may result
370    in 0 with the sign of the intermediate result and an exponent of Etiny.
371
372    In all cases, Inexact, Rounded, and Subnormal will also be raised.
373    """
374
375# List of public traps and flags
376_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
377           Underflow, InvalidOperation, Subnormal]
378
379# Map conditions (per the spec) to signals
380_condition_map = {ConversionSyntax:InvalidOperation,
381                  DivisionImpossible:InvalidOperation,
382                  DivisionUndefined:InvalidOperation,
383                  InvalidContext:InvalidOperation}
384
385##### Context Functions ##################################################
386
387# The getcontext() and setcontext() function manage access to a thread-local
388# current context.  Py2.4 offers direct support for thread locals.  If that
389# is not available, use threading.currentThread() which is slower but will
390# work for older Pythons.  If threads are not part of the build, create a
391# mock threading object with threading.local() returning the module namespace.
392
393try:
394    import threading
395except ImportError:
396    # Python was compiled without threads; create a mock object instead
397    import sys
398    class MockThreading(object):
399        def local(self, sys=sys):
400            return sys.modules[__name__]
401    threading = MockThreading()
402    del sys, MockThreading
403
404try:
405    threading.local
406
407except AttributeError:
408
409    # To fix reloading, force it to create a new context
410    # Old contexts have different exceptions in their dicts, making problems.
411    if hasattr(threading.currentThread(), '__decimal_context__'):
412        del threading.currentThread().__decimal_context__
413
414    def setcontext(context):
415        """Set this thread's context to context."""
416        if context in (DefaultContext, BasicContext, ExtendedContext):
417            context = context.copy()
418            context.clear_flags()
419        threading.currentThread().__decimal_context__ = context
420
421    def getcontext():
422        """Returns this thread's context.
423
424        If this thread does not yet have a context, returns
425        a new context and sets this thread's context.
426        New contexts are copies of DefaultContext.
427        """
428        try:
429            return threading.currentThread().__decimal_context__
430        except AttributeError:
431            context = Context()
432            threading.currentThread().__decimal_context__ = context
433            return context
434
435else:
436
437    local = threading.local()
438    if hasattr(local, '__decimal_context__'):
439        del local.__decimal_context__
440
441    def getcontext(_local=local):
442        """Returns this thread's context.
443
444        If this thread does not yet have a context, returns
445        a new context and sets this thread's context.
446        New contexts are copies of DefaultContext.
447        """
448        try:
449            return _local.__decimal_context__
450        except AttributeError:
451            context = Context()
452            _local.__decimal_context__ = context
453            return context
454
455    def setcontext(context, _local=local):
456        """Set this thread's context to context."""
457        if context in (DefaultContext, BasicContext, ExtendedContext):
458            context = context.copy()
459            context.clear_flags()
460        _local.__decimal_context__ = context
461
462    del threading, local        # Don't contaminate the namespace
463
464def localcontext(ctx=None):
465    """Return a context manager for a copy of the supplied context
466
467    Uses a copy of the current context if no context is specified
468    The returned context manager creates a local decimal context
469    in a with statement:
470        def sin(x):
471             with localcontext() as ctx:
472                 ctx.prec += 2
473                 # Rest of sin calculation algorithm
474                 # uses a precision 2 greater than normal
475             return +s  # Convert result to normal precision
476
477         def sin(x):
478             with localcontext(ExtendedContext):
479                 # Rest of sin calculation algorithm
480                 # uses the Extended Context from the
481                 # General Decimal Arithmetic Specification
482             return +s  # Convert result to normal context
483
484    >>> setcontext(DefaultContext)
485    >>> print getcontext().prec
486    28
487    >>> with localcontext():
488    ...     ctx = getcontext()
489    ...     ctx.prec += 2
490    ...     print ctx.prec
491    ...
492    30
493    >>> with localcontext(ExtendedContext):
494    ...     print getcontext().prec
495    ...
496    9
497    >>> print getcontext().prec
498    28
499    """
500    if ctx is None: ctx = getcontext()
501    return _ContextManager(ctx)
502
503
504##### Decimal class #######################################################
505
506class Decimal(object):
507    """Floating point class for decimal arithmetic."""
508
509    __slots__ = ('_exp','_int','_sign', '_is_special')
510    # Generally, the value of the Decimal instance is given by
511    #  (-1)**_sign * _int * 10**_exp
512    # Special values are signified by _is_special == True
513
514    # We're immutable, so use __new__ not __init__
515    def __new__(cls, value="0", context=None):
516        """Create a decimal point instance.
517
518        >>> Decimal('3.14')              # string input
519        Decimal('3.14')
520        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
521        Decimal('3.14')
522        >>> Decimal(314)                 # int or long
523        Decimal('314')
524        >>> Decimal(Decimal(314))        # another decimal instance
525        Decimal('314')
526        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
527        Decimal('3.14')
528        """
529
530        # Note that the coefficient, self._int, is actually stored as
531        # a string rather than as a tuple of digits.  This speeds up
532        # the "digits to integer" and "integer to digits" conversions
533        # that are used in almost every arithmetic operation on
534        # Decimals.  This is an internal detail: the as_tuple function
535        # and the Decimal constructor still deal with tuples of
536        # digits.
537
538        self = object.__new__(cls)
539
540        # From a string
541        # REs insist on real strings, so we can too.
542        if isinstance(value, basestring):
543            m = _parser(value.strip())
544            if m is None:
545                if context is None:
546                    context = getcontext()
547                return context._raise_error(ConversionSyntax,
548                                "Invalid literal for Decimal: %r" % value)
549
550            if m.group('sign') == "-":
551                self._sign = 1
552            else:
553                self._sign = 0
554            intpart = m.group('int')
555            if intpart is not None:
556                # finite number
557                fracpart = m.group('frac') or ''
558                exp = int(m.group('exp') or '0')
559                self._int = str(int(intpart+fracpart))
560                self._exp = exp - len(fracpart)
561                self._is_special = False
562            else:
563                diag = m.group('diag')
564                if diag is not None:
565                    # NaN
566                    self._int = str(int(diag or '0')).lstrip('0')
567                    if m.group('signal'):
568                        self._exp = 'N'
569                    else:
570                        self._exp = 'n'
571                else:
572                    # infinity
573                    self._int = '0'
574                    self._exp = 'F'
575                self._is_special = True
576            return self
577
578        # From an integer
579        if isinstance(value, (int,long)):
580            if value >= 0:
581                self._sign = 0
582            else:
583                self._sign = 1
584            self._exp = 0
585            self._int = str(abs(value))
586            self._is_special = False
587            return self
588
589        # From another decimal
590        if isinstance(value, Decimal):
591            self._exp  = value._exp
592            self._sign = value._sign
593            self._int  = value._int
594            self._is_special  = value._is_special
595            return self
596
597        # From an internal working value
598        if isinstance(value, _WorkRep):
599            self._sign = value.sign
600            self._int = str(value.int)
601            self._exp = int(value.exp)
602            self._is_special = False
603            return self
604
605        # tuple/list conversion (possibly from as_tuple())
606        if isinstance(value, (list,tuple)):
607            if len(value) != 3:
608                raise ValueError('Invalid tuple size in creation of Decimal '
609                                 'from list or tuple.  The list or tuple '
610                                 'should have exactly three elements.')
611            # process sign.  The isinstance test rejects floats
612            if not (isinstance(value[0], (int, long)) and value[0] in (0,1)):
613                raise ValueError("Invalid sign.  The first value in the tuple "
614                                 "should be an integer; either 0 for a "
615                                 "positive number or 1 for a negative number.")
616            self._sign = value[0]
617            if value[2] == 'F':
618                # infinity: value[1] is ignored
619                self._int = '0'
620                self._exp = value[2]
621                self._is_special = True
622            else:
623                # process and validate the digits in value[1]
624                digits = []
625                for digit in value[1]:
626                    if isinstance(digit, (int, long)) and 0 <= digit <= 9:
627                        # skip leading zeros
628                        if digits or digit != 0:
629                            digits.append(digit)
630                    else:
631                        raise ValueError("The second value in the tuple must "
632                                         "be composed of integers in the range "
633                                         "0 through 9.")
634                if value[2] in ('n', 'N'):
635                    # NaN: digits form the diagnostic
636                    self._int = ''.join(map(str, digits))
637                    self._exp = value[2]
638                    self._is_special = True
639                elif isinstance(value[2], (int, long)):
640                    # finite number: digits give the coefficient
641                    self._int = ''.join(map(str, digits or [0]))
642                    self._exp = value[2]
643                    self._is_special = False
644                else:
645                    raise ValueError("The third value in the tuple must "
646                                     "be an integer, or one of the "
647                                     "strings 'F', 'n', 'N'.")
648            return self
649
650        if isinstance(value, float):
651            value = Decimal.from_float(value)
652            self._exp  = value._exp
653            self._sign = value._sign
654            self._int  = value._int
655            self._is_special  = value._is_special
656            return self
657
658        raise TypeError("Cannot convert %r to Decimal" % value)
659
660    # @classmethod, but @decorator is not valid Python 2.3 syntax, so
661    # don't use it (see notes on Py2.3 compatibility at top of file)
662    def from_float(cls, f):
663        """Converts a float to a decimal number, exactly.
664
665        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
666        Since 0.1 is not exactly representable in binary floating point, the
667        value is stored as the nearest representable value which is
668        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
669        is 0.1000000000000000055511151231257827021181583404541015625.
670
671        >>> Decimal.from_float(0.1)
672        Decimal('0.1000000000000000055511151231257827021181583404541015625')
673        >>> Decimal.from_float(float('nan'))
674        Decimal('NaN')
675        >>> Decimal.from_float(float('inf'))
676        Decimal('Infinity')
677        >>> Decimal.from_float(-float('inf'))
678        Decimal('-Infinity')
679        >>> Decimal.from_float(-0.0)
680        Decimal('-0')
681
682        """
683        if isinstance(f, (int, long)):        # handle integer inputs
684            return cls(f)
685        if _math.isinf(f) or _math.isnan(f):  # raises TypeError if not a float
686            return cls(repr(f))
687        if _math.copysign(1.0, f) == 1.0:
688            sign = 0
689        else:
690            sign = 1
691        n, d = abs(f).as_integer_ratio()
692        k = d.bit_length() - 1
693        result = _dec_from_triple(sign, str(n*5**k), -k)
694        if cls is Decimal:
695            return result
696        else:
697            return cls(result)
698    from_float = classmethod(from_float)
699
700    def _isnan(self):
701        """Returns whether the number is not actually one.
702
703        0 if a number
704        1 if NaN
705        2 if sNaN
706        """
707        if self._is_special:
708            exp = self._exp
709            if exp == 'n':
710                return 1
711            elif exp == 'N':
712                return 2
713        return 0
714
715    def _isinfinity(self):
716        """Returns whether the number is infinite
717
718        0 if finite or not a number
719        1 if +INF
720        -1 if -INF
721        """
722        if self._exp == 'F':
723            if self._sign:
724                return -1
725            return 1
726        return 0
727
728    def _check_nans(self, other=None, context=None):
729        """Returns whether the number is not actually one.
730
731        if self, other are sNaN, signal
732        if self, other are NaN return nan
733        return 0
734
735        Done before operations.
736        """
737
738        self_is_nan = self._isnan()
739        if other is None:
740            other_is_nan = False
741        else:
742            other_is_nan = other._isnan()
743
744        if self_is_nan or other_is_nan:
745            if context is None:
746                context = getcontext()
747
748            if self_is_nan == 2:
749                return context._raise_error(InvalidOperation, 'sNaN',
750                                        self)
751            if other_is_nan == 2:
752                return context._raise_error(InvalidOperation, 'sNaN',
753                                        other)
754            if self_is_nan:
755                return self._fix_nan(context)
756
757            return other._fix_nan(context)
758        return 0
759
760    def _compare_check_nans(self, other, context):
761        """Version of _check_nans used for the signaling comparisons
762        compare_signal, __le__, __lt__, __ge__, __gt__.
763
764        Signal InvalidOperation if either self or other is a (quiet
765        or signaling) NaN.  Signaling NaNs take precedence over quiet
766        NaNs.
767
768        Return 0 if neither operand is a NaN.
769
770        """
771        if context is None:
772            context = getcontext()
773
774        if self._is_special or other._is_special:
775            if self.is_snan():
776                return context._raise_error(InvalidOperation,
777                                            'comparison involving sNaN',
778                                            self)
779            elif other.is_snan():
780                return context._raise_error(InvalidOperation,
781                                            'comparison involving sNaN',
782                                            other)
783            elif self.is_qnan():
784                return context._raise_error(InvalidOperation,
785                                            'comparison involving NaN',
786                                            self)
787            elif other.is_qnan():
788                return context._raise_error(InvalidOperation,
789                                            'comparison involving NaN',
790                                            other)
791        return 0
792
793    def __nonzero__(self):
794        """Return True if self is nonzero; otherwise return False.
795
796        NaNs and infinities are considered nonzero.
797        """
798        return self._is_special or self._int != '0'
799
800    def _cmp(self, other):
801        """Compare the two non-NaN decimal instances self and other.
802
803        Returns -1 if self < other, 0 if self == other and 1
804        if self > other.  This routine is for internal use only."""
805
806        if self._is_special or other._is_special:
807            self_inf = self._isinfinity()
808            other_inf = other._isinfinity()
809            if self_inf == other_inf:
810                return 0
811            elif self_inf < other_inf:
812                return -1
813            else:
814                return 1
815
816        # check for zeros;  Decimal('0') == Decimal('-0')
817        if not self:
818            if not other:
819                return 0
820            else:
821                return -((-1)**other._sign)
822        if not other:
823            return (-1)**self._sign
824
825        # If different signs, neg one is less
826        if other._sign < self._sign:
827            return -1
828        if self._sign < other._sign:
829            return 1
830
831        self_adjusted = self.adjusted()
832        other_adjusted = other.adjusted()
833        if self_adjusted == other_adjusted:
834            self_padded = self._int + '0'*(self._exp - other._exp)
835            other_padded = other._int + '0'*(other._exp - self._exp)
836            if self_padded == other_padded:
837                return 0
838            elif self_padded < other_padded:
839                return -(-1)**self._sign
840            else:
841                return (-1)**self._sign
842        elif self_adjusted > other_adjusted:
843            return (-1)**self._sign
844        else: # self_adjusted < other_adjusted
845            return -((-1)**self._sign)
846
847    # Note: The Decimal standard doesn't cover rich comparisons for
848    # Decimals.  In particular, the specification is silent on the
849    # subject of what should happen for a comparison involving a NaN.
850    # We take the following approach:
851    #
852    #   == comparisons involving a quiet NaN always return False
853    #   != comparisons involving a quiet NaN always return True
854    #   == or != comparisons involving a signaling NaN signal
855    #      InvalidOperation, and return False or True as above if the
856    #      InvalidOperation is not trapped.
857    #   <, >, <= and >= comparisons involving a (quiet or signaling)
858    #      NaN signal InvalidOperation, and return False if the
859    #      InvalidOperation is not trapped.
860    #
861    # This behavior is designed to conform as closely as possible to
862    # that specified by IEEE 754.
863
864    def __eq__(self, other, context=None):
865        other = _convert_other(other, allow_float=True)
866        if other is NotImplemented:
867            return other
868        if self._check_nans(other, context):
869            return False
870        return self._cmp(other) == 0
871
872    def __ne__(self, other, context=None):
873        other = _convert_other(other, allow_float=True)
874        if other is NotImplemented:
875            return other
876        if self._check_nans(other, context):
877            return True
878        return self._cmp(other) != 0
879
880    def __lt__(self, other, context=None):
881        other = _convert_other(other, allow_float=True)
882        if other is NotImplemented:
883            return other
884        ans = self._compare_check_nans(other, context)
885        if ans:
886            return False
887        return self._cmp(other) < 0
888
889    def __le__(self, other, context=None):
890        other = _convert_other(other, allow_float=True)
891        if other is NotImplemented:
892            return other
893        ans = self._compare_check_nans(other, context)
894        if ans:
895            return False
896        return self._cmp(other) <= 0
897
898    def __gt__(self, other, context=None):
899        other = _convert_other(other, allow_float=True)
900        if other is NotImplemented:
901            return other
902        ans = self._compare_check_nans(other, context)
903        if ans:
904            return False
905        return self._cmp(other) > 0
906
907    def __ge__(self, other, context=None):
908        other = _convert_other(other, allow_float=True)
909        if other is NotImplemented:
910            return other
911        ans = self._compare_check_nans(other, context)
912        if ans:
913            return False
914        return self._cmp(other) >= 0
915
916    def compare(self, other, context=None):
917        """Compares one to another.
918
919        -1 => a < b
920        0  => a = b
921        1  => a > b
922        NaN => one is NaN
923        Like __cmp__, but returns Decimal instances.
924        """
925        other = _convert_other(other, raiseit=True)
926
927        # Compare(NaN, NaN) = NaN
928        if (self._is_special or other and other._is_special):
929            ans = self._check_nans(other, context)
930            if ans:
931                return ans
932
933        return Decimal(self._cmp(other))
934
935    def __hash__(self):
936        """x.__hash__() <==> hash(x)"""
937        # Decimal integers must hash the same as the ints
938        #
939        # The hash of a nonspecial noninteger Decimal must depend only
940        # on the value of that Decimal, and not on its representation.
941        # For example: hash(Decimal('100E-1')) == hash(Decimal('10')).
942
943        # Equality comparisons involving signaling nans can raise an
944        # exception; since equality checks are implicitly and
945        # unpredictably used when checking set and dict membership, we
946        # prevent signaling nans from being used as set elements or
947        # dict keys by making __hash__ raise an exception.
948        if self._is_special:
949            if self.is_snan():
950                raise TypeError('Cannot hash a signaling NaN value.')
951            elif self.is_nan():
952                # 0 to match hash(float('nan'))
953                return 0
954            else:
955                # values chosen to match hash(float('inf')) and
956                # hash(float('-inf')).
957                if self._sign:
958                    return -271828
959                else:
960                    return 314159
961
962        # In Python 2.7, we're allowing comparisons (but not
963        # arithmetic operations) between floats and Decimals;  so if
964        # a Decimal instance is exactly representable as a float then
965        # its hash should match that of the float.
966        self_as_float = float(self)
967        if Decimal.from_float(self_as_float) == self:
968            return hash(self_as_float)
969
970        if self._isinteger():
971            op = _WorkRep(self.to_integral_value())
972            # to make computation feasible for Decimals with large
973            # exponent, we use the fact that hash(n) == hash(m) for
974            # any two nonzero integers n and m such that (i) n and m
975            # have the same sign, and (ii) n is congruent to m modulo
976            # 2**64-1.  So we can replace hash((-1)**s*c*10**e) with
977            # hash((-1)**s*c*pow(10, e, 2**64-1).
978            return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1))
979        # The value of a nonzero nonspecial Decimal instance is
980        # faithfully represented by the triple consisting of its sign,
981        # its adjusted exponent, and its coefficient with trailing
982        # zeros removed.
983        return hash((self._sign,
984                     self._exp+len(self._int),
985                     self._int.rstrip('0')))
986
987    def as_tuple(self):
988        """Represents the number as a triple tuple.
989
990        To show the internals exactly as they are.
991        """
992        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
993
994    def __repr__(self):
995        """Represents the number as an instance of Decimal."""
996        # Invariant:  eval(repr(d)) == d
997        return "Decimal('%s')" % str(self)
998
999    def __str__(self, eng=False, context=None):
1000        """Return string representation of the number in scientific notation.
1001
1002        Captures all of the information in the underlying representation.
1003        """
1004
1005        sign = ['', '-'][self._sign]
1006        if self._is_special:
1007            if self._exp == 'F':
1008                return sign + 'Infinity'
1009            elif self._exp == 'n':
1010                return sign + 'NaN' + self._int
1011            else: # self._exp == 'N'
1012                return sign + 'sNaN' + self._int
1013
1014        # number of digits of self._int to left of decimal point
1015        leftdigits = self._exp + len(self._int)
1016
1017        # dotplace is number of digits of self._int to the left of the
1018        # decimal point in the mantissa of the output string (that is,
1019        # after adjusting the exponent)
1020        if self._exp <= 0 and leftdigits > -6:
1021            # no exponent required
1022            dotplace = leftdigits
1023        elif not eng:
1024            # usual scientific notation: 1 digit on left of the point
1025            dotplace = 1
1026        elif self._int == '0':
1027            # engineering notation, zero
1028            dotplace = (leftdigits + 1) % 3 - 1
1029        else:
1030            # engineering notation, nonzero
1031            dotplace = (leftdigits - 1) % 3 + 1
1032
1033        if dotplace <= 0:
1034            intpart = '0'
1035            fracpart = '.' + '0'*(-dotplace) + self._int
1036        elif dotplace >= len(self._int):
1037            intpart = self._int+'0'*(dotplace-len(self._int))
1038            fracpart = ''
1039        else:
1040            intpart = self._int[:dotplace]
1041            fracpart = '.' + self._int[dotplace:]
1042        if leftdigits == dotplace:
1043            exp = ''
1044        else:
1045            if context is None:
1046                context = getcontext()
1047            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
1048
1049        return sign + intpart + fracpart + exp
1050
1051    def to_eng_string(self, context=None):
1052        """Convert to engineering-type string.
1053
1054        Engineering notation has an exponent which is a multiple of 3, so there
1055        are up to 3 digits left of the decimal place.
1056
1057        Same rules for when in exponential and when as a value as in __str__.
1058        """
1059        return self.__str__(eng=True, context=context)
1060
1061    def __neg__(self, context=None):
1062        """Returns a copy with the sign switched.
1063
1064        Rounds, if it has reason.
1065        """
1066        if self._is_special:
1067            ans = self._check_nans(context=context)
1068            if ans:
1069                return ans
1070
1071        if context is None:
1072            context = getcontext()
1073
1074        if not self and context.rounding != ROUND_FLOOR:
1075            # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
1076            # in ROUND_FLOOR rounding mode.
1077            ans = self.copy_abs()
1078        else:
1079            ans = self.copy_negate()
1080
1081        return ans._fix(context)
1082
1083    def __pos__(self, context=None):
1084        """Returns a copy, unless it is a sNaN.
1085
1086        Rounds the number (if more then precision digits)
1087        """
1088        if self._is_special:
1089            ans = self._check_nans(context=context)
1090            if ans:
1091                return ans
1092
1093        if context is None:
1094            context = getcontext()
1095
1096        if not self and context.rounding != ROUND_FLOOR:
1097            # + (-0) = 0, except in ROUND_FLOOR rounding mode.
1098            ans = self.copy_abs()
1099        else:
1100            ans = Decimal(self)
1101
1102        return ans._fix(context)
1103
1104    def __abs__(self, round=True, context=None):
1105        """Returns the absolute value of self.
1106
1107        If the keyword argument 'round' is false, do not round.  The
1108        expression self.__abs__(round=False) is equivalent to
1109        self.copy_abs().
1110        """
1111        if not round:
1112            return self.copy_abs()
1113
1114        if self._is_special:
1115            ans = self._check_nans(context=context)
1116            if ans:
1117                return ans
1118
1119        if self._sign:
1120            ans = self.__neg__(context=context)
1121        else:
1122            ans = self.__pos__(context=context)
1123
1124        return ans
1125
1126    def __add__(self, other, context=None):
1127        """Returns self + other.
1128
1129        -INF + INF (or the reverse) cause InvalidOperation errors.
1130        """
1131        other = _convert_other(other)
1132        if other is NotImplemented:
1133            return other
1134
1135        if context is None:
1136            context = getcontext()
1137
1138        if self._is_special or other._is_special:
1139            ans = self._check_nans(other, context)
1140            if ans:
1141                return ans
1142
1143            if self._isinfinity():
1144                # If both INF, same sign => same as both, opposite => error.
1145                if self._sign != other._sign and other._isinfinity():
1146                    return context._raise_error(InvalidOperation, '-INF + INF')
1147                return Decimal(self)
1148            if other._isinfinity():
1149                return Decimal(other)  # Can't both be infinity here
1150
1151        exp = min(self._exp, other._exp)
1152        negativezero = 0
1153        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
1154            # If the answer is 0, the sign should be negative, in this case.
1155            negativezero = 1
1156
1157        if not self and not other:
1158            sign = min(self._sign, other._sign)
1159            if negativezero:
1160                sign = 1
1161            ans = _dec_from_triple(sign, '0', exp)
1162            ans = ans._fix(context)
1163            return ans
1164        if not self:
1165            exp = max(exp, other._exp - context.prec-1)
1166            ans = other._rescale(exp, context.rounding)
1167            ans = ans._fix(context)
1168            return ans
1169        if not other:
1170            exp = max(exp, self._exp - context.prec-1)
1171            ans = self._rescale(exp, context.rounding)
1172            ans = ans._fix(context)
1173            return ans
1174
1175        op1 = _WorkRep(self)
1176        op2 = _WorkRep(other)
1177        op1, op2 = _normalize(op1, op2, context.prec)
1178
1179        result = _WorkRep()
1180        if op1.sign != op2.sign:
1181            # Equal and opposite
1182            if op1.int == op2.int:
1183                ans = _dec_from_triple(negativezero, '0', exp)
1184                ans = ans._fix(context)
1185                return ans
1186            if op1.int < op2.int:
1187                op1, op2 = op2, op1
1188                # OK, now abs(op1) > abs(op2)
1189            if op1.sign == 1:
1190                result.sign = 1
1191                op1.sign, op2.sign = op2.sign, op1.sign
1192            else:
1193                result.sign = 0
1194                # So we know the sign, and op1 > 0.
1195        elif op1.sign == 1:
1196            result.sign = 1
1197            op1.sign, op2.sign = (0, 0)
1198        else:
1199            result.sign = 0
1200        # Now, op1 > abs(op2) > 0
1201
1202        if op2.sign == 0:
1203            result.int = op1.int + op2.int
1204        else:
1205            result.int = op1.int - op2.int
1206
1207        result.exp = op1.exp
1208        ans = Decimal(result)
1209        ans = ans._fix(context)
1210        return ans
1211
1212    __radd__ = __add__
1213
1214    def __sub__(self, other, context=None):
1215        """Return self - other"""
1216        other = _convert_other(other)
1217        if other is NotImplemented:
1218            return other
1219
1220        if self._is_special or other._is_special:
1221            ans = self._check_nans(other, context=context)
1222            if ans:
1223                return ans
1224
1225        # self - other is computed as self + other.copy_negate()
1226        return self.__add__(other.copy_negate(), context=context)
1227
1228    def __rsub__(self, other, context=None):
1229        """Return other - self"""
1230        other = _convert_other(other)
1231        if other is NotImplemented:
1232            return other
1233
1234        return other.__sub__(self, context=context)
1235
1236    def __mul__(self, other, context=None):
1237        """Return self * other.
1238
1239        (+-) INF * 0 (or its reverse) raise InvalidOperation.
1240        """
1241        other = _convert_other(other)
1242        if other is NotImplemented:
1243            return other
1244
1245        if context is None:
1246            context = getcontext()
1247
1248        resultsign = self._sign ^ other._sign
1249
1250        if self._is_special or other._is_special:
1251            ans = self._check_nans(other, context)
1252            if ans:
1253                return ans
1254
1255            if self._isinfinity():
1256                if not other:
1257                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
1258                return _SignedInfinity[resultsign]
1259
1260            if other._isinfinity():
1261                if not self:
1262                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
1263                return _SignedInfinity[resultsign]
1264
1265        resultexp = self._exp + other._exp
1266
1267        # Special case for multiplying by zero
1268        if not self or not other:
1269            ans = _dec_from_triple(resultsign, '0', resultexp)
1270            # Fixing in case the exponent is out of bounds
1271            ans = ans._fix(context)
1272            return ans
1273
1274        # Special case for multiplying by power of 10
1275        if self._int == '1':
1276            ans = _dec_from_triple(resultsign, other._int, resultexp)
1277            ans = ans._fix(context)
1278            return ans
1279        if other._int == '1':
1280            ans = _dec_from_triple(resultsign, self._int, resultexp)
1281            ans = ans._fix(context)
1282            return ans
1283
1284        op1 = _WorkRep(self)
1285        op2 = _WorkRep(other)
1286
1287        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
1288        ans = ans._fix(context)
1289
1290        return ans
1291    __rmul__ = __mul__
1292
1293    def __truediv__(self, other, context=None):
1294        """Return self / other."""
1295        other = _convert_other(other)
1296        if other is NotImplemented:
1297            return NotImplemented
1298
1299        if context is None:
1300            context = getcontext()
1301
1302        sign = self._sign ^ other._sign
1303
1304        if self._is_special or other._is_special:
1305            ans = self._check_nans(other, context)
1306            if ans:
1307                return ans
1308
1309            if self._isinfinity() and other._isinfinity():
1310                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
1311
1312            if self._isinfinity():
1313                return _SignedInfinity[sign]
1314
1315            if other._isinfinity():
1316                context._raise_error(Clamped, 'Division by infinity')
1317                return _dec_from_triple(sign, '0', context.Etiny())
1318
1319        # Special cases for zeroes
1320        if not other:
1321            if not self:
1322                return context._raise_error(DivisionUndefined, '0 / 0')
1323            return context._raise_error(DivisionByZero, 'x / 0', sign)
1324
1325        if not self:
1326            exp = self._exp - other._exp
1327            coeff = 0
1328        else:
1329            # OK, so neither = 0, INF or NaN
1330            shift = len(other._int) - len(self._int) + context.prec + 1
1331            exp = self._exp - other._exp - shift
1332            op1 = _WorkRep(self)
1333            op2 = _WorkRep(other)
1334            if shift >= 0:
1335                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
1336            else:
1337                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
1338            if remainder:
1339                # result is not exact; adjust to ensure correct rounding
1340                if coeff % 5 == 0:
1341                    coeff += 1
1342            else:
1343                # result is exact; get as close to ideal exponent as possible
1344                ideal_exp = self._exp - other._exp
1345                while exp < ideal_exp and coeff % 10 == 0:
1346                    coeff //= 10
1347                    exp += 1
1348
1349        ans = _dec_from_triple(sign, str(coeff), exp)
1350        return ans._fix(context)
1351
1352    def _divide(self, other, context):
1353        """Return (self // other, self % other), to context.prec precision.
1354
1355        Assumes that neither self nor other is a NaN, that self is not
1356        infinite and that other is nonzero.
1357        """
1358        sign = self._sign ^ other._sign
1359        if other._isinfinity():
1360            ideal_exp = self._exp
1361        else:
1362            ideal_exp = min(self._exp, other._exp)
1363
1364        expdiff = self.adjusted() - other.adjusted()
1365        if not self or other._isinfinity() or expdiff <= -2:
1366            return (_dec_from_triple(sign, '0', 0),
1367                    self._rescale(ideal_exp, context.rounding))
1368        if expdiff <= context.prec:
1369            op1 = _WorkRep(self)
1370            op2 = _WorkRep(other)
1371            if op1.exp >= op2.exp:
1372                op1.int *= 10**(op1.exp - op2.exp)
1373            else:
1374                op2.int *= 10**(op2.exp - op1.exp)
1375            q, r = divmod(op1.int, op2.int)
1376            if q < 10**context.prec:
1377                return (_dec_from_triple(sign, str(q), 0),
1378                        _dec_from_triple(self._sign, str(r), ideal_exp))
1379
1380        # Here the quotient is too large to be representable
1381        ans = context._raise_error(DivisionImpossible,
1382                                   'quotient too large in //, % or divmod')
1383        return ans, ans
1384
1385    def __rtruediv__(self, other, context=None):
1386        """Swaps self/other and returns __truediv__."""
1387        other = _convert_other(other)
1388        if other is NotImplemented:
1389            return other
1390        return other.__truediv__(self, context=context)
1391
1392    __div__ = __truediv__
1393    __rdiv__ = __rtruediv__
1394
1395    def __divmod__(self, other, context=None):
1396        """
1397        Return (self // other, self % other)
1398        """
1399        other = _convert_other(other)
1400        if other is NotImplemented:
1401            return other
1402
1403        if context is None:
1404            context = getcontext()
1405
1406        ans = self._check_nans(other, context)
1407        if ans:
1408            return (ans, ans)
1409
1410        sign = self._sign ^ other._sign
1411        if self._isinfinity():
1412            if other._isinfinity():
1413                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
1414                return ans, ans
1415            else:
1416                return (_SignedInfinity[sign],
1417                        context._raise_error(InvalidOperation, 'INF % x'))
1418
1419        if not other:
1420            if not self:
1421                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
1422                return ans, ans
1423            else:
1424                return (context._raise_error(DivisionByZero, 'x // 0', sign),
1425                        context._raise_error(InvalidOperation, 'x % 0'))
1426
1427        quotient, remainder = self._divide(other, context)
1428        remainder = remainder._fix(context)
1429        return quotient, remainder
1430
1431    def __rdivmod__(self, other, context=None):
1432        """Swaps self/other and returns __divmod__."""
1433        other = _convert_other(other)
1434        if other is NotImplemented:
1435            return other
1436        return other.__divmod__(self, context=context)
1437
1438    def __mod__(self, other, context=None):
1439        """
1440        self % other
1441        """
1442        other = _convert_other(other)
1443        if other is NotImplemented:
1444            return other
1445
1446        if context is None:
1447            context = getcontext()
1448
1449        ans = self._check_nans(other, context)
1450        if ans:
1451            return ans
1452
1453        if self._isinfinity():
1454            return context._raise_error(InvalidOperation, 'INF % x')
1455        elif not other:
1456            if self:
1457                return context._raise_error(InvalidOperation, 'x % 0')
1458            else:
1459                return context._raise_error(DivisionUndefined, '0 % 0')
1460
1461        remainder = self._divide(other, context)[1]
1462        remainder = remainder._fix(context)
1463        return remainder
1464
1465    def __rmod__(self, other, context=None):
1466        """Swaps self/other and returns __mod__."""
1467        other = _convert_other(other)
1468        if other is NotImplemented:
1469            return other
1470        return other.__mod__(self, context=context)
1471
1472    def remainder_near(self, other, context=None):
1473        """
1474        Remainder nearest to 0-  abs(remainder-near) <= other/2
1475        """
1476        if context is None:
1477            context = getcontext()
1478
1479        other = _convert_other(other, raiseit=True)
1480
1481        ans = self._check_nans(other, context)
1482        if ans:
1483            return ans
1484
1485        # self == +/-infinity -> InvalidOperation
1486        if self._isinfinity():
1487            return context._raise_error(InvalidOperation,
1488                                        'remainder_near(infinity, x)')
1489
1490        # other == 0 -> either InvalidOperation or DivisionUndefined
1491        if not other:
1492            if self:
1493                return context._raise_error(InvalidOperation,
1494                                            'remainder_near(x, 0)')
1495            else:
1496                return context._raise_error(DivisionUndefined,
1497                                            'remainder_near(0, 0)')
1498
1499        # other = +/-infinity -> remainder = self
1500        if other._isinfinity():
1501            ans = Decimal(self)
1502            return ans._fix(context)
1503
1504        # self = 0 -> remainder = self, with ideal exponent
1505        ideal_exponent = min(self._exp, other._exp)
1506        if not self:
1507            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
1508            return ans._fix(context)
1509
1510        # catch most cases of large or small quotient
1511        expdiff = self.adjusted() - other.adjusted()
1512        if expdiff >= context.prec + 1:
1513            # expdiff >= prec+1 => abs(self/other) > 10**prec
1514            return context._raise_error(DivisionImpossible)
1515        if expdiff <= -2:
1516            # expdiff <= -2 => abs(self/other) < 0.1
1517            ans = self._rescale(ideal_exponent, context.rounding)
1518            return ans._fix(context)
1519
1520        # adjust both arguments to have the same exponent, then divide
1521        op1 = _WorkRep(self)
1522        op2 = _WorkRep(other)
1523        if op1.exp >= op2.exp:
1524            op1.int *= 10**(op1.exp - op2.exp)
1525        else:
1526            op2.int *= 10**(op2.exp - op1.exp)
1527        q, r = divmod(op1.int, op2.int)
1528        # remainder is r*10**ideal_exponent; other is +/-op2.int *
1529        # 10**ideal_exponent.   Apply correction to ensure that
1530        # abs(remainder) <= abs(other)/2
1531        if 2*r + (q&1) > op2.int:
1532            r -= op2.int
1533            q += 1
1534
1535        if q >= 10**context.prec:
1536            return context._raise_error(DivisionImpossible)
1537
1538        # result has same sign as self unless r is negative
1539        sign = self._sign
1540        if r < 0:
1541            sign = 1-sign
1542            r = -r
1543
1544        ans = _dec_from_triple(sign, str(r), ideal_exponent)
1545        return ans._fix(context)
1546
1547    def __floordiv__(self, other, context=None):
1548        """self // other"""
1549        other = _convert_other(other)
1550        if other is NotImplemented:
1551            return other
1552
1553        if context is None:
1554            context = getcontext()
1555
1556        ans = self._check_nans(other, context)
1557        if ans:
1558            return ans
1559
1560        if self._isinfinity():
1561            if other._isinfinity():
1562                return context._raise_error(InvalidOperation, 'INF // INF')
1563            else:
1564                return _SignedInfinity[self._sign ^ other._sign]
1565
1566        if not other:
1567            if self:
1568                return context._raise_error(DivisionByZero, 'x // 0',
1569                                            self._sign ^ other._sign)
1570            else:
1571                return context._raise_error(DivisionUndefined, '0 // 0')
1572
1573        return self._divide(other, context)[0]
1574
1575    def __rfloordiv__(self, other, context=None):
1576        """Swaps self/other and returns __floordiv__."""
1577        other = _convert_other(other)
1578        if other is NotImplemented:
1579            return other
1580        return other.__floordiv__(self, context=context)
1581
1582    def __float__(self):
1583        """Float representation."""
1584        return float(str(self))
1585
1586    def __int__(self):
1587        """Converts self to an int, truncating if necessary."""
1588        if self._is_special:
1589            if self._isnan():
1590                raise ValueError("Cannot convert NaN to integer")
1591            elif self._isinfinity():
1592                raise OverflowError("Cannot convert infinity to integer")
1593        s = (-1)**self._sign
1594        if self._exp >= 0:
1595            return s*int(self._int)*10**self._exp
1596        else:
1597            return s*int(self._int[:self._exp] or '0')
1598
1599    __trunc__ = __int__
1600
1601    def real(self):
1602        return self
1603    real = property(real)
1604
1605    def imag(self):
1606        return Decimal(0)
1607    imag = property(imag)
1608
1609    def conjugate(self):
1610        return self
1611
1612    def __complex__(self):
1613        return complex(float(self))
1614
1615    def __long__(self):
1616        """Converts to a long.
1617
1618        Equivalent to long(int(self))
1619        """
1620        return long(self.__int__())
1621
1622    def _fix_nan(self, context):
1623        """Decapitate the payload of a NaN to fit the context"""
1624        payload = self._int
1625
1626        # maximum length of payload is precision if _clamp=0,
1627        # precision-1 if _clamp=1.
1628        max_payload_len = context.prec - context._clamp
1629        if len(payload) > max_payload_len:
1630            payload = payload[len(payload)-max_payload_len:].lstrip('0')
1631            return _dec_from_triple(self._sign, payload, self._exp, True)
1632        return Decimal(self)
1633
1634    def _fix(self, context):
1635        """Round if it is necessary to keep self within prec precision.
1636
1637        Rounds and fixes the exponent.  Does not raise on a sNaN.
1638
1639        Arguments:
1640        self - Decimal instance
1641        context - context used.
1642        """
1643
1644        if self._is_special:
1645            if self._isnan():
1646                # decapitate payload if necessary
1647                return self._fix_nan(context)
1648            else:
1649                # self is +/-Infinity; return unaltered
1650                return Decimal(self)
1651
1652        # if self is zero then exponent should be between Etiny and
1653        # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
1654        Etiny = context.Etiny()
1655        Etop = context.Etop()
1656        if not self:
1657            exp_max = [context.Emax, Etop][context._clamp]
1658            new_exp = min(max(self._exp, Etiny), exp_max)
1659            if new_exp != self._exp:
1660                context._raise_error(Clamped)
1661                return _dec_from_triple(self._sign, '0', new_exp)
1662            else:
1663                return Decimal(self)
1664
1665        # exp_min is the smallest allowable exponent of the result,
1666        # equal to max(self.adjusted()-context.prec+1, Etiny)
1667        exp_min = len(self._int) + self._exp - context.prec
1668        if exp_min > Etop:
1669            # overflow: exp_min > Etop iff self.adjusted() > Emax
1670            ans = context._raise_error(Overflow, 'above Emax', self._sign)
1671            context._raise_error(Inexact)
1672            context._raise_error(Rounded)
1673            return ans
1674
1675        self_is_subnormal = exp_min < Etiny
1676        if self_is_subnormal:
1677            exp_min = Etiny
1678
1679        # round if self has too many digits
1680        if self._exp < exp_min:
1681            digits = len(self._int) + self._exp - exp_min
1682            if digits < 0:
1683                self = _dec_from_triple(self._sign, '1', exp_min-1)
1684                digits = 0
1685            rounding_method = self._pick_rounding_function[context.rounding]
1686            changed = rounding_method(self, digits)
1687            coeff = self._int[:digits] or '0'
1688            if changed > 0:
1689                coeff = str(int(coeff)+1)
1690                if len(coeff) > context.prec:
1691                    coeff = coeff[:-1]
1692                    exp_min += 1
1693
1694            # check whether the rounding pushed the exponent out of range
1695            if exp_min > Etop:
1696                ans = context._raise_error(Overflow, 'above Emax', self._sign)
1697            else:
1698                ans = _dec_from_triple(self._sign, coeff, exp_min)
1699
1700            # raise the appropriate signals, taking care to respect
1701            # the precedence described in the specification
1702            if changed and self_is_subnormal:
1703                context._raise_error(Underflow)
1704            if self_is_subnormal:
1705                context._raise_error(Subnormal)
1706            if changed:
1707                context._raise_error(Inexact)
1708            context._raise_error(Rounded)
1709            if not ans:
1710                # raise Clamped on underflow to 0
1711                context._raise_error(Clamped)
1712            return ans
1713
1714        if self_is_subnormal:
1715            context._raise_error(Subnormal)
1716
1717        # fold down if _clamp == 1 and self has too few digits
1718        if context._clamp == 1 and self._exp > Etop:
1719            context._raise_error(Clamped)
1720            self_padded = self._int + '0'*(self._exp - Etop)
1721            return _dec_from_triple(self._sign, self_padded, Etop)
1722
1723        # here self was representable to begin with; return unchanged
1724        return Decimal(self)
1725
1726    # for each of the rounding functions below:
1727    #   self is a finite, nonzero Decimal
1728    #   prec is an integer satisfying 0 <= prec < len(self._int)
1729    #
1730    # each function returns either -1, 0, or 1, as follows:
1731    #   1 indicates that self should be rounded up (away from zero)
1732    #   0 indicates that self should be truncated, and that all the
1733    #     digits to be truncated are zeros (so the value is unchanged)
1734    #  -1 indicates that there are nonzero digits to be truncated
1735
1736    def _round_down(self, prec):
1737        """Also known as round-towards-0, truncate."""
1738        if _all_zeros(self._int, prec):
1739            return 0
1740        else:
1741            return -1
1742
1743    def _round_up(self, prec):
1744        """Rounds away from 0."""
1745        return -self._round_down(prec)
1746
1747    def _round_half_up(self, prec):
1748        """Rounds 5 up (away from 0)"""
1749        if self._int[prec] in '56789':
1750            return 1
1751        elif _all_zeros(self._int, prec):
1752            return 0
1753        else:
1754            return -1
1755
1756    def _round_half_down(self, prec):
1757        """Round 5 down"""
1758        if _exact_half(self._int, prec):
1759            return -1
1760        else:
1761            return self._round_half_up(prec)
1762
1763    def _round_half_even(self, prec):
1764        """Round 5 to even, rest to nearest."""
1765        if _exact_half(self._int, prec) and \
1766                (prec == 0 or self._int[prec-1] in '02468'):
1767            return -1
1768        else:
1769            return self._round_half_up(prec)
1770
1771    def _round_ceiling(self, prec):
1772        """Rounds up (not away from 0 if negative.)"""
1773        if self._sign:
1774            return self._round_down(prec)
1775        else:
1776            return -self._round_down(prec)
1777
1778    def _round_floor(self, prec):
1779        """Rounds down (not towards 0 if negative)"""
1780        if not self._sign:
1781            return self._round_down(prec)
1782        else:
1783            return -self._round_down(prec)
1784
1785    def _round_05up(self, prec):
1786        """Round down unless digit prec-1 is 0 or 5."""
1787        if prec and self._int[prec-1] not in '05':
1788            return self._round_down(prec)
1789        else:
1790            return -self._round_down(prec)
1791
1792    _pick_rounding_function = dict(
1793        ROUND_DOWN = _round_down,
1794        ROUND_UP = _round_up,
1795        ROUND_HALF_UP = _round_half_up,
1796        ROUND_HALF_DOWN = _round_half_down,
1797        ROUND_HALF_EVEN = _round_half_even,
1798        ROUND_CEILING = _round_ceiling,
1799        ROUND_FLOOR = _round_floor,
1800        ROUND_05UP = _round_05up,
1801    )
1802
1803    def fma(self, other, third, context=None):
1804        """Fused multiply-add.
1805
1806        Returns self*other+third with no rounding of the intermediate
1807        product self*other.
1808
1809        self and other are multiplied together, with no rounding of
1810        the result.  The third operand is then added to the result,
1811        and a single final rounding is performed.
1812        """
1813
1814        other = _convert_other(other, raiseit=True)
1815
1816        # compute product; raise InvalidOperation if either operand is
1817        # a signaling NaN or if the product is zero times infinity.
1818        if self._is_special or other._is_special:
1819            if context is None:
1820                context = getcontext()
1821            if self._exp == 'N':
1822                return context._raise_error(InvalidOperation, 'sNaN', self)
1823            if other._exp == 'N':
1824                return context._raise_error(InvalidOperation, 'sNaN', other)
1825            if self._exp == 'n':
1826                product = self
1827            elif other._exp == 'n':
1828                product = other
1829            elif self._exp == 'F':
1830                if not other:
1831                    return context._raise_error(InvalidOperation,
1832                                                'INF * 0 in fma')
1833                product = _SignedInfinity[self._sign ^ other._sign]
1834            elif other._exp == 'F':
1835                if not self:
1836                    return context._raise_error(InvalidOperation,
1837                                                '0 * INF in fma')
1838                product = _SignedInfinity[self._sign ^ other._sign]
1839        else:
1840            product = _dec_from_triple(self._sign ^ other._sign,
1841                                       str(int(self._int) * int(other._int)),
1842                                       self._exp + other._exp)
1843
1844        third = _convert_other(third, raiseit=True)
1845        return product.__add__(third, context)
1846
1847    def _power_modulo(self, other, modulo, context=None):
1848        """Three argument version of __pow__"""
1849
1850        # if can't convert other and modulo to Decimal, raise
1851        # TypeError; there's no point returning NotImplemented (no
1852        # equivalent of __rpow__ for three argument pow)
1853        other = _convert_other(other, raiseit=True)
1854        modulo = _convert_other(modulo, raiseit=True)
1855
1856        if context is None:
1857            context = getcontext()
1858
1859        # deal with NaNs: if there are any sNaNs then first one wins,
1860        # (i.e. behaviour for NaNs is identical to that of fma)
1861        self_is_nan = self._isnan()
1862        other_is_nan = other._isnan()
1863        modulo_is_nan = modulo._isnan()
1864        if self_is_nan or other_is_nan or modulo_is_nan:
1865            if self_is_nan == 2:
1866                return context._raise_error(InvalidOperation, 'sNaN',
1867                                        self)
1868            if other_is_nan == 2:
1869                return context._raise_error(InvalidOperation, 'sNaN',
1870                                        other)
1871            if modulo_is_nan == 2:
1872                return context._raise_error(InvalidOperation, 'sNaN',
1873                                        modulo)
1874            if self_is_nan:
1875                return self._fix_nan(context)
1876            if other_is_nan:
1877                return other._fix_nan(context)
1878            return modulo._fix_nan(context)
1879
1880        # check inputs: we apply same restrictions as Python's pow()
1881        if not (self._isinteger() and
1882                other._isinteger() and
1883                modulo._isinteger()):
1884            return context._raise_error(InvalidOperation,
1885                                        'pow() 3rd argument not allowed '
1886                                        'unless all arguments are integers')
1887        if other < 0:
1888            return context._raise_error(InvalidOperation,
1889                                        'pow() 2nd argument cannot be '
1890                                        'negative when 3rd argument specified')
1891        if not modulo:
1892            return context._raise_error(InvalidOperation,
1893                                        'pow() 3rd argument cannot be 0')
1894
1895        # additional restriction for decimal: the modulus must be less
1896        # than 10**prec in absolute value
1897        if modulo.adjusted() >= context.prec:
1898            return context._raise_error(InvalidOperation,
1899                                        'insufficient precision: pow() 3rd '
1900                                        'argument must not have more than '
1901                                        'precision digits')
1902
1903        # define 0**0 == NaN, for consistency with two-argument pow
1904        # (even though it hurts!)
1905        if not other and not self:
1906            return context._raise_error(InvalidOperation,
1907                                        'at least one of pow() 1st argument '
1908                                        'and 2nd argument must be nonzero ;'
1909                                        '0**0 is not defined')
1910
1911        # compute sign of result
1912        if other._iseven():
1913            sign = 0
1914        else:
1915            sign = self._sign
1916
1917        # convert modulo to a Python integer, and self and other to
1918        # Decimal integers (i.e. force their exponents to be >= 0)
1919        modulo = abs(int(modulo))
1920        base = _WorkRep(self.to_integral_value())
1921        exponent = _WorkRep(other.to_integral_value())
1922
1923        # compute result using integer pow()
1924        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
1925        for i in xrange(exponent.exp):
1926            base = pow(base, 10, modulo)
1927        base = pow(base, exponent.int, modulo)
1928
1929        return _dec_from_triple(sign, str(base), 0)
1930
1931    def _power_exact(self, other, p):
1932        """Attempt to compute self**other exactly.
1933
1934        Given Decimals self and other and an integer p, attempt to
1935        compute an exact result for the power self**other, with p
1936        digits of precision.  Return None if self**other is not
1937        exactly representable in p digits.
1938
1939        Assumes that elimination of special cases has already been
1940        performed: self and other must both be nonspecial; self must
1941        be positive and not numerically equal to 1; other must be
1942        nonzero.  For efficiency, other._exp should not be too large,
1943        so that 10**abs(other._exp) is a feasible calculation."""
1944
1945        # In the comments below, we write x for the value of self and
1946        # y for the value of other.  Write x = xc*10**xe and y =
1947        # yc*10**ye.
1948
1949        # The main purpose of this method is to identify the *failure*
1950        # of x**y to be exactly representable with as little effort as
1951        # possible.  So we look for cheap and easy tests that
1952        # eliminate the possibility of x**y being exact.  Only if all
1953        # these tests are passed do we go on to actually compute x**y.
1954
1955        # Here's the main idea.  First normalize both x and y.  We
1956        # express y as a rational m/n, with m and n relatively prime
1957        # and n>0.  Then for x**y to be exactly representable (at
1958        # *any* precision), xc must be the nth power of a positive
1959        # integer and xe must be divisible by n.  If m is negative
1960        # then additionally xc must be a power of either 2 or 5, hence
1961        # a power of 2**n or 5**n.
1962        #
1963        # There's a limit to how small |y| can be: if y=m/n as above
1964        # then:
1965        #
1966        #  (1) if xc != 1 then for the result to be representable we
1967        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
1968        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
1969        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
1970        #      representable.
1971        #
1972        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
1973        #      |y| < 1/|xe| then the result is not representable.
1974        #
1975        # Note that since x is not equal to 1, at least one of (1) and
1976        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
1977        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
1978        #
1979        # There's also a limit to how large y can be, at least if it's
1980        # positive: the normalized result will have coefficient xc**y,
1981        # so if it's representable then xc**y < 10**p, and y <
1982        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
1983        # not exactly representable.
1984
1985        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
1986        # so |y| < 1/xe and the result is not representable.
1987        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
1988        # < 1/nbits(xc).
1989
1990        x = _WorkRep(self)
1991        xc, xe = x.int, x.exp
1992        while xc % 10 == 0:
1993            xc //= 10
1994            xe += 1
1995
1996        y = _WorkRep(other)
1997        yc, ye = y.int, y.exp
1998        while yc % 10 == 0:
1999            yc //= 10
2000            ye += 1
2001
2002        # case where xc == 1: result is 10**(xe*y), with xe*y
2003        # required to be an integer
2004        if xc == 1:
2005            xe *= yc
2006            # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral
2007            while xe % 10 == 0:
2008                xe //= 10
2009                ye += 1
2010            if ye < 0:
2011                return None
2012            exponent = xe * 10**ye
2013            if y.sign == 1:
2014                exponent = -exponent
2015            # if other is a nonnegative integer, use ideal exponent
2016            if other._isinteger() and other._sign == 0:
2017                ideal_exponent = self._exp*int(other)
2018                zeros = min(exponent-ideal_exponent, p-1)
2019            else:
2020                zeros = 0
2021            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
2022
2023        # case where y is negative: xc must be either a power
2024        # of 2 or a power of 5.
2025        if y.sign == 1:
2026            last_digit = xc % 10
2027            if last_digit in (2,4,6,8):
2028                # quick test for power of 2
2029                if xc & -xc != xc:
2030                    return None
2031                # now xc is a power of 2; e is its exponent
2032                e = _nbits(xc)-1
2033                # find e*y and xe*y; both must be integers
2034                if ye >= 0:
2035                    y_as_int = yc*10**ye
2036                    e = e*y_as_int
2037                    xe = xe*y_as_int
2038                else:
2039                    ten_pow = 10**-ye
2040                    e, remainder = divmod(e*yc, ten_pow)
2041                    if remainder:
2042                        return None
2043                    xe, remainder = divmod(xe*yc, ten_pow)
2044                    if remainder:
2045                        return None
2046
2047                if e*65 >= p*93: # 93/65 > log(10)/log(5)
2048                    return None
2049                xc = 5**e
2050
2051            elif last_digit == 5:
2052                # e >= log_5(xc) if xc is a power of 5; we have
2053                # equality all the way up to xc=5**2658
2054                e = _nbits(xc)*28//65
2055                xc, remainder = divmod(5**e, xc)
2056                if remainder:
2057                    return None
2058                while xc % 5 == 0:
2059                    xc //= 5
2060                    e -= 1
2061                if ye >= 0:
2062                    y_as_integer = yc*10**ye
2063                    e = e*y_as_integer
2064                    xe = xe*y_as_integer
2065                else:
2066                    ten_pow = 10**-ye
2067                    e, remainder = divmod(e*yc, ten_pow)
2068                    if remainder:
2069                        return None
2070                    xe, remainder = divmod(xe*yc, ten_pow)
2071                    if remainder:
2072                        return None
2073                if e*3 >= p*10: # 10/3 > log(10)/log(2)
2074                    return None
2075                xc = 2**e
2076            else:
2077                return None
2078
2079            if xc >= 10**p:
2080                return None
2081            xe = -e-xe
2082            return _dec_from_triple(0, str(xc), xe)
2083
2084        # now y is positive; find m and n such that y = m/n
2085        if ye >= 0:
2086            m, n = yc*10**ye, 1
2087        else:
2088            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
2089                return None
2090            xc_bits = _nbits(xc)
2091            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
2092                return None
2093            m, n = yc, 10**(-ye)
2094            while m % 2 == n % 2 == 0:
2095                m //= 2
2096                n //= 2
2097            while m % 5 == n % 5 == 0:
2098                m //= 5
2099                n //= 5
2100
2101        # compute nth root of xc*10**xe
2102        if n > 1:
2103            # if 1 < xc < 2**n then xc isn't an nth power
2104            if xc != 1 and xc_bits <= n:
2105                return None
2106
2107            xe, rem = divmod(xe, n)
2108            if rem != 0:
2109                return None
2110
2111            # compute nth root of xc using Newton's method
2112            a = 1L << -(-_nbits(xc)//n) # initial estimate
2113            while True:
2114                q, r = divmod(xc, a**(n-1))
2115                if a <= q:
2116                    break
2117                else:
2118                    a = (a*(n-1) + q)//n
2119            if not (a == q and r == 0):
2120                return None
2121            xc = a
2122
2123        # now xc*10**xe is the nth root of the original xc*10**xe
2124        # compute mth power of xc*10**xe
2125
2126        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
2127        # 10**p and the result is not representable.
2128        if xc > 1 and m > p*100//_log10_lb(xc):
2129            return None
2130        xc = xc**m
2131        xe *= m
2132        if xc > 10**p:
2133            return None
2134
2135        # by this point the result *is* exactly representable
2136        # adjust the exponent to get as close as possible to the ideal
2137        # exponent, if necessary
2138        str_xc = str(xc)
2139        if other._isinteger() and other._sign == 0:
2140            ideal_exponent = self._exp*int(other)
2141            zeros = min(xe-ideal_exponent, p-len(str_xc))
2142        else:
2143            zeros = 0
2144        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
2145
2146    def __pow__(self, other, modulo=None, context=None):
2147        """Return self ** other [ % modulo].
2148
2149        With two arguments, compute self**other.
2150
2151        With three arguments, compute (self**other) % modulo.  For the
2152        three argument form, the following restrictions on the
2153        arguments hold:
2154
2155         - all three arguments must be integral
2156         - other must be nonnegative
2157         - either self or other (or both) must be nonzero
2158         - modulo must be nonzero and must have at most p digits,
2159           where p is the context precision.
2160
2161        If any of these restrictions is violated the InvalidOperation
2162        flag is raised.
2163
2164        The result of pow(self, other, modulo) is identical to the
2165        result that would be obtained by computing (self**other) %
2166        modulo with unbounded precision, but is computed more
2167        efficiently.  It is always exact.
2168        """
2169
2170        if modulo is not None:
2171            return self._power_modulo(other, modulo, context)
2172
2173        other = _convert_other(other)
2174        if other is NotImplemented:
2175            return other
2176
2177        if context is None:
2178            context = getcontext()
2179
2180        # either argument is a NaN => result is NaN
2181        ans = self._check_nans(other, context)
2182        if ans:
2183            return ans
2184
2185        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
2186        if not other:
2187            if not self:
2188                return context._raise_error(InvalidOperation, '0 ** 0')
2189            else:
2190                return _One
2191
2192        # result has sign 1 iff self._sign is 1 and other is an odd integer
2193        result_sign = 0
2194        if self._sign == 1:
2195            if other._isinteger():
2196                if not other._iseven():
2197                    result_sign = 1
2198            else:
2199                # -ve**noninteger = NaN
2200                # (-0)**noninteger = 0**noninteger
2201                if self:
2202                    return context._raise_error(InvalidOperation,
2203                        'x ** y with x negative and y not an integer')
2204            # negate self, without doing any unwanted rounding
2205            self = self.copy_negate()
2206
2207        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
2208        if not self:
2209            if other._sign == 0:
2210                return _dec_from_triple(result_sign, '0', 0)
2211            else:
2212                return _SignedInfinity[result_sign]
2213
2214        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
2215        if self._isinfinity():
2216            if other._sign == 0:
2217                return _SignedInfinity[result_sign]
2218            else:
2219                return _dec_from_triple(result_sign, '0', 0)
2220
2221        # 1**other = 1, but the choice of exponent and the flags
2222        # depend on the exponent of self, and on whether other is a
2223        # positive integer, a negative integer, or neither
2224        if self == _One:
2225            if other._isinteger():
2226                # exp = max(self._exp*max(int(other), 0),
2227                # 1-context.prec) but evaluating int(other) directly
2228                # is dangerous until we know other is small (other
2229                # could be 1e999999999)
2230                if other._sign == 1:
2231                    multiplier = 0
2232                elif other > context.prec:
2233                    multiplier = context.prec
2234                else:
2235                    multiplier = int(other)
2236
2237                exp = self._exp * multiplier
2238                if exp < 1-context.prec:
2239                    exp = 1-context.prec
2240                    context._raise_error(Rounded)
2241            else:
2242                context._raise_error(Inexact)
2243                context._raise_error(Rounded)
2244                exp = 1-context.prec
2245
2246            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
2247
2248        # compute adjusted exponent of self
2249        self_adj = self.adjusted()
2250
2251        # self ** infinity is infinity if self > 1, 0 if self < 1
2252        # self ** -infinity is infinity if self < 1, 0 if self > 1
2253        if other._isinfinity():
2254            if (other._sign == 0) == (self_adj < 0):
2255                return _dec_from_triple(result_sign, '0', 0)
2256            else:
2257                return _SignedInfinity[result_sign]
2258
2259        # from here on, the result always goes through the call
2260        # to _fix at the end of this function.
2261        ans = None
2262        exact = False
2263
2264        # crude test to catch cases of extreme overflow/underflow.  If
2265        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
2266        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
2267        # self**other >= 10**(Emax+1), so overflow occurs.  The test
2268        # for underflow is similar.
2269        bound = self._log10_exp_bound() + other.adjusted()
2270        if (self_adj >= 0) == (other._sign == 0):
2271            # self > 1 and other +ve, or self < 1 and other -ve
2272            # possibility of overflow
2273            if bound >= len(str(context.Emax)):
2274                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
2275        else:
2276            # self > 1 and other -ve, or self < 1 and other +ve
2277            # possibility of underflow to 0
2278            Etiny = context.Etiny()
2279            if bound >= len(str(-Etiny)):
2280                ans = _dec_from_triple(result_sign, '1', Etiny-1)
2281
2282        # try for an exact result with precision +1
2283        if ans is None:
2284            ans = self._power_exact(other, context.prec + 1)
2285            if ans is not None:
2286                if result_sign == 1:
2287                    ans = _dec_from_triple(1, ans._int, ans._exp)
2288                exact = True
2289
2290        # usual case: inexact result, x**y computed directly as exp(y*log(x))
2291        if ans is None:
2292            p = context.prec
2293            x = _WorkRep(self)
2294            xc, xe = x.int, x.exp
2295            y = _WorkRep(other)
2296            yc, ye = y.int, y.exp
2297            if y.sign == 1:
2298                yc = -yc
2299
2300            # compute correctly rounded result:  start with precision +3,
2301            # then increase precision until result is unambiguously roundable
2302            extra = 3
2303            while True:
2304                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
2305                if coeff % (5*10**(len(str(coeff))-p-1)):
2306                    break
2307                extra += 3
2308
2309            ans = _dec_from_triple(result_sign, str(coeff), exp)
2310
2311        # unlike exp, ln and log10, the power function respects the
2312        # rounding mode; no need to switch to ROUND_HALF_EVEN here
2313
2314        # There's a difficulty here when 'other' is not an integer and
2315        # the result is exact.  In this case, the specification
2316        # requires that the Inexact flag be raised (in spite of
2317        # exactness), but since the result is exact _fix won't do this
2318        # for us.  (Correspondingly, the Underflow signal should also
2319        # be raised for subnormal results.)  We can't directly raise
2320        # these signals either before or after calling _fix, since
2321        # that would violate the precedence for signals.  So we wrap
2322        # the ._fix call in a temporary context, and reraise
2323        # afterwards.
2324        if exact and not other._isinteger():
2325            # pad with zeros up to length context.prec+1 if necessary; this
2326            # ensures that the Rounded signal will be raised.
2327            if len(ans._int) <= context.prec:
2328                expdiff = context.prec + 1 - len(ans._int)
2329                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
2330                                       ans._exp-expdiff)
2331
2332            # create a copy of the current context, with cleared flags/traps
2333            newcontext = context.copy()
2334            newcontext.clear_flags()
2335            for exception in _signals:
2336                newcontext.traps[exception] = 0
2337
2338            # round in the new context
2339            ans = ans._fix(newcontext)
2340
2341            # raise Inexact, and if necessary, Underflow
2342            newcontext._raise_error(Inexact)
2343            if newcontext.flags[Subnormal]:
2344                newcontext._raise_error(Underflow)
2345
2346            # propagate signals to the original context; _fix could
2347            # have raised any of Overflow, Underflow, Subnormal,
2348            # Inexact, Rounded, Clamped.  Overflow needs the correct
2349            # arguments.  Note that the order of the exceptions is
2350            # important here.
2351            if newcontext.flags[Overflow]:
2352                context._raise_error(Overflow, 'above Emax', ans._sign)
2353            for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
2354                if newcontext.flags[exception]:
2355                    context._raise_error(exception)
2356
2357        else:
2358            ans = ans._fix(context)
2359
2360        return ans
2361
2362    def __rpow__(self, other, context=None):
2363        """Swaps self/other and returns __pow__."""
2364        other = _convert_other(other)
2365        if other is NotImplemented:
2366            return other
2367        return other.__pow__(self, context=context)
2368
2369    def normalize(self, context=None):
2370        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
2371
2372        if context is None:
2373            context = getcontext()
2374
2375        if self._is_special:
2376            ans = self._check_nans(context=context)
2377            if ans:
2378                return ans
2379
2380        dup = self._fix(context)
2381        if dup._isinfinity():
2382            return dup
2383
2384        if not dup:
2385            return _dec_from_triple(dup._sign, '0', 0)
2386        exp_max = [context.Emax, context.Etop()][context._clamp]
2387        end = len(dup._int)
2388        exp = dup._exp
2389        while dup._int[end-1] == '0' and exp < exp_max:
2390            exp += 1
2391            end -= 1
2392        return _dec_from_triple(dup._sign, dup._int[:end], exp)
2393
2394    def quantize(self, exp, rounding=None, context=None, watchexp=True):
2395        """Quantize self so its exponent is the same as that of exp.
2396
2397        Similar to self._rescale(exp._exp) but with error checking.
2398        """
2399        exp = _convert_other(exp, raiseit=True)
2400
2401        if context is None:
2402            context = getcontext()
2403        if rounding is None:
2404            rounding = context.rounding
2405
2406        if self._is_special or exp._is_special:
2407            ans = self._check_nans(exp, context)
2408            if ans:
2409                return ans
2410
2411            if exp._isinfinity() or self._isinfinity():
2412                if exp._isinfinity() and self._isinfinity():
2413                    return Decimal(self)  # if both are inf, it is OK
2414                return context._raise_error(InvalidOperation,
2415                                        'quantize with one INF')
2416
2417        # if we're not watching exponents, do a simple rescale
2418        if not watchexp:
2419            ans = self._rescale(exp._exp, rounding)
2420            # raise Inexact and Rounded where appropriate
2421            if ans._exp > self._exp:
2422                context._raise_error(Rounded)
2423                if ans != self:
2424                    context._raise_error(Inexact)
2425            return ans
2426
2427        # exp._exp should be between Etiny and Emax
2428        if not (context.Etiny() <= exp._exp <= context.Emax):
2429            return context._raise_error(InvalidOperation,
2430                   'target exponent out of bounds in quantize')
2431
2432        if not self:
2433            ans = _dec_from_triple(self._sign, '0', exp._exp)
2434            return ans._fix(context)
2435
2436        self_adjusted = self.adjusted()
2437        if self_adjusted > context.Emax:
2438            return context._raise_error(InvalidOperation,
2439                                        'exponent of quantize result too large for current context')
2440        if self_adjusted - exp._exp + 1 > context.prec:
2441            return context._raise_error(InvalidOperation,
2442                                        'quantize result has too many digits for current context')
2443
2444        ans = self._rescale(exp._exp, rounding)
2445        if ans.adjusted() > context.Emax:
2446            return context._raise_error(InvalidOperation,
2447                                        'exponent of quantize result too large for current context')
2448        if len(ans._int) > context.prec:
2449            return context._raise_error(InvalidOperation,
2450                                        'quantize result has too many digits for current context')
2451
2452        # raise appropriate flags
2453        if ans and ans.adjusted() < context.Emin:
2454            context._raise_error(Subnormal)
2455        if ans._exp > self._exp:
2456            if ans != self:
2457                context._raise_error(Inexact)
2458            context._raise_error(Rounded)
2459
2460        # call to fix takes care of any necessary folddown, and
2461        # signals Clamped if necessary
2462        ans = ans._fix(context)
2463        return ans
2464
2465    def same_quantum(self, other):
2466        """Return True if self and other have the same exponent; otherwise
2467        return False.
2468
2469        If either operand is a special value, the following rules are used:
2470           * return True if both operands are infinities
2471           * return True if both operands are NaNs
2472           * otherwise, return False.
2473        """
2474        other = _convert_other(other, raiseit=True)
2475        if self._is_special or other._is_special:
2476            return (self.is_nan() and other.is_nan() or
2477                    self.is_infinite() and other.is_infinite())
2478        return self._exp == other._exp
2479
2480    def _rescale(self, exp, rounding):
2481        """Rescale self so that the exponent is exp, either by padding with zeros
2482        or by truncating digits, using the given rounding mode.
2483
2484        Specials are returned without change.  This operation is
2485        quiet: it raises no flags, and uses no information from the
2486        context.
2487
2488        exp = exp to scale to (an integer)
2489        rounding = rounding mode
2490        """
2491        if self._is_special:
2492            return Decimal(self)
2493        if not self:
2494            return _dec_from_triple(self._sign, '0', exp)
2495
2496        if self._exp >= exp:
2497            # pad answer with zeros if necessary
2498            return _dec_from_triple(self._sign,
2499                                        self._int + '0'*(self._exp - exp), exp)
2500
2501        # too many digits; round and lose data.  If self.adjusted() <
2502        # exp-1, replace self by 10**(exp-1) before rounding
2503        digits = len(self._int) + self._exp - exp
2504        if digits < 0:
2505            self = _dec_from_triple(self._sign, '1', exp-1)
2506            digits = 0
2507        this_function = self._pick_rounding_function[rounding]
2508        changed = this_function(self, digits)
2509        coeff = self._int[:digits] or '0'
2510        if changed == 1:
2511            coeff = str(int(coeff)+1)
2512        return _dec_from_triple(self._sign, coeff, exp)
2513
2514    def _round(self, places, rounding):
2515        """Round a nonzero, nonspecial Decimal to a fixed number of
2516        significant figures, using the given rounding mode.
2517
2518        Infinities, NaNs and zeros are returned unaltered.
2519
2520        This operation is quiet: it raises no flags, and uses no
2521        information from the context.
2522
2523        """
2524        if places <= 0:
2525            raise ValueError("argument should be at least 1 in _round")
2526        if self._is_special or not self:
2527            return Decimal(self)
2528        ans = self._rescale(self.adjusted()+1-places, rounding)
2529        # it can happen that the rescale alters the adjusted exponent;
2530        # for example when rounding 99.97 to 3 significant figures.
2531        # When this happens we end up with an extra 0 at the end of
2532        # the number; a second rescale fixes this.
2533        if ans.adjusted() != self.adjusted():
2534            ans = ans._rescale(ans.adjusted()+1-places, rounding)
2535        return ans
2536
2537    def to_integral_exact(self, rounding=None, context=None):
2538        """Rounds to a nearby integer.
2539
2540        If no rounding mode is specified, take the rounding mode from
2541        the context.  This method raises the Rounded and Inexact flags
2542        when appropriate.
2543
2544        See also: to_integral_value, which does exactly the same as
2545        this method except that it doesn't raise Inexact or Rounded.
2546        """
2547        if self._is_special:
2548            ans = self._check_nans(context=context)
2549            if ans:
2550                return ans
2551            return Decimal(self)
2552        if self._exp >= 0:
2553            return Decimal(self)
2554        if not self:
2555            return _dec_from_triple(self._sign, '0', 0)
2556        if context is None:
2557            context = getcontext()
2558        if rounding is None:
2559            rounding = context.rounding
2560        ans = self._rescale(0, rounding)
2561        if ans != self:
2562            context._raise_error(Inexact)
2563        context._raise_error(Rounded)
2564        return ans
2565
2566    def to_integral_value(self, rounding=None, context=None):
2567        """Rounds to the nearest integer, without raising inexact, rounded."""
2568        if context is None:
2569            context = getcontext()
2570        if rounding is None:
2571            rounding = context.rounding
2572        if self._is_special:
2573            ans = self._check_nans(context=context)
2574            if ans:
2575                return ans
2576            return Decimal(self)
2577        if self._exp >= 0:
2578            return Decimal(self)
2579        else:
2580            return self._rescale(0, rounding)
2581
2582    # the method name changed, but we provide also the old one, for compatibility
2583    to_integral = to_integral_value
2584
2585    def sqrt(self, context=None):
2586        """Return the square root of self."""
2587        if context is None:
2588            context = getcontext()
2589
2590        if self._is_special:
2591            ans = self._check_nans(context=context)
2592            if ans:
2593                return ans
2594
2595            if self._isinfinity() and self._sign == 0:
2596                return Decimal(self)
2597
2598        if not self:
2599            # exponent = self._exp // 2.  sqrt(-0) = -0
2600            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
2601            return ans._fix(context)
2602
2603        if self._sign == 1:
2604            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
2605
2606        # At this point self represents a positive number.  Let p be
2607        # the desired precision and express self in the form c*100**e
2608        # with c a positive real number and e an integer, c and e
2609        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
2610        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
2611        # <= sqrt(c) < 10**p, so the closest representable Decimal at
2612        # precision p is n*10**e where n = round_half_even(sqrt(c)),
2613        # the closest integer to sqrt(c) with the even integer chosen
2614        # in the case of a tie.
2615        #
2616        # To ensure correct rounding in all cases, we use the
2617        # following trick: we compute the square root to an extra
2618        # place (precision p+1 instead of precision p), rounding down.
2619        # Then, if the result is inexact and its last digit is 0 or 5,
2620        # we increase the last digit to 1 or 6 respectively; if it's
2621        # exact we leave the last digit alone.  Now the final round to
2622        # p places (or fewer in the case of underflow) will round
2623        # correctly and raise the appropriate flags.
2624
2625        # use an extra digit of precision
2626        prec = context.prec+1
2627
2628        # write argument in the form c*100**e where e = self._exp//2
2629        # is the 'ideal' exponent, to be used if the square root is
2630        # exactly representable.  l is the number of 'digits' of c in
2631        # base 100, so that 100**(l-1) <= c < 100**l.
2632        op = _WorkRep(self)
2633        e = op.exp >> 1
2634        if op.exp & 1:
2635            c = op.int * 10
2636            l = (len(self._int) >> 1) + 1
2637        else:
2638            c = op.int
2639            l = len(self._int)+1 >> 1
2640
2641        # rescale so that c has exactly prec base 100 'digits'
2642        shift = prec-l
2643        if shift >= 0:
2644            c *= 100**shift
2645            exact = True
2646        else:
2647            c, remainder = divmod(c, 100**-shift)
2648            exact = not remainder
2649        e -= shift
2650
2651        # find n = floor(sqrt(c)) using Newton's method
2652        n = 10**prec
2653        while True:
2654            q = c//n
2655            if n <= q:
2656                break
2657            else:
2658                n = n + q >> 1
2659        exact = exact and n*n == c
2660
2661        if exact:
2662            # result is exact; rescale to use ideal exponent e
2663            if shift >= 0:
2664                # assert n % 10**shift == 0
2665                n //= 10**shift
2666            else:
2667                n *= 10**-shift
2668            e += shift
2669        else:
2670            # result is not exact; fix last digit as described above
2671            if n % 5 == 0:
2672                n += 1
2673
2674        ans = _dec_from_triple(0, str(n), e)
2675
2676        # round, and fit to current context
2677        context = context._shallow_copy()
2678        rounding = context._set_rounding(ROUND_HALF_EVEN)
2679        ans = ans._fix(context)
2680        context.rounding = rounding
2681
2682        return ans
2683
2684    def max(self, other, context=None):
2685        """Returns the larger value.
2686
2687        Like max(self, other) except if one is not a number, returns
2688        NaN (and signals if one is sNaN).  Also rounds.
2689        """
2690        other = _convert_other(other, raiseit=True)
2691
2692        if context is None:
2693            context = getcontext()
2694
2695        if self._is_special or other._is_special:
2696            # If one operand is a quiet NaN and the other is number, then the
2697            # number is always returned
2698            sn = self._isnan()
2699            on = other._isnan()
2700            if sn or on:
2701                if on == 1 and sn == 0:
2702                    return self._fix(context)
2703                if sn == 1 and on == 0:
2704                    return other._fix(context)
2705                return self._check_nans(other, context)
2706
2707        c = self._cmp(other)
2708        if c == 0:
2709            # If both operands are finite and equal in numerical value
2710            # then an ordering is applied:
2711            #
2712            # If the signs differ then max returns the operand with the
2713            # positive sign and min returns the operand with the negative sign
2714            #
2715            # If the signs are the same then the exponent is used to select
2716            # the result.  This is exactly the ordering used in compare_total.
2717            c = self.compare_total(other)
2718
2719        if c == -1:
2720            ans = other
2721        else:
2722            ans = self
2723
2724        return ans._fix(context)
2725
2726    def min(self, other, context=None):
2727        """Returns the smaller value.
2728
2729        Like min(self, other) except if one is not a number, returns
2730        NaN (and signals if one is sNaN).  Also rounds.
2731        """
2732        other = _convert_other(other, raiseit=True)
2733
2734        if context is None:
2735            context = getcontext()
2736
2737        if self._is_special or other._is_special:
2738            # If one operand is a quiet NaN and the other is number, then the
2739            # number is always returned
2740            sn = self._isnan()
2741            on = other._isnan()
2742            if sn or on:
2743                if on == 1 and sn == 0:
2744                    return self._fix(context)
2745                if sn == 1 and on == 0:
2746                    return other._fix(context)
2747                return self._check_nans(other, context)
2748
2749        c = self._cmp(other)
2750        if c == 0:
2751            c = self.compare_total(other)
2752
2753        if c == -1:
2754            ans = self
2755        else:
2756            ans = other
2757
2758        return ans._fix(context)
2759
2760    def _isinteger(self):
2761        """Returns whether self is an integer"""
2762        if self._is_special:
2763            return False
2764        if self._exp >= 0:
2765            return True
2766        rest = self._int[self._exp:]
2767        return rest == '0'*len(rest)
2768
2769    def _iseven(self):
2770        """Returns True if self is even.  Assumes self is an integer."""
2771        if not self or self._exp > 0:
2772            return True
2773        return self._int[-1+self._exp] in '02468'
2774
2775    def adjusted(self):
2776        """Return the adjusted exponent of self"""
2777        try:
2778            return self._exp + len(self._int) - 1
2779        # If NaN or Infinity, self._exp is string
2780        except TypeError:
2781            return 0
2782
2783    def canonical(self, context=None):
2784        """Returns the same Decimal object.
2785
2786        As we do not have different encodings for the same number, the
2787        received object already is in its canonical form.
2788        """
2789        return self
2790
2791    def compare_signal(self, other, context=None):
2792        """Compares self to the other operand numerically.
2793
2794        It's pretty much like compare(), but all NaNs signal, with signaling
2795        NaNs taking precedence over quiet NaNs.
2796        """
2797        other = _convert_other(other, raiseit = True)
2798        ans = self._compare_check_nans(other, context)
2799        if ans:
2800            return ans
2801        return self.compare(other, context=context)
2802
2803    def compare_total(self, other):
2804        """Compares self to other using the abstract representations.
2805
2806        This is not like the standard compare, which use their numerical
2807        value. Note that a total ordering is defined for all possible abstract
2808        representations.
2809        """
2810        other = _convert_other(other, raiseit=True)
2811
2812        # if one is negative and the other is positive, it's easy
2813        if self._sign and not other._sign:
2814            return _NegativeOne
2815        if not self._sign and other._sign:
2816            return _One
2817        sign = self._sign
2818
2819        # let's handle both NaN types
2820        self_nan = self._isnan()
2821        other_nan = other._isnan()
2822        if self_nan or other_nan:
2823            if self_nan == other_nan:
2824                # compare payloads as though they're integers
2825                self_key = len(self._int), self._int
2826                other_key = len(other._int), other._int
2827                if self_key < other_key:
2828                    if sign:
2829                        return _One
2830                    else:
2831                        return _NegativeOne
2832                if self_key > other_key:
2833                    if sign:
2834                        return _NegativeOne
2835                    else:
2836                        return _One
2837                return _Zero
2838
2839            if sign:
2840                if self_nan == 1:
2841                    return _NegativeOne
2842                if other_nan == 1:
2843                    return _One
2844                if self_nan == 2:
2845                    return _NegativeOne
2846                if other_nan == 2:
2847                    return _One
2848            else:
2849                if self_nan == 1:
2850                    return _One
2851                if other_nan == 1:
2852                    return _NegativeOne
2853                if self_nan == 2:
2854                    return _One
2855                if other_nan == 2:
2856                    return _NegativeOne
2857
2858        if self < other:
2859            return _NegativeOne
2860        if self > other:
2861            return _One
2862
2863        if self._exp < other._exp:
2864            if sign:
2865                return _One
2866            else:
2867                return _NegativeOne
2868        if self._exp > other._exp:
2869            if sign:
2870                return _NegativeOne
2871            else:
2872                return _One
2873        return _Zero
2874
2875
2876    def compare_total_mag(self, other):
2877        """Compares self to other using abstract repr., ignoring sign.
2878
2879        Like compare_total, but with operand's sign ignored and assumed to be 0.
2880        """
2881        other = _convert_other(other, raiseit=True)
2882
2883        s = self.copy_abs()
2884        o = other.copy_abs()
2885        return s.compare_total(o)
2886
2887    def copy_abs(self):
2888        """Returns a copy with the sign set to 0. """
2889        return _dec_from_triple(0, self._int, self._exp, self._is_special)
2890
2891    def copy_negate(self):
2892        """Returns a copy with the sign inverted."""
2893        if self._sign:
2894            return _dec_from_triple(0, self._int, self._exp, self._is_special)
2895        else:
2896            return _dec_from_triple(1, self._int, self._exp, self._is_special)
2897
2898    def copy_sign(self, other):
2899        """Returns self with the sign of other."""
2900        other = _convert_other(other, raiseit=True)
2901        return _dec_from_triple(other._sign, self._int,
2902                                self._exp, self._is_special)
2903
2904    def exp(self, context=None):
2905        """Returns e ** self."""
2906
2907        if context is None:
2908            context = getcontext()
2909
2910        # exp(NaN) = NaN
2911        ans = self._check_nans(context=context)
2912        if ans:
2913            return ans
2914
2915        # exp(-Infinity) = 0
2916        if self._isinfinity() == -1:
2917            return _Zero
2918
2919        # exp(0) = 1
2920        if not self:
2921            return _One
2922
2923        # exp(Infinity) = Infinity
2924        if self._isinfinity() == 1:
2925            return Decimal(self)
2926
2927        # the result is now guaranteed to be inexact (the true
2928        # mathematical result is transcendental). There's no need to
2929        # raise Rounded and Inexact here---they'll always be raised as
2930        # a result of the call to _fix.
2931        p = context.prec
2932        adj = self.adjusted()
2933
2934        # we only need to do any computation for quite a small range
2935        # of adjusted exponents---for example, -29 <= adj <= 10 for
2936        # the default context.  For smaller exponent the result is
2937        # indistinguishable from 1 at the given precision, while for
2938        # larger exponent the result either overflows or underflows.
2939        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
2940            # overflow
2941            ans = _dec_from_triple(0, '1', context.Emax+1)
2942        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
2943            # underflow to 0
2944            ans = _dec_from_triple(0, '1', context.Etiny()-1)
2945        elif self._sign == 0 and adj < -p:
2946            # p+1 digits; final round will raise correct flags
2947            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
2948        elif self._sign == 1 and adj < -p-1:
2949            # p+1 digits; final round will raise correct flags
2950            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
2951        # general case
2952        else:
2953            op = _WorkRep(self)
2954            c, e = op.int, op.exp
2955            if op.sign == 1:
2956                c = -c
2957
2958            # compute correctly rounded result: increase precision by
2959            # 3 digits at a time until we get an unambiguously
2960            # roundable result
2961            extra = 3
2962            while True:
2963                coeff, exp = _dexp(c, e, p+extra)
2964                if coeff % (5*10**(len(str(coeff))-p-1)):
2965                    break
2966                extra += 3
2967
2968            ans = _dec_from_triple(0, str(coeff), exp)
2969
2970        # at this stage, ans should round correctly with *any*
2971        # rounding mode, not just with ROUND_HALF_EVEN
2972        context = context._shallow_copy()
2973        rounding = context._set_rounding(ROUND_HALF_EVEN)
2974        ans = ans._fix(context)
2975        context.rounding = rounding
2976
2977        return ans
2978
2979    def is_canonical(self):
2980        """Return True if self is canonical; otherwise return False.
2981
2982        Currently, the encoding of a Decimal instance is always
2983        canonical, so this method returns True for any Decimal.
2984        """
2985        return True
2986
2987    def is_finite(self):
2988        """Return True if self is finite; otherwise return False.
2989
2990        A Decimal instance is considered finite if it is neither
2991        infinite nor a NaN.
2992        """
2993        return not self._is_special
2994
2995    def is_infinite(self):
2996        """Return True if self is infinite; otherwise return False."""
2997        return self._exp == 'F'
2998
2999    def is_nan(self):
3000        """Return True if self is a qNaN or sNaN; otherwise return False."""
3001        return self._exp in ('n', 'N')
3002
3003    def is_normal(self, context=None):
3004        """Return True if self is a normal number; otherwise return False."""
3005        if self._is_special or not self:
3006            return False
3007        if context is None:
3008            context = getcontext()
3009        return context.Emin <= self.adjusted()
3010
3011    def is_qnan(self):
3012        """Return True if self is a quiet NaN; otherwise return False."""
3013        return self._exp == 'n'
3014
3015    def is_signed(self):
3016        """Return True if self is negative; otherwise return False."""
3017        return self._sign == 1
3018
3019    def is_snan(self):
3020        """Return True if self is a signaling NaN; otherwise return False."""
3021        return self._exp == 'N'
3022
3023    def is_subnormal(self, context=None):
3024        """Return True if self is subnormal; otherwise return False."""
3025        if self._is_special or not self:
3026            return False
3027        if context is None:
3028            context = getcontext()
3029        return self.adjusted() < context.Emin
3030
3031    def is_zero(self):
3032        """Return True if self is a zero; otherwise return False."""
3033        return not self._is_special and self._int == '0'
3034
3035    def _ln_exp_bound(self):
3036        """Compute a lower bound for the adjusted exponent of self.ln().
3037        In other words, compute r such that self.ln() >= 10**r.  Assumes
3038        that self is finite and positive and that self != 1.
3039        """
3040
3041        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
3042        adj = self._exp + len(self._int) - 1
3043        if adj >= 1:
3044            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
3045            return len(str(adj*23//10)) - 1
3046        if adj <= -2:
3047            # argument <= 0.1
3048            return len(str((-1-adj)*23//10)) - 1
3049        op = _WorkRep(self)
3050        c, e = op.int, op.exp
3051        if adj == 0:
3052            # 1 < self < 10
3053            num = str(c-10**-e)
3054            den = str(c)
3055            return len(num) - len(den) - (num < den)
3056        # adj == -1, 0.1 <= self < 1
3057        return e + len(str(10**-e - c)) - 1
3058
3059
3060    def ln(self, context=None):
3061        """Returns the natural (base e) logarithm of self."""
3062
3063        if context is None:
3064            context = getcontext()
3065
3066        # ln(NaN) = NaN
3067        ans = self._check_nans(context=context)
3068        if ans:
3069            return ans
3070
3071        # ln(0.0) == -Infinity
3072        if not self:
3073            return _NegativeInfinity
3074
3075        # ln(Infinity) = Infinity
3076        if self._isinfinity() == 1:
3077            return _Infinity
3078
3079        # ln(1.0) == 0.0
3080        if self == _One:
3081            return _Zero
3082
3083        # ln(negative) raises InvalidOperation
3084        if self._sign == 1:
3085            return context._raise_error(InvalidOperation,
3086                                        'ln of a negative value')
3087
3088        # result is irrational, so necessarily inexact
3089        op = _WorkRep(self)
3090        c, e = op.int, op.exp
3091        p = context.prec
3092
3093        # correctly rounded result: repeatedly increase precision by 3
3094        # until we get an unambiguously roundable result
3095        places = p - self._ln_exp_bound() + 2 # at least p+3 places
3096        while True:
3097            coeff = _dlog(c, e, places)
3098            # assert len(str(abs(coeff)))-p >= 1
3099            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3100                break
3101            places += 3
3102        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3103
3104        context = context._shallow_copy()
3105        rounding = context._set_rounding(ROUND_HALF_EVEN)
3106        ans = ans._fix(context)
3107        context.rounding = rounding
3108        return ans
3109
3110    def _log10_exp_bound(self):
3111        """Compute a lower bound for the adjusted exponent of self.log10().
3112        In other words, find r such that self.log10() >= 10**r.
3113        Assumes that self is finite and positive and that self != 1.
3114        """
3115
3116        # For x >= 10 or x < 0.1 we only need a bound on the integer
3117        # part of log10(self), and this comes directly from the
3118        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
3119        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
3120        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
3121
3122        adj = self._exp + len(self._int) - 1
3123        if adj >= 1:
3124            # self >= 10
3125            return len(str(adj))-1
3126        if adj <= -2:
3127            # self < 0.1
3128            return len(str(-1-adj))-1
3129        op = _WorkRep(self)
3130        c, e = op.int, op.exp
3131        if adj == 0:
3132            # 1 < self < 10
3133            num = str(c-10**-e)
3134            den = str(231*c)
3135            return len(num) - len(den) - (num < den) + 2
3136        # adj == -1, 0.1 <= self < 1
3137        num = str(10**-e-c)
3138        return len(num) + e - (num < "231") - 1
3139
3140    def log10(self, context=None):
3141        """Returns the base 10 logarithm of self."""
3142
3143        if context is None:
3144            context = getcontext()
3145
3146        # log10(NaN) = NaN
3147        ans = self._check_nans(context=context)
3148        if ans:
3149            return ans
3150
3151        # log10(0.0) == -Infinity
3152        if not self:
3153            return _NegativeInfinity
3154
3155        # log10(Infinity) = Infinity
3156        if self._isinfinity() == 1:
3157            return _Infinity
3158
3159        # log10(negative or -Infinity) raises InvalidOperation
3160        if self._sign == 1:
3161            return context._raise_error(InvalidOperation,
3162                                        'log10 of a negative value')
3163
3164        # log10(10**n) = n
3165        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
3166            # answer may need rounding
3167            ans = Decimal(self._exp + len(self._int) - 1)
3168        else:
3169            # result is irrational, so necessarily inexact
3170            op = _WorkRep(self)
3171            c, e = op.int, op.exp
3172            p = context.prec
3173
3174            # correctly rounded result: repeatedly increase precision
3175            # until result is unambiguously roundable
3176            places = p-self._log10_exp_bound()+2
3177            while True:
3178                coeff = _dlog10(c, e, places)
3179                # assert len(str(abs(coeff)))-p >= 1
3180                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
3181                    break
3182                places += 3
3183            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
3184
3185        context = context._shallow_copy()
3186        rounding = context._set_rounding(ROUND_HALF_EVEN)
3187        ans = ans._fix(context)
3188        context.rounding = rounding
3189        return ans
3190
3191    def logb(self, context=None):
3192        """ Returns the exponent of the magnitude of self's MSD.
3193
3194        The result is the integer which is the exponent of the magnitude
3195        of the most significant digit of self (as though it were truncated
3196        to a single digit while maintaining the value of that digit and
3197        without limiting the resulting exponent).
3198        """
3199        # logb(NaN) = NaN
3200        ans = self._check_nans(context=context)
3201        if ans:
3202            return ans
3203
3204        if context is None:
3205            context = getcontext()
3206
3207        # logb(+/-Inf) = +Inf
3208        if self._isinfinity():
3209            return _Infinity
3210
3211        # logb(0) = -Inf, DivisionByZero
3212        if not self:
3213            return context._raise_error(DivisionByZero, 'logb(0)', 1)
3214
3215        # otherwise, simply return the adjusted exponent of self, as a
3216        # Decimal.  Note that no attempt is made to fit the result
3217        # into the current context.
3218        ans = Decimal(self.adjusted())
3219        return ans._fix(context)
3220
3221    def _islogical(self):
3222        """Return True if self is a logical operand.
3223
3224        For being logical, it must be a finite number with a sign of 0,
3225        an exponent of 0, and a coefficient whose digits must all be
3226        either 0 or 1.
3227        """
3228        if self._sign != 0 or self._exp != 0:
3229            return False
3230        for dig in self._int:
3231            if dig not in '01':
3232                return False
3233        return True
3234
3235    def _fill_logical(self, context, opa, opb):
3236        dif = context.prec - len(opa)
3237        if dif > 0:
3238            opa = '0'*dif + opa
3239        elif dif < 0:
3240            opa = opa[-context.prec:]
3241        dif = context.prec - len(opb)
3242        if dif > 0:
3243            opb = '0'*dif + opb
3244        elif dif < 0:
3245            opb = opb[-context.prec:]
3246        return opa, opb
3247
3248    def logical_and(self, other, context=None):
3249        """Applies an 'and' operation between self and other's digits."""
3250        if context is None:
3251            context = getcontext()
3252
3253        other = _convert_other(other, raiseit=True)
3254
3255        if not self._islogical() or not other._islogical():
3256            return context._raise_error(InvalidOperation)
3257
3258        # fill to context.prec
3259        (opa, opb) = self._fill_logical(context, self._int, other._int)
3260
3261        # make the operation, and clean starting zeroes
3262        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
3263        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3264
3265    def logical_invert(self, context=None):
3266        """Invert all its digits."""
3267        if context is None:
3268            context = getcontext()
3269        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
3270                                context)
3271
3272    def logical_or(self, other, context=None):
3273        """Applies an 'or' operation between self and other's digits."""
3274        if context is None:
3275            context = getcontext()
3276
3277        other = _convert_other(other, raiseit=True)
3278
3279        if not self._islogical() or not other._islogical():
3280            return context._raise_error(InvalidOperation)
3281
3282        # fill to context.prec
3283        (opa, opb) = self._fill_logical(context, self._int, other._int)
3284
3285        # make the operation, and clean starting zeroes
3286        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
3287        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3288
3289    def logical_xor(self, other, context=None):
3290        """Applies an 'xor' operation between self and other's digits."""
3291        if context is None:
3292            context = getcontext()
3293
3294        other = _convert_other(other, raiseit=True)
3295
3296        if not self._islogical() or not other._islogical():
3297            return context._raise_error(InvalidOperation)
3298
3299        # fill to context.prec
3300        (opa, opb) = self._fill_logical(context, self._int, other._int)
3301
3302        # make the operation, and clean starting zeroes
3303        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
3304        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
3305
3306    def max_mag(self, other, context=None):
3307        """Compares the values numerically with their sign ignored."""
3308        other = _convert_other(other, raiseit=True)
3309
3310        if context is None:
3311            context = getcontext()
3312
3313        if self._is_special or other._is_special:
3314            # If one operand is a quiet NaN and the other is number, then the
3315            # number is always returned
3316            sn = self._isnan()
3317            on = other._isnan()
3318            if sn or on:
3319                if on == 1 and sn == 0:
3320                    return self._fix(context)
3321                if sn == 1 and on == 0:
3322                    return other._fix(context)
3323                return self._check_nans(other, context)
3324
3325        c = self.copy_abs()._cmp(other.copy_abs())
3326        if c == 0:
3327            c = self.compare_total(other)
3328
3329        if c == -1:
3330            ans = other
3331        else:
3332            ans = self
3333
3334        return ans._fix(context)
3335
3336    def min_mag(self, other, context=None):
3337        """Compares the values numerically with their sign ignored."""
3338        other = _convert_other(other, raiseit=True)
3339
3340        if context is None:
3341            context = getcontext()
3342
3343        if self._is_special or other._is_special:
3344            # If one operand is a quiet NaN and the other is number, then the
3345            # number is always returned
3346            sn = self._isnan()
3347            on = other._isnan()
3348            if sn or on:
3349                if on == 1 and sn == 0:
3350                    return self._fix(context)
3351                if sn == 1 and on == 0:
3352                    return other._fix(context)
3353                return self._check_nans(other, context)
3354
3355        c = self.copy_abs()._cmp(other.copy_abs())
3356        if c == 0:
3357            c = self.compare_total(other)
3358
3359        if c == -1:
3360            ans = self
3361        else:
3362            ans = other
3363
3364        return ans._fix(context)
3365
3366    def next_minus(self, context=None):
3367        """Returns the largest representable number smaller than itself."""
3368        if context is None:
3369            context = getcontext()
3370
3371        ans = self._check_nans(context=context)
3372        if ans:
3373            return ans
3374
3375        if self._isinfinity() == -1:
3376            return _NegativeInfinity
3377        if self._isinfinity() == 1:
3378            return _dec_from_triple(0, '9'*context.prec, context.Etop())
3379
3380        context = context.copy()
3381        context._set_rounding(ROUND_FLOOR)
3382        context._ignore_all_flags()
3383        new_self = self._fix(context)
3384        if new_self != self:
3385            return new_self
3386        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
3387                            context)
3388
3389    def next_plus(self, context=None):
3390        """Returns the smallest representable number larger than itself."""
3391        if context is None:
3392            context = getcontext()
3393
3394        ans = self._check_nans(context=context)
3395        if ans:
3396            return ans
3397
3398        if self._isinfinity() == 1:
3399            return _Infinity
3400        if self._isinfinity() == -1:
3401            return _dec_from_triple(1, '9'*context.prec, context.Etop())
3402
3403        context = context.copy()
3404        context._set_rounding(ROUND_CEILING)
3405        context._ignore_all_flags()
3406        new_self = self._fix(context)
3407        if new_self != self:
3408            return new_self
3409        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
3410                            context)
3411
3412    def next_toward(self, other, context=None):
3413        """Returns the number closest to self, in the direction towards other.
3414
3415        The result is the closest representable number to self
3416        (excluding self) that is in the direction towards other,
3417        unless both have the same value.  If the two operands are
3418        numerically equal, then the result is a copy of self with the
3419        sign set to be the same as the sign of other.
3420        """
3421        other = _convert_other(other, raiseit=True)
3422
3423        if context is None:
3424            context = getcontext()
3425
3426        ans = self._check_nans(other, context)
3427        if ans:
3428            return ans
3429
3430        comparison = self._cmp(other)
3431        if comparison == 0:
3432            return self.copy_sign(other)
3433
3434        if comparison == -1:
3435            ans = self.next_plus(context)
3436        else: # comparison == 1
3437            ans = self.next_minus(context)
3438
3439        # decide which flags to raise using value of ans
3440        if ans._isinfinity():
3441            context._raise_error(Overflow,
3442                                 'Infinite result from next_toward',
3443                                 ans._sign)
3444            context._raise_error(Inexact)
3445            context._raise_error(Rounded)
3446        elif ans.adjusted() < context.Emin:
3447            context._raise_error(Underflow)
3448            context._raise_error(Subnormal)
3449            context._raise_error(Inexact)
3450            context._raise_error(Rounded)
3451            # if precision == 1 then we don't raise Clamped for a
3452            # result 0E-Etiny.
3453            if not ans:
3454                context._raise_error(Clamped)
3455
3456        return ans
3457
3458    def number_class(self, context=None):
3459        """Returns an indication of the class of self.
3460
3461        The class is one of the following strings:
3462          sNaN
3463          NaN
3464          -Infinity
3465          -Normal
3466          -Subnormal
3467          -Zero
3468          +Zero
3469          +Subnormal
3470          +Normal
3471          +Infinity
3472        """
3473        if self.is_snan():
3474            return "sNaN"
3475        if self.is_qnan():
3476            return "NaN"
3477        inf = self._isinfinity()
3478        if inf == 1:
3479            return "+Infinity"
3480        if inf == -1:
3481            return "-Infinity"
3482        if self.is_zero():
3483            if self._sign:
3484                return "-Zero"
3485            else:
3486                return "+Zero"
3487        if context is None:
3488            context = getcontext()
3489        if self.is_subnormal(context=context):
3490            if self._sign:
3491                return "-Subnormal"
3492            else:
3493                return "+Subnormal"
3494        # just a normal, regular, boring number, :)
3495        if self._sign:
3496            return "-Normal"
3497        else:
3498            return "+Normal"
3499
3500    def radix(self):
3501        """Just returns 10, as this is Decimal, :)"""
3502        return Decimal(10)
3503
3504    def rotate(self, other, context=None):
3505        """Returns a rotated copy of self, value-of-other times."""
3506        if context is None:
3507            context = getcontext()
3508
3509        other = _convert_other(other, raiseit=True)
3510
3511        ans = self._check_nans(other, context)
3512        if ans:
3513            return ans
3514
3515        if other._exp != 0:
3516            return context._raise_error(InvalidOperation)
3517        if not (-context.prec <= int(other) <= context.prec):
3518            return context._raise_error(InvalidOperation)
3519
3520        if self._isinfinity():
3521            return Decimal(self)
3522
3523        # get values, pad if necessary
3524        torot = int(other)
3525        rotdig = self._int
3526        topad = context.prec - len(rotdig)
3527        if topad > 0:
3528            rotdig = '0'*topad + rotdig
3529        elif topad < 0:
3530            rotdig = rotdig[-topad:]
3531
3532        # let's rotate!
3533        rotated = rotdig[torot:] + rotdig[:torot]
3534        return _dec_from_triple(self._sign,
3535                                rotated.lstrip('0') or '0', self._exp)
3536
3537    def scaleb(self, other, context=None):
3538        """Returns self operand after adding the second value to its exp."""
3539        if context is None:
3540            context = getcontext()
3541
3542        other = _convert_other(other, raiseit=True)
3543
3544        ans = self._check_nans(other, context)
3545        if ans:
3546            return ans
3547
3548        if other._exp != 0:
3549            return context._raise_error(InvalidOperation)
3550        liminf = -2 * (context.Emax + context.prec)
3551        limsup =  2 * (context.Emax + context.prec)
3552        if not (liminf <= int(other) <= limsup):
3553            return context._raise_error(InvalidOperation)
3554
3555        if self._isinfinity():
3556            return Decimal(self)
3557
3558        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
3559        d = d._fix(context)
3560        return d
3561
3562    def shift(self, other, context=None):
3563        """Returns a shifted copy of self, value-of-other times."""
3564        if context is None:
3565            context = getcontext()
3566
3567        other = _convert_other(other, raiseit=True)
3568
3569        ans = self._check_nans(other, context)
3570        if ans:
3571            return ans
3572
3573        if other._exp != 0:
3574            return context._raise_error(InvalidOperation)
3575        if not (-context.prec <= int(other) <= context.prec):
3576            return context._raise_error(InvalidOperation)
3577
3578        if self._isinfinity():
3579            return Decimal(self)
3580
3581        # get values, pad if necessary
3582        torot = int(other)
3583        rotdig = self._int
3584        topad = context.prec - len(rotdig)
3585        if topad > 0:
3586            rotdig = '0'*topad + rotdig
3587        elif topad < 0:
3588            rotdig = rotdig[-topad:]
3589
3590        # let's shift!
3591        if torot < 0:
3592            shifted = rotdig[:torot]
3593        else:
3594            shifted = rotdig + '0'*torot
3595            shifted = shifted[-context.prec:]
3596
3597        return _dec_from_triple(self._sign,
3598                                    shifted.lstrip('0') or '0', self._exp)
3599
3600    # Support for pickling, copy, and deepcopy
3601    def __reduce__(self):
3602        return (self.__class__, (str(self),))
3603
3604    def __copy__(self):
3605        if type(self) is Decimal:
3606            return self     # I'm immutable; therefore I am my own clone
3607        return self.__class__(str(self))
3608
3609    def __deepcopy__(self, memo):
3610        if type(self) is Decimal:
3611            return self     # My components are also immutable
3612        return self.__class__(str(self))
3613
3614    # PEP 3101 support.  the _localeconv keyword argument should be
3615    # considered private: it's provided for ease of testing only.
3616    def __format__(self, specifier, context=None, _localeconv=None):
3617        """Format a Decimal instance according to the given specifier.
3618
3619        The specifier should be a standard format specifier, with the
3620        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
3621        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
3622        type is omitted it defaults to 'g' or 'G', depending on the
3623        value of context.capitals.
3624        """
3625
3626        # Note: PEP 3101 says that if the type is not present then
3627        # there should be at least one digit after the decimal point.
3628        # We take the liberty of ignoring this requirement for
3629        # Decimal---it's presumably there to make sure that
3630        # format(float, '') behaves similarly to str(float).
3631        if context is None:
3632            context = getcontext()
3633
3634        spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
3635
3636        # special values don't care about the type or precision
3637        if self._is_special:
3638            sign = _format_sign(self._sign, spec)
3639            body = str(self.copy_abs())
3640            return _format_align(sign, body, spec)
3641
3642        # a type of None defaults to 'g' or 'G', depending on context
3643        if spec['type'] is None:
3644            spec['type'] = ['g', 'G'][context.capitals]
3645
3646        # if type is '%', adjust exponent of self accordingly
3647        if spec['type'] == '%':
3648            self = _dec_from_triple(self._sign, self._int, self._exp+2)
3649
3650        # round if necessary, taking rounding mode from the context
3651        rounding = context.rounding
3652        precision = spec['precision']
3653        if precision is not None:
3654            if spec['type'] in 'eE':
3655                self = self._round(precision+1, rounding)
3656            elif spec['type'] in 'fF%':
3657                self = self._rescale(-precision, rounding)
3658            elif spec['type'] in 'gG' and len(self._int) > precision:
3659                self = self._round(precision, rounding)
3660        # special case: zeros with a positive exponent can't be
3661        # represented in fixed point; rescale them to 0e0.
3662        if not self and self._exp > 0 and spec['type'] in 'fF%':
3663            self = self._rescale(0, rounding)
3664
3665        # figure out placement of the decimal point
3666        leftdigits = self._exp + len(self._int)
3667        if spec['type'] in 'eE':
3668            if not self and precision is not None:
3669                dotplace = 1 - precision
3670            else:
3671                dotplace = 1
3672        elif spec['type'] in 'fF%':
3673            dotplace = leftdigits
3674        elif spec['type'] in 'gG':
3675            if self._exp <= 0 and leftdigits > -6:
3676                dotplace = leftdigits
3677            else:
3678                dotplace = 1
3679
3680        # find digits before and after decimal point, and get exponent
3681        if dotplace < 0:
3682            intpart = '0'
3683            fracpart = '0'*(-dotplace) + self._int
3684        elif dotplace > len(self._int):
3685            intpart = self._int + '0'*(dotplace-len(self._int))
3686            fracpart = ''
3687        else:
3688            intpart = self._int[:dotplace] or '0'
3689            fracpart = self._int[dotplace:]
3690        exp = leftdigits-dotplace
3691
3692        # done with the decimal-specific stuff;  hand over the rest
3693        # of the formatting to the _format_number function
3694        return _format_number(self._sign, intpart, fracpart, exp, spec)
3695
3696def _dec_from_triple(sign, coefficient, exponent, special=False):
3697    """Create a decimal instance directly, without any validation,
3698    normalization (e.g. removal of leading zeros) or argument
3699    conversion.
3700
3701    This function is for *internal use only*.
3702    """
3703
3704    self = object.__new__(Decimal)
3705    self._sign = sign
3706    self._int = coefficient
3707    self._exp = exponent
3708    self._is_special = special
3709
3710    return self
3711
3712# Register Decimal as a kind of Number (an abstract base class).
3713# However, do not register it as Real (because Decimals are not
3714# interoperable with floats).
3715_numbers.Number.register(Decimal)
3716
3717
3718##### Context class #######################################################
3719
3720class _ContextManager(object):
3721    """Context manager class to support localcontext().
3722
3723      Sets a copy of the supplied context in __enter__() and restores
3724      the previous decimal context in __exit__()
3725    """
3726    def __init__(self, new_context):
3727        self.new_context = new_context.copy()
3728    def __enter__(self):
3729        self.saved_context = getcontext()
3730        setcontext(self.new_context)
3731        return self.new_context
3732    def __exit__(self, t, v, tb):
3733        setcontext(self.saved_context)
3734
3735class Context(object):
3736    """Contains the context for a Decimal instance.
3737
3738    Contains:
3739    prec - precision (for use in rounding, division, square roots..)
3740    rounding - rounding type (how you round)
3741    traps - If traps[exception] = 1, then the exception is
3742                    raised when it is caused.  Otherwise, a value is
3743                    substituted in.
3744    flags  - When an exception is caused, flags[exception] is set.
3745             (Whether or not the trap_enabler is set)
3746             Should be reset by user of Decimal instance.
3747    Emin -   Minimum exponent
3748    Emax -   Maximum exponent
3749    capitals -      If 1, 1*10^1 is printed as 1E+1.
3750                    If 0, printed as 1e1
3751    _clamp - If 1, change exponents if too high (Default 0)
3752    """
3753
3754    def __init__(self, prec=None, rounding=None,
3755                 traps=None, flags=None,
3756                 Emin=None, Emax=None,
3757                 capitals=None, _clamp=0,
3758                 _ignored_flags=None):
3759        # Set defaults; for everything except flags and _ignored_flags,
3760        # inherit from DefaultContext.
3761        try:
3762            dc = DefaultContext
3763        except NameError:
3764            pass
3765
3766        self.prec = prec if prec is not None else dc.prec
3767        self.rounding = rounding if rounding is not None else dc.rounding
3768        self.Emin = Emin if Emin is not None else dc.Emin
3769        self.Emax = Emax if Emax is not None else dc.Emax
3770        self.capitals = capitals if capitals is not None else dc.capitals
3771        self._clamp = _clamp if _clamp is not None else dc._clamp
3772
3773        if _ignored_flags is None:
3774            self._ignored_flags = []
3775        else:
3776            self._ignored_flags = _ignored_flags
3777
3778        if traps is None:
3779            self.traps = dc.traps.copy()
3780        elif not isinstance(traps, dict):
3781            self.traps = dict((s, int(s in traps)) for s in _signals)
3782        else:
3783            self.traps = traps
3784
3785        if flags is None:
3786            self.flags = dict.fromkeys(_signals, 0)
3787        elif not isinstance(flags, dict):
3788            self.flags = dict((s, int(s in flags)) for s in _signals)
3789        else:
3790            self.flags = flags
3791
3792    def __repr__(self):
3793        """Show the current context."""
3794        s = []
3795        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
3796                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d'
3797                 % vars(self))
3798        names = [f.__name__ for f, v in self.flags.items() if v]
3799        s.append('flags=[' + ', '.join(names) + ']')
3800        names = [t.__name__ for t, v in self.traps.items() if v]
3801        s.append('traps=[' + ', '.join(names) + ']')
3802        return ', '.join(s) + ')'
3803
3804    def clear_flags(self):
3805        """Reset all flags to zero"""
3806        for flag in self.flags:
3807            self.flags[flag] = 0
3808
3809    def _shallow_copy(self):
3810        """Returns a shallow copy from self."""
3811        nc = Context(self.prec, self.rounding, self.traps,
3812                     self.flags, self.Emin, self.Emax,
3813                     self.capitals, self._clamp, self._ignored_flags)
3814        return nc
3815
3816    def copy(self):
3817        """Returns a deep copy from self."""
3818        nc = Context(self.prec, self.rounding, self.traps.copy(),
3819                     self.flags.copy(), self.Emin, self.Emax,
3820                     self.capitals, self._clamp, self._ignored_flags)
3821        return nc
3822    __copy__ = copy
3823
3824    def _raise_error(self, condition, explanation = None, *args):
3825        """Handles an error
3826
3827        If the flag is in _ignored_flags, returns the default response.
3828        Otherwise, it sets the flag, then, if the corresponding
3829        trap_enabler is set, it reraises the exception.  Otherwise, it returns
3830        the default value after setting the flag.
3831        """
3832        error = _condition_map.get(condition, condition)
3833        if error in self._ignored_flags:
3834            # Don't touch the flag
3835            return error().handle(self, *args)
3836
3837        self.flags[error] = 1
3838        if not self.traps[error]:
3839            # The errors define how to handle themselves.
3840            return condition().handle(self, *args)
3841
3842        # Errors should only be risked on copies of the context
3843        # self._ignored_flags = []
3844        raise error(explanation)
3845
3846    def _ignore_all_flags(self):
3847        """Ignore all flags, if they are raised"""
3848        return self._ignore_flags(*_signals)
3849
3850    def _ignore_flags(self, *flags):
3851        """Ignore the flags, if they are raised"""
3852        # Do not mutate-- This way, copies of a context leave the original
3853        # alone.
3854        self._ignored_flags = (self._ignored_flags + list(flags))
3855        return list(flags)
3856
3857    def _regard_flags(self, *flags):
3858        """Stop ignoring the flags, if they are raised"""
3859        if flags and isinstance(flags[0], (tuple,list)):
3860            flags = flags[0]
3861        for flag in flags:
3862            self._ignored_flags.remove(flag)
3863
3864    # We inherit object.__hash__, so we must deny this explicitly
3865    __hash__ = None
3866
3867    def Etiny(self):
3868        """Returns Etiny (= Emin - prec + 1)"""
3869        return int(self.Emin - self.prec + 1)
3870
3871    def Etop(self):
3872        """Returns maximum exponent (= Emax - prec + 1)"""
3873        return int(self.Emax - self.prec + 1)
3874
3875    def _set_rounding(self, type):
3876        """Sets the rounding type.
3877
3878        Sets the rounding type, and returns the current (previous)
3879        rounding type.  Often used like:
3880
3881        context = context.copy()
3882        # so you don't change the calling context
3883        # if an error occurs in the middle.
3884        rounding = context._set_rounding(ROUND_UP)
3885        val = self.__sub__(other, context=context)
3886        context._set_rounding(rounding)
3887
3888        This will make it round up for that operation.
3889        """
3890        rounding = self.rounding
3891        self.rounding= type
3892        return rounding
3893
3894    def create_decimal(self, num='0'):
3895        """Creates a new Decimal instance but using self as context.
3896
3897        This method implements the to-number operation of the
3898        IBM Decimal specification."""
3899
3900        if isinstance(num, basestring) and num != num.strip():
3901            return self._raise_error(ConversionSyntax,
3902                                     "no trailing or leading whitespace is "
3903                                     "permitted.")
3904
3905        d = Decimal(num, context=self)
3906        if d._isnan() and len(d._int) > self.prec - self._clamp:
3907            return self._raise_error(ConversionSyntax,
3908                                     "diagnostic info too long in NaN")
3909        return d._fix(self)
3910
3911    def create_decimal_from_float(self, f):
3912        """Creates a new Decimal instance from a float but rounding using self
3913        as the context.
3914
3915        >>> context = Context(prec=5, rounding=ROUND_DOWN)
3916        >>> context.create_decimal_from_float(3.1415926535897932)
3917        Decimal('3.1415')
3918        >>> context = Context(prec=5, traps=[Inexact])
3919        >>> context.create_decimal_from_float(3.1415926535897932)
3920        Traceback (most recent call last):
3921            ...
3922        Inexact: None
3923
3924        """
3925        d = Decimal.from_float(f)       # An exact conversion
3926        return d._fix(self)             # Apply the context rounding
3927
3928    # Methods
3929    def abs(self, a):
3930        """Returns the absolute value of the operand.
3931
3932        If the operand is negative, the result is the same as using the minus
3933        operation on the operand.  Otherwise, the result is the same as using
3934        the plus operation on the operand.
3935
3936        >>> ExtendedContext.abs(Decimal('2.1'))
3937        Decimal('2.1')
3938        >>> ExtendedContext.abs(Decimal('-100'))
3939        Decimal('100')
3940        >>> ExtendedContext.abs(Decimal('101.5'))
3941        Decimal('101.5')
3942        >>> ExtendedContext.abs(Decimal('-101.5'))
3943        Decimal('101.5')
3944        >>> ExtendedContext.abs(-1)
3945        Decimal('1')
3946        """
3947        a = _convert_other(a, raiseit=True)
3948        return a.__abs__(context=self)
3949
3950    def add(self, a, b):
3951        """Return the sum of the two operands.
3952
3953        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
3954        Decimal('19.00')
3955        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
3956        Decimal('1.02E+4')
3957        >>> ExtendedContext.add(1, Decimal(2))
3958        Decimal('3')
3959        >>> ExtendedContext.add(Decimal(8), 5)
3960        Decimal('13')
3961        >>> ExtendedContext.add(5, 5)
3962        Decimal('10')
3963        """
3964        a = _convert_other(a, raiseit=True)
3965        r = a.__add__(b, context=self)
3966        if r is NotImplemented:
3967            raise TypeError("Unable to convert %s to Decimal" % b)
3968        else:
3969            return r
3970
3971    def _apply(self, a):
3972        return str(a._fix(self))
3973
3974    def canonical(self, a):
3975        """Returns the same Decimal object.
3976
3977        As we do not have different encodings for the same number, the
3978        received object already is in its canonical form.
3979
3980        >>> ExtendedContext.canonical(Decimal('2.50'))
3981        Decimal('2.50')
3982        """
3983        return a.canonical(context=self)
3984
3985    def compare(self, a, b):
3986        """Compares values numerically.
3987
3988        If the signs of the operands differ, a value representing each operand
3989        ('-1' if the operand is less than zero, '0' if the operand is zero or
3990        negative zero, or '1' if the operand is greater than zero) is used in
3991        place of that operand for the comparison instead of the actual
3992        operand.
3993
3994        The comparison is then effected by subtracting the second operand from
3995        the first and then returning a value according to the result of the
3996        subtraction: '-1' if the result is less than zero, '0' if the result is
3997        zero or negative zero, or '1' if the result is greater than zero.
3998
3999        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
4000        Decimal('-1')
4001        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
4002        Decimal('0')
4003        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
4004        Decimal('0')
4005        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
4006        Decimal('1')
4007        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
4008        Decimal('1')
4009        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
4010        Decimal('-1')
4011        >>> ExtendedContext.compare(1, 2)
4012        Decimal('-1')
4013        >>> ExtendedContext.compare(Decimal(1), 2)
4014        Decimal('-1')
4015        >>> ExtendedContext.compare(1, Decimal(2))
4016        Decimal('-1')
4017        """
4018        a = _convert_other(a, raiseit=True)
4019        return a.compare(b, context=self)
4020
4021    def compare_signal(self, a, b):
4022        """Compares the values of the two operands numerically.
4023
4024        It's pretty much like compare(), but all NaNs signal, with signaling
4025        NaNs taking precedence over quiet NaNs.
4026
4027        >>> c = ExtendedContext
4028        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
4029        Decimal('-1')
4030        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
4031        Decimal('0')
4032        >>> c.flags[InvalidOperation] = 0
4033        >>> print c.flags[InvalidOperation]
4034        0
4035        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
4036        Decimal('NaN')
4037        >>> print c.flags[InvalidOperation]
4038        1
4039        >>> c.flags[InvalidOperation] = 0
4040        >>> print c.flags[InvalidOperation]
4041        0
4042        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
4043        Decimal('NaN')
4044        >>> print c.flags[InvalidOperation]
4045        1
4046        >>> c.compare_signal(-1, 2)
4047        Decimal('-1')
4048        >>> c.compare_signal(Decimal(-1), 2)
4049        Decimal('-1')
4050        >>> c.compare_signal(-1, Decimal(2))
4051        Decimal('-1')
4052        """
4053        a = _convert_other(a, raiseit=True)
4054        return a.compare_signal(b, context=self)
4055
4056    def compare_total(self, a, b):
4057        """Compares two operands using their abstract representation.
4058
4059        This is not like the standard compare, which use their numerical
4060        value. Note that a total ordering is defined for all possible abstract
4061        representations.
4062
4063        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
4064        Decimal('-1')
4065        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
4066        Decimal('-1')
4067        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
4068        Decimal('-1')
4069        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
4070        Decimal('0')
4071        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
4072        Decimal('1')
4073        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
4074        Decimal('-1')
4075        >>> ExtendedContext.compare_total(1, 2)
4076        Decimal('-1')
4077        >>> ExtendedContext.compare_total(Decimal(1), 2)
4078        Decimal('-1')
4079        >>> ExtendedContext.compare_total(1, Decimal(2))
4080        Decimal('-1')
4081        """
4082        a = _convert_other(a, raiseit=True)
4083        return a.compare_total(b)
4084
4085    def compare_total_mag(self, a, b):
4086        """Compares two operands using their abstract representation ignoring sign.
4087
4088        Like compare_total, but with operand's sign ignored and assumed to be 0.
4089        """
4090        a = _convert_other(a, raiseit=True)
4091        return a.compare_total_mag(b)
4092
4093    def copy_abs(self, a):
4094        """Returns a copy of the operand with the sign set to 0.
4095
4096        >>> ExtendedContext.copy_abs(Decimal('2.1'))
4097        Decimal('2.1')
4098        >>> ExtendedContext.copy_abs(Decimal('-100'))
4099        Decimal('100')
4100        >>> ExtendedContext.copy_abs(-1)
4101        Decimal('1')
4102        """
4103        a = _convert_other(a, raiseit=True)
4104        return a.copy_abs()
4105
4106    def copy_decimal(self, a):
4107        """Returns a copy of the decimal object.
4108
4109        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
4110        Decimal('2.1')
4111        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
4112        Decimal('-1.00')
4113        >>> ExtendedContext.copy_decimal(1)
4114        Decimal('1')
4115        """
4116        a = _convert_other(a, raiseit=True)
4117        return Decimal(a)
4118
4119    def copy_negate(self, a):
4120        """Returns a copy of the operand with the sign inverted.
4121
4122        >>> ExtendedContext.copy_negate(Decimal('101.5'))
4123        Decimal('-101.5')
4124        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
4125        Decimal('101.5')
4126        >>> ExtendedContext.copy_negate(1)
4127        Decimal('-1')
4128        """
4129        a = _convert_other(a, raiseit=True)
4130        return a.copy_negate()
4131
4132    def copy_sign(self, a, b):
4133        """Copies the second operand's sign to the first one.
4134
4135        In detail, it returns a copy of the first operand with the sign
4136        equal to the sign of the second operand.
4137
4138        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
4139        Decimal('1.50')
4140        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
4141        Decimal('1.50')
4142        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
4143        Decimal('-1.50')
4144        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
4145        Decimal('-1.50')
4146        >>> ExtendedContext.copy_sign(1, -2)
4147        Decimal('-1')
4148        >>> ExtendedContext.copy_sign(Decimal(1), -2)
4149        Decimal('-1')
4150        >>> ExtendedContext.copy_sign(1, Decimal(-2))
4151        Decimal('-1')
4152        """
4153        a = _convert_other(a, raiseit=True)
4154        return a.copy_sign(b)
4155
4156    def divide(self, a, b):
4157        """Decimal division in a specified context.
4158
4159        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
4160        Decimal('0.333333333')
4161        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
4162        Decimal('0.666666667')
4163        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
4164        Decimal('2.5')
4165        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
4166        Decimal('0.1')
4167        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
4168        Decimal('1')
4169        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
4170        Decimal('4.00')
4171        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
4172        Decimal('1.20')
4173        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
4174        Decimal('10')
4175        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
4176        Decimal('1000')
4177        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
4178        Decimal('1.20E+6')
4179        >>> ExtendedContext.divide(5, 5)
4180        Decimal('1')
4181        >>> ExtendedContext.divide(Decimal(5), 5)
4182        Decimal('1')
4183        >>> ExtendedContext.divide(5, Decimal(5))
4184        Decimal('1')
4185        """
4186        a = _convert_other(a, raiseit=True)
4187        r = a.__div__(b, context=self)
4188        if r is NotImplemented:
4189            raise TypeError("Unable to convert %s to Decimal" % b)
4190        else:
4191            return r
4192
4193    def divide_int(self, a, b):
4194        """Divides two numbers and returns the integer part of the result.
4195
4196        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
4197        Decimal('0')
4198        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
4199        Decimal('3')
4200        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
4201        Decimal('3')
4202        >>> ExtendedContext.divide_int(10, 3)
4203        Decimal('3')
4204        >>> ExtendedContext.divide_int(Decimal(10), 3)
4205        Decimal('3')
4206        >>> ExtendedContext.divide_int(10, Decimal(3))
4207        Decimal('3')
4208        """
4209        a = _convert_other(a, raiseit=True)
4210        r = a.__floordiv__(b, context=self)
4211        if r is NotImplemented:
4212            raise TypeError("Unable to convert %s to Decimal" % b)
4213        else:
4214            return r
4215
4216    def divmod(self, a, b):
4217        """Return (a // b, a % b).
4218
4219        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
4220        (Decimal('2'), Decimal('2'))
4221        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
4222        (Decimal('2'), Decimal('0'))
4223        >>> ExtendedContext.divmod(8, 4)
4224        (Decimal('2'), Decimal('0'))
4225        >>> ExtendedContext.divmod(Decimal(8), 4)
4226        (Decimal('2'), Decimal('0'))
4227        >>> ExtendedContext.divmod(8, Decimal(4))
4228        (Decimal('2'), Decimal('0'))
4229        """
4230        a = _convert_other(a, raiseit=True)
4231        r = a.__divmod__(b, context=self)
4232        if r is NotImplemented:
4233            raise TypeError("Unable to convert %s to Decimal" % b)
4234        else:
4235            return r
4236
4237    def exp(self, a):
4238        """Returns e ** a.
4239
4240        >>> c = ExtendedContext.copy()
4241        >>> c.Emin = -999
4242        >>> c.Emax = 999
4243        >>> c.exp(Decimal('-Infinity'))
4244        Decimal('0')
4245        >>> c.exp(Decimal('-1'))
4246        Decimal('0.367879441')
4247        >>> c.exp(Decimal('0'))
4248        Decimal('1')
4249        >>> c.exp(Decimal('1'))
4250        Decimal('2.71828183')
4251        >>> c.exp(Decimal('0.693147181'))
4252        Decimal('2.00000000')
4253        >>> c.exp(Decimal('+Infinity'))
4254        Decimal('Infinity')
4255        >>> c.exp(10)
4256        Decimal('22026.4658')
4257        """
4258        a =_convert_other(a, raiseit=True)
4259        return a.exp(context=self)
4260
4261    def fma(self, a, b, c):
4262        """Returns a multiplied by b, plus c.
4263
4264        The first two operands are multiplied together, using multiply,
4265        the third operand is then added to the result of that
4266        multiplication, using add, all with only one final rounding.
4267
4268        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
4269        Decimal('22')
4270        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
4271        Decimal('-8')
4272        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
4273        Decimal('1.38435736E+12')
4274        >>> ExtendedContext.fma(1, 3, 4)
4275        Decimal('7')
4276        >>> ExtendedContext.fma(1, Decimal(3), 4)
4277        Decimal('7')
4278        >>> ExtendedContext.fma(1, 3, Decimal(4))
4279        Decimal('7')
4280        """
4281        a = _convert_other(a, raiseit=True)
4282        return a.fma(b, c, context=self)
4283
4284    def is_canonical(self, a):
4285        """Return True if the operand is canonical; otherwise return False.
4286
4287        Currently, the encoding of a Decimal instance is always
4288        canonical, so this method returns True for any Decimal.
4289
4290        >>> ExtendedContext.is_canonical(Decimal('2.50'))
4291        True
4292        """
4293        return a.is_canonical()
4294
4295    def is_finite(self, a):
4296        """Return True if the operand is finite; otherwise return False.
4297
4298        A Decimal instance is considered finite if it is neither
4299        infinite nor a NaN.
4300
4301        >>> ExtendedContext.is_finite(Decimal('2.50'))
4302        True
4303        >>> ExtendedContext.is_finite(Decimal('-0.3'))
4304        True
4305        >>> ExtendedContext.is_finite(Decimal('0'))
4306        True
4307        >>> ExtendedContext.is_finite(Decimal('Inf'))
4308        False
4309        >>> ExtendedContext.is_finite(Decimal('NaN'))
4310        False
4311        >>> ExtendedContext.is_finite(1)
4312        True
4313        """
4314        a = _convert_other(a, raiseit=True)
4315        return a.is_finite()
4316
4317    def is_infinite(self, a):
4318        """Return True if the operand is infinite; otherwise return False.
4319
4320        >>> ExtendedContext.is_infinite(Decimal('2.50'))
4321        False
4322        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
4323        True
4324        >>> ExtendedContext.is_infinite(Decimal('NaN'))
4325        False
4326        >>> ExtendedContext.is_infinite(1)
4327        False
4328        """
4329        a = _convert_other(a, raiseit=True)
4330        return a.is_infinite()
4331
4332    def is_nan(self, a):
4333        """Return True if the operand is a qNaN or sNaN;
4334        otherwise return False.
4335
4336        >>> ExtendedContext.is_nan(Decimal('2.50'))
4337        False
4338        >>> ExtendedContext.is_nan(Decimal('NaN'))
4339        True
4340        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
4341        True
4342        >>> ExtendedContext.is_nan(1)
4343        False
4344        """
4345        a = _convert_other(a, raiseit=True)
4346        return a.is_nan()
4347
4348    def is_normal(self, a):
4349        """Return True if the operand is a normal number;
4350        otherwise return False.
4351
4352        >>> c = ExtendedContext.copy()
4353        >>> c.Emin = -999
4354        >>> c.Emax = 999
4355        >>> c.is_normal(Decimal('2.50'))
4356        True
4357        >>> c.is_normal(Decimal('0.1E-999'))
4358        False
4359        >>> c.is_normal(Decimal('0.00'))
4360        False
4361        >>> c.is_normal(Decimal('-Inf'))
4362        False
4363        >>> c.is_normal(Decimal('NaN'))
4364        False
4365        >>> c.is_normal(1)
4366        True
4367        """
4368        a = _convert_other(a, raiseit=True)
4369        return a.is_normal(context=self)
4370
4371    def is_qnan(self, a):
4372        """Return True if the operand is a quiet NaN; otherwise return False.
4373
4374        >>> ExtendedContext.is_qnan(Decimal('2.50'))
4375        False
4376        >>> ExtendedContext.is_qnan(Decimal('NaN'))
4377        True
4378        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
4379        False
4380        >>> ExtendedContext.is_qnan(1)
4381        False
4382        """
4383        a = _convert_other(a, raiseit=True)
4384        return a.is_qnan()
4385
4386    def is_signed(self, a):
4387        """Return True if the operand is negative; otherwise return False.
4388
4389        >>> ExtendedContext.is_signed(Decimal('2.50'))
4390        False
4391        >>> ExtendedContext.is_signed(Decimal('-12'))
4392        True
4393        >>> ExtendedContext.is_signed(Decimal('-0'))
4394        True
4395        >>> ExtendedContext.is_signed(8)
4396        False
4397        >>> ExtendedContext.is_signed(-8)
4398        True
4399        """
4400        a = _convert_other(a, raiseit=True)
4401        return a.is_signed()
4402
4403    def is_snan(self, a):
4404        """Return True if the operand is a signaling NaN;
4405        otherwise return False.
4406
4407        >>> ExtendedContext.is_snan(Decimal('2.50'))
4408        False
4409        >>> ExtendedContext.is_snan(Decimal('NaN'))
4410        False
4411        >>> ExtendedContext.is_snan(Decimal('sNaN'))
4412        True
4413        >>> ExtendedContext.is_snan(1)
4414        False
4415        """
4416        a = _convert_other(a, raiseit=True)
4417        return a.is_snan()
4418
4419    def is_subnormal(self, a):
4420        """Return True if the operand is subnormal; otherwise return False.
4421
4422        >>> c = ExtendedContext.copy()
4423        >>> c.Emin = -999
4424        >>> c.Emax = 999
4425        >>> c.is_subnormal(Decimal('2.50'))
4426        False
4427        >>> c.is_subnormal(Decimal('0.1E-999'))
4428        True
4429        >>> c.is_subnormal(Decimal('0.00'))
4430        False
4431        >>> c.is_subnormal(Decimal('-Inf'))
4432        False
4433        >>> c.is_subnormal(Decimal('NaN'))
4434        False
4435        >>> c.is_subnormal(1)
4436        False
4437        """
4438        a = _convert_other(a, raiseit=True)
4439        return a.is_subnormal(context=self)
4440
4441    def is_zero(self, a):
4442        """Return True if the operand is a zero; otherwise return False.
4443
4444        >>> ExtendedContext.is_zero(Decimal('0'))
4445        True
4446        >>> ExtendedContext.is_zero(Decimal('2.50'))
4447        False
4448        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
4449        True
4450        >>> ExtendedContext.is_zero(1)
4451        False
4452        >>> ExtendedContext.is_zero(0)
4453        True
4454        """
4455        a = _convert_other(a, raiseit=True)
4456        return a.is_zero()
4457
4458    def ln(self, a):
4459        """Returns the natural (base e) logarithm of the operand.
4460
4461        >>> c = ExtendedContext.copy()
4462        >>> c.Emin = -999
4463        >>> c.Emax = 999
4464        >>> c.ln(Decimal('0'))
4465        Decimal('-Infinity')
4466        >>> c.ln(Decimal('1.000'))
4467        Decimal('0')
4468        >>> c.ln(Decimal('2.71828183'))
4469        Decimal('1.00000000')
4470        >>> c.ln(Decimal('10'))
4471        Decimal('2.30258509')
4472        >>> c.ln(Decimal('+Infinity'))
4473        Decimal('Infinity')
4474        >>> c.ln(1)
4475        Decimal('0')
4476        """
4477        a = _convert_other(a, raiseit=True)
4478        return a.ln(context=self)
4479
4480    def log10(self, a):
4481        """Returns the base 10 logarithm of the operand.
4482
4483        >>> c = ExtendedContext.copy()
4484        >>> c.Emin = -999
4485        >>> c.Emax = 999
4486        >>> c.log10(Decimal('0'))
4487        Decimal('-Infinity')
4488        >>> c.log10(Decimal('0.001'))
4489        Decimal('-3')
4490        >>> c.log10(Decimal('1.000'))
4491        Decimal('0')
4492        >>> c.log10(Decimal('2'))
4493        Decimal('0.301029996')
4494        >>> c.log10(Decimal('10'))
4495        Decimal('1')
4496        >>> c.log10(Decimal('70'))
4497        Decimal('1.84509804')
4498        >>> c.log10(Decimal('+Infinity'))
4499        Decimal('Infinity')
4500        >>> c.log10(0)
4501        Decimal('-Infinity')
4502        >>> c.log10(1)
4503        Decimal('0')
4504        """
4505        a = _convert_other(a, raiseit=True)
4506        return a.log10(context=self)
4507
4508    def logb(self, a):
4509        """ Returns the exponent of the magnitude of the operand's MSD.
4510
4511        The result is the integer which is the exponent of the magnitude
4512        of the most significant digit of the operand (as though the
4513        operand were truncated to a single digit while maintaining the
4514        value of that digit and without limiting the resulting exponent).
4515
4516        >>> ExtendedContext.logb(Decimal('250'))
4517        Decimal('2')
4518        >>> ExtendedContext.logb(Decimal('2.50'))
4519        Decimal('0')
4520        >>> ExtendedContext.logb(Decimal('0.03'))
4521        Decimal('-2')
4522        >>> ExtendedContext.logb(Decimal('0'))
4523        Decimal('-Infinity')
4524        >>> ExtendedContext.logb(1)
4525        Decimal('0')
4526        >>> ExtendedContext.logb(10)
4527        Decimal('1')
4528        >>> ExtendedContext.logb(100)
4529        Decimal('2')
4530        """
4531        a = _convert_other(a, raiseit=True)
4532        return a.logb(context=self)
4533
4534    def logical_and(self, a, b):
4535        """Applies the logical operation 'and' between each operand's digits.
4536
4537        The operands must be both logical numbers.
4538
4539        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
4540        Decimal('0')
4541        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
4542        Decimal('0')
4543        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
4544        Decimal('0')
4545        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
4546        Decimal('1')
4547        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
4548        Decimal('1000')
4549        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
4550        Decimal('10')
4551        >>> ExtendedContext.logical_and(110, 1101)
4552        Decimal('100')
4553        >>> ExtendedContext.logical_and(Decimal(110), 1101)
4554        Decimal('100')
4555        >>> ExtendedContext.logical_and(110, Decimal(1101))
4556        Decimal('100')
4557        """
4558        a = _convert_other(a, raiseit=True)
4559        return a.logical_and(b, context=self)
4560
4561    def logical_invert(self, a):
4562        """Invert all the digits in the operand.
4563
4564        The operand must be a logical number.
4565
4566        >>> ExtendedContext.logical_invert(Decimal('0'))
4567        Decimal('111111111')
4568        >>> ExtendedContext.logical_invert(Decimal('1'))
4569        Decimal('111111110')
4570        >>> ExtendedContext.logical_invert(Decimal('111111111'))
4571        Decimal('0')
4572        >>> ExtendedContext.logical_invert(Decimal('101010101'))
4573        Decimal('10101010')
4574        >>> ExtendedContext.logical_invert(1101)
4575        Decimal('111110010')
4576        """
4577        a = _convert_other(a, raiseit=True)
4578        return a.logical_invert(context=self)
4579
4580    def logical_or(self, a, b):
4581        """Applies the logical operation 'or' between each operand's digits.
4582
4583        The operands must be both logical numbers.
4584
4585        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
4586        Decimal('0')
4587        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
4588        Decimal('1')
4589        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
4590        Decimal('1')
4591        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
4592        Decimal('1')
4593        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
4594        Decimal('1110')
4595        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
4596        Decimal('1110')
4597        >>> ExtendedContext.logical_or(110, 1101)
4598        Decimal('1111')
4599        >>> ExtendedContext.logical_or(Decimal(110), 1101)
4600        Decimal('1111')
4601        >>> ExtendedContext.logical_or(110, Decimal(1101))
4602        Decimal('1111')
4603        """
4604        a = _convert_other(a, raiseit=True)
4605        return a.logical_or(b, context=self)
4606
4607    def logical_xor(self, a, b):
4608        """Applies the logical operation 'xor' between each operand's digits.
4609
4610        The operands must be both logical numbers.
4611
4612        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
4613        Decimal('0')
4614        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
4615        Decimal('1')
4616        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
4617        Decimal('1')
4618        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
4619        Decimal('0')
4620        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
4621        Decimal('110')
4622        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
4623        Decimal('1101')
4624        >>> ExtendedContext.logical_xor(110, 1101)
4625        Decimal('1011')
4626        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
4627        Decimal('1011')
4628        >>> ExtendedContext.logical_xor(110, Decimal(1101))
4629        Decimal('1011')
4630        """
4631        a = _convert_other(a, raiseit=True)
4632        return a.logical_xor(b, context=self)
4633
4634    def max(self, a, b):
4635        """max compares two values numerically and returns the maximum.
4636
4637        If either operand is a NaN then the general rules apply.
4638        Otherwise, the operands are compared as though by the compare
4639        operation.  If they are numerically equal then the left-hand operand
4640        is chosen as the result.  Otherwise the maximum (closer to positive
4641        infinity) of the two operands is chosen as the result.
4642
4643        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
4644        Decimal('3')
4645        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
4646        Decimal('3')
4647        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
4648        Decimal('1')
4649        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
4650        Decimal('7')
4651        >>> ExtendedContext.max(1, 2)
4652        Decimal('2')
4653        >>> ExtendedContext.max(Decimal(1), 2)
4654        Decimal('2')
4655        >>> ExtendedContext.max(1, Decimal(2))
4656        Decimal('2')
4657        """
4658        a = _convert_other(a, raiseit=True)
4659        return a.max(b, context=self)
4660
4661    def max_mag(self, a, b):
4662        """Compares the values numerically with their sign ignored.
4663
4664        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
4665        Decimal('7')
4666        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
4667        Decimal('-10')
4668        >>> ExtendedContext.max_mag(1, -2)
4669        Decimal('-2')
4670        >>> ExtendedContext.max_mag(Decimal(1), -2)
4671        Decimal('-2')
4672        >>> ExtendedContext.max_mag(1, Decimal(-2))
4673        Decimal('-2')
4674        """
4675        a = _convert_other(a, raiseit=True)
4676        return a.max_mag(b, context=self)
4677
4678    def min(self, a, b):
4679        """min compares two values numerically and returns the minimum.
4680
4681        If either operand is a NaN then the general rules apply.
4682        Otherwise, the operands are compared as though by the compare
4683        operation.  If they are numerically equal then the left-hand operand
4684        is chosen as the result.  Otherwise the minimum (closer to negative
4685        infinity) of the two operands is chosen as the result.
4686
4687        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
4688        Decimal('2')
4689        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
4690        Decimal('-10')
4691        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
4692        Decimal('1.0')
4693        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
4694        Decimal('7')
4695        >>> ExtendedContext.min(1, 2)
4696        Decimal('1')
4697        >>> ExtendedContext.min(Decimal(1), 2)
4698        Decimal('1')
4699        >>> ExtendedContext.min(1, Decimal(29))
4700        Decimal('1')
4701        """
4702        a = _convert_other(a, raiseit=True)
4703        return a.min(b, context=self)
4704
4705    def min_mag(self, a, b):
4706        """Compares the values numerically with their sign ignored.
4707
4708        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
4709        Decimal('-2')
4710        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
4711        Decimal('-3')
4712        >>> ExtendedContext.min_mag(1, -2)
4713        Decimal('1')
4714        >>> ExtendedContext.min_mag(Decimal(1), -2)
4715        Decimal('1')
4716        >>> ExtendedContext.min_mag(1, Decimal(-2))
4717        Decimal('1')
4718        """
4719        a = _convert_other(a, raiseit=True)
4720        return a.min_mag(b, context=self)
4721
4722    def minus(self, a):
4723        """Minus corresponds to unary prefix minus in Python.
4724
4725        The operation is evaluated using the same rules as subtract; the
4726        operation minus(a) is calculated as subtract('0', a) where the '0'
4727        has the same exponent as the operand.
4728
4729        >>> ExtendedContext.minus(Decimal('1.3'))
4730        Decimal('-1.3')
4731        >>> ExtendedContext.minus(Decimal('-1.3'))
4732        Decimal('1.3')
4733        >>> ExtendedContext.minus(1)
4734        Decimal('-1')
4735        """
4736        a = _convert_other(a, raiseit=True)
4737        return a.__neg__(context=self)
4738
4739    def multiply(self, a, b):
4740        """multiply multiplies two operands.
4741
4742        If either operand is a special value then the general rules apply.
4743        Otherwise, the operands are multiplied together
4744        ('long multiplication'), resulting in a number which may be as long as
4745        the sum of the lengths of the two operands.
4746
4747        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
4748        Decimal('3.60')
4749        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
4750        Decimal('21')
4751        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
4752        Decimal('0.72')
4753        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
4754        Decimal('-0.0')
4755        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
4756        Decimal('4.28135971E+11')
4757        >>> ExtendedContext.multiply(7, 7)
4758        Decimal('49')
4759        >>> ExtendedContext.multiply(Decimal(7), 7)
4760        Decimal('49')
4761        >>> ExtendedContext.multiply(7, Decimal(7))
4762        Decimal('49')
4763        """
4764        a = _convert_other(a, raiseit=True)
4765        r = a.__mul__(b, context=self)
4766        if r is NotImplemented:
4767            raise TypeError("Unable to convert %s to Decimal" % b)
4768        else:
4769            return r
4770
4771    def next_minus(self, a):
4772        """Returns the largest representable number smaller than a.
4773
4774        >>> c = ExtendedContext.copy()
4775        >>> c.Emin = -999
4776        >>> c.Emax = 999
4777        >>> ExtendedContext.next_minus(Decimal('1'))
4778        Decimal('0.999999999')
4779        >>> c.next_minus(Decimal('1E-1007'))
4780        Decimal('0E-1007')
4781        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
4782        Decimal('-1.00000004')
4783        >>> c.next_minus(Decimal('Infinity'))
4784        Decimal('9.99999999E+999')
4785        >>> c.next_minus(1)
4786        Decimal('0.999999999')
4787        """
4788        a = _convert_other(a, raiseit=True)
4789        return a.next_minus(context=self)
4790
4791    def next_plus(self, a):
4792        """Returns the smallest representable number larger than a.
4793
4794        >>> c = ExtendedContext.copy()
4795        >>> c.Emin = -999
4796        >>> c.Emax = 999
4797        >>> ExtendedContext.next_plus(Decimal('1'))
4798        Decimal('1.00000001')
4799        >>> c.next_plus(Decimal('-1E-1007'))
4800        Decimal('-0E-1007')
4801        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
4802        Decimal('-1.00000002')
4803        >>> c.next_plus(Decimal('-Infinity'))
4804        Decimal('-9.99999999E+999')
4805        >>> c.next_plus(1)
4806        Decimal('1.00000001')
4807        """
4808        a = _convert_other(a, raiseit=True)
4809        return a.next_plus(context=self)
4810
4811    def next_toward(self, a, b):
4812        """Returns the number closest to a, in direction towards b.
4813
4814        The result is the closest representable number from the first
4815        operand (but not the first operand) that is in the direction
4816        towards the second operand, unless the operands have the same
4817        value.
4818
4819        >>> c = ExtendedContext.copy()
4820        >>> c.Emin = -999
4821        >>> c.Emax = 999
4822        >>> c.next_toward(Decimal('1'), Decimal('2'))
4823        Decimal('1.00000001')
4824        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
4825        Decimal('-0E-1007')
4826        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
4827        Decimal('-1.00000002')
4828        >>> c.next_toward(Decimal('1'), Decimal('0'))
4829        Decimal('0.999999999')
4830        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
4831        Decimal('0E-1007')
4832        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
4833        Decimal('-1.00000004')
4834        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
4835        Decimal('-0.00')
4836        >>> c.next_toward(0, 1)
4837        Decimal('1E-1007')
4838        >>> c.next_toward(Decimal(0), 1)
4839        Decimal('1E-1007')
4840        >>> c.next_toward(0, Decimal(1))
4841        Decimal('1E-1007')
4842        """
4843        a = _convert_other(a, raiseit=True)
4844        return a.next_toward(b, context=self)
4845
4846    def normalize(self, a):
4847        """normalize reduces an operand to its simplest form.
4848
4849        Essentially a plus operation with all trailing zeros removed from the
4850        result.
4851
4852        >>> ExtendedContext.normalize(Decimal('2.1'))
4853        Decimal('2.1')
4854        >>> ExtendedContext.normalize(Decimal('-2.0'))
4855        Decimal('-2')
4856        >>> ExtendedContext.normalize(Decimal('1.200'))
4857        Decimal('1.2')
4858        >>> ExtendedContext.normalize(Decimal('-120'))
4859        Decimal('-1.2E+2')
4860        >>> ExtendedContext.normalize(Decimal('120.00'))
4861        Decimal('1.2E+2')
4862        >>> ExtendedContext.normalize(Decimal('0.00'))
4863        Decimal('0')
4864        >>> ExtendedContext.normalize(6)
4865        Decimal('6')
4866        """
4867        a = _convert_other(a, raiseit=True)
4868        return a.normalize(context=self)
4869
4870    def number_class(self, a):
4871        """Returns an indication of the class of the operand.
4872
4873        The class is one of the following strings:
4874          -sNaN
4875          -NaN
4876          -Infinity
4877          -Normal
4878          -Subnormal
4879          -Zero
4880          +Zero
4881          +Subnormal
4882          +Normal
4883          +Infinity
4884
4885        >>> c = Context(ExtendedContext)
4886        >>> c.Emin = -999
4887        >>> c.Emax = 999
4888        >>> c.number_class(Decimal('Infinity'))
4889        '+Infinity'
4890        >>> c.number_class(Decimal('1E-10'))
4891        '+Normal'
4892        >>> c.number_class(Decimal('2.50'))
4893        '+Normal'
4894        >>> c.number_class(Decimal('0.1E-999'))
4895        '+Subnormal'
4896        >>> c.number_class(Decimal('0'))
4897        '+Zero'
4898        >>> c.number_class(Decimal('-0'))
4899        '-Zero'
4900        >>> c.number_class(Decimal('-0.1E-999'))
4901        '-Subnormal'
4902        >>> c.number_class(Decimal('-1E-10'))
4903        '-Normal'
4904        >>> c.number_class(Decimal('-2.50'))
4905        '-Normal'
4906        >>> c.number_class(Decimal('-Infinity'))
4907        '-Infinity'
4908        >>> c.number_class(Decimal('NaN'))
4909        'NaN'
4910        >>> c.number_class(Decimal('-NaN'))
4911        'NaN'
4912        >>> c.number_class(Decimal('sNaN'))
4913        'sNaN'
4914        >>> c.number_class(123)
4915        '+Normal'
4916        """
4917        a = _convert_other(a, raiseit=True)
4918        return a.number_class(context=self)
4919
4920    def plus(self, a):
4921        """Plus corresponds to unary prefix plus in Python.
4922
4923        The operation is evaluated using the same rules as add; the
4924        operation plus(a) is calculated as add('0', a) where the '0'
4925        has the same exponent as the operand.
4926
4927        >>> ExtendedContext.plus(Decimal('1.3'))
4928        Decimal('1.3')
4929        >>> ExtendedContext.plus(Decimal('-1.3'))
4930        Decimal('-1.3')
4931        >>> ExtendedContext.plus(-1)
4932        Decimal('-1')
4933        """
4934        a = _convert_other(a, raiseit=True)
4935        return a.__pos__(context=self)
4936
4937    def power(self, a, b, modulo=None):
4938        """Raises a to the power of b, to modulo if given.
4939
4940        With two arguments, compute a**b.  If a is negative then b
4941        must be integral.  The result will be inexact unless b is
4942        integral and the result is finite and can be expressed exactly
4943        in 'precision' digits.
4944
4945        With three arguments, compute (a**b) % modulo.  For the
4946        three argument form, the following restrictions on the
4947        arguments hold:
4948
4949         - all three arguments must be integral
4950         - b must be nonnegative
4951         - at least one of a or b must be nonzero
4952         - modulo must be nonzero and have at most 'precision' digits
4953
4954        The result of pow(a, b, modulo) is identical to the result
4955        that would be obtained by computing (a**b) % modulo with
4956        unbounded precision, but is computed more efficiently.  It is
4957        always exact.
4958
4959        >>> c = ExtendedContext.copy()
4960        >>> c.Emin = -999
4961        >>> c.Emax = 999
4962        >>> c.power(Decimal('2'), Decimal('3'))
4963        Decimal('8')
4964        >>> c.power(Decimal('-2'), Decimal('3'))
4965        Decimal('-8')
4966        >>> c.power(Decimal('2'), Decimal('-3'))
4967        Decimal('0.125')
4968        >>> c.power(Decimal('1.7'), Decimal('8'))
4969        Decimal('69.7575744')
4970        >>> c.power(Decimal('10'), Decimal('0.301029996'))
4971        Decimal('2.00000000')
4972        >>> c.power(Decimal('Infinity'), Decimal('-1'))
4973        Decimal('0')
4974        >>> c.power(Decimal('Infinity'), Decimal('0'))
4975        Decimal('1')
4976        >>> c.power(Decimal('Infinity'), Decimal('1'))
4977        Decimal('Infinity')
4978        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
4979        Decimal('-0')
4980        >>> c.power(Decimal('-Infinity'), Decimal('0'))
4981        Decimal('1')
4982        >>> c.power(Decimal('-Infinity'), Decimal('1'))
4983        Decimal('-Infinity')
4984        >>> c.power(Decimal('-Infinity'), Decimal('2'))
4985        Decimal('Infinity')
4986        >>> c.power(Decimal('0'), Decimal('0'))
4987        Decimal('NaN')
4988
4989        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
4990        Decimal('11')
4991        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
4992        Decimal('-11')
4993        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
4994        Decimal('1')
4995        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
4996        Decimal('11')
4997        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
4998        Decimal('11729830')
4999        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
5000        Decimal('-0')
5001        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
5002        Decimal('1')
5003        >>> ExtendedContext.power(7, 7)
5004        Decimal('823543')
5005        >>> ExtendedContext.power(Decimal(7), 7)
5006        Decimal('823543')
5007        >>> ExtendedContext.power(7, Decimal(7), 2)
5008        Decimal('1')
5009        """
5010        a = _convert_other(a, raiseit=True)
5011        r = a.__pow__(b, modulo, context=self)
5012        if r is NotImplemented:
5013            raise TypeError("Unable to convert %s to Decimal" % b)
5014        else:
5015            return r
5016
5017    def quantize(self, a, b):
5018        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
5019
5020        The coefficient of the result is derived from that of the left-hand
5021        operand.  It may be rounded using the current rounding setting (if the
5022        exponent is being increased), multiplied by a positive power of ten (if
5023        the exponent is being decreased), or is unchanged (if the exponent is
5024        already equal to that of the right-hand operand).
5025
5026        Unlike other operations, if the length of the coefficient after the
5027        quantize operation would be greater than precision then an Invalid
5028        operation condition is raised.  This guarantees that, unless there is
5029        an error condition, the exponent of the result of a quantize is always
5030        equal to that of the right-hand operand.
5031
5032        Also unlike other operations, quantize will never raise Underflow, even
5033        if the result is subnormal and inexact.
5034
5035        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
5036        Decimal('2.170')
5037        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
5038        Decimal('2.17')
5039        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
5040        Decimal('2.2')
5041        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
5042        Decimal('2')
5043        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
5044        Decimal('0E+1')
5045        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
5046        Decimal('-Infinity')
5047        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
5048        Decimal('NaN')
5049        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
5050        Decimal('-0')
5051        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
5052        Decimal('-0E+5')
5053        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
5054        Decimal('NaN')
5055        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
5056        Decimal('NaN')
5057        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
5058        Decimal('217.0')
5059        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
5060        Decimal('217')
5061        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
5062        Decimal('2.2E+2')
5063        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
5064        Decimal('2E+2')
5065        >>> ExtendedContext.quantize(1, 2)
5066        Decimal('1')
5067        >>> ExtendedContext.quantize(Decimal(1), 2)
5068        Decimal('1')
5069        >>> ExtendedContext.quantize(1, Decimal(2))
5070        Decimal('1')
5071        """
5072        a = _convert_other(a, raiseit=True)
5073        return a.quantize(b, context=self)
5074
5075    def radix(self):
5076        """Just returns 10, as this is Decimal, :)
5077
5078        >>> ExtendedContext.radix()
5079        Decimal('10')
5080        """
5081        return Decimal(10)
5082
5083    def remainder(self, a, b):
5084        """Returns the remainder from integer division.
5085
5086        The result is the residue of the dividend after the operation of
5087        calculating integer division as described for divide-integer, rounded
5088        to precision digits if necessary.  The sign of the result, if
5089        non-zero, is the same as that of the original dividend.
5090
5091        This operation will fail under the same conditions as integer division
5092        (that is, if integer division on the same two operands would fail, the
5093        remainder cannot be calculated).
5094
5095        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
5096        Decimal('2.1')
5097        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
5098        Decimal('1')
5099        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
5100        Decimal('-1')
5101        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
5102        Decimal('0.2')
5103        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
5104        Decimal('0.1')
5105        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
5106        Decimal('1.0')
5107        >>> ExtendedContext.remainder(22, 6)
5108        Decimal('4')
5109        >>> ExtendedContext.remainder(Decimal(22), 6)
5110        Decimal('4')
5111        >>> ExtendedContext.remainder(22, Decimal(6))
5112        Decimal('4')
5113        """
5114        a = _convert_other(a, raiseit=True)
5115        r = a.__mod__(b, context=self)
5116        if r is NotImplemented:
5117            raise TypeError("Unable to convert %s to Decimal" % b)
5118        else:
5119            return r
5120
5121    def remainder_near(self, a, b):
5122        """Returns to be "a - b * n", where n is the integer nearest the exact
5123        value of "x / b" (if two integers are equally near then the even one
5124        is chosen).  If the result is equal to 0 then its sign will be the
5125        sign of a.
5126
5127        This operation will fail under the same conditions as integer division
5128        (that is, if integer division on the same two operands would fail, the
5129        remainder cannot be calculated).
5130
5131        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
5132        Decimal('-0.9')
5133        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
5134        Decimal('-2')
5135        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
5136        Decimal('1')
5137        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
5138        Decimal('-1')
5139        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
5140        Decimal('0.2')
5141        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
5142        Decimal('0.1')
5143        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
5144        Decimal('-0.3')
5145        >>> ExtendedContext.remainder_near(3, 11)
5146        Decimal('3')
5147        >>> ExtendedContext.remainder_near(Decimal(3), 11)
5148        Decimal('3')
5149        >>> ExtendedContext.remainder_near(3, Decimal(11))
5150        Decimal('3')
5151        """
5152        a = _convert_other(a, raiseit=True)
5153        return a.remainder_near(b, context=self)
5154
5155    def rotate(self, a, b):
5156        """Returns a rotated copy of a, b times.
5157
5158        The coefficient of the result is a rotated copy of the digits in
5159        the coefficient of the first operand.  The number of places of
5160        rotation is taken from the absolute value of the second operand,
5161        with the rotation being to the left if the second operand is
5162        positive or to the right otherwise.
5163
5164        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
5165        Decimal('400000003')
5166        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
5167        Decimal('12')
5168        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
5169        Decimal('891234567')
5170        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
5171        Decimal('123456789')
5172        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
5173        Decimal('345678912')
5174        >>> ExtendedContext.rotate(1333333, 1)
5175        Decimal('13333330')
5176        >>> ExtendedContext.rotate(Decimal(1333333), 1)
5177        Decimal('13333330')
5178        >>> ExtendedContext.rotate(1333333, Decimal(1))
5179        Decimal('13333330')
5180        """
5181        a = _convert_other(a, raiseit=True)
5182        return a.rotate(b, context=self)
5183
5184    def same_quantum(self, a, b):
5185        """Returns True if the two operands have the same exponent.
5186
5187        The result is never affected by either the sign or the coefficient of
5188        either operand.
5189
5190        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
5191        False
5192        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
5193        True
5194        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
5195        False
5196        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
5197        True
5198        >>> ExtendedContext.same_quantum(10000, -1)
5199        True
5200        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
5201        True
5202        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
5203        True
5204        """
5205        a = _convert_other(a, raiseit=True)
5206        return a.same_quantum(b)
5207
5208    def scaleb (self, a, b):
5209        """Returns the first operand after adding the second value its exp.
5210
5211        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
5212        Decimal('0.0750')
5213        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
5214        Decimal('7.50')
5215        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
5216        Decimal('7.50E+3')
5217        >>> ExtendedContext.scaleb(1, 4)
5218        Decimal('1E+4')
5219        >>> ExtendedContext.scaleb(Decimal(1), 4)
5220        Decimal('1E+4')
5221        >>> ExtendedContext.scaleb(1, Decimal(4))
5222        Decimal('1E+4')
5223        """
5224        a = _convert_other(a, raiseit=True)
5225        return a.scaleb(b, context=self)
5226
5227    def shift(self, a, b):
5228        """Returns a shifted copy of a, b times.
5229
5230        The coefficient of the result is a shifted copy of the digits
5231        in the coefficient of the first operand.  The number of places
5232        to shift is taken from the absolute value of the second operand,
5233        with the shift being to the left if the second operand is
5234        positive or to the right otherwise.  Digits shifted into the
5235        coefficient are zeros.
5236
5237        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
5238        Decimal('400000000')
5239        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
5240        Decimal('0')
5241        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
5242        Decimal('1234567')
5243        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
5244        Decimal('123456789')
5245        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
5246        Decimal('345678900')
5247        >>> ExtendedContext.shift(88888888, 2)
5248        Decimal('888888800')
5249        >>> ExtendedContext.shift(Decimal(88888888), 2)
5250        Decimal('888888800')
5251        >>> ExtendedContext.shift(88888888, Decimal(2))
5252        Decimal('888888800')
5253        """
5254        a = _convert_other(a, raiseit=True)
5255        return a.shift(b, context=self)
5256
5257    def sqrt(self, a):
5258        """Square root of a non-negative number to context precision.
5259
5260        If the result must be inexact, it is rounded using the round-half-even
5261        algorithm.
5262
5263        >>> ExtendedContext.sqrt(Decimal('0'))
5264        Decimal('0')
5265        >>> ExtendedContext.sqrt(Decimal('-0'))
5266        Decimal('-0')
5267        >>> ExtendedContext.sqrt(Decimal('0.39'))
5268        Decimal('0.624499800')
5269        >>> ExtendedContext.sqrt(Decimal('100'))
5270        Decimal('10')
5271        >>> ExtendedContext.sqrt(Decimal('1'))
5272        Decimal('1')
5273        >>> ExtendedContext.sqrt(Decimal('1.0'))
5274        Decimal('1.0')
5275        >>> ExtendedContext.sqrt(Decimal('1.00'))
5276        Decimal('1.0')
5277        >>> ExtendedContext.sqrt(Decimal('7'))
5278        Decimal('2.64575131')
5279        >>> ExtendedContext.sqrt(Decimal('10'))
5280        Decimal('3.16227766')
5281        >>> ExtendedContext.sqrt(2)
5282        Decimal('1.41421356')
5283        >>> ExtendedContext.prec
5284        9
5285        """
5286        a = _convert_other(a, raiseit=True)
5287        return a.sqrt(context=self)
5288
5289    def subtract(self, a, b):
5290        """Return the difference between the two operands.
5291
5292        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
5293        Decimal('0.23')
5294        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
5295        Decimal('0.00')
5296        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
5297        Decimal('-0.77')
5298        >>> ExtendedContext.subtract(8, 5)
5299        Decimal('3')
5300        >>> ExtendedContext.subtract(Decimal(8), 5)
5301        Decimal('3')
5302        >>> ExtendedContext.subtract(8, Decimal(5))
5303        Decimal('3')
5304        """
5305        a = _convert_other(a, raiseit=True)
5306        r = a.__sub__(b, context=self)
5307        if r is NotImplemented:
5308            raise TypeError("Unable to convert %s to Decimal" % b)
5309        else:
5310            return r
5311
5312    def to_eng_string(self, a):
5313        """Converts a number to a string, using scientific notation.
5314
5315        The operation is not affected by the context.
5316        """
5317        a = _convert_other(a, raiseit=True)
5318        return a.to_eng_string(context=self)
5319
5320    def to_sci_string(self, a):
5321        """Converts a number to a string, using scientific notation.
5322
5323        The operation is not affected by the context.
5324        """
5325        a = _convert_other(a, raiseit=True)
5326        return a.__str__(context=self)
5327
5328    def to_integral_exact(self, a):
5329        """Rounds to an integer.
5330
5331        When the operand has a negative exponent, the result is the same
5332        as using the quantize() operation using the given operand as the
5333        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5334        of the operand as the precision setting; Inexact and Rounded flags
5335        are allowed in this operation.  The rounding mode is taken from the
5336        context.
5337
5338        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
5339        Decimal('2')
5340        >>> ExtendedContext.to_integral_exact(Decimal('100'))
5341        Decimal('100')
5342        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
5343        Decimal('100')
5344        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
5345        Decimal('102')
5346        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
5347        Decimal('-102')
5348        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
5349        Decimal('1.0E+6')
5350        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
5351        Decimal('7.89E+77')
5352        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
5353        Decimal('-Infinity')
5354        """
5355        a = _convert_other(a, raiseit=True)
5356        return a.to_integral_exact(context=self)
5357
5358    def to_integral_value(self, a):
5359        """Rounds to an integer.
5360
5361        When the operand has a negative exponent, the result is the same
5362        as using the quantize() operation using the given operand as the
5363        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
5364        of the operand as the precision setting, except that no flags will
5365        be set.  The rounding mode is taken from the context.
5366
5367        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
5368        Decimal('2')
5369        >>> ExtendedContext.to_integral_value(Decimal('100'))
5370        Decimal('100')
5371        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
5372        Decimal('100')
5373        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
5374        Decimal('102')
5375        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
5376        Decimal('-102')
5377        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
5378        Decimal('1.0E+6')
5379        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
5380        Decimal('7.89E+77')
5381        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
5382        Decimal('-Infinity')
5383        """
5384        a = _convert_other(a, raiseit=True)
5385        return a.to_integral_value(context=self)
5386
5387    # the method name changed, but we provide also the old one, for compatibility
5388    to_integral = to_integral_value
5389
5390class _WorkRep(object):
5391    __slots__ = ('sign','int','exp')
5392    # sign: 0 or 1
5393    # int:  int or long
5394    # exp:  None, int, or string
5395
5396    def __init__(self, value=None):
5397        if value is None:
5398            self.sign = None
5399            self.int = 0
5400            self.exp = None
5401        elif isinstance(value, Decimal):
5402            self.sign = value._sign
5403            self.int = int(value._int)
5404            self.exp = value._exp
5405        else:
5406            # assert isinstance(value, tuple)
5407            self.sign = value[0]
5408            self.int = value[1]
5409            self.exp = value[2]
5410
5411    def __repr__(self):
5412        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
5413
5414    __str__ = __repr__
5415
5416
5417
5418def _normalize(op1, op2, prec = 0):
5419    """Normalizes op1, op2 to have the same exp and length of coefficient.
5420
5421    Done during addition.
5422    """
5423    if op1.exp < op2.exp:
5424        tmp = op2
5425        other = op1
5426    else:
5427        tmp = op1
5428        other = op2
5429
5430    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
5431    # Then adding 10**exp to tmp has the same effect (after rounding)
5432    # as adding any positive quantity smaller than 10**exp; similarly
5433    # for subtraction.  So if other is smaller than 10**exp we replace
5434    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
5435    tmp_len = len(str(tmp.int))
5436    other_len = len(str(other.int))
5437    exp = tmp.exp + min(-1, tmp_len - prec - 2)
5438    if other_len + other.exp - 1 < exp:
5439        other.int = 1
5440        other.exp = exp
5441
5442    tmp.int *= 10 ** (tmp.exp - other.exp)
5443    tmp.exp = other.exp
5444    return op1, op2
5445
5446##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
5447
5448# This function from Tim Peters was taken from here:
5449# http://mail.python.org/pipermail/python-list/1999-July/007758.html
5450# The correction being in the function definition is for speed, and
5451# the whole function is not resolved with math.log because of avoiding
5452# the use of floats.
5453def _nbits(n, correction = {
5454        '0': 4, '1': 3, '2': 2, '3': 2,
5455        '4': 1, '5': 1, '6': 1, '7': 1,
5456        '8': 0, '9': 0, 'a': 0, 'b': 0,
5457        'c': 0, 'd': 0, 'e': 0, 'f': 0}):
5458    """Number of bits in binary representation of the positive integer n,
5459    or 0 if n == 0.
5460    """
5461    if n < 0:
5462        raise ValueError("The argument to _nbits should be nonnegative.")
5463    hex_n = "%x" % n
5464    return 4*len(hex_n) - correction[hex_n[0]]
5465
5466def _sqrt_nearest(n, a):
5467    """Closest integer to the square root of the positive integer n.  a is
5468    an initial approximation to the square root.  Any positive integer
5469    will do for a, but the closer a is to the square root of n the
5470    faster convergence will be.
5471
5472    """
5473    if n <= 0 or a <= 0:
5474        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
5475
5476    b=0
5477    while a != b:
5478        b, a = a, a--n//a>>1
5479    return a
5480
5481def _rshift_nearest(x, shift):
5482    """Given an integer x and a nonnegative integer shift, return closest
5483    integer to x / 2**shift; use round-to-even in case of a tie.
5484
5485    """
5486    b, q = 1L << shift, x >> shift
5487    return q + (2*(x & (b-1)) + (q&1) > b)
5488
5489def _div_nearest(a, b):
5490    """Closest integer to a/b, a and b positive integers; rounds to even
5491    in the case of a tie.
5492
5493    """
5494    q, r = divmod(a, b)
5495    return q + (2*r + (q&1) > b)
5496
5497def _ilog(x, M, L = 8):
5498    """Integer approximation to M*log(x/M), with absolute error boundable
5499    in terms only of x/M.
5500
5501    Given positive integers x and M, return an integer approximation to
5502    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
5503    between the approximation and the exact result is at most 22.  For
5504    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
5505    both cases these are upper bounds on the error; it will usually be
5506    much smaller."""
5507
5508    # The basic algorithm is the following: let log1p be the function
5509    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
5510    # the reduction
5511    #
5512    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
5513    #
5514    # repeatedly until the argument to log1p is small (< 2**-L in
5515    # absolute value).  For small y we can use the Taylor series
5516    # expansion
5517    #
5518    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
5519    #
5520    # truncating at T such that y**T is small enough.  The whole
5521    # computation is carried out in a form of fixed-point arithmetic,
5522    # with a real number z being represented by an integer
5523    # approximation to z*M.  To avoid loss of precision, the y below
5524    # is actually an integer approximation to 2**R*y*M, where R is the
5525    # number of reductions performed so far.
5526
5527    y = x-M
5528    # argument reduction; R = number of reductions performed
5529    R = 0
5530    while (R <= L and long(abs(y)) << L-R >= M or
5531           R > L and abs(y) >> R-L >= M):
5532        y = _div_nearest(long(M*y) << 1,
5533                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
5534        R += 1
5535
5536    # Taylor series with T terms
5537    T = -int(-10*len(str(M))//(3*L))
5538    yshift = _rshift_nearest(y, R)
5539    w = _div_nearest(M, T)
5540    for k in xrange(T-1, 0, -1):
5541        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
5542
5543    return _div_nearest(w*y, M)
5544
5545def _dlog10(c, e, p):
5546    """Given integers c, e and p with c > 0, p >= 0, compute an integer
5547    approximation to 10**p * log10(c*10**e), with an absolute error of
5548    at most 1.  Assumes that c*10**e is not exactly 1."""
5549
5550    # increase precision by 2; compensate for this by dividing
5551    # final result by 100
5552    p += 2
5553
5554    # write c*10**e as d*10**f with either:
5555    #   f >= 0 and 1 <= d <= 10, or
5556    #   f <= 0 and 0.1 <= d <= 1.
5557    # Thus for c*10**e close to 1, f = 0
5558    l = len(str(c))
5559    f = e+l - (e+l >= 1)
5560
5561    if p > 0:
5562        M = 10**p
5563        k = e+p-f
5564        if k >= 0:
5565            c *= 10**k
5566        else:
5567            c = _div_nearest(c, 10**-k)
5568
5569        log_d = _ilog(c, M) # error < 5 + 22 = 27
5570        log_10 = _log10_digits(p) # error < 1
5571        log_d = _div_nearest(log_d*M, log_10)
5572        log_tenpower = f*M # exact
5573    else:
5574        log_d = 0  # error < 2.31
5575        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
5576
5577    return _div_nearest(log_tenpower+log_d, 100)
5578
5579def _dlog(c, e, p):
5580    """Given integers c, e and p with c > 0, compute an integer
5581    approximation to 10**p * log(c*10**e), with an absolute error of
5582    at most 1.  Assumes that c*10**e is not exactly 1."""
5583
5584    # Increase precision by 2. The precision increase is compensated
5585    # for at the end with a division by 100.
5586    p += 2
5587
5588    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
5589    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
5590    # as 10**p * log(d) + 10**p*f * log(10).
5591    l = len(str(c))
5592    f = e+l - (e+l >= 1)
5593
5594    # compute approximation to 10**p*log(d), with error < 27
5595    if p > 0:
5596        k = e+p-f
5597        if k >= 0:
5598            c *= 10**k
5599        else:
5600            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
5601
5602        # _ilog magnifies existing error in c by a factor of at most 10
5603        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
5604    else:
5605        # p <= 0: just approximate the whole thing by 0; error < 2.31
5606        log_d = 0
5607
5608    # compute approximation to f*10**p*log(10), with error < 11.
5609    if f:
5610        extra = len(str(abs(f)))-1
5611        if p + extra >= 0:
5612            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
5613            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
5614            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
5615        else:
5616            f_log_ten = 0
5617    else:
5618        f_log_ten = 0
5619
5620    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
5621    return _div_nearest(f_log_ten + log_d, 100)
5622
5623class _Log10Memoize(object):
5624    """Class to compute, store, and allow retrieval of, digits of the
5625    constant log(10) = 2.302585....  This constant is needed by
5626    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
5627    def __init__(self):
5628        self.digits = "23025850929940456840179914546843642076011014886"
5629
5630    def getdigits(self, p):
5631        """Given an integer p >= 0, return floor(10**p)*log(10).
5632
5633        For example, self.getdigits(3) returns 2302.
5634        """
5635        # digits are stored as a string, for quick conversion to
5636        # integer in the case that we've already computed enough
5637        # digits; the stored digits should always be correct
5638        # (truncated, not rounded to nearest).
5639        if p < 0:
5640            raise ValueError("p should be nonnegative")
5641
5642        if p >= len(self.digits):
5643            # compute p+3, p+6, p+9, ... digits; continue until at
5644            # least one of the extra digits is nonzero
5645            extra = 3
5646            while True:
5647                # compute p+extra digits, correct to within 1ulp
5648                M = 10**(p+extra+2)
5649                digits = str(_div_nearest(_ilog(10*M, M), 100))
5650                if digits[-extra:] != '0'*extra:
5651                    break
5652                extra += 3
5653            # keep all reliable digits so far; remove trailing zeros
5654            # and next nonzero digit
5655            self.digits = digits.rstrip('0')[:-1]
5656        return int(self.digits[:p+1])
5657
5658_log10_digits = _Log10Memoize().getdigits
5659
5660def _iexp(x, M, L=8):
5661    """Given integers x and M, M > 0, such that x/M is small in absolute
5662    value, compute an integer approximation to M*exp(x/M).  For 0 <=
5663    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
5664    is usually much smaller)."""
5665
5666    # Algorithm: to compute exp(z) for a real number z, first divide z
5667    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
5668    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
5669    # series
5670    #
5671    #     expm1(x) = x + x**2/2! + x**3/3! + ...
5672    #
5673    # Now use the identity
5674    #
5675    #     expm1(2x) = expm1(x)*(expm1(x)+2)
5676    #
5677    # R times to compute the sequence expm1(z/2**R),
5678    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
5679
5680    # Find R such that x/2**R/M <= 2**-L
5681    R = _nbits((long(x)<<L)//M)
5682
5683    # Taylor series.  (2**L)**T > M
5684    T = -int(-10*len(str(M))//(3*L))
5685    y = _div_nearest(x, T)
5686    Mshift = long(M)<<R
5687    for i in xrange(T-1, 0, -1):
5688        y = _div_nearest(x*(Mshift + y), Mshift * i)
5689
5690    # Expansion
5691    for k in xrange(R-1, -1, -1):
5692        Mshift = long(M)<<(k+2)
5693        y = _div_nearest(y*(y+Mshift), Mshift)
5694
5695    return M+y
5696
5697def _dexp(c, e, p):
5698    """Compute an approximation to exp(c*10**e), with p decimal places of
5699    precision.
5700
5701    Returns integers d, f such that:
5702
5703      10**(p-1) <= d <= 10**p, and
5704      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
5705
5706    In other words, d*10**f is an approximation to exp(c*10**e) with p
5707    digits of precision, and with an error in d of at most 1.  This is
5708    almost, but not quite, the same as the error being < 1ulp: when d
5709    = 10**(p-1) the error could be up to 10 ulp."""
5710
5711    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
5712    p += 2
5713
5714    # compute log(10) with extra precision = adjusted exponent of c*10**e
5715    extra = max(0, e + len(str(c)) - 1)
5716    q = p + extra
5717
5718    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
5719    # rounding down
5720    shift = e+q
5721    if shift >= 0:
5722        cshift = c*10**shift
5723    else:
5724        cshift = c//10**-shift
5725    quot, rem = divmod(cshift, _log10_digits(q))
5726
5727    # reduce remainder back to original precision
5728    rem = _div_nearest(rem, 10**extra)
5729
5730    # error in result of _iexp < 120;  error after division < 0.62
5731    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
5732
5733def _dpower(xc, xe, yc, ye, p):
5734    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
5735    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
5736
5737      10**(p-1) <= c <= 10**p, and
5738      (c-1)*10**e < x**y < (c+1)*10**e
5739
5740    in other words, c*10**e is an approximation to x**y with p digits
5741    of precision, and with an error in c of at most 1.  (This is
5742    almost, but not quite, the same as the error being < 1ulp: when c
5743    == 10**(p-1) we can only guarantee error < 10ulp.)
5744
5745    We assume that: x is positive and not equal to 1, and y is nonzero.
5746    """
5747
5748    # Find b such that 10**(b-1) <= |y| <= 10**b
5749    b = len(str(abs(yc))) + ye
5750
5751    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
5752    lxc = _dlog(xc, xe, p+b+1)
5753
5754    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
5755    shift = ye-b
5756    if shift >= 0:
5757        pc = lxc*yc*10**shift
5758    else:
5759        pc = _div_nearest(lxc*yc, 10**-shift)
5760
5761    if pc == 0:
5762        # we prefer a result that isn't exactly 1; this makes it
5763        # easier to compute a correctly rounded result in __pow__
5764        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
5765            coeff, exp = 10**(p-1)+1, 1-p
5766        else:
5767            coeff, exp = 10**p-1, -p
5768    else:
5769        coeff, exp = _dexp(pc, -(p+1), p+1)
5770        coeff = _div_nearest(coeff, 10)
5771        exp += 1
5772
5773    return coeff, exp
5774
5775def _log10_lb(c, correction = {
5776        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
5777        '6': 23, '7': 16, '8': 10, '9': 5}):
5778    """Compute a lower bound for 100*log10(c) for a positive integer c."""
5779    if c <= 0:
5780        raise ValueError("The argument to _log10_lb should be nonnegative.")
5781    str_c = str(c)
5782    return 100*len(str_c) - correction[str_c[0]]
5783
5784##### Helper Functions ####################################################
5785
5786def _convert_other(other, raiseit=False, allow_float=False):
5787    """Convert other to Decimal.
5788
5789    Verifies that it's ok to use in an implicit construction.
5790    If allow_float is true, allow conversion from float;  this
5791    is used in the comparison methods (__eq__ and friends).
5792
5793    """
5794    if isinstance(other, Decimal):
5795        return other
5796    if isinstance(other, (int, long)):
5797        return Decimal(other)
5798    if allow_float and isinstance(other, float):
5799        return Decimal.from_float(other)
5800
5801    if raiseit:
5802        raise TypeError("Unable to convert %s to Decimal" % other)
5803    return NotImplemented
5804
5805##### Setup Specific Contexts ############################################
5806
5807# The default context prototype used by Context()
5808# Is mutable, so that new contexts can have different default values
5809
5810DefaultContext = Context(
5811        prec=28, rounding=ROUND_HALF_EVEN,
5812        traps=[DivisionByZero, Overflow, InvalidOperation],
5813        flags=[],
5814        Emax=999999999,
5815        Emin=-999999999,
5816        capitals=1
5817)
5818
5819# Pre-made alternate contexts offered by the specification
5820# Don't change these; the user should be able to select these
5821# contexts and be able to reproduce results from other implementations
5822# of the spec.
5823
5824BasicContext = Context(
5825        prec=9, rounding=ROUND_HALF_UP,
5826        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
5827        flags=[],
5828)
5829
5830ExtendedContext = Context(
5831        prec=9, rounding=ROUND_HALF_EVEN,
5832        traps=[],
5833        flags=[],
5834)
5835
5836
5837##### crud for parsing strings #############################################
5838#
5839# Regular expression used for parsing numeric strings.  Additional
5840# comments:
5841#
5842# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
5843# whitespace.  But note that the specification disallows whitespace in
5844# a numeric string.
5845#
5846# 2. For finite numbers (not infinities and NaNs) the body of the
5847# number between the optional sign and the optional exponent must have
5848# at least one decimal digit, possibly after the decimal point.  The
5849# lookahead expression '(?=\d|\.\d)' checks this.
5850
5851import re
5852_parser = re.compile(r"""        # A numeric string consists of:
5853#    \s*
5854    (?P<sign>[-+])?              # an optional sign, followed by either...
5855    (
5856        (?=\d|\.\d)              # ...a number (with at least one digit)
5857        (?P<int>\d*)             # having a (possibly empty) integer part
5858        (\.(?P<frac>\d*))?       # followed by an optional fractional part
5859        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
5860    |
5861        Inf(inity)?              # ...an infinity, or...
5862    |
5863        (?P<signal>s)?           # ...an (optionally signaling)
5864        NaN                      # NaN
5865        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
5866    )
5867#    \s*
5868    \Z
5869""", re.VERBOSE | re.IGNORECASE | re.UNICODE).match
5870
5871_all_zeros = re.compile('0*$').match
5872_exact_half = re.compile('50*$').match
5873
5874##### PEP3101 support functions ##############################################
5875# The functions in this section have little to do with the Decimal
5876# class, and could potentially be reused or adapted for other pure
5877# Python numeric classes that want to implement __format__
5878#
5879# A format specifier for Decimal looks like:
5880#
5881#   [[fill]align][sign][0][minimumwidth][,][.precision][type]
5882
5883_parse_format_specifier_regex = re.compile(r"""\A
5884(?:
5885   (?P<fill>.)?
5886   (?P<align>[<>=^])
5887)?
5888(?P<sign>[-+ ])?
5889(?P<zeropad>0)?
5890(?P<minimumwidth>(?!0)\d+)?
5891(?P<thousands_sep>,)?
5892(?:\.(?P<precision>0|(?!0)\d+))?
5893(?P<type>[eEfFgGn%])?
5894\Z
5895""", re.VERBOSE)
5896
5897del re
5898
5899# The locale module is only needed for the 'n' format specifier.  The
5900# rest of the PEP 3101 code functions quite happily without it, so we
5901# don't care too much if locale isn't present.
5902try:
5903    import locale as _locale
5904except ImportError:
5905    pass
5906
5907def _parse_format_specifier(format_spec, _localeconv=None):
5908    """Parse and validate a format specifier.
5909
5910    Turns a standard numeric format specifier into a dict, with the
5911    following entries:
5912
5913      fill: fill character to pad field to minimum width
5914      align: alignment type, either '<', '>', '=' or '^'
5915      sign: either '+', '-' or ' '
5916      minimumwidth: nonnegative integer giving minimum width
5917      zeropad: boolean, indicating whether to pad with zeros
5918      thousands_sep: string to use as thousands separator, or ''
5919      grouping: grouping for thousands separators, in format
5920        used by localeconv
5921      decimal_point: string to use for decimal point
5922      precision: nonnegative integer giving precision, or None
5923      type: one of the characters 'eEfFgG%', or None
5924      unicode: boolean (always True for Python 3.x)
5925
5926    """
5927    m = _parse_format_specifier_regex.match(format_spec)
5928    if m is None:
5929        raise ValueError("Invalid format specifier: " + format_spec)
5930
5931    # get the dictionary
5932    format_dict = m.groupdict()
5933
5934    # zeropad; defaults for fill and alignment.  If zero padding
5935    # is requested, the fill and align fields should be absent.
5936    fill = format_dict['fill']
5937    align = format_dict['align']
5938    format_dict['zeropad'] = (format_dict['zeropad'] is not None)
5939    if format_dict['zeropad']:
5940        if fill is not None:
5941            raise ValueError("Fill character conflicts with '0'"
5942                             " in format specifier: " + format_spec)
5943        if align is not None:
5944            raise ValueError("Alignment conflicts with '0' in "
5945                             "format specifier: " + format_spec)
5946    format_dict['fill'] = fill or ' '
5947    # PEP 3101 originally specified that the default alignment should
5948    # be left;  it was later agreed that right-aligned makes more sense
5949    # for numeric types.  See http://bugs.python.org/issue6857.
5950    format_dict['align'] = align or '>'
5951
5952    # default sign handling: '-' for negative, '' for positive
5953    if format_dict['sign'] is None:
5954        format_dict['sign'] = '-'
5955
5956    # minimumwidth defaults to 0; precision remains None if not given
5957    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
5958    if format_dict['precision'] is not None:
5959        format_dict['precision'] = int(format_dict['precision'])
5960
5961    # if format type is 'g' or 'G' then a precision of 0 makes little
5962    # sense; convert it to 1.  Same if format type is unspecified.
5963    if format_dict['precision'] == 0:
5964        if format_dict['type'] is None or format_dict['type'] in 'gG':
5965            format_dict['precision'] = 1
5966
5967    # determine thousands separator, grouping, and decimal separator, and
5968    # add appropriate entries to format_dict
5969    if format_dict['type'] == 'n':
5970        # apart from separators, 'n' behaves just like 'g'
5971        format_dict['type'] = 'g'
5972        if _localeconv is None:
5973            _localeconv = _locale.localeconv()
5974        if format_dict['thousands_sep'] is not None:
5975            raise ValueError("Explicit thousands separator conflicts with "
5976                             "'n' type in format specifier: " + format_spec)
5977        format_dict['thousands_sep'] = _localeconv['thousands_sep']
5978        format_dict['grouping'] = _localeconv['grouping']
5979        format_dict['decimal_point'] = _localeconv['decimal_point']
5980    else:
5981        if format_dict['thousands_sep'] is None:
5982            format_dict['thousands_sep'] = ''
5983        format_dict['grouping'] = [3, 0]
5984        format_dict['decimal_point'] = '.'
5985
5986    # record whether return type should be str or unicode
5987    format_dict['unicode'] = isinstance(format_spec, unicode)
5988
5989    return format_dict
5990
5991def _format_align(sign, body, spec):
5992    """Given an unpadded, non-aligned numeric string 'body' and sign
5993    string 'sign', add padding and alignment conforming to the given
5994    format specifier dictionary 'spec' (as produced by
5995    parse_format_specifier).
5996
5997    Also converts result to unicode if necessary.
5998
5999    """
6000    # how much extra space do we have to play with?
6001    minimumwidth = spec['minimumwidth']
6002    fill = spec['fill']
6003    padding = fill*(minimumwidth - len(sign) - len(body))
6004
6005    align = spec['align']
6006    if align == '<':
6007        result = sign + body + padding
6008    elif align == '>':
6009        result = padding + sign + body
6010    elif align == '=':
6011        result = sign + padding + body
6012    elif align == '^':
6013        half = len(padding)//2
6014        result = padding[:half] + sign + body + padding[half:]
6015    else:
6016        raise ValueError('Unrecognised alignment field')
6017
6018    # make sure that result is unicode if necessary
6019    if spec['unicode']:
6020        result = unicode(result)
6021
6022    return result
6023
6024def _group_lengths(grouping):
6025    """Convert a localeconv-style grouping into a (possibly infinite)
6026    iterable of integers representing group lengths.
6027
6028    """
6029    # The result from localeconv()['grouping'], and the input to this
6030    # function, should be a list of integers in one of the
6031    # following three forms:
6032    #
6033    #   (1) an empty list, or
6034    #   (2) nonempty list of positive integers + [0]
6035    #   (3) list of positive integers + [locale.CHAR_MAX], or
6036
6037    from itertools import chain, repeat
6038    if not grouping:
6039        return []
6040    elif grouping[-1] == 0 and len(grouping) >= 2:
6041        return chain(grouping[:-1], repeat(grouping[-2]))
6042    elif grouping[-1] == _locale.CHAR_MAX:
6043        return grouping[:-1]
6044    else:
6045        raise ValueError('unrecognised format for grouping')
6046
6047def _insert_thousands_sep(digits, spec, min_width=1):
6048    """Insert thousands separators into a digit string.
6049
6050    spec is a dictionary whose keys should include 'thousands_sep' and
6051    'grouping'; typically it's the result of parsing the format
6052    specifier using _parse_format_specifier.
6053
6054    The min_width keyword argument gives the minimum length of the
6055    result, which will be padded on the left with zeros if necessary.
6056
6057    If necessary, the zero padding adds an extra '0' on the left to
6058    avoid a leading thousands separator.  For example, inserting
6059    commas every three digits in '123456', with min_width=8, gives
6060    '0,123,456', even though that has length 9.
6061
6062    """
6063
6064    sep = spec['thousands_sep']
6065    grouping = spec['grouping']
6066
6067    groups = []
6068    for l in _group_lengths(grouping):
6069        if l <= 0:
6070            raise ValueError("group length should be positive")
6071        # max(..., 1) forces at least 1 digit to the left of a separator
6072        l = min(max(len(digits), min_width, 1), l)
6073        groups.append('0'*(l - len(digits)) + digits[-l:])
6074        digits = digits[:-l]
6075        min_width -= l
6076        if not digits and min_width <= 0:
6077            break
6078        min_width -= len(sep)
6079    else:
6080        l = max(len(digits), min_width, 1)
6081        groups.append('0'*(l - len(digits)) + digits[-l:])
6082    return sep.join(reversed(groups))
6083
6084def _format_sign(is_negative, spec):
6085    """Determine sign character."""
6086
6087    if is_negative:
6088        return '-'
6089    elif spec['sign'] in ' +':
6090        return spec['sign']
6091    else:
6092        return ''
6093
6094def _format_number(is_negative, intpart, fracpart, exp, spec):
6095    """Format a number, given the following data:
6096
6097    is_negative: true if the number is negative, else false
6098    intpart: string of digits that must appear before the decimal point
6099    fracpart: string of digits that must come after the point
6100    exp: exponent, as an integer
6101    spec: dictionary resulting from parsing the format specifier
6102
6103    This function uses the information in spec to:
6104      insert separators (decimal separator and thousands separators)
6105      format the sign
6106      format the exponent
6107      add trailing '%' for the '%' type
6108      zero-pad if necessary
6109      fill and align if necessary
6110    """
6111
6112    sign = _format_sign(is_negative, spec)
6113
6114    if fracpart:
6115        fracpart = spec['decimal_point'] + fracpart
6116
6117    if exp != 0 or spec['type'] in 'eE':
6118        echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
6119        fracpart += "{0}{1:+}".format(echar, exp)
6120    if spec['type'] == '%':
6121        fracpart += '%'
6122
6123    if spec['zeropad']:
6124        min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
6125    else:
6126        min_width = 0
6127    intpart = _insert_thousands_sep(intpart, spec, min_width)
6128
6129    return _format_align(sign, intpart+fracpart, spec)
6130
6131
6132##### Useful Constants (internal use only) ################################
6133
6134# Reusable defaults
6135_Infinity = Decimal('Inf')
6136_NegativeInfinity = Decimal('-Inf')
6137_NaN = Decimal('NaN')
6138_Zero = Decimal(0)
6139_One = Decimal(1)
6140_NegativeOne = Decimal(-1)
6141
6142# _SignedInfinity[sign] is infinity w/ that sign
6143_SignedInfinity = (_Infinity, _NegativeInfinity)
6144
6145
6146
6147if __name__ == '__main__':
6148    import doctest, sys
6149    doctest.testmod(sys.modules[__name__])
6150