1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in
12 * the documentation and/or other materials provided with the
13 * distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #define LOG_TAG "res_cache"
30
31 #include "resolv_cache.h"
32
33 #include <resolv.h>
34 #include <stdarg.h>
35 #include <stdio.h>
36 #include <stdlib.h>
37 #include <string.h>
38 #include <time.h>
39 #include <mutex>
40
41 #include <arpa/inet.h>
42 #include <arpa/nameser.h>
43 #include <errno.h>
44 #include <linux/if.h>
45 #include <net/if.h>
46 #include <netdb.h>
47
48 #include <android-base/logging.h>
49 #include <android-base/parseint.h>
50 #include <android-base/thread_annotations.h>
51 #include <android/multinetwork.h> // ResNsendFlags
52
53 #include <server_configurable_flags/get_flags.h>
54
55 #include "res_state_ext.h"
56 #include "resolv_private.h"
57
58 // NOTE: verbose logging MUST NOT be left enabled in production binaries.
59 // It floods logs at high rate, and can leak privacy-sensitive information.
60 constexpr bool kDumpData = false;
61
62 /* This code implements a small and *simple* DNS resolver cache.
63 *
64 * It is only used to cache DNS answers for a time defined by the smallest TTL
65 * among the answer records in order to reduce DNS traffic. It is not supposed
66 * to be a full DNS cache, since we plan to implement that in the future in a
67 * dedicated process running on the system.
68 *
69 * Note that its design is kept simple very intentionally, i.e.:
70 *
71 * - it takes raw DNS query packet data as input, and returns raw DNS
72 * answer packet data as output
73 *
74 * (this means that two similar queries that encode the DNS name
75 * differently will be treated distinctly).
76 *
77 * the smallest TTL value among the answer records are used as the time
78 * to keep an answer in the cache.
79 *
80 * this is bad, but we absolutely want to avoid parsing the answer packets
81 * (and should be solved by the later full DNS cache process).
82 *
83 * - the implementation is just a (query-data) => (answer-data) hash table
84 * with a trivial least-recently-used expiration policy.
85 *
86 * Doing this keeps the code simple and avoids to deal with a lot of things
87 * that a full DNS cache is expected to do.
88 *
89 * The API is also very simple:
90 *
91 * - the client calls _resolv_cache_get() to obtain a handle to the cache.
92 * this will initialize the cache on first usage. the result can be NULL
93 * if the cache is disabled.
94 *
95 * - the client calls _resolv_cache_lookup() before performing a query
96 *
97 * if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
98 * has been copied into the client-provided answer buffer.
99 *
100 * if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
101 * a request normally, *then* call _resolv_cache_add() to add the received
102 * answer to the cache.
103 *
104 * if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
105 * perform a request normally, and *not* call _resolv_cache_add()
106 *
107 * note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
108 * is too short to accomodate the cached result.
109 */
110
111 /* default number of entries kept in the cache. This value has been
112 * determined by browsing through various sites and counting the number
113 * of corresponding requests. Keep in mind that our framework is currently
114 * performing two requests per name lookup (one for IPv4, the other for IPv6)
115 *
116 * www.google.com 4
117 * www.ysearch.com 6
118 * www.amazon.com 8
119 * www.nytimes.com 22
120 * www.espn.com 28
121 * www.msn.com 28
122 * www.lemonde.fr 35
123 *
124 * (determined in 2009-2-17 from Paris, France, results may vary depending
125 * on location)
126 *
127 * most high-level websites use lots of media/ad servers with different names
128 * but these are generally reused when browsing through the site.
129 *
130 * As such, a value of 64 should be relatively comfortable at the moment.
131 *
132 * ******************************************
133 * * NOTE - this has changed.
134 * * 1) we've added IPv6 support so each dns query results in 2 responses
135 * * 2) we've made this a system-wide cache, so the cost is less (it's not
136 * * duplicated in each process) and the need is greater (more processes
137 * * making different requests).
138 * * Upping by 2x for IPv6
139 * * Upping by another 5x for the centralized nature
140 * *****************************************
141 */
142 #define CONFIG_MAX_ENTRIES (64 * 2 * 5)
143
144 /** BOUNDED BUFFER FORMATTING **/
145
146 /* technical note:
147 *
148 * the following debugging routines are used to append data to a bounded
149 * buffer they take two parameters that are:
150 *
151 * - p : a pointer to the current cursor position in the buffer
152 * this value is initially set to the buffer's address.
153 *
154 * - end : the address of the buffer's limit, i.e. of the first byte
155 * after the buffer. this address should never be touched.
156 *
157 * IMPORTANT: it is assumed that end > buffer_address, i.e.
158 * that the buffer is at least one byte.
159 *
160 * the bprint_x() functions return the new value of 'p' after the data
161 * has been appended, and also ensure the following:
162 *
163 * - the returned value will never be strictly greater than 'end'
164 *
165 * - a return value equal to 'end' means that truncation occurred
166 * (in which case, end[-1] will be set to 0)
167 *
168 * - after returning from a bprint_x() function, the content of the buffer
169 * is always 0-terminated, even in the event of truncation.
170 *
171 * these conventions allow you to call bprint_x() functions multiple times and
172 * only check for truncation at the end of the sequence, as in:
173 *
174 * char buff[1000], *p = buff, *end = p + sizeof(buff);
175 *
176 * p = bprint_c(p, end, '"');
177 * p = bprint_s(p, end, my_string);
178 * p = bprint_c(p, end, '"');
179 *
180 * if (p >= end) {
181 * // buffer was too small
182 * }
183 *
184 * printf( "%s", buff );
185 */
186
187 /* Defaults used for initializing res_params */
188
189 // If successes * 100 / total_samples is less than this value, the server is considered failing
190 #define SUCCESS_THRESHOLD 75
191 // Sample validity in seconds. Set to -1 to disable skipping failing servers.
192 #define NSSAMPLE_VALIDITY 1800
193
194 /* add a char to a bounded buffer */
bprint_c(char * p,char * end,int c)195 static char* bprint_c(char* p, char* end, int c) {
196 if (p < end) {
197 if (p + 1 == end)
198 *p++ = 0;
199 else {
200 *p++ = (char) c;
201 *p = 0;
202 }
203 }
204 return p;
205 }
206
207 /* add a sequence of bytes to a bounded buffer */
bprint_b(char * p,char * end,const char * buf,int len)208 static char* bprint_b(char* p, char* end, const char* buf, int len) {
209 int avail = end - p;
210
211 if (avail <= 0 || len <= 0) return p;
212
213 if (avail > len) avail = len;
214
215 memcpy(p, buf, avail);
216 p += avail;
217
218 if (p < end)
219 p[0] = 0;
220 else
221 end[-1] = 0;
222
223 return p;
224 }
225
226 /* add a string to a bounded buffer */
bprint_s(char * p,char * end,const char * str)227 static char* bprint_s(char* p, char* end, const char* str) {
228 return bprint_b(p, end, str, strlen(str));
229 }
230
231 /* add a formatted string to a bounded buffer */
bprint(char * p,char * end,const char * format,...)232 static char* bprint(char* p, char* end, const char* format, ...) {
233 int avail, n;
234 va_list args;
235
236 avail = end - p;
237
238 if (avail <= 0) return p;
239
240 va_start(args, format);
241 n = vsnprintf(p, avail, format, args);
242 va_end(args);
243
244 /* certain C libraries return -1 in case of truncation */
245 if (n < 0 || n > avail) n = avail;
246
247 p += n;
248 /* certain C libraries do not zero-terminate in case of truncation */
249 if (p == end) p[-1] = 0;
250
251 return p;
252 }
253
254 /* add a hex value to a bounded buffer, up to 8 digits */
bprint_hex(char * p,char * end,unsigned value,int numDigits)255 static char* bprint_hex(char* p, char* end, unsigned value, int numDigits) {
256 char text[sizeof(unsigned) * 2];
257 int nn = 0;
258
259 while (numDigits-- > 0) {
260 text[nn++] = "0123456789abcdef"[(value >> (numDigits * 4)) & 15];
261 }
262 return bprint_b(p, end, text, nn);
263 }
264
265 /* add the hexadecimal dump of some memory area to a bounded buffer */
bprint_hexdump(char * p,char * end,const uint8_t * data,int datalen)266 static char* bprint_hexdump(char* p, char* end, const uint8_t* data, int datalen) {
267 int lineSize = 16;
268
269 while (datalen > 0) {
270 int avail = datalen;
271 int nn;
272
273 if (avail > lineSize) avail = lineSize;
274
275 for (nn = 0; nn < avail; nn++) {
276 if (nn > 0) p = bprint_c(p, end, ' ');
277 p = bprint_hex(p, end, data[nn], 2);
278 }
279 for (; nn < lineSize; nn++) {
280 p = bprint_s(p, end, " ");
281 }
282 p = bprint_s(p, end, " ");
283
284 for (nn = 0; nn < avail; nn++) {
285 int c = data[nn];
286
287 if (c < 32 || c > 127) c = '.';
288
289 p = bprint_c(p, end, c);
290 }
291 p = bprint_c(p, end, '\n');
292
293 data += avail;
294 datalen -= avail;
295 }
296 return p;
297 }
298
299 /* dump the content of a query of packet to the log */
dump_bytes(const uint8_t * base,int len)300 static void dump_bytes(const uint8_t* base, int len) {
301 if (!kDumpData) return;
302
303 char buff[1024];
304 char *p = buff, *end = p + sizeof(buff);
305
306 p = bprint_hexdump(p, end, base, len);
307 LOG(INFO) << __func__ << ": " << buff;
308 }
309
_time_now(void)310 static time_t _time_now(void) {
311 struct timeval tv;
312
313 gettimeofday(&tv, NULL);
314 return tv.tv_sec;
315 }
316
317 /* reminder: the general format of a DNS packet is the following:
318 *
319 * HEADER (12 bytes)
320 * QUESTION (variable)
321 * ANSWER (variable)
322 * AUTHORITY (variable)
323 * ADDITIONNAL (variable)
324 *
325 * the HEADER is made of:
326 *
327 * ID : 16 : 16-bit unique query identification field
328 *
329 * QR : 1 : set to 0 for queries, and 1 for responses
330 * Opcode : 4 : set to 0 for queries
331 * AA : 1 : set to 0 for queries
332 * TC : 1 : truncation flag, will be set to 0 in queries
333 * RD : 1 : recursion desired
334 *
335 * RA : 1 : recursion available (0 in queries)
336 * Z : 3 : three reserved zero bits
337 * RCODE : 4 : response code (always 0=NOERROR in queries)
338 *
339 * QDCount: 16 : question count
340 * ANCount: 16 : Answer count (0 in queries)
341 * NSCount: 16: Authority Record count (0 in queries)
342 * ARCount: 16: Additionnal Record count (0 in queries)
343 *
344 * the QUESTION is made of QDCount Question Record (QRs)
345 * the ANSWER is made of ANCount RRs
346 * the AUTHORITY is made of NSCount RRs
347 * the ADDITIONNAL is made of ARCount RRs
348 *
349 * Each Question Record (QR) is made of:
350 *
351 * QNAME : variable : Query DNS NAME
352 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
353 * CLASS : 16 : class of query (IN=1)
354 *
355 * Each Resource Record (RR) is made of:
356 *
357 * NAME : variable : DNS NAME
358 * TYPE : 16 : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
359 * CLASS : 16 : class of query (IN=1)
360 * TTL : 32 : seconds to cache this RR (0=none)
361 * RDLENGTH: 16 : size of RDDATA in bytes
362 * RDDATA : variable : RR data (depends on TYPE)
363 *
364 * Each QNAME contains a domain name encoded as a sequence of 'labels'
365 * terminated by a zero. Each label has the following format:
366 *
367 * LEN : 8 : lenght of label (MUST be < 64)
368 * NAME : 8*LEN : label length (must exclude dots)
369 *
370 * A value of 0 in the encoding is interpreted as the 'root' domain and
371 * terminates the encoding. So 'www.android.com' will be encoded as:
372 *
373 * <3>www<7>android<3>com<0>
374 *
375 * Where <n> represents the byte with value 'n'
376 *
377 * Each NAME reflects the QNAME of the question, but has a slightly more
378 * complex encoding in order to provide message compression. This is achieved
379 * by using a 2-byte pointer, with format:
380 *
381 * TYPE : 2 : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
382 * OFFSET : 14 : offset to another part of the DNS packet
383 *
384 * The offset is relative to the start of the DNS packet and must point
385 * A pointer terminates the encoding.
386 *
387 * The NAME can be encoded in one of the following formats:
388 *
389 * - a sequence of simple labels terminated by 0 (like QNAMEs)
390 * - a single pointer
391 * - a sequence of simple labels terminated by a pointer
392 *
393 * A pointer shall always point to either a pointer of a sequence of
394 * labels (which can themselves be terminated by either a 0 or a pointer)
395 *
396 * The expanded length of a given domain name should not exceed 255 bytes.
397 *
398 * NOTE: we don't parse the answer packets, so don't need to deal with NAME
399 * records, only QNAMEs.
400 */
401
402 #define DNS_HEADER_SIZE 12
403
404 #define DNS_TYPE_A "\00\01" /* big-endian decimal 1 */
405 #define DNS_TYPE_PTR "\00\014" /* big-endian decimal 12 */
406 #define DNS_TYPE_MX "\00\017" /* big-endian decimal 15 */
407 #define DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
408 #define DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
409
410 #define DNS_CLASS_IN "\00\01" /* big-endian decimal 1 */
411
412 typedef struct {
413 const uint8_t* base;
414 const uint8_t* end;
415 const uint8_t* cursor;
416 } DnsPacket;
417
_dnsPacket_init(DnsPacket * packet,const uint8_t * buff,int bufflen)418 static void _dnsPacket_init(DnsPacket* packet, const uint8_t* buff, int bufflen) {
419 packet->base = buff;
420 packet->end = buff + bufflen;
421 packet->cursor = buff;
422 }
423
_dnsPacket_rewind(DnsPacket * packet)424 static void _dnsPacket_rewind(DnsPacket* packet) {
425 packet->cursor = packet->base;
426 }
427
_dnsPacket_skip(DnsPacket * packet,int count)428 static void _dnsPacket_skip(DnsPacket* packet, int count) {
429 const uint8_t* p = packet->cursor + count;
430
431 if (p > packet->end) p = packet->end;
432
433 packet->cursor = p;
434 }
435
_dnsPacket_readInt16(DnsPacket * packet)436 static int _dnsPacket_readInt16(DnsPacket* packet) {
437 const uint8_t* p = packet->cursor;
438
439 if (p + 2 > packet->end) return -1;
440
441 packet->cursor = p + 2;
442 return (p[0] << 8) | p[1];
443 }
444
445 /** QUERY CHECKING **/
446
447 /* check bytes in a dns packet. returns 1 on success, 0 on failure.
448 * the cursor is only advanced in the case of success
449 */
_dnsPacket_checkBytes(DnsPacket * packet,int numBytes,const void * bytes)450 static int _dnsPacket_checkBytes(DnsPacket* packet, int numBytes, const void* bytes) {
451 const uint8_t* p = packet->cursor;
452
453 if (p + numBytes > packet->end) return 0;
454
455 if (memcmp(p, bytes, numBytes) != 0) return 0;
456
457 packet->cursor = p + numBytes;
458 return 1;
459 }
460
461 /* parse and skip a given QNAME stored in a query packet,
462 * from the current cursor position. returns 1 on success,
463 * or 0 for malformed data.
464 */
_dnsPacket_checkQName(DnsPacket * packet)465 static int _dnsPacket_checkQName(DnsPacket* packet) {
466 const uint8_t* p = packet->cursor;
467 const uint8_t* end = packet->end;
468
469 for (;;) {
470 int c;
471
472 if (p >= end) break;
473
474 c = *p++;
475
476 if (c == 0) {
477 packet->cursor = p;
478 return 1;
479 }
480
481 /* we don't expect label compression in QNAMEs */
482 if (c >= 64) break;
483
484 p += c;
485 /* we rely on the bound check at the start
486 * of the loop here */
487 }
488 /* malformed data */
489 LOG(INFO) << __func__ << ": malformed QNAME";
490 return 0;
491 }
492
493 /* parse and skip a given QR stored in a packet.
494 * returns 1 on success, and 0 on failure
495 */
_dnsPacket_checkQR(DnsPacket * packet)496 static int _dnsPacket_checkQR(DnsPacket* packet) {
497 if (!_dnsPacket_checkQName(packet)) return 0;
498
499 /* TYPE must be one of the things we support */
500 if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
501 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
502 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
503 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
504 !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL)) {
505 LOG(INFO) << __func__ << ": unsupported TYPE";
506 return 0;
507 }
508 /* CLASS must be IN */
509 if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
510 LOG(INFO) << __func__ << ": unsupported CLASS";
511 return 0;
512 }
513
514 return 1;
515 }
516
517 /* check the header of a DNS Query packet, return 1 if it is one
518 * type of query we can cache, or 0 otherwise
519 */
_dnsPacket_checkQuery(DnsPacket * packet)520 static int _dnsPacket_checkQuery(DnsPacket* packet) {
521 const uint8_t* p = packet->base;
522 int qdCount, anCount, dnCount, arCount;
523
524 if (p + DNS_HEADER_SIZE > packet->end) {
525 LOG(INFO) << __func__ << ": query packet too small";
526 return 0;
527 }
528
529 /* QR must be set to 0, opcode must be 0 and AA must be 0 */
530 /* RA, Z, and RCODE must be 0 */
531 if ((p[2] & 0xFC) != 0 || (p[3] & 0xCF) != 0) {
532 LOG(INFO) << __func__ << ": query packet flags unsupported";
533 return 0;
534 }
535
536 /* Note that we ignore the TC, RD, CD, and AD bits here for the
537 * following reasons:
538 *
539 * - there is no point for a query packet sent to a server
540 * to have the TC bit set, but the implementation might
541 * set the bit in the query buffer for its own needs
542 * between a _resolv_cache_lookup and a
543 * _resolv_cache_add. We should not freak out if this
544 * is the case.
545 *
546 * - we consider that the result from a query might depend on
547 * the RD, AD, and CD bits, so these bits
548 * should be used to differentiate cached result.
549 *
550 * this implies that these bits are checked when hashing or
551 * comparing query packets, but not TC
552 */
553
554 /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
555 qdCount = (p[4] << 8) | p[5];
556 anCount = (p[6] << 8) | p[7];
557 dnCount = (p[8] << 8) | p[9];
558 arCount = (p[10] << 8) | p[11];
559
560 if (anCount != 0 || dnCount != 0 || arCount > 1) {
561 LOG(INFO) << __func__ << ": query packet contains non-query records";
562 return 0;
563 }
564
565 if (qdCount == 0) {
566 LOG(INFO) << __func__ << ": query packet doesn't contain query record";
567 return 0;
568 }
569
570 /* Check QDCOUNT QRs */
571 packet->cursor = p + DNS_HEADER_SIZE;
572
573 for (; qdCount > 0; qdCount--)
574 if (!_dnsPacket_checkQR(packet)) return 0;
575
576 return 1;
577 }
578
579 /** QUERY DEBUGGING **/
dnsPacket_bprintQName(DnsPacket * packet,char * bp,char * bend)580 static char* dnsPacket_bprintQName(DnsPacket* packet, char* bp, char* bend) {
581 const uint8_t* p = packet->cursor;
582 const uint8_t* end = packet->end;
583 int first = 1;
584
585 for (;;) {
586 int c;
587
588 if (p >= end) break;
589
590 c = *p++;
591
592 if (c == 0) {
593 packet->cursor = p;
594 return bp;
595 }
596
597 /* we don't expect label compression in QNAMEs */
598 if (c >= 64) break;
599
600 if (first)
601 first = 0;
602 else
603 bp = bprint_c(bp, bend, '.');
604
605 bp = bprint_b(bp, bend, (const char*) p, c);
606
607 p += c;
608 /* we rely on the bound check at the start
609 * of the loop here */
610 }
611 /* malformed data */
612 bp = bprint_s(bp, bend, "<MALFORMED>");
613 return bp;
614 }
615
dnsPacket_bprintQR(DnsPacket * packet,char * p,char * end)616 static char* dnsPacket_bprintQR(DnsPacket* packet, char* p, char* end) {
617 #define QQ(x) \
618 { DNS_TYPE_##x, #x }
619 static const struct {
620 const char* typeBytes;
621 const char* typeString;
622 } qTypes[] = {QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL), {NULL, NULL}};
623 int nn;
624 const char* typeString = NULL;
625
626 /* dump QNAME */
627 p = dnsPacket_bprintQName(packet, p, end);
628
629 /* dump TYPE */
630 p = bprint_s(p, end, " (");
631
632 for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
633 if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
634 typeString = qTypes[nn].typeString;
635 break;
636 }
637 }
638
639 if (typeString != NULL)
640 p = bprint_s(p, end, typeString);
641 else {
642 int typeCode = _dnsPacket_readInt16(packet);
643 p = bprint(p, end, "UNKNOWN-%d", typeCode);
644 }
645
646 p = bprint_c(p, end, ')');
647
648 /* skip CLASS */
649 _dnsPacket_skip(packet, 2);
650 return p;
651 }
652
653 /* this function assumes the packet has already been checked */
dnsPacket_bprintQuery(DnsPacket * packet,char * p,char * end)654 static char* dnsPacket_bprintQuery(DnsPacket* packet, char* p, char* end) {
655 int qdCount;
656
657 if (packet->base[2] & 0x1) {
658 p = bprint_s(p, end, "RECURSIVE ");
659 }
660
661 _dnsPacket_skip(packet, 4);
662 qdCount = _dnsPacket_readInt16(packet);
663 _dnsPacket_skip(packet, 6);
664
665 for (; qdCount > 0; qdCount--) {
666 p = dnsPacket_bprintQR(packet, p, end);
667 }
668 return p;
669 }
670
671 /** QUERY HASHING SUPPORT
672 **
673 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
674 ** BEEN SUCCESFULLY CHECKED.
675 **/
676
677 /* use 32-bit FNV hash function */
678 #define FNV_MULT 16777619U
679 #define FNV_BASIS 2166136261U
680
_dnsPacket_hashBytes(DnsPacket * packet,int numBytes,unsigned hash)681 static unsigned _dnsPacket_hashBytes(DnsPacket* packet, int numBytes, unsigned hash) {
682 const uint8_t* p = packet->cursor;
683 const uint8_t* end = packet->end;
684
685 while (numBytes > 0 && p < end) {
686 hash = hash * FNV_MULT ^ *p++;
687 }
688 packet->cursor = p;
689 return hash;
690 }
691
_dnsPacket_hashQName(DnsPacket * packet,unsigned hash)692 static unsigned _dnsPacket_hashQName(DnsPacket* packet, unsigned hash) {
693 const uint8_t* p = packet->cursor;
694 const uint8_t* end = packet->end;
695
696 for (;;) {
697 int c;
698
699 if (p >= end) { /* should not happen */
700 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
701 break;
702 }
703
704 c = *p++;
705
706 if (c == 0) break;
707
708 if (c >= 64) {
709 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
710 break;
711 }
712 if (p + c >= end) {
713 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
714 break;
715 }
716 while (c > 0) {
717 hash = hash * FNV_MULT ^ *p++;
718 c -= 1;
719 }
720 }
721 packet->cursor = p;
722 return hash;
723 }
724
_dnsPacket_hashQR(DnsPacket * packet,unsigned hash)725 static unsigned _dnsPacket_hashQR(DnsPacket* packet, unsigned hash) {
726 hash = _dnsPacket_hashQName(packet, hash);
727 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
728 return hash;
729 }
730
_dnsPacket_hashRR(DnsPacket * packet,unsigned hash)731 static unsigned _dnsPacket_hashRR(DnsPacket* packet, unsigned hash) {
732 int rdlength;
733 hash = _dnsPacket_hashQR(packet, hash);
734 hash = _dnsPacket_hashBytes(packet, 4, hash); /* TTL */
735 rdlength = _dnsPacket_readInt16(packet);
736 hash = _dnsPacket_hashBytes(packet, rdlength, hash); /* RDATA */
737 return hash;
738 }
739
_dnsPacket_hashQuery(DnsPacket * packet)740 static unsigned _dnsPacket_hashQuery(DnsPacket* packet) {
741 unsigned hash = FNV_BASIS;
742 int count, arcount;
743 _dnsPacket_rewind(packet);
744
745 /* ignore the ID */
746 _dnsPacket_skip(packet, 2);
747
748 /* we ignore the TC bit for reasons explained in
749 * _dnsPacket_checkQuery().
750 *
751 * however we hash the RD bit to differentiate
752 * between answers for recursive and non-recursive
753 * queries.
754 */
755 hash = hash * FNV_MULT ^ (packet->base[2] & 1);
756
757 /* mark the first header byte as processed */
758 _dnsPacket_skip(packet, 1);
759
760 /* process the second header byte */
761 hash = _dnsPacket_hashBytes(packet, 1, hash);
762
763 /* read QDCOUNT */
764 count = _dnsPacket_readInt16(packet);
765
766 /* assume: ANcount and NScount are 0 */
767 _dnsPacket_skip(packet, 4);
768
769 /* read ARCOUNT */
770 arcount = _dnsPacket_readInt16(packet);
771
772 /* hash QDCOUNT QRs */
773 for (; count > 0; count--) hash = _dnsPacket_hashQR(packet, hash);
774
775 /* hash ARCOUNT RRs */
776 for (; arcount > 0; arcount--) hash = _dnsPacket_hashRR(packet, hash);
777
778 return hash;
779 }
780
781 /** QUERY COMPARISON
782 **
783 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
784 ** BEEN SUCCESSFULLY CHECKED.
785 **/
786
_dnsPacket_isEqualDomainName(DnsPacket * pack1,DnsPacket * pack2)787 static int _dnsPacket_isEqualDomainName(DnsPacket* pack1, DnsPacket* pack2) {
788 const uint8_t* p1 = pack1->cursor;
789 const uint8_t* end1 = pack1->end;
790 const uint8_t* p2 = pack2->cursor;
791 const uint8_t* end2 = pack2->end;
792
793 for (;;) {
794 int c1, c2;
795
796 if (p1 >= end1 || p2 >= end2) {
797 LOG(INFO) << __func__ << ": INTERNAL_ERROR: read-overflow";
798 break;
799 }
800 c1 = *p1++;
801 c2 = *p2++;
802 if (c1 != c2) break;
803
804 if (c1 == 0) {
805 pack1->cursor = p1;
806 pack2->cursor = p2;
807 return 1;
808 }
809 if (c1 >= 64) {
810 LOG(INFO) << __func__ << ": INTERNAL_ERROR: malformed domain";
811 break;
812 }
813 if ((p1 + c1 > end1) || (p2 + c1 > end2)) {
814 LOG(INFO) << __func__ << ": INTERNAL_ERROR: simple label read-overflow";
815 break;
816 }
817 if (memcmp(p1, p2, c1) != 0) break;
818 p1 += c1;
819 p2 += c1;
820 /* we rely on the bound checks at the start of the loop */
821 }
822 /* not the same, or one is malformed */
823 LOG(INFO) << __func__ << ": different DN";
824 return 0;
825 }
826
_dnsPacket_isEqualBytes(DnsPacket * pack1,DnsPacket * pack2,int numBytes)827 static int _dnsPacket_isEqualBytes(DnsPacket* pack1, DnsPacket* pack2, int numBytes) {
828 const uint8_t* p1 = pack1->cursor;
829 const uint8_t* p2 = pack2->cursor;
830
831 if (p1 + numBytes > pack1->end || p2 + numBytes > pack2->end) return 0;
832
833 if (memcmp(p1, p2, numBytes) != 0) return 0;
834
835 pack1->cursor += numBytes;
836 pack2->cursor += numBytes;
837 return 1;
838 }
839
_dnsPacket_isEqualQR(DnsPacket * pack1,DnsPacket * pack2)840 static int _dnsPacket_isEqualQR(DnsPacket* pack1, DnsPacket* pack2) {
841 /* compare domain name encoding + TYPE + CLASS */
842 if (!_dnsPacket_isEqualDomainName(pack1, pack2) ||
843 !_dnsPacket_isEqualBytes(pack1, pack2, 2 + 2))
844 return 0;
845
846 return 1;
847 }
848
_dnsPacket_isEqualRR(DnsPacket * pack1,DnsPacket * pack2)849 static int _dnsPacket_isEqualRR(DnsPacket* pack1, DnsPacket* pack2) {
850 int rdlength1, rdlength2;
851 /* compare query + TTL */
852 if (!_dnsPacket_isEqualQR(pack1, pack2) || !_dnsPacket_isEqualBytes(pack1, pack2, 4)) return 0;
853
854 /* compare RDATA */
855 rdlength1 = _dnsPacket_readInt16(pack1);
856 rdlength2 = _dnsPacket_readInt16(pack2);
857 if (rdlength1 != rdlength2 || !_dnsPacket_isEqualBytes(pack1, pack2, rdlength1)) return 0;
858
859 return 1;
860 }
861
_dnsPacket_isEqualQuery(DnsPacket * pack1,DnsPacket * pack2)862 static int _dnsPacket_isEqualQuery(DnsPacket* pack1, DnsPacket* pack2) {
863 int count1, count2, arcount1, arcount2;
864
865 /* compare the headers, ignore most fields */
866 _dnsPacket_rewind(pack1);
867 _dnsPacket_rewind(pack2);
868
869 /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
870 if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
871 LOG(INFO) << __func__ << ": different RD";
872 return 0;
873 }
874
875 if (pack1->base[3] != pack2->base[3]) {
876 LOG(INFO) << __func__ << ": different CD or AD";
877 return 0;
878 }
879
880 /* mark ID and header bytes as compared */
881 _dnsPacket_skip(pack1, 4);
882 _dnsPacket_skip(pack2, 4);
883
884 /* compare QDCOUNT */
885 count1 = _dnsPacket_readInt16(pack1);
886 count2 = _dnsPacket_readInt16(pack2);
887 if (count1 != count2 || count1 < 0) {
888 LOG(INFO) << __func__ << ": different QDCOUNT";
889 return 0;
890 }
891
892 /* assume: ANcount and NScount are 0 */
893 _dnsPacket_skip(pack1, 4);
894 _dnsPacket_skip(pack2, 4);
895
896 /* compare ARCOUNT */
897 arcount1 = _dnsPacket_readInt16(pack1);
898 arcount2 = _dnsPacket_readInt16(pack2);
899 if (arcount1 != arcount2 || arcount1 < 0) {
900 LOG(INFO) << __func__ << ": different ARCOUNT";
901 return 0;
902 }
903
904 /* compare the QDCOUNT QRs */
905 for (; count1 > 0; count1--) {
906 if (!_dnsPacket_isEqualQR(pack1, pack2)) {
907 LOG(INFO) << __func__ << ": different QR";
908 return 0;
909 }
910 }
911
912 /* compare the ARCOUNT RRs */
913 for (; arcount1 > 0; arcount1--) {
914 if (!_dnsPacket_isEqualRR(pack1, pack2)) {
915 LOG(INFO) << __func__ << ": different additional RR";
916 return 0;
917 }
918 }
919 return 1;
920 }
921
922 /* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
923 * structure though they are conceptually part of the hash table.
924 *
925 * similarly, mru_next and mru_prev are part of the global MRU list
926 */
927 typedef struct Entry {
928 unsigned int hash; /* hash value */
929 struct Entry* hlink; /* next in collision chain */
930 struct Entry* mru_prev;
931 struct Entry* mru_next;
932
933 const uint8_t* query;
934 int querylen;
935 const uint8_t* answer;
936 int answerlen;
937 time_t expires; /* time_t when the entry isn't valid any more */
938 int id; /* for debugging purpose */
939 } Entry;
940
941 /*
942 * Find the TTL for a negative DNS result. This is defined as the minimum
943 * of the SOA records TTL and the MINIMUM-TTL field (RFC-2308).
944 *
945 * Return 0 if not found.
946 */
answer_getNegativeTTL(ns_msg handle)947 static u_long answer_getNegativeTTL(ns_msg handle) {
948 int n, nscount;
949 u_long result = 0;
950 ns_rr rr;
951
952 nscount = ns_msg_count(handle, ns_s_ns);
953 for (n = 0; n < nscount; n++) {
954 if ((ns_parserr(&handle, ns_s_ns, n, &rr) == 0) && (ns_rr_type(rr) == ns_t_soa)) {
955 const u_char* rdata = ns_rr_rdata(rr); // find the data
956 const u_char* edata = rdata + ns_rr_rdlen(rr); // add the len to find the end
957 int len;
958 u_long ttl, rec_result = ns_rr_ttl(rr);
959
960 // find the MINIMUM-TTL field from the blob of binary data for this record
961 // skip the server name
962 len = dn_skipname(rdata, edata);
963 if (len == -1) continue; // error skipping
964 rdata += len;
965
966 // skip the admin name
967 len = dn_skipname(rdata, edata);
968 if (len == -1) continue; // error skipping
969 rdata += len;
970
971 if (edata - rdata != 5 * NS_INT32SZ) continue;
972 // skip: serial number + refresh interval + retry interval + expiry
973 rdata += NS_INT32SZ * 4;
974 // finally read the MINIMUM TTL
975 ttl = ntohl(*reinterpret_cast<const uint32_t*>(rdata));
976 if (ttl < rec_result) {
977 rec_result = ttl;
978 }
979 // Now that the record is read successfully, apply the new min TTL
980 if (n == 0 || rec_result < result) {
981 result = rec_result;
982 }
983 }
984 }
985 return result;
986 }
987
988 /*
989 * Parse the answer records and find the appropriate
990 * smallest TTL among the records. This might be from
991 * the answer records if found or from the SOA record
992 * if it's a negative result.
993 *
994 * The returned TTL is the number of seconds to
995 * keep the answer in the cache.
996 *
997 * In case of parse error zero (0) is returned which
998 * indicates that the answer shall not be cached.
999 */
answer_getTTL(const void * answer,int answerlen)1000 static u_long answer_getTTL(const void* answer, int answerlen) {
1001 ns_msg handle;
1002 int ancount, n;
1003 u_long result, ttl;
1004 ns_rr rr;
1005
1006 result = 0;
1007 if (ns_initparse((const uint8_t*) answer, answerlen, &handle) >= 0) {
1008 // get number of answer records
1009 ancount = ns_msg_count(handle, ns_s_an);
1010
1011 if (ancount == 0) {
1012 // a response with no answers? Cache this negative result.
1013 result = answer_getNegativeTTL(handle);
1014 } else {
1015 for (n = 0; n < ancount; n++) {
1016 if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
1017 ttl = ns_rr_ttl(rr);
1018 if (n == 0 || ttl < result) {
1019 result = ttl;
1020 }
1021 } else {
1022 PLOG(INFO) << __func__ << ": ns_parserr failed ancount no = " << n;
1023 }
1024 }
1025 }
1026 } else {
1027 PLOG(INFO) << __func__ << ": ns_initparse failed";
1028 }
1029
1030 LOG(INFO) << __func__ << ": TTL = " << result;
1031 return result;
1032 }
1033
entry_free(Entry * e)1034 static void entry_free(Entry* e) {
1035 /* everything is allocated in a single memory block */
1036 if (e) {
1037 free(e);
1038 }
1039 }
1040
entry_mru_remove(Entry * e)1041 static void entry_mru_remove(Entry* e) {
1042 e->mru_prev->mru_next = e->mru_next;
1043 e->mru_next->mru_prev = e->mru_prev;
1044 }
1045
entry_mru_add(Entry * e,Entry * list)1046 static void entry_mru_add(Entry* e, Entry* list) {
1047 Entry* first = list->mru_next;
1048
1049 e->mru_next = first;
1050 e->mru_prev = list;
1051
1052 list->mru_next = e;
1053 first->mru_prev = e;
1054 }
1055
1056 /* compute the hash of a given entry, this is a hash of most
1057 * data in the query (key) */
entry_hash(const Entry * e)1058 static unsigned entry_hash(const Entry* e) {
1059 DnsPacket pack[1];
1060
1061 _dnsPacket_init(pack, e->query, e->querylen);
1062 return _dnsPacket_hashQuery(pack);
1063 }
1064
1065 /* initialize an Entry as a search key, this also checks the input query packet
1066 * returns 1 on success, or 0 in case of unsupported/malformed data */
entry_init_key(Entry * e,const void * query,int querylen)1067 static int entry_init_key(Entry* e, const void* query, int querylen) {
1068 DnsPacket pack[1];
1069
1070 memset(e, 0, sizeof(*e));
1071
1072 e->query = (const uint8_t*) query;
1073 e->querylen = querylen;
1074 e->hash = entry_hash(e);
1075
1076 _dnsPacket_init(pack, e->query, e->querylen);
1077
1078 return _dnsPacket_checkQuery(pack);
1079 }
1080
1081 /* allocate a new entry as a cache node */
entry_alloc(const Entry * init,const void * answer,int answerlen)1082 static Entry* entry_alloc(const Entry* init, const void* answer, int answerlen) {
1083 Entry* e;
1084 int size;
1085
1086 size = sizeof(*e) + init->querylen + answerlen;
1087 e = (Entry*) calloc(size, 1);
1088 if (e == NULL) return e;
1089
1090 e->hash = init->hash;
1091 e->query = (const uint8_t*) (e + 1);
1092 e->querylen = init->querylen;
1093
1094 memcpy((char*) e->query, init->query, e->querylen);
1095
1096 e->answer = e->query + e->querylen;
1097 e->answerlen = answerlen;
1098
1099 memcpy((char*) e->answer, answer, e->answerlen);
1100
1101 return e;
1102 }
1103
entry_equals(const Entry * e1,const Entry * e2)1104 static int entry_equals(const Entry* e1, const Entry* e2) {
1105 DnsPacket pack1[1], pack2[1];
1106
1107 if (e1->querylen != e2->querylen) {
1108 return 0;
1109 }
1110 _dnsPacket_init(pack1, e1->query, e1->querylen);
1111 _dnsPacket_init(pack2, e2->query, e2->querylen);
1112
1113 return _dnsPacket_isEqualQuery(pack1, pack2);
1114 }
1115
1116 /* We use a simple hash table with external collision lists
1117 * for simplicity, the hash-table fields 'hash' and 'hlink' are
1118 * inlined in the Entry structure.
1119 */
1120
1121 /* Maximum time for a thread to wait for an pending request */
1122 constexpr int PENDING_REQUEST_TIMEOUT = 20;
1123
1124 typedef struct resolv_cache {
1125 int max_entries;
1126 int num_entries;
1127 Entry mru_list;
1128 int last_id;
1129 Entry* entries;
1130 struct pending_req_info {
1131 unsigned int hash;
1132 struct pending_req_info* next;
1133 } pending_requests;
1134 } Cache;
1135
1136 struct resolv_cache_info {
1137 unsigned netid;
1138 Cache* cache;
1139 struct resolv_cache_info* next;
1140 int nscount;
1141 char* nameservers[MAXNS];
1142 struct addrinfo* nsaddrinfo[MAXNS];
1143 int revision_id; // # times the nameservers have been replaced
1144 res_params params;
1145 struct res_stats nsstats[MAXNS];
1146 char defdname[MAXDNSRCHPATH];
1147 int dnsrch_offset[MAXDNSRCH + 1]; // offsets into defdname
1148 int wait_for_pending_req_timeout_count;
1149 };
1150
1151 // A helper class for the Clang Thread Safety Analysis to deal with
1152 // std::unique_lock.
1153 class SCOPED_CAPABILITY ScopedAssumeLocked {
1154 public:
ACQUIRE(mutex)1155 ScopedAssumeLocked(std::mutex& mutex) ACQUIRE(mutex) {}
RELEASE()1156 ~ScopedAssumeLocked() RELEASE() {}
1157 };
1158
1159 // lock protecting everything in the resolve_cache_info structs (next ptr, etc)
1160 static std::mutex cache_mutex;
1161 static std::condition_variable cv;
1162
1163 /* gets cache associated with a network, or NULL if none exists */
1164 static resolv_cache* find_named_cache_locked(unsigned netid) REQUIRES(cache_mutex);
1165 static int resolv_create_cache_for_net_locked(unsigned netid) REQUIRES(cache_mutex);
1166
cache_flush_pending_requests_locked(struct resolv_cache * cache)1167 static void cache_flush_pending_requests_locked(struct resolv_cache* cache) {
1168 resolv_cache::pending_req_info *ri, *tmp;
1169 if (!cache) return;
1170
1171 ri = cache->pending_requests.next;
1172
1173 while (ri) {
1174 tmp = ri;
1175 ri = ri->next;
1176 free(tmp);
1177 }
1178
1179 cache->pending_requests.next = NULL;
1180 cv.notify_all();
1181 }
1182
1183 // Return true - if there is a pending request in |cache| matching |key|.
1184 // Return false - if no pending request is found matching the key. Optionally
1185 // link a new one if parameter append_if_not_found is true.
cache_has_pending_request_locked(resolv_cache * cache,const Entry * key,bool append_if_not_found)1186 static bool cache_has_pending_request_locked(resolv_cache* cache, const Entry* key,
1187 bool append_if_not_found) {
1188 if (!cache || !key) return false;
1189
1190 resolv_cache::pending_req_info* ri = cache->pending_requests.next;
1191 resolv_cache::pending_req_info* prev = &cache->pending_requests;
1192 while (ri) {
1193 if (ri->hash == key->hash) {
1194 return true;
1195 }
1196 prev = ri;
1197 ri = ri->next;
1198 }
1199
1200 if (append_if_not_found) {
1201 ri = (resolv_cache::pending_req_info*)calloc(1, sizeof(resolv_cache::pending_req_info));
1202 if (ri) {
1203 ri->hash = key->hash;
1204 prev->next = ri;
1205 }
1206 }
1207 return false;
1208 }
1209
1210 // Notify all threads that the cache entry |key| has become available
_cache_notify_waiting_tid_locked(struct resolv_cache * cache,const Entry * key)1211 static void _cache_notify_waiting_tid_locked(struct resolv_cache* cache, const Entry* key) {
1212 if (!cache || !key) return;
1213
1214 resolv_cache::pending_req_info* ri = cache->pending_requests.next;
1215 resolv_cache::pending_req_info* prev = &cache->pending_requests;
1216 while (ri) {
1217 if (ri->hash == key->hash) {
1218 // remove item from list and destroy
1219 prev->next = ri->next;
1220 free(ri);
1221 cv.notify_all();
1222 return;
1223 }
1224 prev = ri;
1225 ri = ri->next;
1226 }
1227 }
1228
_resolv_cache_query_failed(unsigned netid,const void * query,int querylen,uint32_t flags)1229 void _resolv_cache_query_failed(unsigned netid, const void* query, int querylen, uint32_t flags) {
1230 // We should not notify with these flags.
1231 if (flags & (ANDROID_RESOLV_NO_CACHE_STORE | ANDROID_RESOLV_NO_CACHE_LOOKUP)) {
1232 return;
1233 }
1234 Entry key[1];
1235 Cache* cache;
1236
1237 if (!entry_init_key(key, query, querylen)) return;
1238
1239 std::lock_guard guard(cache_mutex);
1240
1241 cache = find_named_cache_locked(netid);
1242
1243 if (cache) {
1244 _cache_notify_waiting_tid_locked(cache, key);
1245 }
1246 }
1247
cache_flush_locked(Cache * cache)1248 static void cache_flush_locked(Cache* cache) {
1249 int nn;
1250
1251 for (nn = 0; nn < cache->max_entries; nn++) {
1252 Entry** pnode = (Entry**) &cache->entries[nn];
1253
1254 while (*pnode != NULL) {
1255 Entry* node = *pnode;
1256 *pnode = node->hlink;
1257 entry_free(node);
1258 }
1259 }
1260
1261 // flush pending request
1262 cache_flush_pending_requests_locked(cache);
1263
1264 cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
1265 cache->num_entries = 0;
1266 cache->last_id = 0;
1267
1268 LOG(INFO) << __func__ << ": *** DNS CACHE FLUSHED ***";
1269 }
1270
resolv_cache_create()1271 static resolv_cache* resolv_cache_create() {
1272 struct resolv_cache* cache;
1273
1274 cache = (struct resolv_cache*) calloc(sizeof(*cache), 1);
1275 if (cache) {
1276 cache->max_entries = CONFIG_MAX_ENTRIES;
1277 cache->entries = (Entry*) calloc(sizeof(*cache->entries), cache->max_entries);
1278 if (cache->entries) {
1279 cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
1280 LOG(INFO) << __func__ << ": cache created";
1281 } else {
1282 free(cache);
1283 cache = NULL;
1284 }
1285 }
1286 return cache;
1287 }
1288
dump_query(const uint8_t * query,int querylen)1289 static void dump_query(const uint8_t* query, int querylen) {
1290 if (!WOULD_LOG(VERBOSE)) return;
1291
1292 char temp[256], *p = temp, *end = p + sizeof(temp);
1293 DnsPacket pack[1];
1294
1295 _dnsPacket_init(pack, query, querylen);
1296 p = dnsPacket_bprintQuery(pack, p, end);
1297 LOG(VERBOSE) << __func__ << ": " << temp;
1298 }
1299
cache_dump_mru(Cache * cache)1300 static void cache_dump_mru(Cache* cache) {
1301 char temp[512], *p = temp, *end = p + sizeof(temp);
1302 Entry* e;
1303
1304 p = bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
1305 for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
1306 p = bprint(p, end, " %d", e->id);
1307
1308 LOG(INFO) << __func__ << ": " << temp;
1309 }
1310
1311 /* This function tries to find a key within the hash table
1312 * In case of success, it will return a *pointer* to the hashed key.
1313 * In case of failure, it will return a *pointer* to NULL
1314 *
1315 * So, the caller must check '*result' to check for success/failure.
1316 *
1317 * The main idea is that the result can later be used directly in
1318 * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
1319 * parameter. This makes the code simpler and avoids re-searching
1320 * for the key position in the htable.
1321 *
1322 * The result of a lookup_p is only valid until you alter the hash
1323 * table.
1324 */
_cache_lookup_p(Cache * cache,Entry * key)1325 static Entry** _cache_lookup_p(Cache* cache, Entry* key) {
1326 int index = key->hash % cache->max_entries;
1327 Entry** pnode = (Entry**) &cache->entries[index];
1328
1329 while (*pnode != NULL) {
1330 Entry* node = *pnode;
1331
1332 if (node == NULL) break;
1333
1334 if (node->hash == key->hash && entry_equals(node, key)) break;
1335
1336 pnode = &node->hlink;
1337 }
1338 return pnode;
1339 }
1340
1341 /* Add a new entry to the hash table. 'lookup' must be the
1342 * result of an immediate previous failed _lookup_p() call
1343 * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1344 * newly created entry
1345 */
_cache_add_p(Cache * cache,Entry ** lookup,Entry * e)1346 static void _cache_add_p(Cache* cache, Entry** lookup, Entry* e) {
1347 *lookup = e;
1348 e->id = ++cache->last_id;
1349 entry_mru_add(e, &cache->mru_list);
1350 cache->num_entries += 1;
1351
1352 LOG(INFO) << __func__ << ": entry " << e->id << " added (count=" << cache->num_entries << ")";
1353 }
1354
1355 /* Remove an existing entry from the hash table,
1356 * 'lookup' must be the result of an immediate previous
1357 * and succesful _lookup_p() call.
1358 */
_cache_remove_p(Cache * cache,Entry ** lookup)1359 static void _cache_remove_p(Cache* cache, Entry** lookup) {
1360 Entry* e = *lookup;
1361
1362 LOG(INFO) << __func__ << ": entry " << e->id << " removed (count=" << cache->num_entries - 1
1363 << ")";
1364
1365 entry_mru_remove(e);
1366 *lookup = e->hlink;
1367 entry_free(e);
1368 cache->num_entries -= 1;
1369 }
1370
1371 /* Remove the oldest entry from the hash table.
1372 */
_cache_remove_oldest(Cache * cache)1373 static void _cache_remove_oldest(Cache* cache) {
1374 Entry* oldest = cache->mru_list.mru_prev;
1375 Entry** lookup = _cache_lookup_p(cache, oldest);
1376
1377 if (*lookup == NULL) { /* should not happen */
1378 LOG(INFO) << __func__ << ": OLDEST NOT IN HTABLE ?";
1379 return;
1380 }
1381 LOG(INFO) << __func__ << ": Cache full - removing oldest";
1382 dump_query(oldest->query, oldest->querylen);
1383 _cache_remove_p(cache, lookup);
1384 }
1385
1386 /* Remove all expired entries from the hash table.
1387 */
_cache_remove_expired(Cache * cache)1388 static void _cache_remove_expired(Cache* cache) {
1389 Entry* e;
1390 time_t now = _time_now();
1391
1392 for (e = cache->mru_list.mru_next; e != &cache->mru_list;) {
1393 // Entry is old, remove
1394 if (now >= e->expires) {
1395 Entry** lookup = _cache_lookup_p(cache, e);
1396 if (*lookup == NULL) { /* should not happen */
1397 LOG(INFO) << __func__ << ": ENTRY NOT IN HTABLE ?";
1398 return;
1399 }
1400 e = e->mru_next;
1401 _cache_remove_p(cache, lookup);
1402 } else {
1403 e = e->mru_next;
1404 }
1405 }
1406 }
1407
1408 // gets a resolv_cache_info associated with a network, or NULL if not found
1409 static resolv_cache_info* find_cache_info_locked(unsigned netid) REQUIRES(cache_mutex);
1410
_resolv_cache_lookup(unsigned netid,const void * query,int querylen,void * answer,int answersize,int * answerlen,uint32_t flags)1411 ResolvCacheStatus _resolv_cache_lookup(unsigned netid, const void* query, int querylen,
1412 void* answer, int answersize, int* answerlen,
1413 uint32_t flags) {
1414 // Skip cache lookup, return RESOLV_CACHE_NOTFOUND directly so that it is
1415 // possible to cache the answer of this query.
1416 // If ANDROID_RESOLV_NO_CACHE_STORE is set, return RESOLV_CACHE_SKIP to skip possible cache
1417 // storing.
1418 if (flags & ANDROID_RESOLV_NO_CACHE_LOOKUP) {
1419 return flags & ANDROID_RESOLV_NO_CACHE_STORE ? RESOLV_CACHE_SKIP : RESOLV_CACHE_NOTFOUND;
1420 }
1421 Entry key;
1422 Entry** lookup;
1423 Entry* e;
1424 time_t now;
1425 Cache* cache;
1426
1427 LOG(INFO) << __func__ << ": lookup";
1428 dump_query((u_char*) query, querylen);
1429
1430 /* we don't cache malformed queries */
1431 if (!entry_init_key(&key, query, querylen)) {
1432 LOG(INFO) << __func__ << ": unsupported query";
1433 return RESOLV_CACHE_UNSUPPORTED;
1434 }
1435 /* lookup cache */
1436 std::unique_lock lock(cache_mutex);
1437 ScopedAssumeLocked assume_lock(cache_mutex);
1438 cache = find_named_cache_locked(netid);
1439 if (cache == NULL) {
1440 return RESOLV_CACHE_UNSUPPORTED;
1441 }
1442
1443 /* see the description of _lookup_p to understand this.
1444 * the function always return a non-NULL pointer.
1445 */
1446 lookup = _cache_lookup_p(cache, &key);
1447 e = *lookup;
1448
1449 if (e == NULL) {
1450 LOG(INFO) << __func__ << ": NOT IN CACHE";
1451 // If it is no-cache-store mode, we won't wait for possible query.
1452 if (flags & ANDROID_RESOLV_NO_CACHE_STORE) {
1453 return RESOLV_CACHE_SKIP;
1454 }
1455
1456 if (!cache_has_pending_request_locked(cache, &key, true)) {
1457 return RESOLV_CACHE_NOTFOUND;
1458
1459 } else {
1460 LOG(INFO) << __func__ << ": Waiting for previous request";
1461 // wait until (1) timeout OR
1462 // (2) cv is notified AND no pending request matching the |key|
1463 // (cv notifier should delete pending request before sending notification.)
1464 bool ret = cv.wait_for(lock, std::chrono::seconds(PENDING_REQUEST_TIMEOUT),
1465 [netid, &cache, &key]() REQUIRES(cache_mutex) {
1466 // Must update cache as it could have been deleted
1467 cache = find_named_cache_locked(netid);
1468 return !cache_has_pending_request_locked(cache, &key, false);
1469 });
1470 if (!cache) {
1471 return RESOLV_CACHE_NOTFOUND;
1472 }
1473 if (ret == false) {
1474 resolv_cache_info* info = find_cache_info_locked(netid);
1475 if (info != NULL) {
1476 info->wait_for_pending_req_timeout_count++;
1477 }
1478 }
1479 lookup = _cache_lookup_p(cache, &key);
1480 e = *lookup;
1481 if (e == NULL) {
1482 return RESOLV_CACHE_NOTFOUND;
1483 }
1484 }
1485 }
1486
1487 now = _time_now();
1488
1489 /* remove stale entries here */
1490 if (now >= e->expires) {
1491 LOG(INFO) << __func__ << ": NOT IN CACHE (STALE ENTRY " << *lookup << "DISCARDED)";
1492 dump_query(e->query, e->querylen);
1493 _cache_remove_p(cache, lookup);
1494 return RESOLV_CACHE_NOTFOUND;
1495 }
1496
1497 *answerlen = e->answerlen;
1498 if (e->answerlen > answersize) {
1499 /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1500 LOG(INFO) << __func__ << ": ANSWER TOO LONG";
1501 return RESOLV_CACHE_UNSUPPORTED;
1502 }
1503
1504 memcpy(answer, e->answer, e->answerlen);
1505
1506 /* bump up this entry to the top of the MRU list */
1507 if (e != cache->mru_list.mru_next) {
1508 entry_mru_remove(e);
1509 entry_mru_add(e, &cache->mru_list);
1510 }
1511
1512 LOG(INFO) << __func__ << ": FOUND IN CACHE entry=" << e;
1513 return RESOLV_CACHE_FOUND;
1514 }
1515
_resolv_cache_add(unsigned netid,const void * query,int querylen,const void * answer,int answerlen)1516 void _resolv_cache_add(unsigned netid, const void* query, int querylen, const void* answer,
1517 int answerlen) {
1518 Entry key[1];
1519 Entry* e;
1520 Entry** lookup;
1521 u_long ttl;
1522 Cache* cache = NULL;
1523
1524 /* don't assume that the query has already been cached
1525 */
1526 if (!entry_init_key(key, query, querylen)) {
1527 LOG(INFO) << __func__ << ": passed invalid query?";
1528 return;
1529 }
1530
1531 std::lock_guard guard(cache_mutex);
1532
1533 cache = find_named_cache_locked(netid);
1534 if (cache == NULL) {
1535 return;
1536 }
1537
1538 LOG(INFO) << __func__ << ": query:";
1539 dump_query((u_char*)query, querylen);
1540 res_pquery((u_char*)answer, answerlen);
1541 if (kDumpData) {
1542 LOG(INFO) << __func__ << ": answer:";
1543 dump_bytes((u_char*)answer, answerlen);
1544 }
1545
1546 lookup = _cache_lookup_p(cache, key);
1547 e = *lookup;
1548
1549 // Should only happen on ANDROID_RESOLV_NO_CACHE_LOOKUP
1550 if (e != NULL) {
1551 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1552 _cache_notify_waiting_tid_locked(cache, key);
1553 return;
1554 }
1555
1556 if (cache->num_entries >= cache->max_entries) {
1557 _cache_remove_expired(cache);
1558 if (cache->num_entries >= cache->max_entries) {
1559 _cache_remove_oldest(cache);
1560 }
1561 // TODO: It looks useless, remove below code after having test to prove it.
1562 lookup = _cache_lookup_p(cache, key);
1563 e = *lookup;
1564 if (e != NULL) {
1565 LOG(INFO) << __func__ << ": ALREADY IN CACHE (" << e << ") ? IGNORING ADD";
1566 _cache_notify_waiting_tid_locked(cache, key);
1567 return;
1568 }
1569 }
1570
1571 ttl = answer_getTTL(answer, answerlen);
1572 if (ttl > 0) {
1573 e = entry_alloc(key, answer, answerlen);
1574 if (e != NULL) {
1575 e->expires = ttl + _time_now();
1576 _cache_add_p(cache, lookup, e);
1577 }
1578 }
1579
1580 cache_dump_mru(cache);
1581 _cache_notify_waiting_tid_locked(cache, key);
1582 }
1583
1584 // Head of the list of caches.
1585 static struct resolv_cache_info res_cache_list GUARDED_BY(cache_mutex);
1586
1587 // insert resolv_cache_info into the list of resolv_cache_infos
1588 static void insert_cache_info_locked(resolv_cache_info* cache_info);
1589 // creates a resolv_cache_info
1590 static resolv_cache_info* create_cache_info();
1591 // empty the nameservers set for the named cache
1592 static void free_nameservers_locked(resolv_cache_info* cache_info);
1593 // return 1 if the provided list of name servers differs from the list of name servers
1594 // currently attached to the provided cache_info
1595 static int resolv_is_nameservers_equal_locked(resolv_cache_info* cache_info, const char** servers,
1596 int numservers);
1597 // clears the stats samples contained withing the given cache_info
1598 static void res_cache_clear_stats_locked(resolv_cache_info* cache_info);
1599
1600 // public API for netd to query if name server is set on specific netid
resolv_has_nameservers(unsigned netid)1601 bool resolv_has_nameservers(unsigned netid) {
1602 std::lock_guard guard(cache_mutex);
1603 resolv_cache_info* info = find_cache_info_locked(netid);
1604 return (info != nullptr) && (info->nscount > 0);
1605 }
1606
resolv_create_cache_for_net_locked(unsigned netid)1607 static int resolv_create_cache_for_net_locked(unsigned netid) {
1608 resolv_cache* cache = find_named_cache_locked(netid);
1609 // Should not happen
1610 if (cache) {
1611 LOG(ERROR) << __func__ << ": Cache is already created, netId: " << netid;
1612 return -EEXIST;
1613 }
1614
1615 resolv_cache_info* cache_info = create_cache_info();
1616 if (!cache_info) return -ENOMEM;
1617 cache = resolv_cache_create();
1618 if (!cache) {
1619 free(cache_info);
1620 return -ENOMEM;
1621 }
1622 cache_info->cache = cache;
1623 cache_info->netid = netid;
1624 insert_cache_info_locked(cache_info);
1625
1626 return 0;
1627 }
1628
resolv_create_cache_for_net(unsigned netid)1629 int resolv_create_cache_for_net(unsigned netid) {
1630 std::lock_guard guard(cache_mutex);
1631 return resolv_create_cache_for_net_locked(netid);
1632 }
1633
resolv_delete_cache_for_net(unsigned netid)1634 void resolv_delete_cache_for_net(unsigned netid) {
1635 std::lock_guard guard(cache_mutex);
1636
1637 struct resolv_cache_info* prev_cache_info = &res_cache_list;
1638
1639 while (prev_cache_info->next) {
1640 struct resolv_cache_info* cache_info = prev_cache_info->next;
1641
1642 if (cache_info->netid == netid) {
1643 prev_cache_info->next = cache_info->next;
1644 cache_flush_locked(cache_info->cache);
1645 free(cache_info->cache->entries);
1646 free(cache_info->cache);
1647 free_nameservers_locked(cache_info);
1648 free(cache_info);
1649 break;
1650 }
1651
1652 prev_cache_info = prev_cache_info->next;
1653 }
1654 }
1655
resolv_list_caches()1656 std::vector<unsigned> resolv_list_caches() {
1657 std::lock_guard guard(cache_mutex);
1658 struct resolv_cache_info* cache_info = res_cache_list.next;
1659 std::vector<unsigned> result;
1660 while (cache_info) {
1661 result.push_back(cache_info->netid);
1662 cache_info = cache_info->next;
1663 }
1664 return result;
1665 }
1666
create_cache_info()1667 static resolv_cache_info* create_cache_info() {
1668 return (struct resolv_cache_info*) calloc(sizeof(struct resolv_cache_info), 1);
1669 }
1670
1671 // TODO: convert this to a simple and efficient C++ container.
insert_cache_info_locked(struct resolv_cache_info * cache_info)1672 static void insert_cache_info_locked(struct resolv_cache_info* cache_info) {
1673 struct resolv_cache_info* last;
1674 for (last = &res_cache_list; last->next; last = last->next) {}
1675 last->next = cache_info;
1676 }
1677
find_named_cache_locked(unsigned netid)1678 static resolv_cache* find_named_cache_locked(unsigned netid) {
1679 resolv_cache_info* info = find_cache_info_locked(netid);
1680 if (info != NULL) return info->cache;
1681 return NULL;
1682 }
1683
find_cache_info_locked(unsigned netid)1684 static resolv_cache_info* find_cache_info_locked(unsigned netid) {
1685 struct resolv_cache_info* cache_info = res_cache_list.next;
1686
1687 while (cache_info) {
1688 if (cache_info->netid == netid) {
1689 break;
1690 }
1691
1692 cache_info = cache_info->next;
1693 }
1694 return cache_info;
1695 }
1696
resolv_set_default_params(res_params * params)1697 static void resolv_set_default_params(res_params* params) {
1698 params->sample_validity = NSSAMPLE_VALIDITY;
1699 params->success_threshold = SUCCESS_THRESHOLD;
1700 params->min_samples = 0;
1701 params->max_samples = 0;
1702 params->base_timeout_msec = 0; // 0 = legacy algorithm
1703 params->retry_count = 0;
1704 }
1705
resolv_set_experiment_params(res_params * params)1706 static void resolv_set_experiment_params(res_params* params) {
1707 using android::base::ParseInt;
1708 using server_configurable_flags::GetServerConfigurableFlag;
1709
1710 if (params->retry_count == 0) {
1711 params->retry_count = RES_DFLRETRY;
1712 ParseInt(GetServerConfigurableFlag("netd_native", "retry_count", ""), ¶ms->retry_count);
1713 }
1714
1715 if (params->base_timeout_msec == 0) {
1716 params->base_timeout_msec = RES_TIMEOUT;
1717 ParseInt(GetServerConfigurableFlag("netd_native", "retransmission_time_interval", ""),
1718 ¶ms->base_timeout_msec);
1719 }
1720 }
1721
resolv_set_nameservers_for_net(unsigned netid,const char ** servers,const int numservers,const char * domains,const res_params * params)1722 int resolv_set_nameservers_for_net(unsigned netid, const char** servers, const int numservers,
1723 const char* domains, const res_params* params) {
1724 char* cp;
1725 int* offset;
1726 struct addrinfo* nsaddrinfo[MAXNS];
1727
1728 if (numservers > MAXNS) {
1729 LOG(ERROR) << __func__ << ": numservers=" << numservers << ", MAXNS=" << MAXNS;
1730 return E2BIG;
1731 }
1732
1733 // Parse the addresses before actually locking or changing any state, in case there is an error.
1734 // As a side effect this also reduces the time the lock is kept.
1735 char sbuf[NI_MAXSERV];
1736 snprintf(sbuf, sizeof(sbuf), "%u", NAMESERVER_PORT);
1737 for (int i = 0; i < numservers; i++) {
1738 // The addrinfo structures allocated here are freed in free_nameservers_locked().
1739 const addrinfo hints = {
1740 .ai_family = AF_UNSPEC, .ai_socktype = SOCK_DGRAM, .ai_flags = AI_NUMERICHOST};
1741 int rt = getaddrinfo_numeric(servers[i], sbuf, hints, &nsaddrinfo[i]);
1742 if (rt != 0) {
1743 for (int j = 0; j < i; j++) {
1744 freeaddrinfo(nsaddrinfo[j]);
1745 }
1746 LOG(INFO) << __func__ << ": getaddrinfo_numeric(" << servers[i]
1747 << ") = " << gai_strerror(rt);
1748 return EINVAL;
1749 }
1750 }
1751
1752 std::lock_guard guard(cache_mutex);
1753
1754 resolv_cache_info* cache_info = find_cache_info_locked(netid);
1755
1756 if (cache_info == NULL) return ENONET;
1757
1758 uint8_t old_max_samples = cache_info->params.max_samples;
1759 if (params != NULL) {
1760 cache_info->params = *params;
1761 } else {
1762 resolv_set_default_params(&cache_info->params);
1763 }
1764 resolv_set_experiment_params(&cache_info->params);
1765 if (!resolv_is_nameservers_equal_locked(cache_info, servers, numservers)) {
1766 // free current before adding new
1767 free_nameservers_locked(cache_info);
1768 for (int i = 0; i < numservers; i++) {
1769 cache_info->nsaddrinfo[i] = nsaddrinfo[i];
1770 cache_info->nameservers[i] = strdup(servers[i]);
1771 LOG(INFO) << __func__ << ": netid = " << netid << ", addr = " << servers[i];
1772 }
1773 cache_info->nscount = numservers;
1774
1775 // Clear the NS statistics because the mapping to nameservers might have changed.
1776 res_cache_clear_stats_locked(cache_info);
1777
1778 // increment the revision id to ensure that sample state is not written back if the
1779 // servers change; in theory it would suffice to do so only if the servers or
1780 // max_samples actually change, in practice the overhead of checking is higher than the
1781 // cost, and overflows are unlikely
1782 ++cache_info->revision_id;
1783 } else {
1784 if (cache_info->params.max_samples != old_max_samples) {
1785 // If the maximum number of samples changes, the overhead of keeping the most recent
1786 // samples around is not considered worth the effort, so they are cleared instead.
1787 // All other parameters do not affect shared state: Changing these parameters does
1788 // not invalidate the samples, as they only affect aggregation and the conditions
1789 // under which servers are considered usable.
1790 res_cache_clear_stats_locked(cache_info);
1791 ++cache_info->revision_id;
1792 }
1793 for (int j = 0; j < numservers; j++) {
1794 freeaddrinfo(nsaddrinfo[j]);
1795 }
1796 }
1797
1798 // Always update the search paths, since determining whether they actually changed is
1799 // complex due to the zero-padding, and probably not worth the effort. Cache-flushing
1800 // however is not necessary, since the stored cache entries do contain the domain, not
1801 // just the host name.
1802 strlcpy(cache_info->defdname, domains, sizeof(cache_info->defdname));
1803 if ((cp = strchr(cache_info->defdname, '\n')) != NULL) *cp = '\0';
1804 LOG(INFO) << __func__ << ": domains=\"" << cache_info->defdname << "\"";
1805
1806 cp = cache_info->defdname;
1807 offset = cache_info->dnsrch_offset;
1808 while (offset < cache_info->dnsrch_offset + MAXDNSRCH) {
1809 while (*cp == ' ' || *cp == '\t') /* skip leading white space */
1810 cp++;
1811 if (*cp == '\0') /* stop if nothing more to do */
1812 break;
1813 *offset++ = cp - cache_info->defdname; /* record this search domain */
1814 while (*cp) { /* zero-terminate it */
1815 if (*cp == ' ' || *cp == '\t') {
1816 *cp++ = '\0';
1817 break;
1818 }
1819 cp++;
1820 }
1821 }
1822 *offset = -1; /* cache_info->dnsrch_offset has MAXDNSRCH+1 items */
1823
1824 return 0;
1825 }
1826
resolv_is_nameservers_equal_locked(resolv_cache_info * cache_info,const char ** servers,int numservers)1827 static int resolv_is_nameservers_equal_locked(resolv_cache_info* cache_info, const char** servers,
1828 int numservers) {
1829 if (cache_info->nscount != numservers) {
1830 return 0;
1831 }
1832
1833 // Compare each name server against current name servers.
1834 // TODO: this is incorrect if the list of current or previous nameservers
1835 // contains duplicates. This does not really matter because the framework
1836 // filters out duplicates, but we should probably fix it. It's also
1837 // insensitive to the order of the nameservers; we should probably fix that
1838 // too.
1839 for (int i = 0; i < numservers; i++) {
1840 for (int j = 0;; j++) {
1841 if (j >= numservers) {
1842 return 0;
1843 }
1844 if (strcmp(cache_info->nameservers[i], servers[j]) == 0) {
1845 break;
1846 }
1847 }
1848 }
1849
1850 return 1;
1851 }
1852
free_nameservers_locked(resolv_cache_info * cache_info)1853 static void free_nameservers_locked(resolv_cache_info* cache_info) {
1854 int i;
1855 for (i = 0; i < cache_info->nscount; i++) {
1856 free(cache_info->nameservers[i]);
1857 cache_info->nameservers[i] = NULL;
1858 if (cache_info->nsaddrinfo[i] != NULL) {
1859 freeaddrinfo(cache_info->nsaddrinfo[i]);
1860 cache_info->nsaddrinfo[i] = NULL;
1861 }
1862 cache_info->nsstats[i].sample_count = cache_info->nsstats[i].sample_next = 0;
1863 }
1864 cache_info->nscount = 0;
1865 res_cache_clear_stats_locked(cache_info);
1866 ++cache_info->revision_id;
1867 }
1868
_resolv_populate_res_for_net(res_state statp)1869 void _resolv_populate_res_for_net(res_state statp) {
1870 if (statp == NULL) {
1871 return;
1872 }
1873 LOG(INFO) << __func__ << ": netid=" << statp->netid;
1874
1875 std::lock_guard guard(cache_mutex);
1876 resolv_cache_info* info = find_cache_info_locked(statp->netid);
1877 if (info != NULL) {
1878 int nserv;
1879 struct addrinfo* ai;
1880 for (nserv = 0; nserv < MAXNS; nserv++) {
1881 ai = info->nsaddrinfo[nserv];
1882 if (ai == NULL) {
1883 break;
1884 }
1885
1886 if ((size_t) ai->ai_addrlen <= sizeof(statp->_u._ext.ext->nsaddrs[0])) {
1887 if (statp->_u._ext.ext != NULL) {
1888 memcpy(&statp->_u._ext.ext->nsaddrs[nserv], ai->ai_addr, ai->ai_addrlen);
1889 statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
1890 } else {
1891 if ((size_t) ai->ai_addrlen <= sizeof(statp->nsaddr_list[0])) {
1892 memcpy(&statp->nsaddr_list[nserv], ai->ai_addr, ai->ai_addrlen);
1893 } else {
1894 statp->nsaddr_list[nserv].sin_family = AF_UNSPEC;
1895 }
1896 }
1897 } else {
1898 LOG(INFO) << __func__ << ": found too long addrlen";
1899 }
1900 }
1901 statp->nscount = nserv;
1902 // now do search domains. Note that we cache the offsets as this code runs alot
1903 // but the setting/offset-computer only runs when set/changed
1904 // WARNING: Don't use str*cpy() here, this string contains zeroes.
1905 memcpy(statp->defdname, info->defdname, sizeof(statp->defdname));
1906 char** pp = statp->dnsrch;
1907 int* p = info->dnsrch_offset;
1908 while (pp < statp->dnsrch + MAXDNSRCH && *p != -1) {
1909 *pp++ = &statp->defdname[0] + *p++;
1910 }
1911 }
1912 }
1913
1914 /* Resolver reachability statistics. */
1915
_res_cache_add_stats_sample_locked(res_stats * stats,const res_sample * sample,int max_samples)1916 static void _res_cache_add_stats_sample_locked(res_stats* stats, const res_sample* sample,
1917 int max_samples) {
1918 // Note: This function expects max_samples > 0, otherwise a (harmless) modification of the
1919 // allocated but supposedly unused memory for samples[0] will happen
1920 LOG(INFO) << __func__ << ": adding sample to stats, next = " << unsigned(stats->sample_next)
1921 << ", count = " << unsigned(stats->sample_count);
1922 stats->samples[stats->sample_next] = *sample;
1923 if (stats->sample_count < max_samples) {
1924 ++stats->sample_count;
1925 }
1926 if (++stats->sample_next >= max_samples) {
1927 stats->sample_next = 0;
1928 }
1929 }
1930
res_cache_clear_stats_locked(resolv_cache_info * cache_info)1931 static void res_cache_clear_stats_locked(resolv_cache_info* cache_info) {
1932 if (cache_info) {
1933 for (int i = 0; i < MAXNS; ++i) {
1934 cache_info->nsstats->sample_count = cache_info->nsstats->sample_next = 0;
1935 }
1936 }
1937 }
1938
android_net_res_stats_get_info_for_net(unsigned netid,int * nscount,struct sockaddr_storage servers[MAXNS],int * dcount,char domains[MAXDNSRCH][MAXDNSRCHPATH],res_params * params,struct res_stats stats[MAXNS],int * wait_for_pending_req_timeout_count)1939 int android_net_res_stats_get_info_for_net(unsigned netid, int* nscount,
1940 struct sockaddr_storage servers[MAXNS], int* dcount,
1941 char domains[MAXDNSRCH][MAXDNSRCHPATH],
1942 res_params* params, struct res_stats stats[MAXNS],
1943 int* wait_for_pending_req_timeout_count) {
1944 int revision_id = -1;
1945 std::lock_guard guard(cache_mutex);
1946
1947 resolv_cache_info* info = find_cache_info_locked(netid);
1948 if (info) {
1949 if (info->nscount > MAXNS) {
1950 LOG(INFO) << __func__ << ": nscount " << info->nscount << " > MAXNS " << MAXNS;
1951 errno = EFAULT;
1952 return -1;
1953 }
1954 int i;
1955 for (i = 0; i < info->nscount; i++) {
1956 // Verify that the following assumptions are held, failure indicates corruption:
1957 // - getaddrinfo() may never return a sockaddr > sockaddr_storage
1958 // - all addresses are valid
1959 // - there is only one address per addrinfo thanks to numeric resolution
1960 int addrlen = info->nsaddrinfo[i]->ai_addrlen;
1961 if (addrlen < (int) sizeof(struct sockaddr) || addrlen > (int) sizeof(servers[0])) {
1962 LOG(INFO) << __func__ << ": nsaddrinfo[" << i << "].ai_addrlen == " << addrlen;
1963 errno = EMSGSIZE;
1964 return -1;
1965 }
1966 if (info->nsaddrinfo[i]->ai_addr == NULL) {
1967 LOG(INFO) << __func__ << ": nsaddrinfo[" << i << "].ai_addr == NULL";
1968 errno = ENOENT;
1969 return -1;
1970 }
1971 if (info->nsaddrinfo[i]->ai_next != NULL) {
1972 LOG(INFO) << __func__ << ": nsaddrinfo[" << i << "].ai_next != NULL";
1973 errno = ENOTUNIQ;
1974 return -1;
1975 }
1976 }
1977 *nscount = info->nscount;
1978 for (i = 0; i < info->nscount; i++) {
1979 memcpy(&servers[i], info->nsaddrinfo[i]->ai_addr, info->nsaddrinfo[i]->ai_addrlen);
1980 stats[i] = info->nsstats[i];
1981 }
1982 for (i = 0; i < MAXDNSRCH; i++) {
1983 const char* cur_domain = info->defdname + info->dnsrch_offset[i];
1984 // dnsrch_offset[i] can either be -1 or point to an empty string to indicate the end
1985 // of the search offsets. Checking for < 0 is not strictly necessary, but safer.
1986 // TODO: Pass in a search domain array instead of a string to
1987 // resolv_set_nameservers_for_net() and make this double check unnecessary.
1988 if (info->dnsrch_offset[i] < 0 ||
1989 ((size_t) info->dnsrch_offset[i]) >= sizeof(info->defdname) || !cur_domain[0]) {
1990 break;
1991 }
1992 strlcpy(domains[i], cur_domain, MAXDNSRCHPATH);
1993 }
1994 *dcount = i;
1995 *params = info->params;
1996 revision_id = info->revision_id;
1997 *wait_for_pending_req_timeout_count = info->wait_for_pending_req_timeout_count;
1998 }
1999
2000 return revision_id;
2001 }
2002
resolv_cache_get_resolver_stats(unsigned netid,res_params * params,res_stats stats[MAXNS])2003 int resolv_cache_get_resolver_stats(unsigned netid, res_params* params, res_stats stats[MAXNS]) {
2004 std::lock_guard guard(cache_mutex);
2005 resolv_cache_info* info = find_cache_info_locked(netid);
2006 if (info) {
2007 memcpy(stats, info->nsstats, sizeof(info->nsstats));
2008 *params = info->params;
2009 return info->revision_id;
2010 }
2011
2012 return -1;
2013 }
2014
_resolv_cache_add_resolver_stats_sample(unsigned netid,int revision_id,int ns,const res_sample * sample,int max_samples)2015 void _resolv_cache_add_resolver_stats_sample(unsigned netid, int revision_id, int ns,
2016 const res_sample* sample, int max_samples) {
2017 if (max_samples <= 0) return;
2018
2019 std::lock_guard guard(cache_mutex);
2020 resolv_cache_info* info = find_cache_info_locked(netid);
2021
2022 if (info && info->revision_id == revision_id) {
2023 _res_cache_add_stats_sample_locked(&info->nsstats[ns], sample, max_samples);
2024 }
2025 }
2026