• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
5  * Copyright (C) 2009  VMware, Inc.  All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included
15  * in all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
21  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23  * OTHER DEALINGS IN THE SOFTWARE.
24  */
25 
26 
27 /**
28  * \file swrast/s_span.c
29  * \brief Span processing functions used by all rasterization functions.
30  * This is where all the per-fragment tests are performed
31  * \author Brian Paul
32  */
33 
34 #include "c99_math.h"
35 #include "main/glheader.h"
36 #include "main/format_pack.h"
37 #include "main/format_unpack.h"
38 #include "main/macros.h"
39 #include "main/imports.h"
40 #include "main/image.h"
41 #include "main/samplerobj.h"
42 #include "main/state.h"
43 #include "main/stencil.h"
44 #include "main/teximage.h"
45 
46 #include "s_atifragshader.h"
47 #include "s_alpha.h"
48 #include "s_blend.h"
49 #include "s_context.h"
50 #include "s_depth.h"
51 #include "s_fog.h"
52 #include "s_logic.h"
53 #include "s_masking.h"
54 #include "s_fragprog.h"
55 #include "s_span.h"
56 #include "s_stencil.h"
57 #include "s_texcombine.h"
58 
59 #include <stdbool.h>
60 
61 /**
62  * Set default fragment attributes for the span using the
63  * current raster values.  Used prior to glDraw/CopyPixels
64  * and glBitmap.
65  */
66 void
_swrast_span_default_attribs(struct gl_context * ctx,SWspan * span)67 _swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
68 {
69    GLchan r, g, b, a;
70    /* Z*/
71    {
72       const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
73       if (ctx->DrawBuffer->Visual.depthBits <= 16)
74          span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
75       else {
76          GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
77          tmpf = MIN2(tmpf, depthMax);
78          span->z = (GLint)tmpf;
79       }
80       span->zStep = 0;
81       span->interpMask |= SPAN_Z;
82    }
83 
84    /* W (for perspective correction) */
85    span->attrStart[VARYING_SLOT_POS][3] = 1.0;
86    span->attrStepX[VARYING_SLOT_POS][3] = 0.0;
87    span->attrStepY[VARYING_SLOT_POS][3] = 0.0;
88 
89    /* primary color, or color index */
90    UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
91    UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
92    UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
93    UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
94 #if CHAN_TYPE == GL_FLOAT
95    span->red = r;
96    span->green = g;
97    span->blue = b;
98    span->alpha = a;
99 #else
100    span->red   = IntToFixed(r);
101    span->green = IntToFixed(g);
102    span->blue  = IntToFixed(b);
103    span->alpha = IntToFixed(a);
104 #endif
105    span->redStep = 0;
106    span->greenStep = 0;
107    span->blueStep = 0;
108    span->alphaStep = 0;
109    span->interpMask |= SPAN_RGBA;
110 
111    COPY_4V(span->attrStart[VARYING_SLOT_COL0], ctx->Current.RasterColor);
112    ASSIGN_4V(span->attrStepX[VARYING_SLOT_COL0], 0.0, 0.0, 0.0, 0.0);
113    ASSIGN_4V(span->attrStepY[VARYING_SLOT_COL0], 0.0, 0.0, 0.0, 0.0);
114 
115    /* Secondary color */
116    if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
117    {
118       COPY_4V(span->attrStart[VARYING_SLOT_COL1], ctx->Current.RasterSecondaryColor);
119       ASSIGN_4V(span->attrStepX[VARYING_SLOT_COL1], 0.0, 0.0, 0.0, 0.0);
120       ASSIGN_4V(span->attrStepY[VARYING_SLOT_COL1], 0.0, 0.0, 0.0, 0.0);
121    }
122 
123    /* fog */
124    {
125       const SWcontext *swrast = SWRAST_CONTEXT(ctx);
126       GLfloat fogVal; /* a coord or a blend factor */
127       if (swrast->_PreferPixelFog) {
128          /* fog blend factors will be computed from fog coordinates per pixel */
129          fogVal = ctx->Current.RasterDistance;
130       }
131       else {
132          /* fog blend factor should be computed from fogcoord now */
133          fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
134       }
135       span->attrStart[VARYING_SLOT_FOGC][0] = fogVal;
136       span->attrStepX[VARYING_SLOT_FOGC][0] = 0.0;
137       span->attrStepY[VARYING_SLOT_FOGC][0] = 0.0;
138    }
139 
140    /* texcoords */
141    {
142       GLuint i;
143       for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
144          const GLuint attr = VARYING_SLOT_TEX0 + i;
145          const GLfloat *tc = ctx->Current.RasterTexCoords[i];
146          if (_swrast_use_fragment_program(ctx) ||
147              _mesa_ati_fragment_shader_enabled(ctx)) {
148             COPY_4V(span->attrStart[attr], tc);
149          }
150          else if (tc[3] > 0.0F) {
151             /* use (s/q, t/q, r/q, 1) */
152             span->attrStart[attr][0] = tc[0] / tc[3];
153             span->attrStart[attr][1] = tc[1] / tc[3];
154             span->attrStart[attr][2] = tc[2] / tc[3];
155             span->attrStart[attr][3] = 1.0;
156          }
157          else {
158             ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
159          }
160          ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
161          ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
162       }
163    }
164 }
165 
166 
167 /**
168  * Interpolate the active attributes (and'd with attrMask) to
169  * fill in span->array->attribs[].
170  * Perspective correction will be done.  The point/line/triangle function
171  * should have computed attrStart/Step values for VARYING_SLOT_POS[3]!
172  */
173 static inline void
interpolate_active_attribs(struct gl_context * ctx,SWspan * span,GLbitfield64 attrMask)174 interpolate_active_attribs(struct gl_context *ctx, SWspan *span,
175                            GLbitfield64 attrMask)
176 {
177    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
178 
179    /*
180     * Don't overwrite existing array values, such as colors that may have
181     * been produced by glDraw/CopyPixels.
182     */
183    attrMask &= ~span->arrayAttribs;
184 
185    ATTRIB_LOOP_BEGIN
186       if (attrMask & BITFIELD64_BIT(attr)) {
187          const GLfloat dwdx = span->attrStepX[VARYING_SLOT_POS][3];
188          GLfloat w = span->attrStart[VARYING_SLOT_POS][3];
189          const GLfloat dv0dx = span->attrStepX[attr][0];
190          const GLfloat dv1dx = span->attrStepX[attr][1];
191          const GLfloat dv2dx = span->attrStepX[attr][2];
192          const GLfloat dv3dx = span->attrStepX[attr][3];
193          GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
194          GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
195          GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
196          GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
197          GLuint k;
198          for (k = 0; k < span->end; k++) {
199             const GLfloat invW = 1.0f / w;
200             span->array->attribs[attr][k][0] = v0 * invW;
201             span->array->attribs[attr][k][1] = v1 * invW;
202             span->array->attribs[attr][k][2] = v2 * invW;
203             span->array->attribs[attr][k][3] = v3 * invW;
204             v0 += dv0dx;
205             v1 += dv1dx;
206             v2 += dv2dx;
207             v3 += dv3dx;
208             w += dwdx;
209          }
210          assert((span->arrayAttribs & BITFIELD64_BIT(attr)) == 0);
211          span->arrayAttribs |= BITFIELD64_BIT(attr);
212       }
213    ATTRIB_LOOP_END
214 }
215 
216 
217 /**
218  * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
219  * color array.
220  */
221 static inline void
interpolate_int_colors(struct gl_context * ctx,SWspan * span)222 interpolate_int_colors(struct gl_context *ctx, SWspan *span)
223 {
224 #if CHAN_BITS != 32
225    const GLuint n = span->end;
226    GLuint i;
227 
228    assert(!(span->arrayMask & SPAN_RGBA));
229 #endif
230 
231    switch (span->array->ChanType) {
232 #if CHAN_BITS != 32
233    case GL_UNSIGNED_BYTE:
234       {
235          GLubyte (*rgba)[4] = span->array->rgba8;
236          if (span->interpMask & SPAN_FLAT) {
237             GLubyte color[4];
238             color[RCOMP] = FixedToInt(span->red);
239             color[GCOMP] = FixedToInt(span->green);
240             color[BCOMP] = FixedToInt(span->blue);
241             color[ACOMP] = FixedToInt(span->alpha);
242             for (i = 0; i < n; i++) {
243                COPY_4UBV(rgba[i], color);
244             }
245          }
246          else {
247             GLfixed r = span->red;
248             GLfixed g = span->green;
249             GLfixed b = span->blue;
250             GLfixed a = span->alpha;
251             GLint dr = span->redStep;
252             GLint dg = span->greenStep;
253             GLint db = span->blueStep;
254             GLint da = span->alphaStep;
255             for (i = 0; i < n; i++) {
256                rgba[i][RCOMP] = FixedToChan(r);
257                rgba[i][GCOMP] = FixedToChan(g);
258                rgba[i][BCOMP] = FixedToChan(b);
259                rgba[i][ACOMP] = FixedToChan(a);
260                r += dr;
261                g += dg;
262                b += db;
263                a += da;
264             }
265          }
266       }
267       break;
268    case GL_UNSIGNED_SHORT:
269       {
270          GLushort (*rgba)[4] = span->array->rgba16;
271          if (span->interpMask & SPAN_FLAT) {
272             GLushort color[4];
273             color[RCOMP] = FixedToInt(span->red);
274             color[GCOMP] = FixedToInt(span->green);
275             color[BCOMP] = FixedToInt(span->blue);
276             color[ACOMP] = FixedToInt(span->alpha);
277             for (i = 0; i < n; i++) {
278                COPY_4V(rgba[i], color);
279             }
280          }
281          else {
282             GLushort (*rgba)[4] = span->array->rgba16;
283             GLfixed r, g, b, a;
284             GLint dr, dg, db, da;
285             r = span->red;
286             g = span->green;
287             b = span->blue;
288             a = span->alpha;
289             dr = span->redStep;
290             dg = span->greenStep;
291             db = span->blueStep;
292             da = span->alphaStep;
293             for (i = 0; i < n; i++) {
294                rgba[i][RCOMP] = FixedToChan(r);
295                rgba[i][GCOMP] = FixedToChan(g);
296                rgba[i][BCOMP] = FixedToChan(b);
297                rgba[i][ACOMP] = FixedToChan(a);
298                r += dr;
299                g += dg;
300                b += db;
301                a += da;
302             }
303          }
304       }
305       break;
306 #endif
307    case GL_FLOAT:
308       interpolate_active_attribs(ctx, span, VARYING_BIT_COL0);
309       break;
310    default:
311       _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
312                     span->array->ChanType);
313    }
314    span->arrayMask |= SPAN_RGBA;
315 }
316 
317 
318 /**
319  * Populate the VARYING_SLOT_COL0 array.
320  */
321 static inline void
interpolate_float_colors(SWspan * span)322 interpolate_float_colors(SWspan *span)
323 {
324    GLfloat (*col0)[4] = span->array->attribs[VARYING_SLOT_COL0];
325    const GLuint n = span->end;
326    GLuint i;
327 
328    assert(!(span->arrayAttribs & VARYING_BIT_COL0));
329 
330    if (span->arrayMask & SPAN_RGBA) {
331       /* convert array of int colors */
332       for (i = 0; i < n; i++) {
333          col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
334          col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
335          col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
336          col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
337       }
338    }
339    else {
340       /* interpolate red/green/blue/alpha to get float colors */
341       assert(span->interpMask & SPAN_RGBA);
342       if (span->interpMask & SPAN_FLAT) {
343          GLfloat r = FixedToFloat(span->red);
344          GLfloat g = FixedToFloat(span->green);
345          GLfloat b = FixedToFloat(span->blue);
346          GLfloat a = FixedToFloat(span->alpha);
347          for (i = 0; i < n; i++) {
348             ASSIGN_4V(col0[i], r, g, b, a);
349          }
350       }
351       else {
352          GLfloat r = FixedToFloat(span->red);
353          GLfloat g = FixedToFloat(span->green);
354          GLfloat b = FixedToFloat(span->blue);
355          GLfloat a = FixedToFloat(span->alpha);
356          GLfloat dr = FixedToFloat(span->redStep);
357          GLfloat dg = FixedToFloat(span->greenStep);
358          GLfloat db = FixedToFloat(span->blueStep);
359          GLfloat da = FixedToFloat(span->alphaStep);
360          for (i = 0; i < n; i++) {
361             col0[i][0] = r;
362             col0[i][1] = g;
363             col0[i][2] = b;
364             col0[i][3] = a;
365             r += dr;
366             g += dg;
367             b += db;
368             a += da;
369          }
370       }
371    }
372 
373    span->arrayAttribs |= VARYING_BIT_COL0;
374    span->array->ChanType = GL_FLOAT;
375 }
376 
377 
378 
379 /**
380  * Fill in the span.zArray array from the span->z, zStep values.
381  */
382 void
_swrast_span_interpolate_z(const struct gl_context * ctx,SWspan * span)383 _swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
384 {
385    const GLuint n = span->end;
386    GLuint i;
387 
388    assert(!(span->arrayMask & SPAN_Z));
389 
390    if (ctx->DrawBuffer->Visual.depthBits <= 16) {
391       GLfixed zval = span->z;
392       GLuint *z = span->array->z;
393       for (i = 0; i < n; i++) {
394          z[i] = FixedToInt(zval);
395          zval += span->zStep;
396       }
397    }
398    else {
399       /* Deep Z buffer, no fixed->int shift */
400       GLuint zval = span->z;
401       GLuint *z = span->array->z;
402       for (i = 0; i < n; i++) {
403          z[i] = zval;
404          zval += span->zStep;
405       }
406    }
407    span->interpMask &= ~SPAN_Z;
408    span->arrayMask |= SPAN_Z;
409 }
410 
411 
412 /**
413  * Compute mipmap LOD from partial derivatives.
414  * This the ideal solution, as given in the OpenGL spec.
415  */
416 GLfloat
_swrast_compute_lambda(GLfloat dsdx,GLfloat dsdy,GLfloat dtdx,GLfloat dtdy,GLfloat dqdx,GLfloat dqdy,GLfloat texW,GLfloat texH,GLfloat s,GLfloat t,GLfloat q,GLfloat invQ)417 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
418                        GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
419                        GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
420 {
421    GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
422    GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
423    GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
424    GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
425    GLfloat x = sqrtf(dudx * dudx + dvdx * dvdx);
426    GLfloat y = sqrtf(dudy * dudy + dvdy * dvdy);
427    GLfloat rho = MAX2(x, y);
428    GLfloat lambda = LOG2(rho);
429    return lambda;
430 }
431 
432 
433 /**
434  * Compute mipmap LOD from partial derivatives.
435  * This is a faster approximation than above function.
436  */
437 #if 0
438 GLfloat
439 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
440                      GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
441                      GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
442 {
443    GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
444    GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
445    GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
446    GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
447    GLfloat maxU, maxV, rho, lambda;
448    dsdx2 = fabsf(dsdx2);
449    dsdy2 = fabsf(dsdy2);
450    dtdx2 = fabsf(dtdx2);
451    dtdy2 = fabsf(dtdy2);
452    maxU = MAX2(dsdx2, dsdy2) * texW;
453    maxV = MAX2(dtdx2, dtdy2) * texH;
454    rho = MAX2(maxU, maxV);
455    lambda = LOG2(rho);
456    return lambda;
457 }
458 #endif
459 
460 
461 /**
462  * Fill in the span.array->attrib[VARYING_SLOT_TEXn] arrays from the
463  * using the attrStart/Step values.
464  *
465  * This function only used during fixed-function fragment processing.
466  *
467  * Note: in the places where we divide by Q (or mult by invQ) we're
468  * really doing two things: perspective correction and texcoord
469  * projection.  Remember, for texcoord (s,t,r,q) we need to index
470  * texels with (s/q, t/q, r/q).
471  */
472 static void
interpolate_texcoords(struct gl_context * ctx,SWspan * span)473 interpolate_texcoords(struct gl_context *ctx, SWspan *span)
474 {
475    const GLuint maxUnit
476       = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
477    GLuint u;
478 
479    /* XXX CoordUnits vs. ImageUnits */
480    for (u = 0; u < maxUnit; u++) {
481       if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
482          const GLuint attr = VARYING_SLOT_TEX0 + u;
483          const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
484          GLfloat texW, texH;
485          GLboolean needLambda;
486          GLfloat (*texcoord)[4] = span->array->attribs[attr];
487          GLfloat *lambda = span->array->lambda[u];
488          const GLfloat dsdx = span->attrStepX[attr][0];
489          const GLfloat dsdy = span->attrStepY[attr][0];
490          const GLfloat dtdx = span->attrStepX[attr][1];
491          const GLfloat dtdy = span->attrStepY[attr][1];
492          const GLfloat drdx = span->attrStepX[attr][2];
493          const GLfloat dqdx = span->attrStepX[attr][3];
494          const GLfloat dqdy = span->attrStepY[attr][3];
495          GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
496          GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
497          GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
498          GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
499 
500          if (obj) {
501             const struct gl_texture_image *img = _mesa_base_tex_image(obj);
502             const struct swrast_texture_image *swImg =
503                swrast_texture_image_const(img);
504             const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, u);
505 
506             needLambda = (samp->MinFilter != samp->MagFilter)
507                || _swrast_use_fragment_program(ctx);
508             /* LOD is calculated directly in the ansiotropic filter, we can
509              * skip the normal lambda function as the result is ignored.
510              */
511             if (samp->MaxAnisotropy > 1.0F &&
512                 samp->MinFilter == GL_LINEAR_MIPMAP_LINEAR) {
513                needLambda = GL_FALSE;
514             }
515             texW = swImg->WidthScale;
516             texH = swImg->HeightScale;
517          }
518          else {
519             /* using a fragment program */
520             texW = 1.0;
521             texH = 1.0;
522             needLambda = GL_FALSE;
523          }
524 
525          if (needLambda) {
526             GLuint i;
527             if (_swrast_use_fragment_program(ctx)
528                 || _mesa_ati_fragment_shader_enabled(ctx)) {
529                /* do perspective correction but don't divide s, t, r by q */
530                const GLfloat dwdx = span->attrStepX[VARYING_SLOT_POS][3];
531                GLfloat w = span->attrStart[VARYING_SLOT_POS][3] + span->leftClip * dwdx;
532                for (i = 0; i < span->end; i++) {
533                   const GLfloat invW = 1.0F / w;
534                   texcoord[i][0] = s * invW;
535                   texcoord[i][1] = t * invW;
536                   texcoord[i][2] = r * invW;
537                   texcoord[i][3] = q * invW;
538                   lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
539                                                      dqdx, dqdy, texW, texH,
540                                                      s, t, q, invW);
541                   s += dsdx;
542                   t += dtdx;
543                   r += drdx;
544                   q += dqdx;
545                   w += dwdx;
546                }
547             }
548             else {
549                for (i = 0; i < span->end; i++) {
550                   const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
551                   texcoord[i][0] = s * invQ;
552                   texcoord[i][1] = t * invQ;
553                   texcoord[i][2] = r * invQ;
554                   texcoord[i][3] = q;
555                   lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
556                                                      dqdx, dqdy, texW, texH,
557                                                      s, t, q, invQ);
558                   s += dsdx;
559                   t += dtdx;
560                   r += drdx;
561                   q += dqdx;
562                }
563             }
564             span->arrayMask |= SPAN_LAMBDA;
565          }
566          else {
567             GLuint i;
568             if (_swrast_use_fragment_program(ctx) ||
569                 _mesa_ati_fragment_shader_enabled(ctx)) {
570                /* do perspective correction but don't divide s, t, r by q */
571                const GLfloat dwdx = span->attrStepX[VARYING_SLOT_POS][3];
572                GLfloat w = span->attrStart[VARYING_SLOT_POS][3] + span->leftClip * dwdx;
573                for (i = 0; i < span->end; i++) {
574                   const GLfloat invW = 1.0F / w;
575                   texcoord[i][0] = s * invW;
576                   texcoord[i][1] = t * invW;
577                   texcoord[i][2] = r * invW;
578                   texcoord[i][3] = q * invW;
579                   lambda[i] = 0.0;
580                   s += dsdx;
581                   t += dtdx;
582                   r += drdx;
583                   q += dqdx;
584                   w += dwdx;
585                }
586             }
587             else if (dqdx == 0.0F) {
588                /* Ortho projection or polygon's parallel to window X axis */
589                const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
590                for (i = 0; i < span->end; i++) {
591                   texcoord[i][0] = s * invQ;
592                   texcoord[i][1] = t * invQ;
593                   texcoord[i][2] = r * invQ;
594                   texcoord[i][3] = q;
595                   lambda[i] = 0.0;
596                   s += dsdx;
597                   t += dtdx;
598                   r += drdx;
599                }
600             }
601             else {
602                for (i = 0; i < span->end; i++) {
603                   const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
604                   texcoord[i][0] = s * invQ;
605                   texcoord[i][1] = t * invQ;
606                   texcoord[i][2] = r * invQ;
607                   texcoord[i][3] = q;
608                   lambda[i] = 0.0;
609                   s += dsdx;
610                   t += dtdx;
611                   r += drdx;
612                   q += dqdx;
613                }
614             }
615          } /* lambda */
616       } /* if */
617    } /* for */
618 }
619 
620 
621 /**
622  * Fill in the arrays->attribs[VARYING_SLOT_POS] array.
623  */
624 static inline void
interpolate_wpos(struct gl_context * ctx,SWspan * span)625 interpolate_wpos(struct gl_context *ctx, SWspan *span)
626 {
627    GLfloat (*wpos)[4] = span->array->attribs[VARYING_SLOT_POS];
628    GLuint i;
629    const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
630    GLfloat w, dw;
631 
632    if (span->arrayMask & SPAN_XY) {
633       for (i = 0; i < span->end; i++) {
634          wpos[i][0] = (GLfloat) span->array->x[i];
635          wpos[i][1] = (GLfloat) span->array->y[i];
636       }
637    }
638    else {
639       for (i = 0; i < span->end; i++) {
640          wpos[i][0] = (GLfloat) span->x + i;
641          wpos[i][1] = (GLfloat) span->y;
642       }
643    }
644 
645    dw = span->attrStepX[VARYING_SLOT_POS][3];
646    w = span->attrStart[VARYING_SLOT_POS][3] + span->leftClip * dw;
647    for (i = 0; i < span->end; i++) {
648       wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
649       wpos[i][3] = w;
650       w += dw;
651    }
652 }
653 
654 
655 /**
656  * Apply the current polygon stipple pattern to a span of pixels.
657  */
658 static inline void
stipple_polygon_span(struct gl_context * ctx,SWspan * span)659 stipple_polygon_span(struct gl_context *ctx, SWspan *span)
660 {
661    GLubyte *mask = span->array->mask;
662 
663    assert(ctx->Polygon.StippleFlag);
664 
665    if (span->arrayMask & SPAN_XY) {
666       /* arrays of x/y pixel coords */
667       GLuint i;
668       for (i = 0; i < span->end; i++) {
669          const GLint col = span->array->x[i] % 32;
670          const GLint row = span->array->y[i] % 32;
671          const GLuint stipple = ctx->PolygonStipple[row];
672          if (((1 << col) & stipple) == 0) {
673             mask[i] = 0;
674          }
675       }
676    }
677    else {
678       /* horizontal span of pixels */
679       const GLuint highBit = 1 << 31;
680       const GLuint stipple = ctx->PolygonStipple[span->y % 32];
681       GLuint i, m = highBit >> (GLuint) (span->x % 32);
682       for (i = 0; i < span->end; i++) {
683          if ((m & stipple) == 0) {
684             mask[i] = 0;
685          }
686          m = m >> 1;
687          if (m == 0) {
688             m = highBit;
689          }
690       }
691    }
692    span->writeAll = GL_FALSE;
693 }
694 
695 
696 /**
697  * Clip a pixel span to the current buffer/window boundaries:
698  * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax.  This will accomplish
699  * window clipping and scissoring.
700  * Return:   GL_TRUE   some pixels still visible
701  *           GL_FALSE  nothing visible
702  */
703 static inline GLuint
clip_span(struct gl_context * ctx,SWspan * span)704 clip_span( struct gl_context *ctx, SWspan *span )
705 {
706    const GLint xmin = ctx->DrawBuffer->_Xmin;
707    const GLint xmax = ctx->DrawBuffer->_Xmax;
708    const GLint ymin = ctx->DrawBuffer->_Ymin;
709    const GLint ymax = ctx->DrawBuffer->_Ymax;
710 
711    span->leftClip = 0;
712 
713    if (span->arrayMask & SPAN_XY) {
714       /* arrays of x/y pixel coords */
715       const GLint *x = span->array->x;
716       const GLint *y = span->array->y;
717       const GLint n = span->end;
718       GLubyte *mask = span->array->mask;
719       GLint i;
720       GLuint passed = 0;
721       if (span->arrayMask & SPAN_MASK) {
722          /* note: using & intead of && to reduce branches */
723          for (i = 0; i < n; i++) {
724             mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
725                      & (y[i] >= ymin) & (y[i] < ymax);
726             passed += mask[i];
727          }
728       }
729       else {
730          /* note: using & intead of && to reduce branches */
731          for (i = 0; i < n; i++) {
732             mask[i] = (x[i] >= xmin) & (x[i] < xmax)
733                     & (y[i] >= ymin) & (y[i] < ymax);
734             passed += mask[i];
735          }
736       }
737       return passed > 0;
738    }
739    else {
740       /* horizontal span of pixels */
741       const GLint x = span->x;
742       const GLint y = span->y;
743       GLint n = span->end;
744 
745       /* Trivial rejection tests */
746       if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
747          span->end = 0;
748          return GL_FALSE;  /* all pixels clipped */
749       }
750 
751       /* Clip to right */
752       if (x + n > xmax) {
753          assert(x < xmax);
754          n = span->end = xmax - x;
755       }
756 
757       /* Clip to the left */
758       if (x < xmin) {
759          const GLint leftClip = xmin - x;
760          GLuint i;
761 
762          assert(leftClip > 0);
763          assert(x + n > xmin);
764 
765          /* Clip 'leftClip' pixels from the left side.
766           * The span->leftClip field will be applied when we interpolate
767           * fragment attributes.
768           * For arrays of values, shift them left.
769           */
770          for (i = 0; i < VARYING_SLOT_MAX; i++) {
771             if (span->interpMask & (1 << i)) {
772                GLuint j;
773                for (j = 0; j < 4; j++) {
774                   span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
775                }
776             }
777          }
778 
779          span->red += leftClip * span->redStep;
780          span->green += leftClip * span->greenStep;
781          span->blue += leftClip * span->blueStep;
782          span->alpha += leftClip * span->alphaStep;
783          span->index += leftClip * span->indexStep;
784          span->z += leftClip * span->zStep;
785          span->intTex[0] += leftClip * span->intTexStep[0];
786          span->intTex[1] += leftClip * span->intTexStep[1];
787 
788 #define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
789          memmove(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
790 
791          for (i = 0; i < VARYING_SLOT_MAX; i++) {
792             if (span->arrayAttribs & BITFIELD64_BIT(i)) {
793                /* shift array elements left by 'leftClip' */
794                SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
795             }
796          }
797 
798          SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
799          SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
800          SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
801          SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
802          SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
803          SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
804          SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
805          for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
806             SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
807          }
808          SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
809 
810 #undef SHIFT_ARRAY
811 
812          span->leftClip = leftClip;
813          span->x = xmin;
814          span->end -= leftClip;
815          span->writeAll = GL_FALSE;
816       }
817 
818       assert(span->x >= xmin);
819       assert(span->x + span->end <= xmax);
820       assert(span->y >= ymin);
821       assert(span->y < ymax);
822 
823       return GL_TRUE;  /* some pixels visible */
824    }
825 }
826 
827 
828 /**
829  * Add specular colors to primary colors.
830  * Only called during fixed-function operation.
831  * Result is float color array (VARYING_SLOT_COL0).
832  */
833 static inline void
add_specular(struct gl_context * ctx,SWspan * span)834 add_specular(struct gl_context *ctx, SWspan *span)
835 {
836    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
837    const GLubyte *mask = span->array->mask;
838    GLfloat (*col0)[4] = span->array->attribs[VARYING_SLOT_COL0];
839    GLfloat (*col1)[4] = span->array->attribs[VARYING_SLOT_COL1];
840    GLuint i;
841 
842    assert(!_swrast_use_fragment_program(ctx));
843    assert(span->arrayMask & SPAN_RGBA);
844    assert(swrast->_ActiveAttribMask & VARYING_BIT_COL1);
845    (void) swrast; /* silence warning */
846 
847    if (span->array->ChanType == GL_FLOAT) {
848       if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
849          interpolate_active_attribs(ctx, span, VARYING_BIT_COL0);
850       }
851    }
852    else {
853       /* need float colors */
854       if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
855          interpolate_float_colors(span);
856       }
857    }
858 
859    if ((span->arrayAttribs & VARYING_BIT_COL1) == 0) {
860       /* XXX could avoid this and interpolate COL1 in the loop below */
861       interpolate_active_attribs(ctx, span, VARYING_BIT_COL1);
862    }
863 
864    assert(span->arrayAttribs & VARYING_BIT_COL0);
865    assert(span->arrayAttribs & VARYING_BIT_COL1);
866 
867    for (i = 0; i < span->end; i++) {
868       if (mask[i]) {
869          col0[i][0] += col1[i][0];
870          col0[i][1] += col1[i][1];
871          col0[i][2] += col1[i][2];
872       }
873    }
874 
875    span->array->ChanType = GL_FLOAT;
876 }
877 
878 
879 /**
880  * Apply antialiasing coverage value to alpha values.
881  */
882 static inline void
apply_aa_coverage(SWspan * span)883 apply_aa_coverage(SWspan *span)
884 {
885    const GLfloat *coverage = span->array->coverage;
886    GLuint i;
887    if (span->array->ChanType == GL_UNSIGNED_BYTE) {
888       GLubyte (*rgba)[4] = span->array->rgba8;
889       for (i = 0; i < span->end; i++) {
890          const GLfloat a = rgba[i][ACOMP] * coverage[i];
891          rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0F, 255.0F);
892          assert(coverage[i] >= 0.0F);
893          assert(coverage[i] <= 1.0F);
894       }
895    }
896    else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
897       GLushort (*rgba)[4] = span->array->rgba16;
898       for (i = 0; i < span->end; i++) {
899          const GLfloat a = rgba[i][ACOMP] * coverage[i];
900          rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0F, 65535.0F);
901       }
902    }
903    else {
904       GLfloat (*rgba)[4] = span->array->attribs[VARYING_SLOT_COL0];
905       for (i = 0; i < span->end; i++) {
906          rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
907          /* clamp later */
908       }
909    }
910 }
911 
912 
913 /**
914  * Clamp span's float colors to [0,1]
915  */
916 static inline void
clamp_colors(SWspan * span)917 clamp_colors(SWspan *span)
918 {
919    GLfloat (*rgba)[4] = span->array->attribs[VARYING_SLOT_COL0];
920    GLuint i;
921    assert(span->array->ChanType == GL_FLOAT);
922    for (i = 0; i < span->end; i++) {
923       rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
924       rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
925       rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
926       rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
927    }
928 }
929 
930 
931 /**
932  * Convert the span's color arrays to the given type.
933  * The only way 'output' can be greater than zero is when we have a fragment
934  * program that writes to gl_FragData[1] or higher.
935  * \param output  which fragment program color output is being processed
936  */
937 static inline void
convert_color_type(SWspan * span,GLenum srcType,GLenum newType,GLuint output)938 convert_color_type(SWspan *span, GLenum srcType, GLenum newType, GLuint output)
939 {
940    GLvoid *src, *dst;
941 
942    if (output > 0 || srcType == GL_FLOAT) {
943       src = span->array->attribs[VARYING_SLOT_COL0 + output];
944       span->array->ChanType = GL_FLOAT;
945    }
946    else if (srcType == GL_UNSIGNED_BYTE) {
947       src = span->array->rgba8;
948    }
949    else {
950       assert(srcType == GL_UNSIGNED_SHORT);
951       src = span->array->rgba16;
952    }
953 
954    if (newType == GL_UNSIGNED_BYTE) {
955       dst = span->array->rgba8;
956    }
957    else if (newType == GL_UNSIGNED_SHORT) {
958       dst = span->array->rgba16;
959    }
960    else {
961       dst = span->array->attribs[VARYING_SLOT_COL0];
962    }
963 
964    _mesa_convert_colors(span->array->ChanType, src,
965                         newType, dst,
966                         span->end, span->array->mask);
967 
968    span->array->ChanType = newType;
969    span->array->rgba = dst;
970 }
971 
972 
973 
974 /**
975  * Apply fragment shader, fragment program or normal texturing to span.
976  */
977 static inline void
shade_texture_span(struct gl_context * ctx,SWspan * span)978 shade_texture_span(struct gl_context *ctx, SWspan *span)
979 {
980    if (_swrast_use_fragment_program(ctx) ||
981        _mesa_ati_fragment_shader_enabled(ctx)) {
982       /* programmable shading */
983       if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
984          convert_color_type(span, span->array->ChanType, GL_FLOAT, 0);
985       }
986       else {
987          span->array->rgba = (void *) span->array->attribs[VARYING_SLOT_COL0];
988       }
989 
990       if (span->primitive != GL_POINT ||
991 	  (span->interpMask & SPAN_RGBA) ||
992 	  ctx->Point.PointSprite) {
993          /* for single-pixel points, we populated the arrays already */
994          interpolate_active_attribs(ctx, span, ~0);
995       }
996       span->array->ChanType = GL_FLOAT;
997 
998       if (!(span->arrayMask & SPAN_Z))
999          _swrast_span_interpolate_z (ctx, span);
1000 
1001 #if 0
1002       if (inputsRead & VARYING_BIT_POS)
1003 #else
1004       /* XXX always interpolate wpos so that DDX/DDY work */
1005 #endif
1006          interpolate_wpos(ctx, span);
1007 
1008       /* Run fragment program/shader now */
1009       if (_swrast_use_fragment_program(ctx)) {
1010          _swrast_exec_fragment_program(ctx, span);
1011       }
1012       else {
1013          assert(_mesa_ati_fragment_shader_enabled(ctx));
1014          _swrast_exec_fragment_shader(ctx, span);
1015       }
1016    }
1017    else if (ctx->Texture._EnabledCoordUnits) {
1018       /* conventional texturing */
1019 
1020 #if CHAN_BITS == 32
1021       if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
1022          interpolate_int_colors(ctx, span);
1023       }
1024 #else
1025       if (!(span->arrayMask & SPAN_RGBA))
1026          interpolate_int_colors(ctx, span);
1027 #endif
1028       if ((span->arrayAttribs & VARYING_BITS_TEX_ANY) == 0x0)
1029          interpolate_texcoords(ctx, span);
1030 
1031       _swrast_texture_span(ctx, span);
1032    }
1033 }
1034 
1035 
1036 /** Put colors at x/y locations into a renderbuffer */
1037 static void
put_values(struct gl_context * ctx,struct gl_renderbuffer * rb,GLenum datatype,GLuint count,const GLint x[],const GLint y[],const void * values,const GLubyte * mask)1038 put_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1039            GLenum datatype,
1040            GLuint count, const GLint x[], const GLint y[],
1041            const void *values, const GLubyte *mask)
1042 {
1043    gl_pack_ubyte_rgba_func pack_ubyte = NULL;
1044    gl_pack_float_rgba_func pack_float = NULL;
1045    GLuint i;
1046 
1047    if (datatype == GL_UNSIGNED_BYTE)
1048       pack_ubyte = _mesa_get_pack_ubyte_rgba_function(rb->Format);
1049    else
1050       pack_float = _mesa_get_pack_float_rgba_function(rb->Format);
1051 
1052    for (i = 0; i < count; i++) {
1053       if (mask[i]) {
1054          GLubyte *dst = _swrast_pixel_address(rb, x[i], y[i]);
1055 
1056          if (datatype == GL_UNSIGNED_BYTE) {
1057             pack_ubyte((const GLubyte *) values + 4 * i, dst);
1058          }
1059          else {
1060             assert(datatype == GL_FLOAT);
1061             pack_float((const GLfloat *) values + 4 * i, dst);
1062          }
1063       }
1064    }
1065 }
1066 
1067 
1068 /** Put row of colors into renderbuffer */
1069 void
_swrast_put_row(struct gl_context * ctx,struct gl_renderbuffer * rb,GLenum datatype,GLuint count,GLint x,GLint y,const void * values,const GLubyte * mask)1070 _swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1071                 GLenum datatype,
1072                 GLuint count, GLint x, GLint y,
1073                 const void *values, const GLubyte *mask)
1074 {
1075    GLubyte *dst = _swrast_pixel_address(rb, x, y);
1076 
1077    if (!mask) {
1078       if (datatype == GL_UNSIGNED_BYTE) {
1079          _mesa_pack_ubyte_rgba_row(rb->Format, count,
1080                                    (const GLubyte (*)[4]) values, dst);
1081       }
1082       else {
1083          assert(datatype == GL_FLOAT);
1084          _mesa_pack_float_rgba_row(rb->Format, count,
1085                                    (const GLfloat (*)[4]) values, dst);
1086       }
1087    }
1088    else {
1089       const GLuint bpp = _mesa_get_format_bytes(rb->Format);
1090       GLuint i, runLen, runStart;
1091       /* We can't pass a 'mask' array to the _mesa_pack_rgba_row() functions
1092        * so look for runs where mask=1...
1093        */
1094       runLen = runStart = 0;
1095       for (i = 0; i < count; i++) {
1096          if (mask[i]) {
1097             if (runLen == 0)
1098                runStart = i;
1099             runLen++;
1100          }
1101 
1102          if (!mask[i] || i == count - 1) {
1103             /* might be the end of a run of pixels */
1104             if (runLen > 0) {
1105                if (datatype == GL_UNSIGNED_BYTE) {
1106                   _mesa_pack_ubyte_rgba_row(rb->Format, runLen,
1107                                      (const GLubyte (*)[4]) values + runStart,
1108                                      dst + runStart * bpp);
1109                }
1110                else {
1111                   assert(datatype == GL_FLOAT);
1112                   _mesa_pack_float_rgba_row(rb->Format, runLen,
1113                                    (const GLfloat (*)[4]) values + runStart,
1114                                    dst + runStart * bpp);
1115                }
1116                runLen = 0;
1117             }
1118          }
1119       }
1120    }
1121 }
1122 
1123 
1124 
1125 /**
1126  * Apply all the per-fragment operations to a span.
1127  * This now includes texturing (_swrast_write_texture_span() is history).
1128  * This function may modify any of the array values in the span.
1129  * span->interpMask and span->arrayMask may be changed but will be restored
1130  * to their original values before returning.
1131  */
1132 void
_swrast_write_rgba_span(struct gl_context * ctx,SWspan * span)1133 _swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
1134 {
1135    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1136    const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1137    const GLbitfield origInterpMask = span->interpMask;
1138    const GLbitfield origArrayMask = span->arrayMask;
1139    const GLbitfield64 origArrayAttribs = span->arrayAttribs;
1140    const GLenum origChanType = span->array->ChanType;
1141    void * const origRgba = span->array->rgba;
1142    const GLboolean shader = (_swrast_use_fragment_program(ctx)
1143                              || _mesa_ati_fragment_shader_enabled(ctx));
1144    const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1145    struct gl_framebuffer *fb = ctx->DrawBuffer;
1146 
1147    /*
1148    printf("%s()  interp 0x%x  array 0x%x\n", __func__,
1149           span->interpMask, span->arrayMask);
1150    */
1151 
1152    assert(span->primitive == GL_POINT ||
1153           span->primitive == GL_LINE ||
1154 	  span->primitive == GL_POLYGON ||
1155           span->primitive == GL_BITMAP);
1156 
1157    /* Fragment write masks */
1158    if (span->arrayMask & SPAN_MASK) {
1159       /* mask was initialized by caller, probably glBitmap */
1160       span->writeAll = GL_FALSE;
1161    }
1162    else {
1163       memset(span->array->mask, 1, span->end);
1164       span->writeAll = GL_TRUE;
1165    }
1166 
1167    /* Clip to window/scissor box */
1168    if (!clip_span(ctx, span)) {
1169       return;
1170    }
1171 
1172    assert(span->end <= SWRAST_MAX_WIDTH);
1173 
1174    /* Depth bounds test */
1175    if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1176       if (!_swrast_depth_bounds_test(ctx, span)) {
1177          return;
1178       }
1179    }
1180 
1181 #ifdef DEBUG
1182    /* Make sure all fragments are within window bounds */
1183    if (span->arrayMask & SPAN_XY) {
1184       /* array of pixel locations */
1185       GLuint i;
1186       for (i = 0; i < span->end; i++) {
1187          if (span->array->mask[i]) {
1188             assert(span->array->x[i] >= fb->_Xmin);
1189             assert(span->array->x[i] < fb->_Xmax);
1190             assert(span->array->y[i] >= fb->_Ymin);
1191             assert(span->array->y[i] < fb->_Ymax);
1192          }
1193       }
1194    }
1195 #endif
1196 
1197    /* Polygon Stippling */
1198    if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1199       stipple_polygon_span(ctx, span);
1200    }
1201 
1202    /* This is the normal place to compute the fragment color/Z
1203     * from texturing or shading.
1204     */
1205    if (shaderOrTexture && !swrast->_DeferredTexture) {
1206       shade_texture_span(ctx, span);
1207    }
1208 
1209    /* Do the alpha test */
1210    if (ctx->Color.AlphaEnabled) {
1211       if (!_swrast_alpha_test(ctx, span)) {
1212          /* all fragments failed test */
1213          goto end;
1214       }
1215    }
1216 
1217    /* Stencil and Z testing */
1218    if (_mesa_stencil_is_enabled(ctx) || ctx->Depth.Test) {
1219       if (!(span->arrayMask & SPAN_Z))
1220          _swrast_span_interpolate_z(ctx, span);
1221 
1222       if (ctx->Transform.DepthClamp)
1223 	 _swrast_depth_clamp_span(ctx, span);
1224 
1225       if (_mesa_stencil_is_enabled(ctx)) {
1226          /* Combined Z/stencil tests */
1227          if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1228             /* all fragments failed test */
1229             goto end;
1230          }
1231       }
1232       else if (fb->Visual.depthBits > 0) {
1233          /* Just regular depth testing */
1234          assert(ctx->Depth.Test);
1235          assert(span->arrayMask & SPAN_Z);
1236          if (!_swrast_depth_test_span(ctx, span)) {
1237             /* all fragments failed test */
1238             goto end;
1239          }
1240       }
1241    }
1242 
1243    if (ctx->Query.CurrentOcclusionObject) {
1244       /* update count of 'passed' fragments */
1245       struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1246       GLuint i;
1247       for (i = 0; i < span->end; i++)
1248          q->Result += span->array->mask[i];
1249    }
1250 
1251    /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1252     * the occlusion test.
1253     */
1254    if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1255       /* no colors to write */
1256       goto end;
1257    }
1258 
1259    /* If we were able to defer fragment color computation to now, there's
1260     * a good chance that many fragments will have already been killed by
1261     * Z/stencil testing.
1262     */
1263    if (shaderOrTexture && swrast->_DeferredTexture) {
1264       shade_texture_span(ctx, span);
1265    }
1266 
1267 #if CHAN_BITS == 32
1268    if ((span->arrayAttribs & VARYING_BIT_COL0) == 0) {
1269       interpolate_active_attribs(ctx, span, VARYING_BIT_COL0);
1270    }
1271 #else
1272    if ((span->arrayMask & SPAN_RGBA) == 0) {
1273       interpolate_int_colors(ctx, span);
1274    }
1275 #endif
1276 
1277    assert(span->arrayMask & SPAN_RGBA);
1278 
1279    if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1280       /* Add primary and specular (diffuse + specular) colors */
1281       if (!shader) {
1282          if (ctx->Fog.ColorSumEnabled ||
1283              (ctx->Light.Enabled &&
1284               ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1285             add_specular(ctx, span);
1286          }
1287       }
1288    }
1289 
1290    /* Fog */
1291    if (swrast->_FogEnabled) {
1292       _swrast_fog_rgba_span(ctx, span);
1293    }
1294 
1295    /* Antialias coverage application */
1296    if (span->arrayMask & SPAN_COVERAGE) {
1297       apply_aa_coverage(span);
1298    }
1299 
1300    /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1301    if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1302        span->array->ChanType == GL_FLOAT) {
1303       clamp_colors(span);
1304    }
1305 
1306    /*
1307     * Write to renderbuffers.
1308     * Depending on glDrawBuffer() state and the which color outputs are
1309     * written by the fragment shader, we may either replicate one color to
1310     * all renderbuffers or write a different color to each renderbuffer.
1311     * multiFragOutputs=TRUE for the later case.
1312     */
1313    {
1314       const GLuint numBuffers = fb->_NumColorDrawBuffers;
1315       const struct gl_program *fp = ctx->FragmentProgram._Current;
1316       const GLboolean multiFragOutputs =
1317          _swrast_use_fragment_program(ctx)
1318          && fp->info.outputs_written >= (1 << FRAG_RESULT_DATA0);
1319       /* Save srcColorType because convert_color_type() can change it */
1320       const GLenum srcColorType = span->array->ChanType;
1321       GLuint buf;
1322 
1323       for (buf = 0; buf < numBuffers; buf++) {
1324          struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1325 
1326          /* color[fragOutput] will be written to buffer[buf] */
1327 
1328          if (rb) {
1329             /* re-use one of the attribute array buffers for rgbaSave */
1330             GLchan (*rgbaSave)[4] = (GLchan (*)[4]) span->array->attribs[0];
1331             struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
1332             const GLenum dstColorType = srb->ColorType;
1333 
1334             assert(dstColorType == GL_UNSIGNED_BYTE ||
1335                    dstColorType == GL_FLOAT);
1336 
1337             /* set span->array->rgba to colors for renderbuffer's datatype */
1338             if (srcColorType != dstColorType) {
1339                convert_color_type(span, srcColorType, dstColorType,
1340                                   multiFragOutputs ? buf : 0);
1341             }
1342             else {
1343                if (srcColorType == GL_UNSIGNED_BYTE) {
1344                   span->array->rgba = span->array->rgba8;
1345                }
1346                else {
1347                   span->array->rgba = (void *)
1348                      span->array->attribs[VARYING_SLOT_COL0];
1349                }
1350             }
1351 
1352             if (!multiFragOutputs && numBuffers > 1) {
1353                /* save colors for second, third renderbuffer writes */
1354                memcpy(rgbaSave, span->array->rgba,
1355                       4 * span->end * sizeof(GLchan));
1356             }
1357 
1358             assert(rb->_BaseFormat == GL_RGBA ||
1359                    rb->_BaseFormat == GL_RGB ||
1360                    rb->_BaseFormat == GL_RED ||
1361                    rb->_BaseFormat == GL_RG ||
1362 		   rb->_BaseFormat == GL_ALPHA);
1363 
1364             if (ctx->Color.ColorLogicOpEnabled) {
1365                _swrast_logicop_rgba_span(ctx, rb, span);
1366             }
1367             else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1368                _swrast_blend_span(ctx, rb, span);
1369             }
1370 
1371             if (colorMask[buf] != 0xffffffff) {
1372                _swrast_mask_rgba_span(ctx, rb, span, buf);
1373             }
1374 
1375             if (span->arrayMask & SPAN_XY) {
1376                /* array of pixel coords */
1377                put_values(ctx, rb,
1378                           span->array->ChanType, span->end,
1379                           span->array->x, span->array->y,
1380                           span->array->rgba, span->array->mask);
1381             }
1382             else {
1383                /* horizontal run of pixels */
1384                _swrast_put_row(ctx, rb,
1385                                span->array->ChanType,
1386                                span->end, span->x, span->y,
1387                                span->array->rgba,
1388                                span->writeAll ? NULL: span->array->mask);
1389             }
1390 
1391             if (!multiFragOutputs && numBuffers > 1) {
1392                /* restore original span values */
1393                memcpy(span->array->rgba, rgbaSave,
1394                       4 * span->end * sizeof(GLchan));
1395             }
1396 
1397          } /* if rb */
1398       } /* for buf */
1399    }
1400 
1401 end:
1402    /* restore these values before returning */
1403    span->interpMask = origInterpMask;
1404    span->arrayMask = origArrayMask;
1405    span->arrayAttribs = origArrayAttribs;
1406    span->array->ChanType = origChanType;
1407    span->array->rgba = origRgba;
1408 }
1409 
1410 
1411 /**
1412  * Read float RGBA pixels from a renderbuffer.  Clipping will be done to
1413  * prevent reading ouside the buffer's boundaries.
1414  * \param rgba  the returned colors
1415  */
1416 void
_swrast_read_rgba_span(struct gl_context * ctx,struct gl_renderbuffer * rb,GLuint n,GLint x,GLint y,GLvoid * rgba)1417 _swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
1418                         GLuint n, GLint x, GLint y,
1419                         GLvoid *rgba)
1420 {
1421    struct swrast_renderbuffer *srb = swrast_renderbuffer(rb);
1422    GLenum dstType = GL_FLOAT;
1423    const GLint bufWidth = (GLint) rb->Width;
1424    const GLint bufHeight = (GLint) rb->Height;
1425 
1426    if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1427       /* completely above, below, or right */
1428       /* XXX maybe leave rgba values undefined? */
1429       memset(rgba, 0, 4 * n * sizeof(GLchan));
1430    }
1431    else {
1432       GLint skip, length;
1433       GLubyte *src;
1434 
1435       if (x < 0) {
1436          /* left edge clipping */
1437          skip = -x;
1438          length = (GLint) n - skip;
1439          if (length < 0) {
1440             /* completely left of window */
1441             return;
1442          }
1443          if (length > bufWidth) {
1444             length = bufWidth;
1445          }
1446       }
1447       else if ((GLint) (x + n) > bufWidth) {
1448          /* right edge clipping */
1449          skip = 0;
1450          length = bufWidth - x;
1451          if (length < 0) {
1452             /* completely to right of window */
1453             return;
1454          }
1455       }
1456       else {
1457          /* no clipping */
1458          skip = 0;
1459          length = (GLint) n;
1460       }
1461 
1462       assert(rb);
1463       assert(rb->_BaseFormat == GL_RGBA ||
1464 	     rb->_BaseFormat == GL_RGB ||
1465 	     rb->_BaseFormat == GL_RG ||
1466 	     rb->_BaseFormat == GL_RED ||
1467 	     rb->_BaseFormat == GL_LUMINANCE ||
1468 	     rb->_BaseFormat == GL_INTENSITY ||
1469 	     rb->_BaseFormat == GL_LUMINANCE_ALPHA ||
1470 	     rb->_BaseFormat == GL_ALPHA);
1471 
1472       assert(srb->Map);
1473       (void) srb; /* silence unused var warning */
1474 
1475       src = _swrast_pixel_address(rb, x + skip, y);
1476 
1477       if (dstType == GL_UNSIGNED_BYTE) {
1478          _mesa_unpack_ubyte_rgba_row(rb->Format, length, src,
1479                                      (GLubyte (*)[4]) rgba + skip);
1480       }
1481       else if (dstType == GL_FLOAT) {
1482          _mesa_unpack_rgba_row(rb->Format, length, src,
1483                                (GLfloat (*)[4]) rgba + skip);
1484       }
1485       else {
1486          _mesa_problem(ctx, "unexpected type in _swrast_read_rgba_span()");
1487       }
1488    }
1489 }
1490 
1491 
1492 /**
1493  * Get colors at x/y positions with clipping.
1494  * \param type  type of values to return
1495  */
1496 static void
get_values(struct gl_context * ctx,struct gl_renderbuffer * rb,GLuint count,const GLint x[],const GLint y[],void * values,GLenum type)1497 get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1498            GLuint count, const GLint x[], const GLint y[],
1499            void *values, GLenum type)
1500 {
1501    GLuint i;
1502 
1503    for (i = 0; i < count; i++) {
1504       if (x[i] >= 0 && y[i] >= 0 &&
1505 	  x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1506          /* inside */
1507          const GLubyte *src = _swrast_pixel_address(rb, x[i], y[i]);
1508 
1509          if (type == GL_UNSIGNED_BYTE) {
1510             _mesa_unpack_ubyte_rgba_row(rb->Format, 1, src,
1511                                         (GLubyte (*)[4]) values + i);
1512          }
1513          else if (type == GL_FLOAT) {
1514             _mesa_unpack_rgba_row(rb->Format, 1, src,
1515                                   (GLfloat (*)[4]) values + i);
1516          }
1517          else {
1518             _mesa_problem(ctx, "unexpected type in get_values()");
1519          }
1520       }
1521    }
1522 }
1523 
1524 
1525 /**
1526  * Get row of colors with clipping.
1527  * \param type  type of values to return
1528  */
1529 static void
get_row(struct gl_context * ctx,struct gl_renderbuffer * rb,GLuint count,GLint x,GLint y,GLvoid * values,GLenum type)1530 get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1531         GLuint count, GLint x, GLint y,
1532         GLvoid *values, GLenum type)
1533 {
1534    GLint skip = 0;
1535    GLubyte *src;
1536 
1537    if (y < 0 || y >= (GLint) rb->Height)
1538       return; /* above or below */
1539 
1540    if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1541       return; /* entirely left or right */
1542 
1543    if (x + count > rb->Width) {
1544       /* right clip */
1545       GLint clip = x + count - rb->Width;
1546       count -= clip;
1547    }
1548 
1549    if (x < 0) {
1550       /* left clip */
1551       skip = -x;
1552       x = 0;
1553       count -= skip;
1554    }
1555 
1556    src = _swrast_pixel_address(rb, x, y);
1557 
1558    if (type == GL_UNSIGNED_BYTE) {
1559       _mesa_unpack_ubyte_rgba_row(rb->Format, count, src,
1560                                   (GLubyte (*)[4]) values + skip);
1561    }
1562    else if (type == GL_FLOAT) {
1563       _mesa_unpack_rgba_row(rb->Format, count, src,
1564                             (GLfloat (*)[4]) values + skip);
1565    }
1566    else {
1567       _mesa_problem(ctx, "unexpected type in get_row()");
1568    }
1569 }
1570 
1571 
1572 /**
1573  * Get RGBA pixels from the given renderbuffer.
1574  * Used by blending, logicop and masking functions.
1575  * \return pointer to the colors we read.
1576  */
1577 void *
_swrast_get_dest_rgba(struct gl_context * ctx,struct gl_renderbuffer * rb,SWspan * span)1578 _swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
1579                       SWspan *span)
1580 {
1581    void *rbPixels;
1582 
1583    /* Point rbPixels to a temporary space */
1584    rbPixels = span->array->attribs[VARYING_SLOT_MAX - 1];
1585 
1586    /* Get destination values from renderbuffer */
1587    if (span->arrayMask & SPAN_XY) {
1588       get_values(ctx, rb, span->end, span->array->x, span->array->y,
1589                  rbPixels, span->array->ChanType);
1590    }
1591    else {
1592       get_row(ctx, rb, span->end, span->x, span->y,
1593               rbPixels, span->array->ChanType);
1594    }
1595 
1596    return rbPixels;
1597 }
1598