1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define TRACE_TAG SYSDEPS
18
19 #include "sysdeps.h"
20
21 #include <winsock2.h> /* winsock.h *must* be included before windows.h. */
22 #include <windows.h>
23
24 #include <errno.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27
28 #include <algorithm>
29 #include <memory>
30 #include <mutex>
31 #include <string>
32 #include <string_view>
33 #include <unordered_map>
34 #include <vector>
35
36 #include <cutils/sockets.h>
37
38 #include <android-base/errors.h>
39 #include <android-base/file.h>
40 #include <android-base/logging.h>
41 #include <android-base/macros.h>
42 #include <android-base/stringprintf.h>
43 #include <android-base/strings.h>
44 #include <android-base/utf8.h>
45
46 #include "adb.h"
47 #include "adb_utils.h"
48
49 #include "sysdeps/uio.h"
50
51 /* forward declarations */
52
53 typedef const struct FHClassRec_* FHClass;
54 typedef struct FHRec_* FH;
55
56 typedef struct FHClassRec_ {
57 void (*_fh_init)(FH);
58 int (*_fh_close)(FH);
59 int64_t (*_fh_lseek)(FH, int64_t, int);
60 int (*_fh_read)(FH, void*, int);
61 int (*_fh_write)(FH, const void*, int);
62 int (*_fh_writev)(FH, const adb_iovec*, int);
63 } FHClassRec;
64
65 static void _fh_file_init(FH);
66 static int _fh_file_close(FH);
67 static int64_t _fh_file_lseek(FH, int64_t, int);
68 static int _fh_file_read(FH, void*, int);
69 static int _fh_file_write(FH, const void*, int);
70 static int _fh_file_writev(FH, const adb_iovec*, int);
71
72 static const FHClassRec _fh_file_class = {
73 _fh_file_init,
74 _fh_file_close,
75 _fh_file_lseek,
76 _fh_file_read,
77 _fh_file_write,
78 _fh_file_writev,
79 };
80
81 static void _fh_socket_init(FH);
82 static int _fh_socket_close(FH);
83 static int64_t _fh_socket_lseek(FH, int64_t, int);
84 static int _fh_socket_read(FH, void*, int);
85 static int _fh_socket_write(FH, const void*, int);
86 static int _fh_socket_writev(FH, const adb_iovec*, int);
87
88 static const FHClassRec _fh_socket_class = {
89 _fh_socket_init,
90 _fh_socket_close,
91 _fh_socket_lseek,
92 _fh_socket_read,
93 _fh_socket_write,
94 _fh_socket_writev,
95 };
96
97 #if defined(assert)
98 #undef assert
99 #endif
100
operator ()(HANDLE h)101 void handle_deleter::operator()(HANDLE h) {
102 // CreateFile() is documented to return INVALID_HANDLE_FILE on error,
103 // implying that NULL is a valid handle, but this is probably impossible.
104 // Other APIs like CreateEvent() are documented to return NULL on error,
105 // implying that INVALID_HANDLE_VALUE is a valid handle, but this is also
106 // probably impossible. Thus, consider both NULL and INVALID_HANDLE_VALUE
107 // as invalid handles. std::unique_ptr won't call a deleter with NULL, so we
108 // only need to check for INVALID_HANDLE_VALUE.
109 if (h != INVALID_HANDLE_VALUE) {
110 if (!CloseHandle(h)) {
111 D("CloseHandle(%p) failed: %s", h,
112 android::base::SystemErrorCodeToString(GetLastError()).c_str());
113 }
114 }
115 }
116
117 /**************************************************************************/
118 /**************************************************************************/
119 /***** *****/
120 /***** common file descriptor handling *****/
121 /***** *****/
122 /**************************************************************************/
123 /**************************************************************************/
124
125 typedef struct FHRec_
126 {
127 FHClass clazz;
128 int used;
129 int eof;
130 union {
131 HANDLE handle;
132 SOCKET socket;
133 } u;
134
135 char name[32];
136 } FHRec;
137
138 #define fh_handle u.handle
139 #define fh_socket u.socket
140
141 #define WIN32_FH_BASE 2048
142 #define WIN32_MAX_FHS 2048
143
144 static std::mutex& _win32_lock = *new std::mutex();
145 static FHRec _win32_fhs[ WIN32_MAX_FHS ];
146 static int _win32_fh_next; // where to start search for free FHRec
147
148 static FH
_fh_from_int(int fd,const char * func)149 _fh_from_int( int fd, const char* func )
150 {
151 FH f;
152
153 fd -= WIN32_FH_BASE;
154
155 if (fd < 0 || fd >= WIN32_MAX_FHS) {
156 D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
157 func );
158 errno = EBADF;
159 return nullptr;
160 }
161
162 f = &_win32_fhs[fd];
163
164 if (f->used == 0) {
165 D( "_fh_from_int: invalid fd %d passed to %s", fd + WIN32_FH_BASE,
166 func );
167 errno = EBADF;
168 return nullptr;
169 }
170
171 return f;
172 }
173
174
175 static int
_fh_to_int(FH f)176 _fh_to_int( FH f )
177 {
178 if (f && f->used && f >= _win32_fhs && f < _win32_fhs + WIN32_MAX_FHS)
179 return (int)(f - _win32_fhs) + WIN32_FH_BASE;
180
181 return -1;
182 }
183
184 static FH
_fh_alloc(FHClass clazz)185 _fh_alloc( FHClass clazz )
186 {
187 FH f = nullptr;
188
189 std::lock_guard<std::mutex> lock(_win32_lock);
190
191 for (int i = _win32_fh_next; i < WIN32_MAX_FHS; ++i) {
192 if (_win32_fhs[i].clazz == nullptr) {
193 f = &_win32_fhs[i];
194 _win32_fh_next = i + 1;
195 f->clazz = clazz;
196 f->used = 1;
197 f->eof = 0;
198 f->name[0] = '\0';
199 clazz->_fh_init(f);
200 return f;
201 }
202 }
203
204 D("_fh_alloc: no more free file descriptors");
205 errno = EMFILE; // Too many open files
206 return nullptr;
207 }
208
209
210 static int
_fh_close(FH f)211 _fh_close( FH f )
212 {
213 // Use lock so that closing only happens once and so that _fh_alloc can't
214 // allocate a FH that we're in the middle of closing.
215 std::lock_guard<std::mutex> lock(_win32_lock);
216
217 int offset = f - _win32_fhs;
218 if (_win32_fh_next > offset) {
219 _win32_fh_next = offset;
220 }
221
222 if (f->used) {
223 f->clazz->_fh_close( f );
224 f->name[0] = '\0';
225 f->eof = 0;
226 f->used = 0;
227 f->clazz = nullptr;
228 }
229 return 0;
230 }
231
232 // Deleter for unique_fh.
233 class fh_deleter {
234 public:
operator ()(struct FHRec_ * fh)235 void operator()(struct FHRec_* fh) {
236 // We're called from a destructor and destructors should not overwrite
237 // errno because callers may do:
238 // errno = EBLAH;
239 // return -1; // calls destructor, which should not overwrite errno
240 const int saved_errno = errno;
241 _fh_close(fh);
242 errno = saved_errno;
243 }
244 };
245
246 // Like std::unique_ptr, but calls _fh_close() instead of operator delete().
247 typedef std::unique_ptr<struct FHRec_, fh_deleter> unique_fh;
248
249 /**************************************************************************/
250 /**************************************************************************/
251 /***** *****/
252 /***** file-based descriptor handling *****/
253 /***** *****/
254 /**************************************************************************/
255 /**************************************************************************/
256
_fh_file_init(FH f)257 static void _fh_file_init(FH f) {
258 f->fh_handle = INVALID_HANDLE_VALUE;
259 }
260
_fh_file_close(FH f)261 static int _fh_file_close(FH f) {
262 CloseHandle(f->fh_handle);
263 f->fh_handle = INVALID_HANDLE_VALUE;
264 return 0;
265 }
266
_fh_file_read(FH f,void * buf,int len)267 static int _fh_file_read(FH f, void* buf, int len) {
268 DWORD read_bytes;
269
270 if (!ReadFile(f->fh_handle, buf, (DWORD)len, &read_bytes, nullptr)) {
271 D("adb_read: could not read %d bytes from %s", len, f->name);
272 errno = EIO;
273 return -1;
274 } else if (read_bytes < (DWORD)len) {
275 f->eof = 1;
276 }
277 return read_bytes;
278 }
279
_fh_file_write(FH f,const void * buf,int len)280 static int _fh_file_write(FH f, const void* buf, int len) {
281 DWORD wrote_bytes;
282
283 if (!WriteFile(f->fh_handle, buf, (DWORD)len, &wrote_bytes, nullptr)) {
284 D("adb_file_write: could not write %d bytes from %s", len, f->name);
285 errno = EIO;
286 return -1;
287 } else if (wrote_bytes < (DWORD)len) {
288 f->eof = 1;
289 }
290 return wrote_bytes;
291 }
292
_fh_file_writev(FH f,const adb_iovec * iov,int iovcnt)293 static int _fh_file_writev(FH f, const adb_iovec* iov, int iovcnt) {
294 if (iovcnt <= 0) {
295 errno = EINVAL;
296 return -1;
297 }
298
299 DWORD wrote_bytes = 0;
300
301 for (int i = 0; i < iovcnt; ++i) {
302 ssize_t rc = _fh_file_write(f, iov[i].iov_base, iov[i].iov_len);
303 if (rc == -1) {
304 return wrote_bytes > 0 ? wrote_bytes : -1;
305 } else if (rc == 0) {
306 return wrote_bytes;
307 }
308
309 wrote_bytes += rc;
310
311 if (static_cast<size_t>(rc) < iov[i].iov_len) {
312 return wrote_bytes;
313 }
314 }
315
316 return wrote_bytes;
317 }
318
_fh_file_lseek(FH f,int64_t pos,int origin)319 static int64_t _fh_file_lseek(FH f, int64_t pos, int origin) {
320 DWORD method;
321 switch (origin) {
322 case SEEK_SET:
323 method = FILE_BEGIN;
324 break;
325 case SEEK_CUR:
326 method = FILE_CURRENT;
327 break;
328 case SEEK_END:
329 method = FILE_END;
330 break;
331 default:
332 errno = EINVAL;
333 return -1;
334 }
335
336 LARGE_INTEGER li = {.QuadPart = pos};
337 if (!SetFilePointerEx(f->fh_handle, li, &li, method)) {
338 errno = EIO;
339 return -1;
340 }
341 f->eof = 0;
342 return li.QuadPart;
343 }
344
345 /**************************************************************************/
346 /**************************************************************************/
347 /***** *****/
348 /***** file-based descriptor handling *****/
349 /***** *****/
350 /**************************************************************************/
351 /**************************************************************************/
352
adb_open(const char * path,int options)353 int adb_open(const char* path, int options) {
354 FH f;
355
356 DWORD desiredAccess = 0;
357 DWORD shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE;
358
359 // CreateFileW is inherently O_CLOEXEC by default.
360 options &= ~O_CLOEXEC;
361
362 switch (options) {
363 case O_RDONLY:
364 desiredAccess = GENERIC_READ;
365 break;
366 case O_WRONLY:
367 desiredAccess = GENERIC_WRITE;
368 break;
369 case O_RDWR:
370 desiredAccess = GENERIC_READ | GENERIC_WRITE;
371 break;
372 default:
373 D("adb_open: invalid options (0x%0x)", options);
374 errno = EINVAL;
375 return -1;
376 }
377
378 f = _fh_alloc(&_fh_file_class);
379 if (!f) {
380 return -1;
381 }
382
383 std::wstring path_wide;
384 if (!android::base::UTF8ToWide(path, &path_wide)) {
385 return -1;
386 }
387 f->fh_handle =
388 CreateFileW(path_wide.c_str(), desiredAccess, shareMode, nullptr, OPEN_EXISTING, 0, nullptr);
389
390 if (f->fh_handle == INVALID_HANDLE_VALUE) {
391 const DWORD err = GetLastError();
392 _fh_close(f);
393 D("adb_open: could not open '%s': ", path);
394 switch (err) {
395 case ERROR_FILE_NOT_FOUND:
396 D("file not found");
397 errno = ENOENT;
398 return -1;
399
400 case ERROR_PATH_NOT_FOUND:
401 D("path not found");
402 errno = ENOTDIR;
403 return -1;
404
405 default:
406 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
407 errno = ENOENT;
408 return -1;
409 }
410 }
411
412 snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
413 D("adb_open: '%s' => fd %d", path, _fh_to_int(f));
414 return _fh_to_int(f);
415 }
416
417 /* ignore mode on Win32 */
adb_creat(const char * path,int mode)418 int adb_creat(const char* path, int mode) {
419 FH f;
420
421 f = _fh_alloc(&_fh_file_class);
422 if (!f) {
423 return -1;
424 }
425
426 std::wstring path_wide;
427 if (!android::base::UTF8ToWide(path, &path_wide)) {
428 return -1;
429 }
430 f->fh_handle = CreateFileW(path_wide.c_str(), GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
431 nullptr, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, nullptr);
432
433 if (f->fh_handle == INVALID_HANDLE_VALUE) {
434 const DWORD err = GetLastError();
435 _fh_close(f);
436 D("adb_creat: could not open '%s': ", path);
437 switch (err) {
438 case ERROR_FILE_NOT_FOUND:
439 D("file not found");
440 errno = ENOENT;
441 return -1;
442
443 case ERROR_PATH_NOT_FOUND:
444 D("path not found");
445 errno = ENOTDIR;
446 return -1;
447
448 default:
449 D("unknown error: %s", android::base::SystemErrorCodeToString(err).c_str());
450 errno = ENOENT;
451 return -1;
452 }
453 }
454 snprintf(f->name, sizeof(f->name), "%d(%s)", _fh_to_int(f), path);
455 D("adb_creat: '%s' => fd %d", path, _fh_to_int(f));
456 return _fh_to_int(f);
457 }
458
adb_read(int fd,void * buf,int len)459 int adb_read(int fd, void* buf, int len) {
460 FH f = _fh_from_int(fd, __func__);
461
462 if (f == nullptr) {
463 errno = EBADF;
464 return -1;
465 }
466
467 return f->clazz->_fh_read(f, buf, len);
468 }
469
adb_write(int fd,const void * buf,int len)470 int adb_write(int fd, const void* buf, int len) {
471 FH f = _fh_from_int(fd, __func__);
472
473 if (f == nullptr) {
474 errno = EBADF;
475 return -1;
476 }
477
478 return f->clazz->_fh_write(f, buf, len);
479 }
480
adb_writev(int fd,const adb_iovec * iov,int iovcnt)481 ssize_t adb_writev(int fd, const adb_iovec* iov, int iovcnt) {
482 FH f = _fh_from_int(fd, __func__);
483
484 if (f == nullptr) {
485 errno = EBADF;
486 return -1;
487 }
488
489 return f->clazz->_fh_writev(f, iov, iovcnt);
490 }
491
adb_lseek(int fd,int64_t pos,int where)492 int64_t adb_lseek(int fd, int64_t pos, int where) {
493 FH f = _fh_from_int(fd, __func__);
494 if (!f) {
495 errno = EBADF;
496 return -1;
497 }
498 return f->clazz->_fh_lseek(f, pos, where);
499 }
500
adb_close(int fd)501 int adb_close(int fd) {
502 FH f = _fh_from_int(fd, __func__);
503
504 if (!f) {
505 errno = EBADF;
506 return -1;
507 }
508
509 D("adb_close: %s", f->name);
510 _fh_close(f);
511 return 0;
512 }
513
514 /**************************************************************************/
515 /**************************************************************************/
516 /***** *****/
517 /***** socket-based file descriptors *****/
518 /***** *****/
519 /**************************************************************************/
520 /**************************************************************************/
521
522 #undef setsockopt
523
_socket_set_errno(const DWORD err)524 static void _socket_set_errno( const DWORD err ) {
525 // Because the Windows C Runtime (MSVCRT.DLL) strerror() does not support a
526 // lot of POSIX and socket error codes, some of the resulting error codes
527 // are mapped to strings by adb_strerror().
528 switch ( err ) {
529 case 0: errno = 0; break;
530 // Don't map WSAEINTR since that is only for Winsock 1.1 which we don't use.
531 // case WSAEINTR: errno = EINTR; break;
532 case WSAEFAULT: errno = EFAULT; break;
533 case WSAEINVAL: errno = EINVAL; break;
534 case WSAEMFILE: errno = EMFILE; break;
535 // Mapping WSAEWOULDBLOCK to EAGAIN is absolutely critical because
536 // non-blocking sockets can cause an error code of WSAEWOULDBLOCK and
537 // callers check specifically for EAGAIN.
538 case WSAEWOULDBLOCK: errno = EAGAIN; break;
539 case WSAENOTSOCK: errno = ENOTSOCK; break;
540 case WSAENOPROTOOPT: errno = ENOPROTOOPT; break;
541 case WSAEOPNOTSUPP: errno = EOPNOTSUPP; break;
542 case WSAENETDOWN: errno = ENETDOWN; break;
543 case WSAENETRESET: errno = ENETRESET; break;
544 // Map WSAECONNABORTED to EPIPE instead of ECONNABORTED because POSIX seems
545 // to use EPIPE for these situations and there are some callers that look
546 // for EPIPE.
547 case WSAECONNABORTED: errno = EPIPE; break;
548 case WSAECONNRESET: errno = ECONNRESET; break;
549 case WSAENOBUFS: errno = ENOBUFS; break;
550 case WSAENOTCONN: errno = ENOTCONN; break;
551 // Don't map WSAETIMEDOUT because we don't currently use SO_RCVTIMEO or
552 // SO_SNDTIMEO which would cause WSAETIMEDOUT to be returned. Future
553 // considerations: Reportedly send() can return zero on timeout, and POSIX
554 // code may expect EAGAIN instead of ETIMEDOUT on timeout.
555 // case WSAETIMEDOUT: errno = ETIMEDOUT; break;
556 case WSAEHOSTUNREACH: errno = EHOSTUNREACH; break;
557 default:
558 errno = EINVAL;
559 D( "_socket_set_errno: mapping Windows error code %lu to errno %d",
560 err, errno );
561 }
562 }
563
adb_poll(adb_pollfd * fds,size_t nfds,int timeout)564 extern int adb_poll(adb_pollfd* fds, size_t nfds, int timeout) {
565 // WSAPoll doesn't handle invalid/non-socket handles, so we need to handle them ourselves.
566 int skipped = 0;
567 std::vector<WSAPOLLFD> sockets;
568 std::vector<adb_pollfd*> original;
569
570 for (size_t i = 0; i < nfds; ++i) {
571 FH fh = _fh_from_int(fds[i].fd, __func__);
572 if (!fh || !fh->used || fh->clazz != &_fh_socket_class) {
573 D("adb_poll received bad FD %d", fds[i].fd);
574 fds[i].revents = POLLNVAL;
575 ++skipped;
576 } else {
577 WSAPOLLFD wsapollfd = {
578 .fd = fh->u.socket,
579 .events = static_cast<short>(fds[i].events)
580 };
581 sockets.push_back(wsapollfd);
582 original.push_back(&fds[i]);
583 }
584 }
585
586 if (sockets.empty()) {
587 return skipped;
588 }
589
590 // If we have any invalid FDs in our FD set, make sure to return immediately.
591 if (skipped > 0) {
592 timeout = 0;
593 }
594
595 int result = WSAPoll(sockets.data(), sockets.size(), timeout);
596 if (result == SOCKET_ERROR) {
597 _socket_set_errno(WSAGetLastError());
598 return -1;
599 }
600
601 // Map the results back onto the original set.
602 for (size_t i = 0; i < sockets.size(); ++i) {
603 original[i]->revents = sockets[i].revents;
604 }
605
606 // WSAPoll appears to return the number of unique FDs with available events, instead of how many
607 // of the pollfd elements have a non-zero revents field, which is what it and poll are specified
608 // to do. Ignore its result and calculate the proper return value.
609 result = 0;
610 for (size_t i = 0; i < nfds; ++i) {
611 if (fds[i].revents != 0) {
612 ++result;
613 }
614 }
615 return result;
616 }
617
_fh_socket_init(FH f)618 static void _fh_socket_init(FH f) {
619 f->fh_socket = INVALID_SOCKET;
620 }
621
_fh_socket_close(FH f)622 static int _fh_socket_close(FH f) {
623 if (f->fh_socket != INVALID_SOCKET) {
624 /* gently tell any peer that we're closing the socket */
625 if (shutdown(f->fh_socket, SD_BOTH) == SOCKET_ERROR) {
626 // If the socket is not connected, this returns an error. We want to
627 // minimize logging spam, so don't log these errors for now.
628 #if 0
629 D("socket shutdown failed: %s",
630 android::base::SystemErrorCodeToString(WSAGetLastError()).c_str());
631 #endif
632 }
633 if (closesocket(f->fh_socket) == SOCKET_ERROR) {
634 // Don't set errno here, since adb_close will ignore it.
635 const DWORD err = WSAGetLastError();
636 D("closesocket failed: %s", android::base::SystemErrorCodeToString(err).c_str());
637 }
638 f->fh_socket = INVALID_SOCKET;
639 }
640 return 0;
641 }
642
_fh_socket_lseek(FH f,int64_t pos,int origin)643 static int64_t _fh_socket_lseek(FH f, int64_t pos, int origin) {
644 errno = EPIPE;
645 return -1;
646 }
647
_fh_socket_read(FH f,void * buf,int len)648 static int _fh_socket_read(FH f, void* buf, int len) {
649 int result = recv(f->fh_socket, reinterpret_cast<char*>(buf), len, 0);
650 if (result == SOCKET_ERROR) {
651 const DWORD err = WSAGetLastError();
652 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
653 // that to reduce spam and confusion.
654 if (err != WSAEWOULDBLOCK) {
655 D("recv fd %d failed: %s", _fh_to_int(f),
656 android::base::SystemErrorCodeToString(err).c_str());
657 }
658 _socket_set_errno(err);
659 result = -1;
660 }
661 return result;
662 }
663
_fh_socket_write(FH f,const void * buf,int len)664 static int _fh_socket_write(FH f, const void* buf, int len) {
665 int result = send(f->fh_socket, reinterpret_cast<const char*>(buf), len, 0);
666 if (result == SOCKET_ERROR) {
667 const DWORD err = WSAGetLastError();
668 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
669 // that to reduce spam and confusion.
670 if (err != WSAEWOULDBLOCK) {
671 D("send fd %d failed: %s", _fh_to_int(f),
672 android::base::SystemErrorCodeToString(err).c_str());
673 }
674 _socket_set_errno(err);
675 result = -1;
676 } else {
677 // According to https://code.google.com/p/chromium/issues/detail?id=27870
678 // Winsock Layered Service Providers may cause this.
679 CHECK_LE(result, len) << "Tried to write " << len << " bytes to " << f->name << ", but "
680 << result << " bytes reportedly written";
681 }
682 return result;
683 }
684
685 // Make sure that adb_iovec is compatible with WSABUF.
686 static_assert(sizeof(adb_iovec) == sizeof(WSABUF), "");
687 static_assert(SIZEOF_MEMBER(adb_iovec, iov_len) == SIZEOF_MEMBER(WSABUF, len), "");
688 static_assert(offsetof(adb_iovec, iov_len) == offsetof(WSABUF, len), "");
689
690 static_assert(SIZEOF_MEMBER(adb_iovec, iov_base) == SIZEOF_MEMBER(WSABUF, buf), "");
691 static_assert(offsetof(adb_iovec, iov_base) == offsetof(WSABUF, buf), "");
692
_fh_socket_writev(FH f,const adb_iovec * iov,int iovcnt)693 static int _fh_socket_writev(FH f, const adb_iovec* iov, int iovcnt) {
694 if (iovcnt <= 0) {
695 errno = EINVAL;
696 return -1;
697 }
698
699 WSABUF* wsabuf = reinterpret_cast<WSABUF*>(const_cast<adb_iovec*>(iov));
700 DWORD bytes_written = 0;
701 int result = WSASend(f->fh_socket, wsabuf, iovcnt, &bytes_written, 0, nullptr, nullptr);
702 if (result == SOCKET_ERROR) {
703 const DWORD err = WSAGetLastError();
704 // WSAEWOULDBLOCK is normal with a non-blocking socket, so don't trace
705 // that to reduce spam and confusion.
706 if (err != WSAEWOULDBLOCK) {
707 D("send fd %d failed: %s", _fh_to_int(f),
708 android::base::SystemErrorCodeToString(err).c_str());
709 }
710 _socket_set_errno(err);
711 result = -1;
712 }
713 CHECK_GE(static_cast<DWORD>(std::numeric_limits<int>::max()), bytes_written);
714 return static_cast<int>(bytes_written);
715 }
716
717 /**************************************************************************/
718 /**************************************************************************/
719 /***** *****/
720 /***** replacement for libs/cutils/socket_xxxx.c *****/
721 /***** *****/
722 /**************************************************************************/
723 /**************************************************************************/
724
_init_winsock()725 static void _init_winsock() {
726 static std::once_flag once;
727 std::call_once(once, []() {
728 WSADATA wsaData;
729 int rc = WSAStartup(MAKEWORD(2, 2), &wsaData);
730 if (rc != 0) {
731 LOG(FATAL) << "could not initialize Winsock: "
732 << android::base::SystemErrorCodeToString(rc);
733 }
734
735 // Note that we do not call atexit() to register WSACleanup to be called
736 // at normal process termination because:
737 // 1) When exit() is called, there are still threads actively using
738 // Winsock because we don't cleanly shutdown all threads, so it
739 // doesn't make sense to call WSACleanup() and may cause problems
740 // with those threads.
741 // 2) A deadlock can occur when exit() holds a C Runtime lock, then it
742 // calls WSACleanup() which tries to unload a DLL, which tries to
743 // grab the LoaderLock. This conflicts with the device_poll_thread
744 // which holds the LoaderLock because AdbWinApi.dll calls
745 // setupapi.dll which tries to load wintrust.dll which tries to load
746 // crypt32.dll which calls atexit() which tries to acquire the C
747 // Runtime lock that the other thread holds.
748 });
749 }
750
751 // Map a socket type to an explicit socket protocol instead of using the socket
752 // protocol of 0. Explicit socket protocols are used by most apps and we should
753 // do the same to reduce the chance of exercising uncommon code-paths that might
754 // have problems or that might load different Winsock service providers that
755 // have problems.
GetSocketProtocolFromSocketType(int type)756 static int GetSocketProtocolFromSocketType(int type) {
757 switch (type) {
758 case SOCK_STREAM:
759 return IPPROTO_TCP;
760 case SOCK_DGRAM:
761 return IPPROTO_UDP;
762 default:
763 LOG(FATAL) << "Unknown socket type: " << type;
764 return 0;
765 }
766 }
767
network_loopback_client(int port,int type,std::string * error)768 int network_loopback_client(int port, int type, std::string* error) {
769 struct sockaddr_in addr;
770 SOCKET s;
771
772 unique_fh f(_fh_alloc(&_fh_socket_class));
773 if (!f) {
774 *error = strerror(errno);
775 return -1;
776 }
777
778 memset(&addr, 0, sizeof(addr));
779 addr.sin_family = AF_INET;
780 addr.sin_port = htons(port);
781 addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
782
783 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
784 if (s == INVALID_SOCKET) {
785 const DWORD err = WSAGetLastError();
786 *error = android::base::StringPrintf("cannot create socket: %s",
787 android::base::SystemErrorCodeToString(err).c_str());
788 D("%s", error->c_str());
789 _socket_set_errno(err);
790 return -1;
791 }
792 f->fh_socket = s;
793
794 if (connect(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
795 // Save err just in case inet_ntoa() or ntohs() changes the last error.
796 const DWORD err = WSAGetLastError();
797 *error = android::base::StringPrintf("cannot connect to %s:%u: %s",
798 inet_ntoa(addr.sin_addr), ntohs(addr.sin_port),
799 android::base::SystemErrorCodeToString(err).c_str());
800 D("could not connect to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
801 error->c_str());
802 _socket_set_errno(err);
803 return -1;
804 }
805
806 const int fd = _fh_to_int(f.get());
807 snprintf(f->name, sizeof(f->name), "%d(lo-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
808 port);
809 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
810 f.release();
811 return fd;
812 }
813
814 // interface_address is INADDR_LOOPBACK or INADDR_ANY.
_network_server(int port,int type,u_long interface_address,std::string * error)815 static int _network_server(int port, int type, u_long interface_address, std::string* error) {
816 struct sockaddr_in addr;
817 SOCKET s;
818 int n;
819
820 unique_fh f(_fh_alloc(&_fh_socket_class));
821 if (!f) {
822 *error = strerror(errno);
823 return -1;
824 }
825
826 memset(&addr, 0, sizeof(addr));
827 addr.sin_family = AF_INET;
828 addr.sin_port = htons(port);
829 addr.sin_addr.s_addr = htonl(interface_address);
830
831 // TODO: Consider using dual-stack socket that can simultaneously listen on
832 // IPv4 and IPv6.
833 s = socket(AF_INET, type, GetSocketProtocolFromSocketType(type));
834 if (s == INVALID_SOCKET) {
835 const DWORD err = WSAGetLastError();
836 *error = android::base::StringPrintf("cannot create socket: %s",
837 android::base::SystemErrorCodeToString(err).c_str());
838 D("%s", error->c_str());
839 _socket_set_errno(err);
840 return -1;
841 }
842
843 f->fh_socket = s;
844
845 // Note: SO_REUSEADDR on Windows allows multiple processes to bind to the
846 // same port, so instead use SO_EXCLUSIVEADDRUSE.
847 n = 1;
848 if (setsockopt(s, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (const char*)&n, sizeof(n)) == SOCKET_ERROR) {
849 const DWORD err = WSAGetLastError();
850 *error = android::base::StringPrintf("cannot set socket option SO_EXCLUSIVEADDRUSE: %s",
851 android::base::SystemErrorCodeToString(err).c_str());
852 D("%s", error->c_str());
853 _socket_set_errno(err);
854 return -1;
855 }
856
857 if (bind(s, (struct sockaddr*)&addr, sizeof(addr)) == SOCKET_ERROR) {
858 // Save err just in case inet_ntoa() or ntohs() changes the last error.
859 const DWORD err = WSAGetLastError();
860 *error = android::base::StringPrintf("cannot bind to %s:%u: %s", inet_ntoa(addr.sin_addr),
861 ntohs(addr.sin_port),
862 android::base::SystemErrorCodeToString(err).c_str());
863 D("could not bind to %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port, error->c_str());
864 _socket_set_errno(err);
865 return -1;
866 }
867 if (type == SOCK_STREAM) {
868 if (listen(s, SOMAXCONN) == SOCKET_ERROR) {
869 const DWORD err = WSAGetLastError();
870 *error = android::base::StringPrintf(
871 "cannot listen on socket: %s", android::base::SystemErrorCodeToString(err).c_str());
872 D("could not listen on %s:%d: %s", type != SOCK_STREAM ? "udp" : "tcp", port,
873 error->c_str());
874 _socket_set_errno(err);
875 return -1;
876 }
877 }
878 const int fd = _fh_to_int(f.get());
879 snprintf(f->name, sizeof(f->name), "%d(%s-server:%s%d)", fd,
880 interface_address == INADDR_LOOPBACK ? "lo" : "any", type != SOCK_STREAM ? "udp:" : "",
881 port);
882 D("port %d type %s => fd %d", port, type != SOCK_STREAM ? "udp" : "tcp", fd);
883 f.release();
884 return fd;
885 }
886
network_loopback_server(int port,int type,std::string * error)887 int network_loopback_server(int port, int type, std::string* error) {
888 return _network_server(port, type, INADDR_LOOPBACK, error);
889 }
890
network_inaddr_any_server(int port,int type,std::string * error)891 int network_inaddr_any_server(int port, int type, std::string* error) {
892 return _network_server(port, type, INADDR_ANY, error);
893 }
894
network_connect(const std::string & host,int port,int type,int timeout,std::string * error)895 int network_connect(const std::string& host, int port, int type, int timeout, std::string* error) {
896 unique_fh f(_fh_alloc(&_fh_socket_class));
897 if (!f) {
898 *error = strerror(errno);
899 return -1;
900 }
901
902 struct addrinfo hints;
903 memset(&hints, 0, sizeof(hints));
904 hints.ai_family = AF_UNSPEC;
905 hints.ai_socktype = type;
906 hints.ai_protocol = GetSocketProtocolFromSocketType(type);
907
908 char port_str[16];
909 snprintf(port_str, sizeof(port_str), "%d", port);
910
911 struct addrinfo* addrinfo_ptr = nullptr;
912
913 #if (NTDDI_VERSION >= NTDDI_WINXPSP2) || (_WIN32_WINNT >= _WIN32_WINNT_WS03)
914 // TODO: When the Android SDK tools increases the Windows system
915 // requirements >= WinXP SP2, switch to android::base::UTF8ToWide() + GetAddrInfoW().
916 #else
917 // Otherwise, keep using getaddrinfo(), or do runtime API detection
918 // with GetProcAddress("GetAddrInfoW").
919 #endif
920 if (getaddrinfo(host.c_str(), port_str, &hints, &addrinfo_ptr) != 0) {
921 const DWORD err = WSAGetLastError();
922 *error = android::base::StringPrintf("cannot resolve host '%s' and port %s: %s",
923 host.c_str(), port_str,
924 android::base::SystemErrorCodeToString(err).c_str());
925
926 D("%s", error->c_str());
927 _socket_set_errno(err);
928 return -1;
929 }
930 std::unique_ptr<struct addrinfo, decltype(&freeaddrinfo)> addrinfo(addrinfo_ptr, freeaddrinfo);
931 addrinfo_ptr = nullptr;
932
933 // TODO: Try all the addresses if there's more than one? This just uses
934 // the first. Or, could call WSAConnectByName() (Windows Vista and newer)
935 // which tries all addresses, takes a timeout and more.
936 SOCKET s = socket(addrinfo->ai_family, addrinfo->ai_socktype, addrinfo->ai_protocol);
937 if (s == INVALID_SOCKET) {
938 const DWORD err = WSAGetLastError();
939 *error = android::base::StringPrintf("cannot create socket: %s",
940 android::base::SystemErrorCodeToString(err).c_str());
941 D("%s", error->c_str());
942 _socket_set_errno(err);
943 return -1;
944 }
945 f->fh_socket = s;
946
947 // TODO: Implement timeouts for Windows. Seems like the default in theory
948 // (according to http://serverfault.com/a/671453) and in practice is 21 sec.
949 if (connect(s, addrinfo->ai_addr, addrinfo->ai_addrlen) == SOCKET_ERROR) {
950 // TODO: Use WSAAddressToString or inet_ntop on address.
951 const DWORD err = WSAGetLastError();
952 *error = android::base::StringPrintf("cannot connect to %s:%s: %s", host.c_str(), port_str,
953 android::base::SystemErrorCodeToString(err).c_str());
954 D("could not connect to %s:%s:%s: %s", type != SOCK_STREAM ? "udp" : "tcp", host.c_str(),
955 port_str, error->c_str());
956 _socket_set_errno(err);
957 return -1;
958 }
959
960 const int fd = _fh_to_int(f.get());
961 snprintf(f->name, sizeof(f->name), "%d(net-client:%s%d)", fd, type != SOCK_STREAM ? "udp:" : "",
962 port);
963 D("host '%s' port %d type %s => fd %d", host.c_str(), port, type != SOCK_STREAM ? "udp" : "tcp",
964 fd);
965 f.release();
966 return fd;
967 }
968
adb_register_socket(SOCKET s)969 int adb_register_socket(SOCKET s) {
970 FH f = _fh_alloc(&_fh_socket_class);
971 f->fh_socket = s;
972 return _fh_to_int(f);
973 }
974
975 #undef accept
adb_socket_accept(int serverfd,struct sockaddr * addr,socklen_t * addrlen)976 int adb_socket_accept(int serverfd, struct sockaddr* addr, socklen_t* addrlen) {
977 FH serverfh = _fh_from_int(serverfd, __func__);
978
979 if (!serverfh || serverfh->clazz != &_fh_socket_class) {
980 D("adb_socket_accept: invalid fd %d", serverfd);
981 errno = EBADF;
982 return -1;
983 }
984
985 unique_fh fh(_fh_alloc(&_fh_socket_class));
986 if (!fh) {
987 PLOG(ERROR) << "adb_socket_accept: failed to allocate accepted socket "
988 "descriptor";
989 return -1;
990 }
991
992 fh->fh_socket = accept(serverfh->fh_socket, addr, addrlen);
993 if (fh->fh_socket == INVALID_SOCKET) {
994 const DWORD err = WSAGetLastError();
995 LOG(ERROR) << "adb_socket_accept: accept on fd " << serverfd
996 << " failed: " + android::base::SystemErrorCodeToString(err);
997 _socket_set_errno(err);
998 return -1;
999 }
1000
1001 const int fd = _fh_to_int(fh.get());
1002 snprintf(fh->name, sizeof(fh->name), "%d(accept:%s)", fd, serverfh->name);
1003 D("adb_socket_accept on fd %d returns fd %d", serverfd, fd);
1004 fh.release();
1005 return fd;
1006 }
1007
adb_setsockopt(int fd,int level,int optname,const void * optval,socklen_t optlen)1008 int adb_setsockopt(int fd, int level, int optname, const void* optval, socklen_t optlen) {
1009 FH fh = _fh_from_int(fd, __func__);
1010
1011 if (!fh || fh->clazz != &_fh_socket_class) {
1012 D("adb_setsockopt: invalid fd %d", fd);
1013 errno = EBADF;
1014 return -1;
1015 }
1016
1017 // TODO: Once we can assume Windows Vista or later, if the caller is trying
1018 // to set SOL_SOCKET, SO_SNDBUF/SO_RCVBUF, ignore it since the OS has
1019 // auto-tuning.
1020
1021 int result =
1022 setsockopt(fh->fh_socket, level, optname, reinterpret_cast<const char*>(optval), optlen);
1023 if (result == SOCKET_ERROR) {
1024 const DWORD err = WSAGetLastError();
1025 D("adb_setsockopt: setsockopt on fd %d level %d optname %d failed: %s\n", fd, level,
1026 optname, android::base::SystemErrorCodeToString(err).c_str());
1027 _socket_set_errno(err);
1028 result = -1;
1029 }
1030 return result;
1031 }
1032
adb_getsockname(int fd,struct sockaddr * sockaddr,socklen_t * optlen)1033 int adb_getsockname(int fd, struct sockaddr* sockaddr, socklen_t* optlen) {
1034 FH fh = _fh_from_int(fd, __func__);
1035
1036 if (!fh || fh->clazz != &_fh_socket_class) {
1037 D("adb_getsockname: invalid fd %d", fd);
1038 errno = EBADF;
1039 return -1;
1040 }
1041
1042 int result = getsockname(fh->fh_socket, sockaddr, optlen);
1043 if (result == SOCKET_ERROR) {
1044 const DWORD err = WSAGetLastError();
1045 D("adb_getsockname: setsockopt on fd %d failed: %s\n", fd,
1046 android::base::SystemErrorCodeToString(err).c_str());
1047 _socket_set_errno(err);
1048 result = -1;
1049 }
1050 return result;
1051 }
1052
adb_socket_get_local_port(int fd)1053 int adb_socket_get_local_port(int fd) {
1054 sockaddr_storage addr_storage;
1055 socklen_t addr_len = sizeof(addr_storage);
1056
1057 if (adb_getsockname(fd, reinterpret_cast<sockaddr*>(&addr_storage), &addr_len) < 0) {
1058 D("adb_socket_get_local_port: adb_getsockname failed: %s", strerror(errno));
1059 return -1;
1060 }
1061
1062 if (!(addr_storage.ss_family == AF_INET || addr_storage.ss_family == AF_INET6)) {
1063 D("adb_socket_get_local_port: unknown address family received: %d", addr_storage.ss_family);
1064 errno = ECONNABORTED;
1065 return -1;
1066 }
1067
1068 return ntohs(reinterpret_cast<sockaddr_in*>(&addr_storage)->sin_port);
1069 }
1070
adb_shutdown(int fd,int direction)1071 int adb_shutdown(int fd, int direction) {
1072 FH f = _fh_from_int(fd, __func__);
1073
1074 if (!f || f->clazz != &_fh_socket_class) {
1075 D("adb_shutdown: invalid fd %d", fd);
1076 errno = EBADF;
1077 return -1;
1078 }
1079
1080 D("adb_shutdown: %s", f->name);
1081 if (shutdown(f->fh_socket, direction) == SOCKET_ERROR) {
1082 const DWORD err = WSAGetLastError();
1083 D("socket shutdown fd %d failed: %s", fd,
1084 android::base::SystemErrorCodeToString(err).c_str());
1085 _socket_set_errno(err);
1086 return -1;
1087 }
1088 return 0;
1089 }
1090
1091 // Emulate socketpair(2) by binding and connecting to a socket.
adb_socketpair(int sv[2])1092 int adb_socketpair(int sv[2]) {
1093 int server = -1;
1094 int client = -1;
1095 int accepted = -1;
1096 int local_port = -1;
1097 std::string error;
1098
1099 server = network_loopback_server(0, SOCK_STREAM, &error);
1100 if (server < 0) {
1101 D("adb_socketpair: failed to create server: %s", error.c_str());
1102 goto fail;
1103 }
1104
1105 local_port = adb_socket_get_local_port(server);
1106 if (local_port < 0) {
1107 D("adb_socketpair: failed to get server port number: %s", error.c_str());
1108 goto fail;
1109 }
1110 D("adb_socketpair: bound on port %d", local_port);
1111
1112 client = network_loopback_client(local_port, SOCK_STREAM, &error);
1113 if (client < 0) {
1114 D("adb_socketpair: failed to connect client: %s", error.c_str());
1115 goto fail;
1116 }
1117
1118 accepted = adb_socket_accept(server, nullptr, nullptr);
1119 if (accepted < 0) {
1120 D("adb_socketpair: failed to accept: %s", strerror(errno));
1121 goto fail;
1122 }
1123 adb_close(server);
1124 sv[0] = client;
1125 sv[1] = accepted;
1126 return 0;
1127
1128 fail:
1129 if (server >= 0) {
1130 adb_close(server);
1131 }
1132 if (client >= 0) {
1133 adb_close(client);
1134 }
1135 if (accepted >= 0) {
1136 adb_close(accepted);
1137 }
1138 return -1;
1139 }
1140
set_file_block_mode(int fd,bool block)1141 bool set_file_block_mode(int fd, bool block) {
1142 FH fh = _fh_from_int(fd, __func__);
1143
1144 if (!fh || !fh->used) {
1145 errno = EBADF;
1146 D("Setting nonblocking on bad file descriptor %d", fd);
1147 return false;
1148 }
1149
1150 if (fh->clazz == &_fh_socket_class) {
1151 u_long x = !block;
1152 if (ioctlsocket(fh->u.socket, FIONBIO, &x) != 0) {
1153 int error = WSAGetLastError();
1154 _socket_set_errno(error);
1155 D("Setting %d nonblocking failed (%d)", fd, error);
1156 return false;
1157 }
1158 return true;
1159 } else {
1160 errno = ENOTSOCK;
1161 D("Setting nonblocking on non-socket %d", fd);
1162 return false;
1163 }
1164 }
1165
set_tcp_keepalive(int fd,int interval_sec)1166 bool set_tcp_keepalive(int fd, int interval_sec) {
1167 FH fh = _fh_from_int(fd, __func__);
1168
1169 if (!fh || fh->clazz != &_fh_socket_class) {
1170 D("set_tcp_keepalive(%d) failed: invalid fd", fd);
1171 errno = EBADF;
1172 return false;
1173 }
1174
1175 tcp_keepalive keepalive;
1176 keepalive.onoff = (interval_sec > 0);
1177 keepalive.keepalivetime = interval_sec * 1000;
1178 keepalive.keepaliveinterval = interval_sec * 1000;
1179
1180 DWORD bytes_returned = 0;
1181 if (WSAIoctl(fh->fh_socket, SIO_KEEPALIVE_VALS, &keepalive, sizeof(keepalive), nullptr, 0,
1182 &bytes_returned, nullptr, nullptr) != 0) {
1183 const DWORD err = WSAGetLastError();
1184 D("set_tcp_keepalive(%d) failed: %s", fd,
1185 android::base::SystemErrorCodeToString(err).c_str());
1186 _socket_set_errno(err);
1187 return false;
1188 }
1189
1190 return true;
1191 }
1192
1193 /**************************************************************************/
1194 /**************************************************************************/
1195 /***** *****/
1196 /***** Console Window Terminal Emulation *****/
1197 /***** *****/
1198 /**************************************************************************/
1199 /**************************************************************************/
1200
1201 // This reads input from a Win32 console window and translates it into Unix
1202 // terminal-style sequences. This emulates mostly Gnome Terminal (in Normal
1203 // mode, not Application mode), which itself emulates xterm. Gnome Terminal
1204 // is emulated instead of xterm because it is probably more popular than xterm:
1205 // Ubuntu's default Ctrl-Alt-T shortcut opens Gnome Terminal, Gnome Terminal
1206 // supports modern fonts, etc. It seems best to emulate the terminal that most
1207 // Android developers use because they'll fix apps (the shell, etc.) to keep
1208 // working with that terminal's emulation.
1209 //
1210 // The point of this emulation is not to be perfect or to solve all issues with
1211 // console windows on Windows, but to be better than the original code which
1212 // just called read() (which called ReadFile(), which called ReadConsoleA())
1213 // which did not support Ctrl-C, tab completion, shell input line editing
1214 // keys, server echo, and more.
1215 //
1216 // This implementation reconfigures the console with SetConsoleMode(), then
1217 // calls ReadConsoleInput() to get raw input which it remaps to Unix
1218 // terminal-style sequences which is returned via unix_read() which is used
1219 // by the 'adb shell' command.
1220 //
1221 // Code organization:
1222 //
1223 // * _get_console_handle() and unix_isatty() provide console information.
1224 // * stdin_raw_init() and stdin_raw_restore() reconfigure the console.
1225 // * unix_read() detects console windows (as opposed to pipes, files, etc.).
1226 // * _console_read() is the main code of the emulation.
1227
1228 // Returns a console HANDLE if |fd| is a console, otherwise returns nullptr.
1229 // If a valid HANDLE is returned and |mode| is not null, |mode| is also filled
1230 // with the console mode. Requires GENERIC_READ access to the underlying HANDLE.
_get_console_handle(int fd,DWORD * mode=nullptr)1231 static HANDLE _get_console_handle(int fd, DWORD* mode=nullptr) {
1232 // First check isatty(); this is very fast and eliminates most non-console
1233 // FDs, but returns 1 for both consoles and character devices like NUL.
1234 #pragma push_macro("isatty")
1235 #undef isatty
1236 if (!isatty(fd)) {
1237 return nullptr;
1238 }
1239 #pragma pop_macro("isatty")
1240
1241 // To differentiate between character devices and consoles we need to get
1242 // the underlying HANDLE and use GetConsoleMode(), which is what requires
1243 // GENERIC_READ permissions.
1244 const intptr_t intptr_handle = _get_osfhandle(fd);
1245 if (intptr_handle == -1) {
1246 return nullptr;
1247 }
1248 const HANDLE handle = reinterpret_cast<const HANDLE>(intptr_handle);
1249 DWORD temp_mode = 0;
1250 if (!GetConsoleMode(handle, mode ? mode : &temp_mode)) {
1251 return nullptr;
1252 }
1253
1254 return handle;
1255 }
1256
1257 // Returns a console handle if |stream| is a console, otherwise returns nullptr.
_get_console_handle(FILE * const stream)1258 static HANDLE _get_console_handle(FILE* const stream) {
1259 // Save and restore errno to make it easier for callers to prevent from overwriting errno.
1260 android::base::ErrnoRestorer er;
1261 const int fd = fileno(stream);
1262 if (fd < 0) {
1263 return nullptr;
1264 }
1265 return _get_console_handle(fd);
1266 }
1267
unix_isatty(int fd)1268 int unix_isatty(int fd) {
1269 return _get_console_handle(fd) ? 1 : 0;
1270 }
1271
1272 // Get the next KEY_EVENT_RECORD that should be processed.
_get_key_event_record(const HANDLE console,INPUT_RECORD * const input_record)1273 static bool _get_key_event_record(const HANDLE console, INPUT_RECORD* const input_record) {
1274 for (;;) {
1275 DWORD read_count = 0;
1276 memset(input_record, 0, sizeof(*input_record));
1277 if (!ReadConsoleInputA(console, input_record, 1, &read_count)) {
1278 D("_get_key_event_record: ReadConsoleInputA() failed: %s\n",
1279 android::base::SystemErrorCodeToString(GetLastError()).c_str());
1280 errno = EIO;
1281 return false;
1282 }
1283
1284 if (read_count == 0) { // should be impossible
1285 LOG(FATAL) << "ReadConsoleInputA returned 0";
1286 }
1287
1288 if (read_count != 1) { // should be impossible
1289 LOG(FATAL) << "ReadConsoleInputA did not return one input record";
1290 }
1291
1292 // If the console window is resized, emulate SIGWINCH by breaking out
1293 // of read() with errno == EINTR. Note that there is no event on
1294 // vertical resize because we don't give the console our own custom
1295 // screen buffer (with CreateConsoleScreenBuffer() +
1296 // SetConsoleActiveScreenBuffer()). Instead, we use the default which
1297 // supports scrollback, but doesn't seem to raise an event for vertical
1298 // window resize.
1299 if (input_record->EventType == WINDOW_BUFFER_SIZE_EVENT) {
1300 errno = EINTR;
1301 return false;
1302 }
1303
1304 if ((input_record->EventType == KEY_EVENT) &&
1305 (input_record->Event.KeyEvent.bKeyDown)) {
1306 if (input_record->Event.KeyEvent.wRepeatCount == 0) {
1307 LOG(FATAL) << "ReadConsoleInputA returned a key event with zero repeat count";
1308 }
1309
1310 // Got an interesting INPUT_RECORD, so return
1311 return true;
1312 }
1313 }
1314 }
1315
_is_shift_pressed(const DWORD control_key_state)1316 static __inline__ bool _is_shift_pressed(const DWORD control_key_state) {
1317 return (control_key_state & SHIFT_PRESSED) != 0;
1318 }
1319
_is_ctrl_pressed(const DWORD control_key_state)1320 static __inline__ bool _is_ctrl_pressed(const DWORD control_key_state) {
1321 return (control_key_state & (LEFT_CTRL_PRESSED | RIGHT_CTRL_PRESSED)) != 0;
1322 }
1323
_is_alt_pressed(const DWORD control_key_state)1324 static __inline__ bool _is_alt_pressed(const DWORD control_key_state) {
1325 return (control_key_state & (LEFT_ALT_PRESSED | RIGHT_ALT_PRESSED)) != 0;
1326 }
1327
_is_numlock_on(const DWORD control_key_state)1328 static __inline__ bool _is_numlock_on(const DWORD control_key_state) {
1329 return (control_key_state & NUMLOCK_ON) != 0;
1330 }
1331
_is_capslock_on(const DWORD control_key_state)1332 static __inline__ bool _is_capslock_on(const DWORD control_key_state) {
1333 return (control_key_state & CAPSLOCK_ON) != 0;
1334 }
1335
_is_enhanced_key(const DWORD control_key_state)1336 static __inline__ bool _is_enhanced_key(const DWORD control_key_state) {
1337 return (control_key_state & ENHANCED_KEY) != 0;
1338 }
1339
1340 // Constants from MSDN for ToAscii().
1341 static const BYTE TOASCII_KEY_OFF = 0x00;
1342 static const BYTE TOASCII_KEY_DOWN = 0x80;
1343 static const BYTE TOASCII_KEY_TOGGLED_ON = 0x01; // for CapsLock
1344
1345 // Given a key event, ignore a modifier key and return the character that was
1346 // entered without the modifier. Writes to *ch and returns the number of bytes
1347 // written.
_get_char_ignoring_modifier(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state,const WORD modifier)1348 static size_t _get_char_ignoring_modifier(char* const ch,
1349 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state,
1350 const WORD modifier) {
1351 // If there is no character from Windows, try ignoring the specified
1352 // modifier and look for a character. Note that if AltGr is being used,
1353 // there will be a character from Windows.
1354 if (key_event->uChar.AsciiChar == '\0') {
1355 // Note that we read the control key state from the passed in argument
1356 // instead of from key_event since the argument has been normalized.
1357 if (((modifier == VK_SHIFT) &&
1358 _is_shift_pressed(control_key_state)) ||
1359 ((modifier == VK_CONTROL) &&
1360 _is_ctrl_pressed(control_key_state)) ||
1361 ((modifier == VK_MENU) && _is_alt_pressed(control_key_state))) {
1362
1363 BYTE key_state[256] = {0};
1364 key_state[VK_SHIFT] = _is_shift_pressed(control_key_state) ?
1365 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1366 key_state[VK_CONTROL] = _is_ctrl_pressed(control_key_state) ?
1367 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1368 key_state[VK_MENU] = _is_alt_pressed(control_key_state) ?
1369 TOASCII_KEY_DOWN : TOASCII_KEY_OFF;
1370 key_state[VK_CAPITAL] = _is_capslock_on(control_key_state) ?
1371 TOASCII_KEY_TOGGLED_ON : TOASCII_KEY_OFF;
1372
1373 // cause this modifier to be ignored
1374 key_state[modifier] = TOASCII_KEY_OFF;
1375
1376 WORD translated = 0;
1377 if (ToAscii(key_event->wVirtualKeyCode,
1378 key_event->wVirtualScanCode, key_state, &translated, 0) == 1) {
1379 // Ignoring the modifier, we found a character.
1380 *ch = (CHAR)translated;
1381 return 1;
1382 }
1383 }
1384 }
1385
1386 // Just use whatever Windows told us originally.
1387 *ch = key_event->uChar.AsciiChar;
1388
1389 // If the character from Windows is NULL, return a size of zero.
1390 return (*ch == '\0') ? 0 : 1;
1391 }
1392
1393 // If a Ctrl key is pressed, lookup the character, ignoring the Ctrl key,
1394 // but taking into account the shift key. This is because for a sequence like
1395 // Ctrl-Alt-0, we want to find the character '0' and for Ctrl-Alt-Shift-0,
1396 // we want to find the character ')'.
1397 //
1398 // Note that Windows doesn't seem to pass bKeyDown for Ctrl-Shift-NoAlt-0
1399 // because it is the default key-sequence to switch the input language.
1400 // This is configurable in the Region and Language control panel.
_get_non_control_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1401 static __inline__ size_t _get_non_control_char(char* const ch,
1402 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1403 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1404 VK_CONTROL);
1405 }
1406
1407 // Get without Alt.
_get_non_alt_char(char * const ch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1408 static __inline__ size_t _get_non_alt_char(char* const ch,
1409 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1410 return _get_char_ignoring_modifier(ch, key_event, control_key_state,
1411 VK_MENU);
1412 }
1413
1414 // Ignore the control key, find the character from Windows, and apply any
1415 // Control key mappings (for example, Ctrl-2 is a NULL character). Writes to
1416 // *pch and returns number of bytes written.
_get_control_character(char * const pch,const KEY_EVENT_RECORD * const key_event,const DWORD control_key_state)1417 static size_t _get_control_character(char* const pch,
1418 const KEY_EVENT_RECORD* const key_event, const DWORD control_key_state) {
1419 const size_t len = _get_non_control_char(pch, key_event,
1420 control_key_state);
1421
1422 if ((len == 1) && _is_ctrl_pressed(control_key_state)) {
1423 char ch = *pch;
1424 switch (ch) {
1425 case '2':
1426 case '@':
1427 case '`':
1428 ch = '\0';
1429 break;
1430 case '3':
1431 case '[':
1432 case '{':
1433 ch = '\x1b';
1434 break;
1435 case '4':
1436 case '\\':
1437 case '|':
1438 ch = '\x1c';
1439 break;
1440 case '5':
1441 case ']':
1442 case '}':
1443 ch = '\x1d';
1444 break;
1445 case '6':
1446 case '^':
1447 case '~':
1448 ch = '\x1e';
1449 break;
1450 case '7':
1451 case '-':
1452 case '_':
1453 ch = '\x1f';
1454 break;
1455 case '8':
1456 ch = '\x7f';
1457 break;
1458 case '/':
1459 if (!_is_alt_pressed(control_key_state)) {
1460 ch = '\x1f';
1461 }
1462 break;
1463 case '?':
1464 if (!_is_alt_pressed(control_key_state)) {
1465 ch = '\x7f';
1466 }
1467 break;
1468 }
1469 *pch = ch;
1470 }
1471
1472 return len;
1473 }
1474
_normalize_altgr_control_key_state(const KEY_EVENT_RECORD * const key_event)1475 static DWORD _normalize_altgr_control_key_state(
1476 const KEY_EVENT_RECORD* const key_event) {
1477 DWORD control_key_state = key_event->dwControlKeyState;
1478
1479 // If we're in an AltGr situation where the AltGr key is down (depending on
1480 // the keyboard layout, that might be the physical right alt key which
1481 // produces a control_key_state where Right-Alt and Left-Ctrl are down) or
1482 // AltGr-equivalent keys are down (any Ctrl key + any Alt key), and we have
1483 // a character (which indicates that there was an AltGr mapping), then act
1484 // as if alt and control are not really down for the purposes of modifiers.
1485 // This makes it so that if the user with, say, a German keyboard layout
1486 // presses AltGr-] (which we see as Right-Alt + Left-Ctrl + key), we just
1487 // output the key and we don't see the Alt and Ctrl keys.
1488 if (_is_ctrl_pressed(control_key_state) &&
1489 _is_alt_pressed(control_key_state)
1490 && (key_event->uChar.AsciiChar != '\0')) {
1491 // Try to remove as few bits as possible to improve our chances of
1492 // detecting combinations like Left-Alt + AltGr, Right-Ctrl + AltGr, or
1493 // Left-Alt + Right-Ctrl + AltGr.
1494 if ((control_key_state & RIGHT_ALT_PRESSED) != 0) {
1495 // Remove Right-Alt.
1496 control_key_state &= ~RIGHT_ALT_PRESSED;
1497 // If uChar is set, a Ctrl key is pressed, and Right-Alt is
1498 // pressed, Left-Ctrl is almost always set, except if the user
1499 // presses Right-Ctrl, then AltGr (in that specific order) for
1500 // whatever reason. At any rate, make sure the bit is not set.
1501 control_key_state &= ~LEFT_CTRL_PRESSED;
1502 } else if ((control_key_state & LEFT_ALT_PRESSED) != 0) {
1503 // Remove Left-Alt.
1504 control_key_state &= ~LEFT_ALT_PRESSED;
1505 // Whichever Ctrl key is down, remove it from the state. We only
1506 // remove one key, to improve our chances of detecting the
1507 // corner-case of Left-Ctrl + Left-Alt + Right-Ctrl.
1508 if ((control_key_state & LEFT_CTRL_PRESSED) != 0) {
1509 // Remove Left-Ctrl.
1510 control_key_state &= ~LEFT_CTRL_PRESSED;
1511 } else if ((control_key_state & RIGHT_CTRL_PRESSED) != 0) {
1512 // Remove Right-Ctrl.
1513 control_key_state &= ~RIGHT_CTRL_PRESSED;
1514 }
1515 }
1516
1517 // Note that this logic isn't 100% perfect because Windows doesn't
1518 // allow us to detect all combinations because a physical AltGr key
1519 // press shows up as two bits, plus some combinations are ambiguous
1520 // about what is actually physically pressed.
1521 }
1522
1523 return control_key_state;
1524 }
1525
1526 // If NumLock is on and Shift is pressed, SHIFT_PRESSED is not set in
1527 // dwControlKeyState for the following keypad keys: period, 0-9. If we detect
1528 // this scenario, set the SHIFT_PRESSED bit so we can add modifiers
1529 // appropriately.
_normalize_keypad_control_key_state(const WORD vk,const DWORD control_key_state)1530 static DWORD _normalize_keypad_control_key_state(const WORD vk,
1531 const DWORD control_key_state) {
1532 if (!_is_numlock_on(control_key_state)) {
1533 return control_key_state;
1534 }
1535 if (!_is_enhanced_key(control_key_state)) {
1536 switch (vk) {
1537 case VK_INSERT: // 0
1538 case VK_DELETE: // .
1539 case VK_END: // 1
1540 case VK_DOWN: // 2
1541 case VK_NEXT: // 3
1542 case VK_LEFT: // 4
1543 case VK_CLEAR: // 5
1544 case VK_RIGHT: // 6
1545 case VK_HOME: // 7
1546 case VK_UP: // 8
1547 case VK_PRIOR: // 9
1548 return control_key_state | SHIFT_PRESSED;
1549 }
1550 }
1551
1552 return control_key_state;
1553 }
1554
_get_keypad_sequence(const DWORD control_key_state,const char * const normal,const char * const shifted)1555 static const char* _get_keypad_sequence(const DWORD control_key_state,
1556 const char* const normal, const char* const shifted) {
1557 if (_is_shift_pressed(control_key_state)) {
1558 // Shift is pressed and NumLock is off
1559 return shifted;
1560 } else {
1561 // Shift is not pressed and NumLock is off, or,
1562 // Shift is pressed and NumLock is on, in which case we want the
1563 // NumLock and Shift to neutralize each other, thus, we want the normal
1564 // sequence.
1565 return normal;
1566 }
1567 // If Shift is not pressed and NumLock is on, a different virtual key code
1568 // is returned by Windows, which can be taken care of by a different case
1569 // statement in _console_read().
1570 }
1571
1572 // Write sequence to buf and return the number of bytes written.
_get_modifier_sequence(char * const buf,const WORD vk,DWORD control_key_state,const char * const normal)1573 static size_t _get_modifier_sequence(char* const buf, const WORD vk,
1574 DWORD control_key_state, const char* const normal) {
1575 // Copy the base sequence into buf.
1576 const size_t len = strlen(normal);
1577 memcpy(buf, normal, len);
1578
1579 int code = 0;
1580
1581 control_key_state = _normalize_keypad_control_key_state(vk,
1582 control_key_state);
1583
1584 if (_is_shift_pressed(control_key_state)) {
1585 code |= 0x1;
1586 }
1587 if (_is_alt_pressed(control_key_state)) { // any alt key pressed
1588 code |= 0x2;
1589 }
1590 if (_is_ctrl_pressed(control_key_state)) { // any control key pressed
1591 code |= 0x4;
1592 }
1593 // If some modifier was held down, then we need to insert the modifier code
1594 if (code != 0) {
1595 if (len == 0) {
1596 // Should be impossible because caller should pass a string of
1597 // non-zero length.
1598 return 0;
1599 }
1600 size_t index = len - 1;
1601 const char lastChar = buf[index];
1602 if (lastChar != '~') {
1603 buf[index++] = '1';
1604 }
1605 buf[index++] = ';'; // modifier separator
1606 // 2 = shift, 3 = alt, 4 = shift & alt, 5 = control,
1607 // 6 = shift & control, 7 = alt & control, 8 = shift & alt & control
1608 buf[index++] = '1' + code;
1609 buf[index++] = lastChar; // move ~ (or other last char) to the end
1610 return index;
1611 }
1612 return len;
1613 }
1614
1615 // Write sequence to buf and return the number of bytes written.
_get_modifier_keypad_sequence(char * const buf,const WORD vk,const DWORD control_key_state,const char * const normal,const char shifted)1616 static size_t _get_modifier_keypad_sequence(char* const buf, const WORD vk,
1617 const DWORD control_key_state, const char* const normal,
1618 const char shifted) {
1619 if (_is_shift_pressed(control_key_state)) {
1620 // Shift is pressed and NumLock is off
1621 if (shifted != '\0') {
1622 buf[0] = shifted;
1623 return sizeof(buf[0]);
1624 } else {
1625 return 0;
1626 }
1627 } else {
1628 // Shift is not pressed and NumLock is off, or,
1629 // Shift is pressed and NumLock is on, in which case we want the
1630 // NumLock and Shift to neutralize each other, thus, we want the normal
1631 // sequence.
1632 return _get_modifier_sequence(buf, vk, control_key_state, normal);
1633 }
1634 // If Shift is not pressed and NumLock is on, a different virtual key code
1635 // is returned by Windows, which can be taken care of by a different case
1636 // statement in _console_read().
1637 }
1638
1639 // The decimal key on the keypad produces a '.' for U.S. English and a ',' for
1640 // Standard German. Figure this out at runtime so we know what to output for
1641 // Shift-VK_DELETE.
_get_decimal_char()1642 static char _get_decimal_char() {
1643 return (char)MapVirtualKeyA(VK_DECIMAL, MAPVK_VK_TO_CHAR);
1644 }
1645
1646 // Prefix the len bytes in buf with the escape character, and then return the
1647 // new buffer length.
_escape_prefix(char * const buf,const size_t len)1648 size_t _escape_prefix(char* const buf, const size_t len) {
1649 // If nothing to prefix, don't do anything. We might be called with
1650 // len == 0, if alt was held down with a dead key which produced nothing.
1651 if (len == 0) {
1652 return 0;
1653 }
1654
1655 memmove(&buf[1], buf, len);
1656 buf[0] = '\x1b';
1657 return len + 1;
1658 }
1659
1660 // Internal buffer to satisfy future _console_read() calls.
1661 static auto& g_console_input_buffer = *new std::vector<char>();
1662
1663 // Writes to buffer buf (of length len), returning number of bytes written or -1 on error. Never
1664 // returns zero on console closure because Win32 consoles are never 'closed' (as far as I can tell).
_console_read(const HANDLE console,void * buf,size_t len)1665 static int _console_read(const HANDLE console, void* buf, size_t len) {
1666 for (;;) {
1667 // Read of zero bytes should not block waiting for something from the console.
1668 if (len == 0) {
1669 return 0;
1670 }
1671
1672 // Flush as much as possible from input buffer.
1673 if (!g_console_input_buffer.empty()) {
1674 const int bytes_read = std::min(len, g_console_input_buffer.size());
1675 memcpy(buf, g_console_input_buffer.data(), bytes_read);
1676 const auto begin = g_console_input_buffer.begin();
1677 g_console_input_buffer.erase(begin, begin + bytes_read);
1678 return bytes_read;
1679 }
1680
1681 // Read from the actual console. This may block until input.
1682 INPUT_RECORD input_record;
1683 if (!_get_key_event_record(console, &input_record)) {
1684 return -1;
1685 }
1686
1687 KEY_EVENT_RECORD* const key_event = &input_record.Event.KeyEvent;
1688 const WORD vk = key_event->wVirtualKeyCode;
1689 const CHAR ch = key_event->uChar.AsciiChar;
1690 const DWORD control_key_state = _normalize_altgr_control_key_state(
1691 key_event);
1692
1693 // The following emulation code should write the output sequence to
1694 // either seqstr or to seqbuf and seqbuflen.
1695 const char* seqstr = nullptr; // NULL terminated C-string
1696 // Enough space for max sequence string below, plus modifiers and/or
1697 // escape prefix.
1698 char seqbuf[16];
1699 size_t seqbuflen = 0; // Space used in seqbuf.
1700
1701 #define MATCH(vk, normal) \
1702 case (vk): \
1703 { \
1704 seqstr = (normal); \
1705 } \
1706 break;
1707
1708 // Modifier keys should affect the output sequence.
1709 #define MATCH_MODIFIER(vk, normal) \
1710 case (vk): \
1711 { \
1712 seqbuflen = _get_modifier_sequence(seqbuf, (vk), \
1713 control_key_state, (normal)); \
1714 } \
1715 break;
1716
1717 // The shift key should affect the output sequence.
1718 #define MATCH_KEYPAD(vk, normal, shifted) \
1719 case (vk): \
1720 { \
1721 seqstr = _get_keypad_sequence(control_key_state, (normal), \
1722 (shifted)); \
1723 } \
1724 break;
1725
1726 // The shift key and other modifier keys should affect the output
1727 // sequence.
1728 #define MATCH_MODIFIER_KEYPAD(vk, normal, shifted) \
1729 case (vk): \
1730 { \
1731 seqbuflen = _get_modifier_keypad_sequence(seqbuf, (vk), \
1732 control_key_state, (normal), (shifted)); \
1733 } \
1734 break;
1735
1736 #define ESC "\x1b"
1737 #define CSI ESC "["
1738 #define SS3 ESC "O"
1739
1740 // Only support normal mode, not application mode.
1741
1742 // Enhanced keys:
1743 // * 6-pack: insert, delete, home, end, page up, page down
1744 // * cursor keys: up, down, right, left
1745 // * keypad: divide, enter
1746 // * Undocumented: VK_PAUSE (Ctrl-NumLock), VK_SNAPSHOT,
1747 // VK_CANCEL (Ctrl-Pause/Break), VK_NUMLOCK
1748 if (_is_enhanced_key(control_key_state)) {
1749 switch (vk) {
1750 case VK_RETURN: // Enter key on keypad
1751 if (_is_ctrl_pressed(control_key_state)) {
1752 seqstr = "\n";
1753 } else {
1754 seqstr = "\r";
1755 }
1756 break;
1757
1758 MATCH_MODIFIER(VK_PRIOR, CSI "5~"); // Page Up
1759 MATCH_MODIFIER(VK_NEXT, CSI "6~"); // Page Down
1760
1761 // gnome-terminal currently sends SS3 "F" and SS3 "H", but that
1762 // will be fixed soon to match xterm which sends CSI "F" and
1763 // CSI "H". https://bugzilla.redhat.com/show_bug.cgi?id=1119764
1764 MATCH(VK_END, CSI "F");
1765 MATCH(VK_HOME, CSI "H");
1766
1767 MATCH_MODIFIER(VK_LEFT, CSI "D");
1768 MATCH_MODIFIER(VK_UP, CSI "A");
1769 MATCH_MODIFIER(VK_RIGHT, CSI "C");
1770 MATCH_MODIFIER(VK_DOWN, CSI "B");
1771
1772 MATCH_MODIFIER(VK_INSERT, CSI "2~");
1773 MATCH_MODIFIER(VK_DELETE, CSI "3~");
1774
1775 MATCH(VK_DIVIDE, "/");
1776 }
1777 } else { // Non-enhanced keys:
1778 switch (vk) {
1779 case VK_BACK: // backspace
1780 if (_is_alt_pressed(control_key_state)) {
1781 seqstr = ESC "\x7f";
1782 } else {
1783 seqstr = "\x7f";
1784 }
1785 break;
1786
1787 case VK_TAB:
1788 if (_is_shift_pressed(control_key_state)) {
1789 seqstr = CSI "Z";
1790 } else {
1791 seqstr = "\t";
1792 }
1793 break;
1794
1795 // Number 5 key in keypad when NumLock is off, or if NumLock is
1796 // on and Shift is down.
1797 MATCH_KEYPAD(VK_CLEAR, CSI "E", "5");
1798
1799 case VK_RETURN: // Enter key on main keyboard
1800 if (_is_alt_pressed(control_key_state)) {
1801 seqstr = ESC "\n";
1802 } else if (_is_ctrl_pressed(control_key_state)) {
1803 seqstr = "\n";
1804 } else {
1805 seqstr = "\r";
1806 }
1807 break;
1808
1809 // VK_ESCAPE: Don't do any special handling. The OS uses many
1810 // of the sequences with Escape and many of the remaining
1811 // sequences don't produce bKeyDown messages, only !bKeyDown
1812 // for whatever reason.
1813
1814 case VK_SPACE:
1815 if (_is_alt_pressed(control_key_state)) {
1816 seqstr = ESC " ";
1817 } else if (_is_ctrl_pressed(control_key_state)) {
1818 seqbuf[0] = '\0'; // NULL char
1819 seqbuflen = 1;
1820 } else {
1821 seqstr = " ";
1822 }
1823 break;
1824
1825 MATCH_MODIFIER_KEYPAD(VK_PRIOR, CSI "5~", '9'); // Page Up
1826 MATCH_MODIFIER_KEYPAD(VK_NEXT, CSI "6~", '3'); // Page Down
1827
1828 MATCH_KEYPAD(VK_END, CSI "4~", "1");
1829 MATCH_KEYPAD(VK_HOME, CSI "1~", "7");
1830
1831 MATCH_MODIFIER_KEYPAD(VK_LEFT, CSI "D", '4');
1832 MATCH_MODIFIER_KEYPAD(VK_UP, CSI "A", '8');
1833 MATCH_MODIFIER_KEYPAD(VK_RIGHT, CSI "C", '6');
1834 MATCH_MODIFIER_KEYPAD(VK_DOWN, CSI "B", '2');
1835
1836 MATCH_MODIFIER_KEYPAD(VK_INSERT, CSI "2~", '0');
1837 MATCH_MODIFIER_KEYPAD(VK_DELETE, CSI "3~",
1838 _get_decimal_char());
1839
1840 case 0x30: // 0
1841 case 0x31: // 1
1842 case 0x39: // 9
1843 case VK_OEM_1: // ;:
1844 case VK_OEM_PLUS: // =+
1845 case VK_OEM_COMMA: // ,<
1846 case VK_OEM_PERIOD: // .>
1847 case VK_OEM_7: // '"
1848 case VK_OEM_102: // depends on keyboard, could be <> or \|
1849 case VK_OEM_2: // /?
1850 case VK_OEM_3: // `~
1851 case VK_OEM_4: // [{
1852 case VK_OEM_5: // \|
1853 case VK_OEM_6: // ]}
1854 {
1855 seqbuflen = _get_control_character(seqbuf, key_event,
1856 control_key_state);
1857
1858 if (_is_alt_pressed(control_key_state)) {
1859 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1860 }
1861 }
1862 break;
1863
1864 case 0x32: // 2
1865 case 0x33: // 3
1866 case 0x34: // 4
1867 case 0x35: // 5
1868 case 0x36: // 6
1869 case 0x37: // 7
1870 case 0x38: // 8
1871 case VK_OEM_MINUS: // -_
1872 {
1873 seqbuflen = _get_control_character(seqbuf, key_event,
1874 control_key_state);
1875
1876 // If Alt is pressed and it isn't Ctrl-Alt-ShiftUp, then
1877 // prefix with escape.
1878 if (_is_alt_pressed(control_key_state) &&
1879 !(_is_ctrl_pressed(control_key_state) &&
1880 !_is_shift_pressed(control_key_state))) {
1881 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1882 }
1883 }
1884 break;
1885
1886 case 0x41: // a
1887 case 0x42: // b
1888 case 0x43: // c
1889 case 0x44: // d
1890 case 0x45: // e
1891 case 0x46: // f
1892 case 0x47: // g
1893 case 0x48: // h
1894 case 0x49: // i
1895 case 0x4a: // j
1896 case 0x4b: // k
1897 case 0x4c: // l
1898 case 0x4d: // m
1899 case 0x4e: // n
1900 case 0x4f: // o
1901 case 0x50: // p
1902 case 0x51: // q
1903 case 0x52: // r
1904 case 0x53: // s
1905 case 0x54: // t
1906 case 0x55: // u
1907 case 0x56: // v
1908 case 0x57: // w
1909 case 0x58: // x
1910 case 0x59: // y
1911 case 0x5a: // z
1912 {
1913 seqbuflen = _get_non_alt_char(seqbuf, key_event,
1914 control_key_state);
1915
1916 // If Alt is pressed, then prefix with escape.
1917 if (_is_alt_pressed(control_key_state)) {
1918 seqbuflen = _escape_prefix(seqbuf, seqbuflen);
1919 }
1920 }
1921 break;
1922
1923 // These virtual key codes are generated by the keys on the
1924 // keypad *when NumLock is on* and *Shift is up*.
1925 MATCH(VK_NUMPAD0, "0");
1926 MATCH(VK_NUMPAD1, "1");
1927 MATCH(VK_NUMPAD2, "2");
1928 MATCH(VK_NUMPAD3, "3");
1929 MATCH(VK_NUMPAD4, "4");
1930 MATCH(VK_NUMPAD5, "5");
1931 MATCH(VK_NUMPAD6, "6");
1932 MATCH(VK_NUMPAD7, "7");
1933 MATCH(VK_NUMPAD8, "8");
1934 MATCH(VK_NUMPAD9, "9");
1935
1936 MATCH(VK_MULTIPLY, "*");
1937 MATCH(VK_ADD, "+");
1938 MATCH(VK_SUBTRACT, "-");
1939 // VK_DECIMAL is generated by the . key on the keypad *when
1940 // NumLock is on* and *Shift is up* and the sequence is not
1941 // Ctrl-Alt-NoShift-. (which causes Ctrl-Alt-Del and the
1942 // Windows Security screen to come up).
1943 case VK_DECIMAL:
1944 // U.S. English uses '.', Germany German uses ','.
1945 seqbuflen = _get_non_control_char(seqbuf, key_event,
1946 control_key_state);
1947 break;
1948
1949 MATCH_MODIFIER(VK_F1, SS3 "P");
1950 MATCH_MODIFIER(VK_F2, SS3 "Q");
1951 MATCH_MODIFIER(VK_F3, SS3 "R");
1952 MATCH_MODIFIER(VK_F4, SS3 "S");
1953 MATCH_MODIFIER(VK_F5, CSI "15~");
1954 MATCH_MODIFIER(VK_F6, CSI "17~");
1955 MATCH_MODIFIER(VK_F7, CSI "18~");
1956 MATCH_MODIFIER(VK_F8, CSI "19~");
1957 MATCH_MODIFIER(VK_F9, CSI "20~");
1958 MATCH_MODIFIER(VK_F10, CSI "21~");
1959 MATCH_MODIFIER(VK_F11, CSI "23~");
1960 MATCH_MODIFIER(VK_F12, CSI "24~");
1961
1962 MATCH_MODIFIER(VK_F13, CSI "25~");
1963 MATCH_MODIFIER(VK_F14, CSI "26~");
1964 MATCH_MODIFIER(VK_F15, CSI "28~");
1965 MATCH_MODIFIER(VK_F16, CSI "29~");
1966 MATCH_MODIFIER(VK_F17, CSI "31~");
1967 MATCH_MODIFIER(VK_F18, CSI "32~");
1968 MATCH_MODIFIER(VK_F19, CSI "33~");
1969 MATCH_MODIFIER(VK_F20, CSI "34~");
1970
1971 // MATCH_MODIFIER(VK_F21, ???);
1972 // MATCH_MODIFIER(VK_F22, ???);
1973 // MATCH_MODIFIER(VK_F23, ???);
1974 // MATCH_MODIFIER(VK_F24, ???);
1975 }
1976 }
1977
1978 #undef MATCH
1979 #undef MATCH_MODIFIER
1980 #undef MATCH_KEYPAD
1981 #undef MATCH_MODIFIER_KEYPAD
1982 #undef ESC
1983 #undef CSI
1984 #undef SS3
1985
1986 const char* out;
1987 size_t outlen;
1988
1989 // Check for output in any of:
1990 // * seqstr is set (and strlen can be used to determine the length).
1991 // * seqbuf and seqbuflen are set
1992 // Fallback to ch from Windows.
1993 if (seqstr != nullptr) {
1994 out = seqstr;
1995 outlen = strlen(seqstr);
1996 } else if (seqbuflen > 0) {
1997 out = seqbuf;
1998 outlen = seqbuflen;
1999 } else if (ch != '\0') {
2000 // Use whatever Windows told us it is.
2001 seqbuf[0] = ch;
2002 seqbuflen = 1;
2003 out = seqbuf;
2004 outlen = seqbuflen;
2005 } else {
2006 // No special handling for the virtual key code and Windows isn't
2007 // telling us a character code, then we don't know how to translate
2008 // the key press.
2009 //
2010 // Consume the input and 'continue' to cause us to get a new key
2011 // event.
2012 D("_console_read: unknown virtual key code: %d, enhanced: %s",
2013 vk, _is_enhanced_key(control_key_state) ? "true" : "false");
2014 continue;
2015 }
2016
2017 // put output wRepeatCount times into g_console_input_buffer
2018 while (key_event->wRepeatCount-- > 0) {
2019 g_console_input_buffer.insert(g_console_input_buffer.end(), out, out + outlen);
2020 }
2021
2022 // Loop around and try to flush g_console_input_buffer
2023 }
2024 }
2025
2026 static DWORD _old_console_mode; // previous GetConsoleMode() result
2027 static HANDLE _console_handle; // when set, console mode should be restored
2028
stdin_raw_init()2029 void stdin_raw_init() {
2030 const HANDLE in = _get_console_handle(STDIN_FILENO, &_old_console_mode);
2031 if (in == nullptr) {
2032 return;
2033 }
2034
2035 // Disable ENABLE_PROCESSED_INPUT so that Ctrl-C is read instead of
2036 // calling the process Ctrl-C routine (configured by
2037 // SetConsoleCtrlHandler()).
2038 // Disable ENABLE_LINE_INPUT so that input is immediately sent.
2039 // Disable ENABLE_ECHO_INPUT to disable local echo. Disabling this
2040 // flag also seems necessary to have proper line-ending processing.
2041 DWORD new_console_mode = _old_console_mode & ~(ENABLE_PROCESSED_INPUT |
2042 ENABLE_LINE_INPUT |
2043 ENABLE_ECHO_INPUT);
2044 // Enable ENABLE_WINDOW_INPUT to get window resizes.
2045 new_console_mode |= ENABLE_WINDOW_INPUT;
2046
2047 if (!SetConsoleMode(in, new_console_mode)) {
2048 // This really should not fail.
2049 D("stdin_raw_init: SetConsoleMode() failed: %s",
2050 android::base::SystemErrorCodeToString(GetLastError()).c_str());
2051 }
2052
2053 // Once this is set, it means that stdin has been configured for
2054 // reading from and that the old console mode should be restored later.
2055 _console_handle = in;
2056
2057 // Note that we don't need to configure C Runtime line-ending
2058 // translation because _console_read() does not call the C Runtime to
2059 // read from the console.
2060 }
2061
stdin_raw_restore()2062 void stdin_raw_restore() {
2063 if (_console_handle != nullptr) {
2064 const HANDLE in = _console_handle;
2065 _console_handle = nullptr; // clear state
2066
2067 if (!SetConsoleMode(in, _old_console_mode)) {
2068 // This really should not fail.
2069 D("stdin_raw_restore: SetConsoleMode() failed: %s",
2070 android::base::SystemErrorCodeToString(GetLastError()).c_str());
2071 }
2072 }
2073 }
2074
2075 // Called by 'adb shell' and 'adb exec-in' (via unix_read()) to read from stdin.
unix_read_interruptible(int fd,void * buf,size_t len)2076 int unix_read_interruptible(int fd, void* buf, size_t len) {
2077 if ((fd == STDIN_FILENO) && (_console_handle != nullptr)) {
2078 // If it is a request to read from stdin, and stdin_raw_init() has been
2079 // called, and it successfully configured the console, then read from
2080 // the console using Win32 console APIs and partially emulate a unix
2081 // terminal.
2082 return _console_read(_console_handle, buf, len);
2083 } else {
2084 // On older versions of Windows (definitely 7, definitely not 10),
2085 // ReadConsole() with a size >= 31367 fails, so if |fd| is a console
2086 // we need to limit the read size.
2087 if (len > 4096 && unix_isatty(fd)) {
2088 len = 4096;
2089 }
2090 // Just call into C Runtime which can read from pipes/files and which
2091 // can do LF/CR translation (which is overridable with _setmode()).
2092 // Undefine the macro that is set in sysdeps.h which bans calls to
2093 // plain read() in favor of unix_read() or adb_read().
2094 #pragma push_macro("read")
2095 #undef read
2096 return read(fd, buf, len);
2097 #pragma pop_macro("read")
2098 }
2099 }
2100
2101 /**************************************************************************/
2102 /**************************************************************************/
2103 /***** *****/
2104 /***** Unicode support *****/
2105 /***** *****/
2106 /**************************************************************************/
2107 /**************************************************************************/
2108
2109 // This implements support for using files with Unicode filenames and for
2110 // outputting Unicode text to a Win32 console window. This is inspired from
2111 // http://utf8everywhere.org/.
2112 //
2113 // Background
2114 // ----------
2115 //
2116 // On POSIX systems, to deal with files with Unicode filenames, just pass UTF-8
2117 // filenames to APIs such as open(). This works because filenames are largely
2118 // opaque 'cookies' (perhaps excluding path separators).
2119 //
2120 // On Windows, the native file APIs such as CreateFileW() take 2-byte wchar_t
2121 // UTF-16 strings. There is an API, CreateFileA() that takes 1-byte char
2122 // strings, but the strings are in the ANSI codepage and not UTF-8. (The
2123 // CreateFile() API is really just a macro that adds the W/A based on whether
2124 // the UNICODE preprocessor symbol is defined).
2125 //
2126 // Options
2127 // -------
2128 //
2129 // Thus, to write a portable program, there are a few options:
2130 //
2131 // 1. Write the program with wchar_t filenames (wchar_t path[256];).
2132 // For Windows, just call CreateFileW(). For POSIX, write a wrapper openW()
2133 // that takes a wchar_t string, converts it to UTF-8 and then calls the real
2134 // open() API.
2135 //
2136 // 2. Write the program with a TCHAR typedef that is 2 bytes on Windows and
2137 // 1 byte on POSIX. Make T-* wrappers for various OS APIs and call those,
2138 // potentially touching a lot of code.
2139 //
2140 // 3. Write the program with a 1-byte char filenames (char path[256];) that are
2141 // UTF-8. For POSIX, just call open(). For Windows, write a wrapper that
2142 // takes a UTF-8 string, converts it to UTF-16 and then calls the real OS
2143 // or C Runtime API.
2144 //
2145 // The Choice
2146 // ----------
2147 //
2148 // The code below chooses option 3, the UTF-8 everywhere strategy. It uses
2149 // android::base::WideToUTF8() which converts UTF-16 to UTF-8. This is used by the
2150 // NarrowArgs helper class that is used to convert wmain() args into UTF-8
2151 // args that are passed to main() at the beginning of program startup. We also use
2152 // android::base::UTF8ToWide() which converts from UTF-8 to UTF-16. This is used to
2153 // implement wrappers below that call UTF-16 OS and C Runtime APIs.
2154 //
2155 // Unicode console output
2156 // ----------------------
2157 //
2158 // The way to output Unicode to a Win32 console window is to call
2159 // WriteConsoleW() with UTF-16 text. (The user must also choose a proper font
2160 // such as Lucida Console or Consolas, and in the case of East Asian languages
2161 // (such as Chinese, Japanese, Korean), the user must go to the Control Panel
2162 // and change the "system locale" to Chinese, etc., which allows a Chinese, etc.
2163 // font to be used in console windows.)
2164 //
2165 // The problem is getting the C Runtime to make fprintf and related APIs call
2166 // WriteConsoleW() under the covers. The C Runtime API, _setmode() sounds
2167 // promising, but the various modes have issues:
2168 //
2169 // 1. _setmode(_O_TEXT) (the default) does not use WriteConsoleW() so UTF-8 and
2170 // UTF-16 do not display properly.
2171 // 2. _setmode(_O_BINARY) does not use WriteConsoleW() and the text comes out
2172 // totally wrong.
2173 // 3. _setmode(_O_U8TEXT) seems to cause the C Runtime _invalid_parameter
2174 // handler to be called (upon a later I/O call), aborting the process.
2175 // 4. _setmode(_O_U16TEXT) and _setmode(_O_WTEXT) cause non-wide printf/fprintf
2176 // to output nothing.
2177 //
2178 // So the only solution is to write our own adb_fprintf() that converts UTF-8
2179 // to UTF-16 and then calls WriteConsoleW().
2180
2181
2182 // Constructor for helper class to convert wmain() UTF-16 args to UTF-8 to
2183 // be passed to main().
NarrowArgs(const int argc,wchar_t ** const argv)2184 NarrowArgs::NarrowArgs(const int argc, wchar_t** const argv) {
2185 narrow_args = new char*[argc + 1];
2186
2187 for (int i = 0; i < argc; ++i) {
2188 std::string arg_narrow;
2189 if (!android::base::WideToUTF8(argv[i], &arg_narrow)) {
2190 PLOG(FATAL) << "cannot convert argument from UTF-16 to UTF-8";
2191 }
2192 narrow_args[i] = strdup(arg_narrow.c_str());
2193 }
2194 narrow_args[argc] = nullptr; // terminate
2195 }
2196
~NarrowArgs()2197 NarrowArgs::~NarrowArgs() {
2198 if (narrow_args != nullptr) {
2199 for (char** argp = narrow_args; *argp != nullptr; ++argp) {
2200 free(*argp);
2201 }
2202 delete[] narrow_args;
2203 narrow_args = nullptr;
2204 }
2205 }
2206
unix_open(std::string_view path,int options,...)2207 int unix_open(std::string_view path, int options, ...) {
2208 std::wstring path_wide;
2209 if (!android::base::UTF8ToWide(path.data(), path.size(), &path_wide)) {
2210 return -1;
2211 }
2212 if ((options & O_CREAT) == 0) {
2213 return _wopen(path_wide.c_str(), options);
2214 } else {
2215 int mode;
2216 va_list args;
2217 va_start(args, options);
2218 mode = va_arg(args, int);
2219 va_end(args);
2220 return _wopen(path_wide.c_str(), options, mode);
2221 }
2222 }
2223
2224 // Version of opendir() that takes a UTF-8 path.
adb_opendir(const char * path)2225 DIR* adb_opendir(const char* path) {
2226 std::wstring path_wide;
2227 if (!android::base::UTF8ToWide(path, &path_wide)) {
2228 return nullptr;
2229 }
2230
2231 // Just cast _WDIR* to DIR*. This doesn't work if the caller reads any of
2232 // the fields, but right now all the callers treat the structure as
2233 // opaque.
2234 return reinterpret_cast<DIR*>(_wopendir(path_wide.c_str()));
2235 }
2236
2237 // Version of readdir() that returns UTF-8 paths.
adb_readdir(DIR * dir)2238 struct dirent* adb_readdir(DIR* dir) {
2239 _WDIR* const wdir = reinterpret_cast<_WDIR*>(dir);
2240 struct _wdirent* const went = _wreaddir(wdir);
2241 if (went == nullptr) {
2242 return nullptr;
2243 }
2244
2245 // Convert from UTF-16 to UTF-8.
2246 std::string name_utf8;
2247 if (!android::base::WideToUTF8(went->d_name, &name_utf8)) {
2248 return nullptr;
2249 }
2250
2251 // Cast the _wdirent* to dirent* and overwrite the d_name field (which has
2252 // space for UTF-16 wchar_t's) with UTF-8 char's.
2253 struct dirent* ent = reinterpret_cast<struct dirent*>(went);
2254
2255 if (name_utf8.length() + 1 > sizeof(went->d_name)) {
2256 // Name too big to fit in existing buffer.
2257 errno = ENOMEM;
2258 return nullptr;
2259 }
2260
2261 // Note that sizeof(_wdirent::d_name) is bigger than sizeof(dirent::d_name)
2262 // because _wdirent contains wchar_t instead of char. So even if name_utf8
2263 // can fit in _wdirent::d_name, the resulting dirent::d_name field may be
2264 // bigger than the caller expects because they expect a dirent structure
2265 // which has a smaller d_name field. Ignore this since the caller should be
2266 // resilient.
2267
2268 // Rewrite the UTF-16 d_name field to UTF-8.
2269 strcpy(ent->d_name, name_utf8.c_str());
2270
2271 return ent;
2272 }
2273
2274 // Version of closedir() to go with our version of adb_opendir().
adb_closedir(DIR * dir)2275 int adb_closedir(DIR* dir) {
2276 return _wclosedir(reinterpret_cast<_WDIR*>(dir));
2277 }
2278
2279 // Version of unlink() that takes a UTF-8 path.
adb_unlink(const char * path)2280 int adb_unlink(const char* path) {
2281 std::wstring wpath;
2282 if (!android::base::UTF8ToWide(path, &wpath)) {
2283 return -1;
2284 }
2285
2286 int rc = _wunlink(wpath.c_str());
2287
2288 if (rc == -1 && errno == EACCES) {
2289 /* unlink returns EACCES when the file is read-only, so we first */
2290 /* try to make it writable, then unlink again... */
2291 rc = _wchmod(wpath.c_str(), _S_IREAD | _S_IWRITE);
2292 if (rc == 0)
2293 rc = _wunlink(wpath.c_str());
2294 }
2295 return rc;
2296 }
2297
2298 // Version of mkdir() that takes a UTF-8 path.
adb_mkdir(const std::string & path,int mode)2299 int adb_mkdir(const std::string& path, int mode) {
2300 std::wstring path_wide;
2301 if (!android::base::UTF8ToWide(path, &path_wide)) {
2302 return -1;
2303 }
2304
2305 return _wmkdir(path_wide.c_str());
2306 }
2307
2308 // Version of utime() that takes a UTF-8 path.
adb_utime(const char * path,struct utimbuf * u)2309 int adb_utime(const char* path, struct utimbuf* u) {
2310 std::wstring path_wide;
2311 if (!android::base::UTF8ToWide(path, &path_wide)) {
2312 return -1;
2313 }
2314
2315 static_assert(sizeof(struct utimbuf) == sizeof(struct _utimbuf),
2316 "utimbuf and _utimbuf should be the same size because they both "
2317 "contain the same types, namely time_t");
2318 return _wutime(path_wide.c_str(), reinterpret_cast<struct _utimbuf*>(u));
2319 }
2320
2321 // Version of chmod() that takes a UTF-8 path.
adb_chmod(const char * path,int mode)2322 int adb_chmod(const char* path, int mode) {
2323 std::wstring path_wide;
2324 if (!android::base::UTF8ToWide(path, &path_wide)) {
2325 return -1;
2326 }
2327
2328 return _wchmod(path_wide.c_str(), mode);
2329 }
2330
2331 // From libutils/Unicode.cpp, get the length of a UTF-8 sequence given the lead byte.
utf8_codepoint_len(uint8_t ch)2332 static inline size_t utf8_codepoint_len(uint8_t ch) {
2333 return ((0xe5000000 >> ((ch >> 3) & 0x1e)) & 3) + 1;
2334 }
2335
2336 namespace internal {
2337
2338 // Given a sequence of UTF-8 bytes (denoted by the range [first, last)), return the number of bytes
2339 // (from the beginning) that are complete UTF-8 sequences and append the remaining bytes to
2340 // remaining_bytes.
ParseCompleteUTF8(const char * const first,const char * const last,std::vector<char> * const remaining_bytes)2341 size_t ParseCompleteUTF8(const char* const first, const char* const last,
2342 std::vector<char>* const remaining_bytes) {
2343 // Walk backwards from the end of the sequence looking for the beginning of a UTF-8 sequence.
2344 // Current_after points one byte past the current byte to be examined.
2345 for (const char* current_after = last; current_after != first; --current_after) {
2346 const char* const current = current_after - 1;
2347 const char ch = *current;
2348 const char kHighBit = 0x80u;
2349 const char kTwoHighestBits = 0xC0u;
2350 if ((ch & kHighBit) == 0) { // high bit not set
2351 // The buffer ends with a one-byte UTF-8 sequence, possibly followed by invalid trailing
2352 // bytes with no leading byte, so return the entire buffer.
2353 break;
2354 } else if ((ch & kTwoHighestBits) == kTwoHighestBits) { // top two highest bits set
2355 // Lead byte in UTF-8 sequence, so check if we have all the bytes in the sequence.
2356 const size_t bytes_available = last - current;
2357 if (bytes_available < utf8_codepoint_len(ch)) {
2358 // We don't have all the bytes in the UTF-8 sequence, so return all the bytes
2359 // preceding the current incomplete UTF-8 sequence and append the remaining bytes
2360 // to remaining_bytes.
2361 remaining_bytes->insert(remaining_bytes->end(), current, last);
2362 return current - first;
2363 } else {
2364 // The buffer ends with a complete UTF-8 sequence, possibly followed by invalid
2365 // trailing bytes with no lead byte, so return the entire buffer.
2366 break;
2367 }
2368 } else {
2369 // Trailing byte, so keep going backwards looking for the lead byte.
2370 }
2371 }
2372
2373 // Return the size of the entire buffer. It is possible that we walked backward past invalid
2374 // trailing bytes with no lead byte, in which case we want to return all those invalid bytes
2375 // so that they can be processed.
2376 return last - first;
2377 }
2378
2379 }
2380
2381 // Bytes that have not yet been output to the console because they are incomplete UTF-8 sequences.
2382 // Note that we use only one buffer even though stderr and stdout are logically separate streams.
2383 // This matches the behavior of Linux.
2384
2385 // Internal helper function to write UTF-8 bytes to a console. Returns -1 on error.
_console_write_utf8(const char * const buf,const size_t buf_size,FILE * stream,HANDLE console)2386 static int _console_write_utf8(const char* const buf, const size_t buf_size, FILE* stream,
2387 HANDLE console) {
2388 static std::mutex& console_output_buffer_lock = *new std::mutex();
2389 static auto& console_output_buffer = *new std::vector<char>();
2390
2391 const int saved_errno = errno;
2392 std::vector<char> combined_buffer;
2393
2394 // Complete UTF-8 sequences that should be immediately written to the console.
2395 const char* utf8;
2396 size_t utf8_size;
2397
2398 {
2399 std::lock_guard<std::mutex> lock(console_output_buffer_lock);
2400 if (console_output_buffer.empty()) {
2401 // If console_output_buffer doesn't have a buffered up incomplete UTF-8 sequence (the
2402 // common case with plain ASCII), parse buf directly.
2403 utf8 = buf;
2404 utf8_size = internal::ParseCompleteUTF8(buf, buf + buf_size, &console_output_buffer);
2405 } else {
2406 // If console_output_buffer has a buffered up incomplete UTF-8 sequence, move it to
2407 // combined_buffer (and effectively clear console_output_buffer) and append buf to
2408 // combined_buffer, then parse it all together.
2409 combined_buffer.swap(console_output_buffer);
2410 combined_buffer.insert(combined_buffer.end(), buf, buf + buf_size);
2411
2412 utf8 = combined_buffer.data();
2413 utf8_size = internal::ParseCompleteUTF8(utf8, utf8 + combined_buffer.size(),
2414 &console_output_buffer);
2415 }
2416 }
2417
2418 std::wstring utf16;
2419
2420 // Try to convert from data that might be UTF-8 to UTF-16, ignoring errors (just like Linux
2421 // which does not return an error on bad UTF-8). Data might not be UTF-8 if the user cat's
2422 // random data, runs dmesg (which might have non-UTF-8), etc.
2423 // This could throw std::bad_alloc.
2424 (void)android::base::UTF8ToWide(utf8, utf8_size, &utf16);
2425
2426 // Note that this does not do \n => \r\n translation because that
2427 // doesn't seem necessary for the Windows console. For the Windows
2428 // console \r moves to the beginning of the line and \n moves to a new
2429 // line.
2430
2431 // Flush any stream buffering so that our output is afterwards which
2432 // makes sense because our call is afterwards.
2433 (void)fflush(stream);
2434
2435 // Write UTF-16 to the console.
2436 DWORD written = 0;
2437 if (!WriteConsoleW(console, utf16.c_str(), utf16.length(), &written, nullptr)) {
2438 errno = EIO;
2439 return -1;
2440 }
2441
2442 // Return the size of the original buffer passed in, signifying that we consumed it all, even
2443 // if nothing was displayed, in the case of being passed an incomplete UTF-8 sequence. This
2444 // matches the Linux behavior.
2445 errno = saved_errno;
2446 return buf_size;
2447 }
2448
2449 // Function prototype because attributes cannot be placed on func definitions.
2450 static int _console_vfprintf(const HANDLE console, FILE* stream, const char* format, va_list ap)
2451 __attribute__((__format__(__printf__, 3, 0)));
2452
2453 // Internal function to format a UTF-8 string and write it to a Win32 console.
2454 // Returns -1 on error.
_console_vfprintf(const HANDLE console,FILE * stream,const char * format,va_list ap)2455 static int _console_vfprintf(const HANDLE console, FILE* stream,
2456 const char *format, va_list ap) {
2457 const int saved_errno = errno;
2458 std::string output_utf8;
2459
2460 // Format the string.
2461 // This could throw std::bad_alloc.
2462 android::base::StringAppendV(&output_utf8, format, ap);
2463
2464 const int result = _console_write_utf8(output_utf8.c_str(), output_utf8.length(), stream,
2465 console);
2466 if (result != -1) {
2467 errno = saved_errno;
2468 } else {
2469 // If -1 was returned, errno has been set.
2470 }
2471 return result;
2472 }
2473
2474 // Version of vfprintf() that takes UTF-8 and can write Unicode to a
2475 // Windows console.
adb_vfprintf(FILE * stream,const char * format,va_list ap)2476 int adb_vfprintf(FILE *stream, const char *format, va_list ap) {
2477 const HANDLE console = _get_console_handle(stream);
2478
2479 // If there is an associated Win32 console, write to it specially,
2480 // otherwise defer to the regular C Runtime, passing it UTF-8.
2481 if (console != nullptr) {
2482 return _console_vfprintf(console, stream, format, ap);
2483 } else {
2484 // If vfprintf is a macro, undefine it, so we can call the real
2485 // C Runtime API.
2486 #pragma push_macro("vfprintf")
2487 #undef vfprintf
2488 return vfprintf(stream, format, ap);
2489 #pragma pop_macro("vfprintf")
2490 }
2491 }
2492
2493 // Version of vprintf() that takes UTF-8 and can write Unicode to a Windows console.
adb_vprintf(const char * format,va_list ap)2494 int adb_vprintf(const char *format, va_list ap) {
2495 return adb_vfprintf(stdout, format, ap);
2496 }
2497
2498 // Version of fprintf() that takes UTF-8 and can write Unicode to a
2499 // Windows console.
adb_fprintf(FILE * stream,const char * format,...)2500 int adb_fprintf(FILE *stream, const char *format, ...) {
2501 va_list ap;
2502 va_start(ap, format);
2503 const int result = adb_vfprintf(stream, format, ap);
2504 va_end(ap);
2505
2506 return result;
2507 }
2508
2509 // Version of printf() that takes UTF-8 and can write Unicode to a
2510 // Windows console.
adb_printf(const char * format,...)2511 int adb_printf(const char *format, ...) {
2512 va_list ap;
2513 va_start(ap, format);
2514 const int result = adb_vfprintf(stdout, format, ap);
2515 va_end(ap);
2516
2517 return result;
2518 }
2519
2520 // Version of fputs() that takes UTF-8 and can write Unicode to a
2521 // Windows console.
adb_fputs(const char * buf,FILE * stream)2522 int adb_fputs(const char* buf, FILE* stream) {
2523 // adb_fprintf returns -1 on error, which is conveniently the same as EOF
2524 // which fputs (and hence adb_fputs) should return on error.
2525 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2526 return adb_fprintf(stream, "%s", buf);
2527 }
2528
2529 // Version of fputc() that takes UTF-8 and can write Unicode to a
2530 // Windows console.
adb_fputc(int ch,FILE * stream)2531 int adb_fputc(int ch, FILE* stream) {
2532 const int result = adb_fprintf(stream, "%c", ch);
2533 if (result == -1) {
2534 return EOF;
2535 }
2536 // For success, fputc returns the char, cast to unsigned char, then to int.
2537 return static_cast<unsigned char>(ch);
2538 }
2539
2540 // Version of putchar() that takes UTF-8 and can write Unicode to a Windows console.
adb_putchar(int ch)2541 int adb_putchar(int ch) {
2542 return adb_fputc(ch, stdout);
2543 }
2544
2545 // Version of puts() that takes UTF-8 and can write Unicode to a Windows console.
adb_puts(const char * buf)2546 int adb_puts(const char* buf) {
2547 // adb_printf returns -1 on error, which is conveniently the same as EOF
2548 // which puts (and hence adb_puts) should return on error.
2549 static_assert(EOF == -1, "EOF is not -1, so this code needs to be fixed");
2550 return adb_printf("%s\n", buf);
2551 }
2552
2553 // Internal function to write UTF-8 to a Win32 console. Returns the number of
2554 // items (of length size) written. On error, returns a short item count or 0.
_console_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream,HANDLE console)2555 static size_t _console_fwrite(const void* ptr, size_t size, size_t nmemb,
2556 FILE* stream, HANDLE console) {
2557 const int result = _console_write_utf8(reinterpret_cast<const char*>(ptr), size * nmemb, stream,
2558 console);
2559 if (result == -1) {
2560 return 0;
2561 }
2562 return result / size;
2563 }
2564
2565 // Version of fwrite() that takes UTF-8 and can write Unicode to a
2566 // Windows console.
adb_fwrite(const void * ptr,size_t size,size_t nmemb,FILE * stream)2567 size_t adb_fwrite(const void* ptr, size_t size, size_t nmemb, FILE* stream) {
2568 const HANDLE console = _get_console_handle(stream);
2569
2570 // If there is an associated Win32 console, write to it specially,
2571 // otherwise defer to the regular C Runtime, passing it UTF-8.
2572 if (console != nullptr) {
2573 return _console_fwrite(ptr, size, nmemb, stream, console);
2574 } else {
2575 // If fwrite is a macro, undefine it, so we can call the real
2576 // C Runtime API.
2577 #pragma push_macro("fwrite")
2578 #undef fwrite
2579 return fwrite(ptr, size, nmemb, stream);
2580 #pragma pop_macro("fwrite")
2581 }
2582 }
2583
2584 // Version of fopen() that takes a UTF-8 filename and can access a file with
2585 // a Unicode filename.
adb_fopen(const char * path,const char * mode)2586 FILE* adb_fopen(const char* path, const char* mode) {
2587 std::wstring path_wide;
2588 if (!android::base::UTF8ToWide(path, &path_wide)) {
2589 return nullptr;
2590 }
2591
2592 std::wstring mode_wide;
2593 if (!android::base::UTF8ToWide(mode, &mode_wide)) {
2594 return nullptr;
2595 }
2596
2597 return _wfopen(path_wide.c_str(), mode_wide.c_str());
2598 }
2599
2600 // Return a lowercase version of the argument. Uses C Runtime tolower() on
2601 // each byte which is not UTF-8 aware, and theoretically uses the current C
2602 // Runtime locale (which in practice is not changed, so this becomes a ASCII
2603 // conversion).
ToLower(const std::string & anycase)2604 static std::string ToLower(const std::string& anycase) {
2605 // copy string
2606 std::string str(anycase);
2607 // transform the copy
2608 std::transform(str.begin(), str.end(), str.begin(), tolower);
2609 return str;
2610 }
2611
2612 extern "C" int main(int argc, char** argv);
2613
2614 // Link with -municode to cause this wmain() to be used as the program
2615 // entrypoint. It will convert the args from UTF-16 to UTF-8 and call the
2616 // regular main() with UTF-8 args.
wmain(int argc,wchar_t ** argv)2617 extern "C" int wmain(int argc, wchar_t **argv) {
2618 // Convert args from UTF-16 to UTF-8 and pass that to main().
2619 NarrowArgs narrow_args(argc, argv);
2620 return main(argc, narrow_args.data());
2621 }
2622
2623 // Shadow UTF-8 environment variable name/value pairs that are created from
2624 // _wenviron by _init_env(). Note that this is not currently updated if putenv, setenv, unsetenv are
2625 // called. Note that no thread synchronization is done, but we're called early enough in
2626 // single-threaded startup that things work ok.
2627 static auto& g_environ_utf8 = *new std::unordered_map<std::string, char*>();
2628
2629 // Setup shadow UTF-8 environment variables.
_init_env()2630 static void _init_env() {
2631 // If some name/value pairs exist, then we've already done the setup below.
2632 if (g_environ_utf8.size() != 0) {
2633 return;
2634 }
2635
2636 if (_wenviron == nullptr) {
2637 // If _wenviron is null, then -municode probably wasn't used. That
2638 // linker flag will cause the entry point to setup _wenviron. It will
2639 // also require an implementation of wmain() (which we provide above).
2640 LOG(FATAL) << "_wenviron is not set, did you link with -municode?";
2641 }
2642
2643 // Read name/value pairs from UTF-16 _wenviron and write new name/value
2644 // pairs to UTF-8 g_environ_utf8. Note that it probably does not make sense
2645 // to use the D() macro here because that tracing only works if the
2646 // ADB_TRACE environment variable is setup, but that env var can't be read
2647 // until this code completes.
2648 for (wchar_t** env = _wenviron; *env != nullptr; ++env) {
2649 wchar_t* const equal = wcschr(*env, L'=');
2650 if (equal == nullptr) {
2651 // Malformed environment variable with no equal sign. Shouldn't
2652 // really happen, but we should be resilient to this.
2653 continue;
2654 }
2655
2656 // If we encounter an error converting UTF-16, don't error-out on account of a single env
2657 // var because the program might never even read this particular variable.
2658 std::string name_utf8;
2659 if (!android::base::WideToUTF8(*env, equal - *env, &name_utf8)) {
2660 continue;
2661 }
2662
2663 // Store lowercase name so that we can do case-insensitive searches.
2664 name_utf8 = ToLower(name_utf8);
2665
2666 std::string value_utf8;
2667 if (!android::base::WideToUTF8(equal + 1, &value_utf8)) {
2668 continue;
2669 }
2670
2671 char* const value_dup = strdup(value_utf8.c_str());
2672
2673 // Don't overwrite a previus env var with the same name. In reality,
2674 // the system probably won't let two env vars with the same name exist
2675 // in _wenviron.
2676 g_environ_utf8.insert({name_utf8, value_dup});
2677 }
2678 }
2679
2680 // Version of getenv() that takes a UTF-8 environment variable name and
2681 // retrieves a UTF-8 value. Case-insensitive to match getenv() on Windows.
adb_getenv(const char * name)2682 char* adb_getenv(const char* name) {
2683 // Case-insensitive search by searching for lowercase name in a map of
2684 // lowercase names.
2685 const auto it = g_environ_utf8.find(ToLower(std::string(name)));
2686 if (it == g_environ_utf8.end()) {
2687 return nullptr;
2688 }
2689
2690 return it->second;
2691 }
2692
2693 // Version of getcwd() that returns the current working directory in UTF-8.
adb_getcwd(char * buf,int size)2694 char* adb_getcwd(char* buf, int size) {
2695 wchar_t* wbuf = _wgetcwd(nullptr, 0);
2696 if (wbuf == nullptr) {
2697 return nullptr;
2698 }
2699
2700 std::string buf_utf8;
2701 const bool narrow_result = android::base::WideToUTF8(wbuf, &buf_utf8);
2702 free(wbuf);
2703 wbuf = nullptr;
2704
2705 if (!narrow_result) {
2706 return nullptr;
2707 }
2708
2709 // If size was specified, make sure all the chars will fit.
2710 if (size != 0) {
2711 if (size < static_cast<int>(buf_utf8.length() + 1)) {
2712 errno = ERANGE;
2713 return nullptr;
2714 }
2715 }
2716
2717 // If buf was not specified, allocate storage.
2718 if (buf == nullptr) {
2719 if (size == 0) {
2720 size = buf_utf8.length() + 1;
2721 }
2722 buf = reinterpret_cast<char*>(malloc(size));
2723 if (buf == nullptr) {
2724 return nullptr;
2725 }
2726 }
2727
2728 // Destination buffer was allocated with enough space, or we've already
2729 // checked an existing buffer size for enough space.
2730 strcpy(buf, buf_utf8.c_str());
2731
2732 return buf;
2733 }
2734
2735 // The SetThreadDescription API was brought in version 1607 of Windows 10.
2736 typedef HRESULT(WINAPI* SetThreadDescription)(HANDLE hThread, PCWSTR lpThreadDescription);
2737
2738 // Based on PlatformThread::SetName() from
2739 // https://cs.chromium.org/chromium/src/base/threading/platform_thread_win.cc
adb_thread_setname(const std::string & name)2740 int adb_thread_setname(const std::string& name) {
2741 // The SetThreadDescription API works even if no debugger is attached.
2742 auto set_thread_description_func = reinterpret_cast<SetThreadDescription>(
2743 ::GetProcAddress(::GetModuleHandleW(L"Kernel32.dll"), "SetThreadDescription"));
2744 if (set_thread_description_func) {
2745 std::wstring name_wide;
2746 if (!android::base::UTF8ToWide(name.c_str(), &name_wide)) {
2747 return errno;
2748 }
2749 set_thread_description_func(::GetCurrentThread(), name_wide.c_str());
2750 }
2751
2752 // Don't use the thread naming SEH exception because we're compiled with -fno-exceptions.
2753 // https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-set-a-thread-name-in-native-code?view=vs-2017
2754
2755 return 0;
2756 }
2757
2758 #if !defined(ENABLE_VIRTUAL_TERMINAL_PROCESSING)
2759 #define ENABLE_VIRTUAL_TERMINAL_PROCESSING 0x0004
2760 #endif
2761
2762 #if !defined(DISABLE_NEWLINE_AUTO_RETURN)
2763 #define DISABLE_NEWLINE_AUTO_RETURN 0x0008
2764 #endif
2765
_init_console()2766 static void _init_console() {
2767 DWORD old_out_console_mode;
2768
2769 const HANDLE out = _get_console_handle(STDOUT_FILENO, &old_out_console_mode);
2770 if (out == nullptr) {
2771 return;
2772 }
2773
2774 // Try to use ENABLE_VIRTUAL_TERMINAL_PROCESSING on the output console to process virtual
2775 // terminal sequences on newer versions of Windows 10 and later.
2776 // https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
2777 // On older OSes that don't support the flag, SetConsoleMode() will return an error.
2778 // ENABLE_VIRTUAL_TERMINAL_PROCESSING also solves a problem where the last column of the
2779 // console cannot be overwritten.
2780 //
2781 // Note that we don't use DISABLE_NEWLINE_AUTO_RETURN because it doesn't seem to be necessary.
2782 // If we use DISABLE_NEWLINE_AUTO_RETURN, _console_write_utf8() would need to be modified to
2783 // translate \n to \r\n.
2784 if (!SetConsoleMode(out, old_out_console_mode | ENABLE_VIRTUAL_TERMINAL_PROCESSING)) {
2785 return;
2786 }
2787
2788 // If SetConsoleMode() succeeded, the console supports virtual terminal processing, so we
2789 // should set the TERM env var to match so that it will be propagated to adbd on devices.
2790 //
2791 // Below's direct manipulation of env vars and not g_environ_utf8 assumes that _init_env() has
2792 // not yet been called. If this fails, _init_env() should be called after _init_console().
2793 if (g_environ_utf8.size() > 0) {
2794 LOG(FATAL) << "environment variables have already been converted to UTF-8";
2795 }
2796
2797 #pragma push_macro("getenv")
2798 #undef getenv
2799 #pragma push_macro("putenv")
2800 #undef putenv
2801 if (getenv("TERM") == nullptr) {
2802 // This is the same TERM value used by Gnome Terminal and the version of ssh included with
2803 // Windows.
2804 putenv("TERM=xterm-256color");
2805 }
2806 #pragma pop_macro("putenv")
2807 #pragma pop_macro("getenv")
2808 }
2809
_init_sysdeps()2810 static bool _init_sysdeps() {
2811 // _init_console() depends on _init_env() not being called yet.
2812 _init_console();
2813 _init_env();
2814 _init_winsock();
2815 return true;
2816 }
2817
2818 static bool _sysdeps_init = _init_sysdeps();
2819